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Abstract
The aim of this note is to draw attention to recent results about the so called Jordan
property of groups. (The name was motivated by a classical theorem of Jordan about
finite subgroups of matrix groups).We explore interrelations between geometric prop-
erties of complex projective varieties and compact Kähler manifolds and the Jordan
property (or the lack of it) of their automorphism groups of birational and biregular
selfmaps, and of bimeromorphic and biholomorphic maps, respectively.
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1 Introduction

The aim of this note is to draw attention to the so called Jordan property of groups that
was recently actively studied. The property was explicitly formulated by Jean-Pierre
Serre and Vladimir Popov in this century, and the name goes back to a classical result
of Jordan [14] about finite subgroups of complex matrix groups. Though defined for
arbitrary groups, in special situations it bears a strong geometric meaning. A more
detailed review on this topic may be found in [11].
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We will use the standard notation N, Z, Q, C for the set of positive integers, the
ring of integers, the fields of rational and complex numbers, respectively. If q is a
prime (or a prime power) then we write Fq for the (finite) q-element field. In this note
we consider the following groups.

• Bir(X) of all birational self-maps of an irreducible complex algebraic variety X;
• Bim(X) of all bimeromorphic self-maps of a connected complex manifold X;
• Diff(X) of all diffeormorphisms of a smooth real manifold X;
• Autan(X) and Aut(X) of all automorphisms of complex or algebraic variety,
respectively.

Remark 1 If X is a smooth projective variety over the field of complex numbers then
Bim(X) = Bir(X). In addition, Autan(X) = Aut(X); we will denote both groups as
Aut(X) when no confusion can arise.

Sometimes these groups are finite; for example, Bim(X) is finite if X is a compact
connected complex manifold of general type (i.e., it has maximal possible Kodaira
dimension κ(X) = dim X [17]). However, in general, the groups Bim(X) may be
infinite and non-algebraic. One of the most interesting and important examples of
such groups in birational geometry is the Cremona group Crn = Bir(Pn) where P

n is
the n-dimensional complex projective space. If n ≥ 2, then Crn is a huge non-abelian
non-algebraic group. To understand the structure of such groups one is tempted to
consider their less complicated subgroups: finite, abelian or their combinations. This
is where the Jordan properties come in.

Definition 1 A group G is called Jordan if there is a finite positive integer J such that
every finite subgroup B of G contains an abelian subgroup A that is normal in B and
such that the index [B : A] ≤ J . The smallest such J is called the Jordan constant of
G, denoted by JG , [35, Question 6.1], [22, Definition 2.1].

The study of Jordan properties was inspired by the following fundamental results
of Jordan and Serre (see [14], [36, Theorem 9.9], and [35, Theorem 5.3] respectively).

Theorem 1 (Theorem of Jordan) The group GLn = GLn(C) is Jordan.

Theorem 2 (Theorem of Serre) The Cremona group Cr2 = Bir(P2) is Jordan, JCr2 ≤
21034527.

(Later the exact value JCr2 = 7200 was found by Yasinsky [41].)

Example 1 It follows from Theorem 1 that every linear algebraic group over any field
of characteristic zero is Jordan.Moreover, every connected real (or complex) Lie group
is Jordan (Popov [24]).

Example 2 It is well known that GLn contains a subgroup of order (n + 1)! that is
isomorphic to the full symmetric group Sn+1 of permutations on (n + 1) letters.
Indeed, permutations of the coordinates in (n + 1)-dimensional vector space C

n+1

leave invariant the hyperplane H = {∑n+1
1 xi = 0} ∼= C

n . If n ≥ 4 then n + 1 ≥ 5
andSn+1 is a nonabelian group that does not contain a proper abelian normal subgroup.
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(Actually, its only proper normal subgroup is the alternating groupAn+1 that is simple
nonabelian.) This implies that if n ≥ 4 then

JGLn ≥ JSn+1 = (n + 1)!. (1)

The equality holds if n ≥ 71 or n = 63, 65, 67, 69 [12].

Example 3 Finite subgroups of the group GL2 = GL2(C) were classified in the XIX
century [16] (see also [39, Chap. 3, Sect. 6]). In particular, GL2 contains a subgroup of
order 120 that is isomorphic to SL(2, F5). Its largest abelian normal subgroup C con-
sists of two scalars {1,−1} (see below) and the corresponding quotient SL(2, F5)/C
is isomorphic to the simple nonabelian alternating group A5.

