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Abstract
We propose a set of questions on the dynamics of Hénon maps from the real, complex,
algebraic and arithmetic points of view.
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1 Introduction (C. Favre, T. Firsova, L. Palmisano, J. Raissy, and G.
Vigny (Eds.))

A workshop ‘Dynamics of Hénon maps: Real, Complex and Beyond’ took place at
BIRS, Banff in April 2023. The purpose of this meeting was to bring together inter-
national experts working on various aspects of Hénon maps. Recall that these maps
are two-dimensional discrete dynamical systems which are ubiquitous in low dimen-
sional dynamics, and among the most studied examples exhibiting chaotic behavior.
Quadratic Hénon maps

Ha,c(x, y) := (ay + x2 + c, ax)

are arguably the simplest examples. Here a and c are fixed parameters and x, y
are affine coordinates.1 These maps can be analyzed over the real numbers using
techniques from smooth dynamical systems, or over the complex numbers and then
complex analysis and geometry play crucial roles. They are amenable to generaliza-
tions, by replacing x2 +c by higher degree polynomials, or even transcendental maps,
and we may consider finite composition of such maps. We may also consider them
with coefficients in number fields, and look at them from the perspective of arithmetic
dynamics. Many of the most recent breakthroughs were actually made by combining
several techniques coming from these different fields. It was delightful to attend series
of talks blending so many different ideas. Many interesting questions were raised
during the conference, a fact which encouraged us to collect them in a single text.

Hénon introduced his family of maps in the real domain as a simplifiedmodel of the
Poincaré section of the first return map of the Lorenz flow [87]. In 1976, Hénon made
numerical experiments for themap H√

0.3,−1.4
2 and observed that an initial point of the

plane either approaches a set of points known since then as the Hénon strange attractor,
or diverges to infinity under iterations. The Hénon attractor has a fractal nature: it is
smooth in the unstable direction and has a Cantor-like structure in the transversal
direction. This led Hénon to conjecture the existence of an ergodic measure which
restricts to the Lebesgue measure in the smooth direction (a.k.a. an SRB measure).
In 1981, Jakobson [96] proved the existence of a set of positive Lebesgue measure of
parameters c for which x2 + c displays an SRB measure. In the 90’s, Benedicks and
Carleson [24] reworked Jakobson’s theorem and further generalized it to describe the
dynamics of Hénon maps. They proved Ha,c display a strange attractor for a small
and for a set of parameters c of positive Lebesgue measure. Benedicks–Carleson’s
breakthrough has been further developed by Mora-Viana [120], Wang-Young [150],
and Takahasi [142].

In 1996, during his inaugural lecture at Collège de France, Yoccoz proposed an
alternative approach to prove the Hénon conjecture, with Sinai’s positive entropy con-

1 The exact definition of (quadratic) Hénon maps may differ from section to section in these notes, as one
might want to conjugate them by affine transformations to exploit various aspects of the original equations.
2 Hénon actually considered the map h(x, y) = (1− 1.4 · x2 + y , 0.3 · x) which is affinely conjugate to it.
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jecture lying in the horizon. To this end, he introduced a combinatorial and topological
approach, based on the notion of strong regularity, that he used to give yet another
proof of Jakobson’s theorem [154]. The second step of Yoccoz’ program was com-
pletedmore recently by Berger in [25] who generalized this notion of strong regularity,
leading him in particular to an alternative proof of Benedicks–Carleson theorem.

The theory of Hénon maps in the complex domain started with the seminal work of
Friedland and Milnor [81], who used Jung’s theorem to show that every polynomial
automorphism of the complex affine plane is affinely conjugate to either an affine
map, or a map preserving the pencil x = cst, or to a finite compositions of generalized
Hénon maps (the latter class being usually called complex Hénon maps nowadays). In
the early 90’s Hubbard and his collaborators developed a topological approach to the
study of Hénon maps giving description of the Fatou sets [91, 93]. Hubbard pointed
out that Hénon maps appeared as natural generalizations of quadratic polynomials
(by taking a → 0 in Ha,c), which he used with Oberste-Vorth to give topological
description of Julia sets [92].

An important breakthroughwas the introduction of pluripotential techniques to con-
struct invariant currents by Fornæss and Sibony [79] and by Bedford and Smillie [17].
The latter authors, partly with Lyubich, further developed in a series of influential
papers (e.g., [15, 16, 18]) a thorough study of the ergodic properties ofHénonmappings
and of their stability properties linked to hyperbolicity. These works were pursued and
generalized to other invertiblemaps bymany others includingDiller, Cantat, Dujardin,
Dinh and Sibony [42, 55, 58, 62, 68, 69]. Very recently, Bianchi and Dinh [31] made
significant progress in the study of the fine statistical properties of themaximal entropy
measure.

It is intriguing to see in retrospect how these seemingly simple maps have produced
such an elaborate and successful theory. Note however that the results obtained so
far are most complete in the case of dissipative maps (that is |a| < 1), while the
understanding of the conservative case (that is |a| = 1) remains less developed.

In the past decade, the algebraic and arithmetic aspects of dynamical systems
defined by rational maps have also been developed extensively. We refer to the sur-
vey [23] in which one can find a large set of open problems in this emerging field.
For Hénon maps defined over a number field or over a function field, Silverman
[141], and later Kawaguchi [100], constructed a suitable height function that lead to
interesting analogs of the Northcott property (see also [94]). Hénon maps have also
been the testing ground of some important conjectures in arithmetic dynamics like
the Kawaguchi-Silverman conjecture on arithmetic degrees [101], or the dynamical
Manin-Mumford problem which was partially solved by Dujardin and Favre using
both height and Pesin theories [73]. Deep connections exist between the arithmetic
of these systems and pluripotential theoretic techniques: it is for instance possible
to retrieve the equidistribution of repelling periodic orbits using a theorem on the
equidistribution of points of small height by Yuan [156].

The study ofHénonmaps is still very active, as shownby the recent breakthroughs in
the study of wandering domains. On the one hand, Ou [126] has proved the absence of
wandering domains for strongly dissipative doubly infinitely period-doubling renor-
malizable real Hénon maps. On the other hand, Berger and Biebler [27] exhibited
wandering domains for complex Hénon maps in 2023 by mixing deep techniques
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coming from both real and complex dynamics. We also witness exciting new develop-
ments extending the already rich theory of Hénon maps to more general systems such
as transcendental diffeomorphisms of the complex plane [4–6], or higher dimensional
invertible rational maps, [54, 60, 63, 64, 85], where questions arising from complex
dynamics led to profound developments in complex geometry such as PB currents,
density currents and superpotential theory. Several developments have been made also
in the context of higher dimensional unfoldings of homoclinic tangencies with a rank
one saddle point, [128, 148, 151]. We hope that gathering these questions and open
problems at one place will reinforce the community and attract new generations of
researchers to work on these beautiful and rich objects.

2 Real HénonMaps (P. Berger)

We propose a set of questions on the dynamics of Hénon maps in the real domain, or
more generally on entire diffeomorphisms of R

2.

2.1 Strange Attractors

Attractors play an important role in the study of dynamical systems since the 60’s
(Lorenz attractor, Hénon strange attractor, etc.). This notion is quite flexible and can
cover many different situations in which a substantial set of points (either in the
topological or measurable sense) is converging to some invariant compact subset. We
refer to Milnor [114] for a discussion of various possible definitions of attractors. For
instance, a measure-theoretical attractor is an invariant compact subset which attracts
a set of Lebesgue positive measure and which is minimal with this property.

In the case of unimodal interval dynamics, measure-theoretical attractors can be
classified into four types: cyclic, solenoidal, interval and wild (see, e.g., [36]). The
latter two classes are arguably the most interesting. Jakobson [96] proved the abun-
dance of quadratic maps displaying a stochastic interval of attractors (induced by an
SRB measure). On the other hand, Bruin–Keller–Nowicki–van Strien [39] showed
the existence of a polynomial unimodal map displaying a wild attractor: an invariant
Cantor set attracting Lebesgue almost every point and included in a transitive interval.

Van Strien [146, Question 1.9] asked whether a suitable analog of wild attractors
could exist for Hénon maps (of some degree). More precisely, one can ask:

Question 1 Can we find a Hénon map which admits a wild attractor, i.e., a Cantor set
which attracts a set of Lebesgue positive measure and which is strictly included in a
transitive set ?

Avila and Lyubich have announced a positive answer to this problem in the quadratic
Hénon family.

Returning to stochastic attractors, observe that the existence of a parameter c ∈ R

for which the quadratic map x �→ x2 + c displays an absolutely continuous measure
is easy to ensure. It suffices to pick a parameter c such that the post-critical orbit is
finite but not periodic. In fact, much more is known. Lyubich ruled out the existence
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of wild attractors for real quadratic maps [108]. He also showed in [109] the following
“regular or stochastic Dichotomy”: for Lebesgue almost every quadratic map, almost
all orbits either converge to an attracting cycle, or they are equidistributed with respect
to an absolutely continuous invariant measure with positive entropy.

In dimension 2, the existence of a positive measure set of parameters of Hénon
maps displaying an attractor supporting an invariant SRB measure3 is a fundamental
result, whose proof still remains difficult and lengthy [24, 25, 142, 150].

Question 2 Is there a quick proof for the existence of SRB for some parameters of the
Hénon maps?

A positive answer to this question might help finding new examples of stochastic
attractors in the Hénon maps.