It follows that JGL2(C)) ≥ 60. Actually, JGL2(C)) = 60.

Example 4 (Example of a non-Jordan group) Let p be a prime and Fp an algebraic
closure of the field Fp. Then SL(2, Fp) is not Jordan.

Indeed, if m is a positive integer and q = pm ≥ 4, then SL(2, Fq) ⊂ SL(2, Fp).
Recall that SL(2, Fq) is a finite noncommutative group of order (q2 − 1)q such

that its only proper normal subgroup C � SL(2, Fq) consists of one or two scalars.
Thus the values of indices

[SL(2, Fq) : C] = (q2 − 1)q/2 or (q2 − 1)q

are unbounded when m tends to infinity. Hence SL(2, Fp) is not Jordan.

In his paper [22] Popov asked whether for any algebraic variety X the groups
Aut(X) and Bir(X) are Jordan. This question stimulated an intensive and fruitful
activity, see Sect. 2 below.

The following “Jordan properties” of groups are also very useful.

Definition 2 1. A group G is called bounded if the orders of its finite subgroups are
bounded by a universal constant that depends only on G [22, Definition 2.9].

2. A Jordan group G is called strongly Jordan [7, 26] if there is a positive integer m
such that every finite subgroup of G is generated by at most m elements.

3. A group G is called very Jordan [9] if there exist a commutative normal subgroup
G0 of G and a bounded group F that sit in a short exact sequence

1 → G0 → G → F → 1. (2)

Example 5 (Examples of bounded groups) The matrix group GL(n, Q) and its sub-
group GL(n, Z) are bounded.

This is a celebrated result of Minkowski (1887), see [36, Sect. 9.1]. Actually,
Minkowski gave an explicit upper bound M(n) for the orders of finite subgroups
of GL(n, Q) (ibid, see also [34]).

Example 6 The multiplicative group C
∗ of the field C is commutative, (hence, Jordan)

but not bounded. The same is true for the group of translations of any complex torus
of positive dimension.
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Remark 2 1. Every finite group is bounded, Jordan, and very Jordan.
2. Every commutative group is Jordan and very Jordan.
3. Every finitely generated commutative group is bounded. Indeed, such a group is

isomorphic to a finite direct sum with every summand isomorphic either to Z or
to Z/nZ where n is a positive integer.

4. A subgroup of a Jordan group is Jordan. A subgroup of a very Jordan group is very
Jordan.

5. “Bounded” implies “very Jordan”, “very Jordan” implies “Jordan”.
6. “Bounded” implies “strongly Jordan.” On the other hand, “very Jordan” does not

imply “strongly Jordan.” For example, a direct sum of infinitely many copies of
Z/2Z is commutative but has finite subgroups with any given minimal number of
generators.

2 Jordan properties of groups Aut(X),Bir(X),Bim(X), and Diff(X)

In this section we sketch certain facts, methods and tools related to the study of the
Jordan properties of groups arising from complex geometry.

Example 7 Let X be a smooth irreducible projective curve (Riemann surface) of genus
g. Then Aut(X) = Bir(X) = Bim(X). We have:

• If g > 1 then Aut(X) is finite, hence bounded and Jordan.
• If g = 0 then Aut(X) = PGL(2, C) is Jordan (by the Jordan Theorem), strongly
Jordan, but not bounded and not very Jordan.

• If g = 1, i.e., X is an elliptic curve, then it is a commutative algebraic group that
acts on itself by translations. Moreover, X ⊂ Aut(X) is a normal commutative
subgroup of finite index, namely [Aut(X) : X ] ≤ 6. It follows that Aut(X) is very
Jordan, strongly Jordan, but not bounded.

Example 8 Winkelmann [40] and Popov [23] proved the existence of a connected non-
compact Riemann surface M such that Aut(M) contains an isomorphic copy of every
finitely presented (in particular, every finite) group G. In particular, Diff(M) is not
Jordan.

Example 9 The automorphism groupAut(A) of an abelian variety A is strongly Jordan
and very Jordan. Moreover, if d is a positive integer then there are universal constants
J (d) and R(d) that depend only on d and such that if A is a d-dimensional abelian
variety then every finite subgroup of Aut(A) may be generated by r ≤ R(d) elements
and JA ≤ J (d).