2.2 Non-statistical Behavior

Let f be any smooth dynamical system. We say that a point x has a non-statistical
behavior (or simply is non-statistical) if its sequence of empirical measures en(x) :=
1
n

∑n−1
k=0 δxn is not converging. We say that f is non-statistical if there is a positive

Lebesgue measure set of points with non convergent empirical measures. Ruelle [135]
asked whether non-statistical dynamics could exist persistently.4

In polynomial dynamics, two phenomena give rise to non-statistical dynamics. The
first one was discovered by Hofbauer and Keller:

Theorem 1 [88] There exist uncountably many c ∈ R such that the quadratic polyno-
mial Pc(x) := x2 + c has non-statistical dynamics. More precisely, Lebesgue almost
every non-escaping point x has non-statistical behavior.

In [143], Talebi gave a counterpart of this result for rational functions on the Riemann
sphere. In these two results, the set of non-statistical points is of full measure, but of
empty interior.

The second occurrence of non-statistical dynamics is related to the notion of wan-
dering stable component that we now introduce.

Definition 1 A stable domain of f is a connected open subset U such that

lim
n→∞ d( f n(x), f n(y)) = 0

for all x, y ∈ U . A stable component is a maximal stable domain. A stable component
is wandering if it is not preperiodic.

Colli and Vargas [48] gave the first example of a smooth dynamical system having a
wandering stable component formed by points with non-statistical behavior. In [102],
Kiriki and Soma constructed a locally dense set of such dynamics in the Cr -category
with r < ∞. This also occurs for polynomial maps:

3 i.e., a measure whose conditional measures along unstable curves are absolutely continuous.
4 Ruelle used another terminology and talked about historical behavior.
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Theorem 2 [27] There is a locally dense set of real sextic polynomials P(x) = x6 +
a4x4 + · · · + a0, for which the map (x, y) �→ (P(x) − by, x) displays a wandering
stable component containing only points with non-statistical behavior.

The proof of this theorem actually implies the existence of a wandering Fatou
component at the same parameters for its complex counterpart. This is in sharp contrast
with the one-dimensional situation for which no wandering Fatou components exist
by Sullivan’s theorem.

Conversely, we can ask whether a counterpart of Hofbauer-Keller phenomenon
appears within the Hénon family. We can formulate this question in more precise
terms.

Question 3 Do there exist ε > 0 and a locally dense set5 E of quadratic Hénon
maps for which every point starting in some set of Lebesgue measure at least ε has
non-statistical behavior?

By [143, Theorem 1.14], this would imply the existence of a generic set of the
closure of E of non-statistical dynamics.

2.3 Conservative Dynamics

Let f : S → S be any homeomorphism of a closed surface S. An annular rotation
domain for f is by definition an f -invariant open annulus that does not contain any
periodic points. Such domains play an important role in conservative dynamics. The
next result can be deduced from the works of [80, 103, 104, 153] (Le Calvez, private
communication).

Theorem 3 Let S be a closed surface endowed with a symplectic form. Let f : S → S
be any symplectomorphism of class Cr with r ≥ 1 that contains at least one periodic
point and satisfying the following conditions.

1. Any eigenvalue of any periodic point does not belong to {e2π i p/q : p/q ∈ Q}.
2. For every hyperbolic periodic points P, Q ∈ Per( f ), W s(P) is transverse to

W u(Q).
3. Every elliptic point P ∈ Per( f ) is surrounded by arbitrarily close KAM circles.
4. There are no annular rotation domain.

Then
⋃

P∈Per( f ) W s(P) is dense in S.

It is natural to ask whether the third condition is superfluous. The recent result [125]
suggests that this may be the case.

Question 4 Is there a real, conservative, polynomial Hénon map with an annular rota-
tion domain? Is there an open set of such real, conservative, polynomial Hénon maps?

An annular rotation domain is said to be trivial when the whole dynamics is conju-
gate to a rotation.

5 i.e., whose closure has non-empty interior.

123



Hénon Maps: A List of Open Problems

Question 5 Is there an entire6 symplectomorphism of R
2 with a non trivial annular

rotation domain?

Recently, an entire map of the cylinder R × R/Z having a bounded rotation domain
on which the dynamics is not conjugate to a rotation has been exhibited in [26],
thereby disproving a conjecture by Birkhoff [32]. The construction in [26] also gives
an example of a symplectic entire automorphism of C × C/Z without periodic point
and with a non-empty set of (Lyapunov) unstable points.7 Hence Question 5 may shed
light on the following intriguing problem.

Problem 1 Construct an entire symplectic automorphism of C
2 without periodic point

and with non-empty set of (Lyapunov) unstable points with bounded orbit.