Proof Let LA be a lattice in C
d such that A = C

d/L A. Thus A is isomorphic as a
group to (R/Z)2d , hence every finite subgroup has at most 2d generators.

Let TA ⊂ Aut(A) be the (sub)group of translations

ta : A → A, → x + a, (a ∈ A).
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Then TA is isomorphic to A as a group. There is an exact sequence:

0 → TA → Aut(A) → Aut(L A) ∼= GL(2d, Z).

Since TA is very abelian and the groupGL(2d, Z) is bounded,Aut(A) is very Jordan
and the corresponding constants are bounded by universal constants that depend only
on d. 	


As of today (June 2024), there are no examples of complex algebraic varieties (com-
pact or non-compact) with non-Jordan Aut(X). If X is a compact complex connected
manifold, then Aut(X) carries the natural structure of a (not necessarily connected)
complex Lie group [5]. The identity component Aut0(X) of Aut(X) is Jordan for every
compact complex space X [24, Theorems 5 and 7].

The group Aut(X)/Aut0(X) of connected components of Aut(X) is bounded if X
is Kähler [9, Proposition 1.4].

It is known that the group Aut(X) is Jordan if

• X is projective (Meng and Zheng [18]);
• X is a compact complex Kähler manifold (Kim [15]);
• X is a compact complex space in the Fujiki Class C (Meng et al. [19]; see also
[29] for Moishezon threefolds).

Moreover, Aut(X) is very Jordan if the Kodaira dimension κ(X) of X is non-
negative, or if X is a P

1-bundle over a certain non-uniruled complex manifold [9–11].

Remark 3 Recall that the Kodaira dimensionκ(X) is a numerical invariant of a variety
X that can take on values −∞, 0, 1, 2, . . . , dim X . As was already mentioned, if
κ(X) = dim X , then X is called a variety of general type. Roughly speaking, it is
rigid. For example, the group Aut(X) is finite, and the set of regular maps from any
projective variety Y onto X is finite as well. It cannot be covered by a family of rational
curves. At the other side of the spectrum (κ(X) = −∞) are, in particular, uniruled
varieties. A compact complex variety X is uniruled if there exist a compact complex
variety Y , a proper complex closed subspace Z ⊂ Y , and a meromorphic dominant
map f : Y × P

1 → X such that dim( f (y × P
1)) = 1 for any y ∈ Y\Z . If dim X ≤ 3

then κ(X) = −∞ implies that X is uniruled. Any projective space is uniruled.

The structure of the groups Bir(X) and Bim(X) of birational and bimeromorphic
selfmaps, respectively, is more complicated. It appears that uniruled varieties play a
special role with respect to Jordan properties.

There are examples of

• a projective variety X pr with non-Jordan group Bir(X pr ), namely

X pr := E × P
1

where E is any elliptic curve [42];
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• a non-algebraic connected compact complex manifold Xc with non-Jordan group
Bim(Xc) :

Xc := T × P
1,

where T is any non-algebraic complex torus of positive algebraic dimension [43];
• a smooth compact real manifold M with non-Jordan group Diff(M)with M being
the direct product of 2-dimensional real torus by 2-dimensional sphere (Csikós et
al. [13]). Note that P

1 is a 2-dimensional sphere as a real manifold.

All these examples are essentially the same. Let us note their main features: all
those objects are

• uniruled (covered by rational curves);
• direct products with a torus T ;
• a torus T carries no rational curves and the group T is an algebraic, commutative,
not bounded group.

It seems that the Jordan property (or rather its absence) of the groups Bir(X),

or Bim(X) for a complex manifold (or projective varietiy) X correlate with such
geometric features as being uniruled over a non-uniruled positive dimensional base or
being a direct product.

Let us illustrate it in the case of surfaces by the following assertion.

Theorem 3 [22] If X is an irreducible projective surface then Bir(X) is Jordan unless
X is birational to a product E × P

1 of an elliptic curve E and P
1.

Let us sketch the ideas involved in the proof. They are basic for this theory and, in
a more sophisticated form, are widely used.

We will restrict ourselves to the smooth situation. Recall that a smooth surface X
has a minimal model Xm (that is smooth and contains no (-1) curves, see, e.g., [38]).
Case 1. κ(X) ≥ 0. Then Bir(X) = Bir(Xm) = Aut(Xm).

Every automorphism f ∈ Aut(Xm) induces the automorphismψ( f ) of the Néron-
Severi group NS(Xm) (the group of connected components of Pic(X).) Let Gi :=
ker(ψ). This is a complex Lie group that may be included into the exact sequence:

0 −→ Gi
i−→ Aut(Xm)

ψ−→ Aut(NS(X)). (3)

It is known that

• Gi has finitely many connected components;
• the identity component G0

i of Gi is a connected algebraic group;
• Being a connected algebraic group, G0

i is Jordan;• The Néron-Severi group NS(X) is a finitely generated abelian group; in particular,
its torsion subgroup F is finite and the quotient NS(X))/F is isomorphic to the
free abelian group Z

ρ of finite (positive) rank ρ where ρ is the Picard number of
X . This implies that the kernel of the natural homomorphism

Aut(NS(X)) → Aut(NS(X)/F) ∼= GL(ρ, Z)
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is finite. By the theorem of Minkowski, GL(ρ, Z) is bounded. This implies that
Aut(NS(X)) is bounded as well.

Now Eq. (3) implies that Bir(X) = Aut(Xm) is Jordan.
Case 2. κ(X) = −∞

As was already mentioned, the case of Cr2(C) = Bir(P2) is due to Serre (see
Theorem 2 above).

If the surface is birational to a direct product Xm := B × P
1 of a curve B of genus

g ≥ 1 and the projective line then every birational automorphism f ∈ Bir(Xm) ∼=
Bir(X) is fiberwise. It means that it can be included into the following commutative
diagram:

X
f−−−−→ X

π

⏐
⏐
� π

⏐
⏐
�

B
τ( f )−−−−→ B

. (4)

Here π : X → B is the natural projection and τ( f ) ∈ Aut(B).

The subgroup G0 = { f ∈ Aut(Xm)|τ( f ) = id} ⊂ PSL(2, K ), where K = C(B)

is the field of rational functions on B, is Jordan.
Once more we have an exact sequence

0 −→ G0
i−→ Aut(Xm)

τ−→ GB (5)

where GB = ψ(Aut(Xm)) ⊂ Aut(B) is finite if genus g > 1.
Thus if the genus g(B) > 1 then Eq. (5) implies that Bir(Xm) ∼= Bir(X) is Jordan.

	

The special case: X is birational to E × P

1 where E is an elliptic curve, is left.

Theorem 4 [42] If X is birational to E × P
1 then Bir(X) is not Jordan.

The proof of this Theorem is done in two steps. First, for every N ∈ N a certain
group GN is constructed and its Jordan number is shown to be N . Then for every
N ∈ N a surface SN is built such that

• SN is birational to E × P
1;

• Aut(SN ) contains a group GN ∼= GN .

It follows that Bir(E × P
1) contains a subgroup GN with JGN = N for every N ∈ N

thus is not Jordan. Let us give some details.
Step 1: Analogues of the Heisenberg groups that were used by Mumford [21]. Let

• K be a finite commutative group of order N > 1;
• μN ⊂ C

∗ be the multiplicative group of N th roots of unity;
• K̂ = Hom(K, μN )—the dual of K.

The Mumford theta group GK for K is the group of matrices of the type

⎛

⎝
1 α γ

0 1 β

0 0 1

⎞

⎠
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where α ∈ K̂, γ ∈ C
∗, and β ∈ K. The product α(β) ∈ C

∗ of α ∈ K̂ and β ∈ K is
used in order to define a certain natural non-degenerate alternating bilinear form eK
on HK = K × K̂ with values in C

∗ [42, p. 302]. This group may be included into a
short exact sequence

1 → C
∗ → GK → HK → 1

where the image of C
∗ is the center of GK. These groups are Jordan and

JGK = √
#(HK) = N = #(K).

In particular, let us put GN := GZ/NZ, i.e., K = Z/NZ. Then JGN = N .

Step 2: Constructing surfaces SN .
Fix a point P ∈ E and denote by [P] the corresponding divisor on E . Choose an

integer N > 1 and consider the divisor N [P] on E . Let LN [P] be the holomorphic line
bundle on E that corresponds to N [P]. Let LN be the total space of the line bundle
LN [P].Let SN = LN be its projective closure/compactification, i.e., SN = LN ∪T∞,

where T∞ is the “infinite” section of LN [P]. Actually, LN is the P
1-bundle over E

that is the projectivization of the rank two vector bundle LN ⊕1E ,where 1E = E ×C

is the trivial line bundle over E . Thus, SN is a ruled surface birational to E × P
1.

Let G(N ) be the subgroup of all those f ∈ Aut(SN ) that may be included into the
following commutative diagram:

LN
f−−−−→ LN

p
⏐
⏐
� p

⏐
⏐
�

E
TQ−−−−→ E

Here p : SN → E is the natural projection, E(N ) stands for the subgroup of
points in E of order dividing N , point Q ∈ E[N ] is a point of order dividing N ,

and TQ : E → E is the translation map e → e + Q. Moreover, f induces C-linear
isomorphisms between the fibers of p over e and e + Q.

On E×P
1 elements of the groupG(N ) induce birational maps and form a subgroup

GN ⊂ Bir(E × P
1) that may be described as follows.

G(N ) = {(Q, f ), Q ∈ E(N ), f ∈ C(E)∗ such that ( f ) = N [P + Q] − N [P]} is
acting as

(y, t) ∈ E × P
1 −→ (Q, f )(y, t) = (Q + y, f (y)t).

Here ( f ) is the divisor of a rational function f .
By a result of Mumford [21, Sect. 1, Corollary of Theorem 1] that the group GN

is isomorphic to GN ; hence JGN = N . Thus, JBir(E×P1) ≥ JGN = N for all N , i.e.,
Bir(E × P

1) is not Jordan.
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Based on the proof of the non-Jordanness of Bir(E × P
1) [42], Csikós et al. [13]

constructed a counterexample to
Conjecture of Ghys (1997, see [23], Conjecture 3) If M is a connected compact

smooth real manifold then Diff(M) is Jordan.
Let us describe their counterexample. From the real point of view, P

1 is the two-
dimensional sphere S

2, E is the two-dimensonal real torus T
2, and SN is an oriented

S
2-bundle over T

2.
As a smooth manifold, SN is diffeomorphic to the product T

2 × S
2 if and only if

N is even. Therefore for each even N we have

GN ↪→ Diff
(
T
2 × S

2
)

.

Since the set of JGN for positive even integers N is unbounded, the groupDiff(T2×
S
2) is not Jordan.

Remark 4 If X is a complex compact surface with non-negative Kodaira dimension
then Bir(X) is even bounded unless it is one of the following [30, Theorem 1.1]:

• a complex torus (in particular an abelian surface);
• a bielliptic surface;
• SK1—a surface of Kodaira dimension 1;
• SK—a Kodaira surface (it is not a Kähler surface). See [30, Theorem 1.1].

Moreover [28], if X is a projective threefold, then Bir(X) is not Jordan if and only
if X is birational to a direct product E × P

2 or S × P
1, where a surface S is one of the

surfaces listed above in this Remark.

For complex projective varieties Yu. Prokhorov and C. Shramov, and C. Birkar
proved the following

Theorem 5 Let X beaprojective irreducible variety of dimensionn.Then the following
hold.

(i) ThegroupBir(X) is boundedprovided that X is non-uniruled andhas irregularity
q(X) = 0 [26, Theorem 1.8].

(ii) The group Bir(X) is Jordan provided that X is non-uniruled [26, Theorem 1.8].
(iii) The group Bir(X) is Jordan provided that X has irregularity q(X) = 0 [26,

Theorem 1.8], [3].

Here q(X) = dimC H1(X ,OX ) is the irregularity of X . In particular, the Cremona
group Crn of any rank n is Jordan [3, 27].

The group Diff(M) of all diffeomorphisms of a smooth manifold M also appeared
to be Jordan for certain classes of manifolds.

Namely, Zimmerman [44] proved that if M is compact and dim(M) ≤ 3 then
Diff(M) is Jordan. The Jordan property of Diff(M) was studied by I. Mundet i Riera.
In particular, he proved [20] that Diff(M) is Jordan if M is one of the following:

1. open acyclic manifolds,
2. compact manifolds (possibly with boundary) with nonzero Euler characteristic,
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3. homology spheres.

So, in high dimensions the situation is very similar: the group Bim(X) or Bir(X) is
mostly Jordan, and the worst case from the Jordan properties point of view is the
following: a uniruled variety X with q(X) > 0 (or fibered over a non-uniruled base)
that has many sections (such as a direct product). A typical example of such a variety
X is a P

1-bundle over a complex torus T of positive dimension.
The need of “many sections” may be demonstrated by the case of projective non-

trivial conic bundles.

Definition 3 A regular surjective map f : X → Y of smooth irreducible projective
complex varieties is a conic bundle over Y if the generic fiber X := X f is an
absolutely irreducible curve over k(Y ) with genus 0 (see [32, 33].)

Recall that the generic fiber of f is an irreducible smooth projective curve X f

over the field K := C(Y ) such that its field of rational functions K (X f ) coincides
with C(X). Notice that K -points inX f correspond to a rational sections of the conic
bundle f : X → Y . If such a K -point exists, then X f is isomorphic over K to the
projective line P

1
K and X is birational to Y × P

1 (over C).

Remark 5 There are different definitions of a notion of conic bundle. The classical
one is three-dimensional quadric bundle over P

2 (see [1, Definition 1.1], [2]). Yu.
Prokhorov in [25, Definition 3.1] defines a conic bundle as a a proper flat morphism
of nonsingular varieties π : X → Y such that it is of relative dimension 1 and the
anticanonical divisor −KX is relatively ample.

Theorem 6 [7] Let X be a conic bundle over a non-uniruled smooth irreducible pro-
jective variety Y with dim(Y ) ≥ 2. If X is not birational to Y × P

1 then Bir(X) is
Jordan.

Let us sketch the proof.
If f : X → Y is a conic bundle and Y is non-uniruled, then every φ ∈ Bir(X) is

fiberwise [see (4)].
It follows that there is an exact sequence of groups:

0 → BirC(Y )(X f ) → Bir(X) → Bir(Y ); (6)

SinceY is non-uniruled, the groupBir(Y ) is Jordan, thanks toTheorem5.Moreover,
it is strongly Jordan (see [7, Corollary 3.8 and its proof]). Let us compute BirK (X f )

(recall that K = C(Y )). We have

1. Bir(X f ) = Aut(X f ), since dim(X f ) = 1.
2. Since X is not birational to Y × P

1, the genus 0 curve X f has no K -points and
therefore there exists a ternary quadratic form

q(T ) = a1T
2
1 + a2T

2
2 + a3T

2
3

over K such that
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– all ai are nonzero elements of K ;
– q(T ) = 0 if and only if T = (0, 0, 0)) (this means that q is anisotropic);
– X f is biregular over K to the plane projective quadric

Xq := {(T1 : T2 : T3) | q(T ) = 0} ⊂ P
2
K .

3. K is a field of characteristic zero that contains all roots of unity.

Now we can use the following fact that was proven in [7]).

Theorem 7 [7] Suppose that K is a field of characteristic zero that contains all roots
of unity, d ≥ 3 an odd integer, V a d-dimensional K -vector space and let q : V → K
be a quadratic form such that q(v) �= 0 for all nonzero v ∈ V . Let us consider the
projective quadric Xq ⊂ P(V ) defined by the equation q = 0, which is a smooth
projective irreducible (d − 2)-dimensional variety over K . Let Aut(Xq) be the group
of biregular automorphisms of Xq . Let G be a finite subgroup in Aut(Xq). Then G
is commutative, all its non-identity elements have order 2 and the order of G divides
2d−1.

(See [37] where a variant of Theorem 7 was later proven for anisotropic reductive
K -groups.)

Thus if G is a nontrivial finite subgroup of Aut(X f ) then either G ∼= Z/2Z or
G ∼= (Z/2Z)2.

Applying Eq. (6), we get that Bir(X) is Jordan.
We summarize now what we know about the Jordan properties when X is a P

1-
bundle over a complex torus T of positive dimension n. First, let us recall basic facts
about complex tori [4].

For a complex torus T there exists its algebraic model T0 such that:

• T0 is an abelian variety;
• there is a holomorphic surjective homomorphism p : T → T0 with connected
kernel that is universal in a sense that every homomorphism from T to any abelian
variety factors uniquely through p;

• the field C(T ) of meromorphic functions on T coincides with p∗(C(T0)), i.e.,
every meromorphic function on T is the lift of a rational function on T0;

• by definition, the algebraic dimension a(T ) is dimC T0.

Now we are ready to state our
Summary.

1. We may consider T as a real manifold Tr . It follows from the counterexample to
the Ghys Conjecture that
If dimR(Tr ) ≥ 2 and X = S

2 × Tr then Diff(X) is not Jordan.
2. Since T is a complex torus, it is a connected compact Kähler manifold.

2.1 Suppose that a(T ) = dim(T ) = n. This means that T is algebraic, i.e., is an
abelian variety. If X = P

1 × T then Bir(X) is not Jordan (see Theorem 4). If
X is not birational to P

1 × T then Bir(X) is Jordan (see Theorem 6).
2.2 Suppose that 0 < a(T ) < n. Then T is a non-algebraic torus and n > 1.

(In dimension 1 all complex tori are algebraic—they are the famous elliptic
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curves.) If X = P
1 × T (or has at least three sections) then Bim(X) is not

Jordan [43].
2.3 Suppose that a(T ) = 0. Then n ≥ 2 and T is non-algebraic. This is a “very

general” case: in a “versal” family [4] of all complex tori of a given dimension
n ≥ 2 the subset of tori with algebraic dimension zero is dense. (See [9] for
explicit examples of such tori in all dimensions n ≥ 2.) If a(T ) = 0 then any
P
1-bundle X over T that is not biholomorphic to the direct product P1 ×T has

at most two sections and Bim(X) = Aut(X) is Jordan [9].

3 Some open problems

Let us mention some open problems. Fix a positive integer n.
Varieties with non-Jordan group Bir(X). Let Vn and Xn be the class of connected
complexprojective varietiesV (respectively, complex compactmanifolds X ) of dimen-
sion n such that the group Bir(V ) (respectively, Bim(X) is not Jordan. For n ≤ 3 these
classes are well described (see [22, 26, 28–31, 42]). It is known that A×P

n ∈ Vn+k if
A is an abelian variety of positive dimension k, and T ×P

n ∈ Xn+k if T is a complex
torus of dimension k and positive algebraic dimension.

Question 1 Assume that V is a non-uniruled smooth projective variety and Y =
V × P

n . Is Bir(Y ) non-Jordan? More generally, how to describe Vn and Xn?

Quasiprojective varieties Assume that W is a smooth quasiprojective variety that is
an open subset of a smooth projective variety X . Then

Aut(W ) ⊂ Bir(X).

If Bir(X) is not Jordan, then, a priori, the same may be true for Aut(W ). However, to
the best of our knowledge there is no example of a complex algebraic variety W with
non-Jordan Aut(W ). It is known that Aut(W ) is Jordan if either

• dimW ≤ 3 and W is not birational to E × P
2, where E is an elliptic curve [6] or

• W is quasiprojective and birational to a product A × P
1, where A is a smooth

irreducible positive-dimensional projective variety that contains no rational curves.
(See [8].)

Question 2 Does there exist a complex algebraic variety W with non-Jordan group
Aut(W )?

Line bundles over tori of positive algebraic dimension The statement of Summary
2.2 remains true if the direct product X = P

1×T is replaced by the “natural compact-
ification” XL of the total space of a holomorphic line bundle L = p∗(L0) on X where
L0 is any holomorphic line bundle on the algebraic model T0 of T and p : T → T0
the universal homomorphism. Here by natural compactification XL we mean the pro-
jectivization of the total space of the rank 2 holomorphic vector bundle L ⊕ 1T where
1T = T × C is the trivial holomorphic line bundle. (Summary 2.2 still remains true
even if just the Chern class of L coincides with the Chern class of p∗(L0) for some
holomorphic line bundle on T0.) See [43].
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Question 3 Does Summary 2.2 remains true for XL for an arbitrary holomorphic line
bundle L on T ?

Poormanifolds. The statement of Summary 2.3 remains true if the torus T is replaced
by any poor manifold [9].

Definition 4 We say that a compact connected complex manifold Y of positive dimen-
sion is poor if it enjoys the following properties.

• Y does not contain closed analytic subspaces of codimension 1 (hence, a fortiori,
the algebraic dimension a(Y ) of Y is 0);

• Y does not contain rational curves.

Any complex torus T with dim(T ) ≥ 2 and a(T ) = 0 is poor.
There are examples of poor K3 surfaces.

Question 4 Find a classification of poor manifolds.
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