3 Dissipative Real HénonMaps (S. Crovisier and E. Pujals)

3.1 Mild Dissipation

Quadratic real Hénon maps

fc,b(x, y) := (x2 + c − by, x),

with Jacobian b close to zero share some properties of the quadratic family on the
interval: some results are obtained by perturbative methods (for instance [24, 53]) and
are known when |b| is extremely tiny. In [50] another approach has been introduced
which allows to reduce the dynamics to a one-dimensional system.

Definition 2 The map fc,b is mildly dissipative if it is dissipative (i.e., |b| < 1) and if
for any ergodic invariant measureμwhich is not supported on a sink, and forμ-almost
every point x , both components of the stable curve W s(x) \ {x} are unbounded.

Under this assumption, and in restriction to any open topological disc D ⊂ R
2 that

is compactly mapped inside itself, the dynamics is semi-conjugated to a (non-trivial)
continuous map of a real tree. Other strong consequences can be derived (e.g., a
closing lemma, or a description of zero entropy dynamics, see below). UsingWiman’s
theorem (in the same spirit like in [75, 110]), one can prove that Hénon maps are
mildly dissipative once |b| < 1/4. In this way we obtain dynamical informations for
all Hénon maps having their Jacobian in (−1/4, 1/4) and not only for those satisfying
|b| 	 1. One expects that this property extends beyond the bound obtained through
Wiman’s theorem.

Question 6 Which real Hénon maps fc,b are mildly dissipative? Is this property sat-
isfied by all Hénon maps with |b| < 1?

In some cases [50] proves that the mild dissipation is an open property, but we don’t
know if this holds in general.

6 i.e., an analytic map which extends to a holomorphic map of C
2.

7 An orbit (xn)n≥0 is Lyapunov stable if for any y0 close enough to x0, then yn stays close to xn for all
n ≥ 0.
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3.2 Maps with Zero Entropy

It is well-known that the quadratic maps fc(x) := x2 + c have their topological
entropy equal to zero exactly when c belongs to some interval [c0,+∞). At the critical
parameter c0, the dynamics exhibits an odometer, which is the limit set of an infinite
sequence of successive renormalizations of period 2. This result persists inside any
line c �→ fc,b, provided |b| is smaller than some number ε > 0 small, as it has been
shown in [53]. Let us consider the locus in the parameter space where the topological
entropy vanishes:

E0 := {(b, c) ∈ R
2, htop( fc,b) = 0}.

Inside the strip (−ε, ε)×R this set is bounded by an analytic arc {(b, c0(b)), |b| < ε}.
Moreover any map fc,b with c > c0(b) can be renormalized at most finitely many
times; and for an open and dense subset of these parameters, the dynamics is Morse
Smale (i.e., is supported by finitelymany hyperbolic periodic orbits).When c = c0(b),
the sequence of renormalizations converges towards a particular unimodal map of the
interval.

When |b| is larger but smaller than 1/4 (so that it is mildly dissipative), [51]
describes the dynamics of fc,b ∈ E0. In particular, all maps fc,b ∈ ∂E0 are infinitely
renormalizable (with renormalization periods eventually equal to 2), solving a conjec-
ture by Tresser (which is still open when we don’t assume the mild dissipation). One
may wonder if the converse holds.

Question 7 Let us consider any infinitely renormalizablemildly dissipativemap fc,b ∈
E0. Is it the limit of maps with positive entropy? Is it the limit of Morse-Smale maps?

It is also natural to try to describe the boundary ∂E0: is it a (piecewise smooth) arc?
One would like to implement the strategy developed in [53] for b close to 0:

Question 8 Let us consider any infinitely renormalizable mildly dissipative map in
E0. Does the sequence of renormalizations converge?

The recent preprint [49] is related to the above two questions, the authors introduce
a class of infinitely renormalizable, unicritical diffeomorphisms of the disk (with
a non-degenerate “critical point”) and show that under renormalization, those maps
eventually becomeHénon-like, and then converge super-exponentially fast to the space
of one-dimensional unimodal maps.

We also don’t know if different combinatorics of the renormalizations may occur.

Question 9 Does there exist a mildly dissipative map fc,b ∈ E0 which admits odd
periods?

3.3 Set of Periodic Points

One would like to describe the dynamics through its periodic orbits. To any periodic
point p, one associates two Lyapunov exponents λ−(p) ≤ λ+(p). When they do not
vanish and have different sign, we say that p is a saddle.
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Asmentioned previously, for mildly dissipative real Hénonmaps the set of periodic
points is dense in the union of the supports of the invariant probability measures [50].
The same property holds for any complex Hénon maps [71].

Question 10 For any real Hénon map, does the closure of the set of periodic orbits
support all the invariant probability measures?

The next step is to describe how periodic saddles are organized. We say that two
saddles p, q are homoclinically related if there exists k ≥ 0 such that the invariant
curves W u(p), W s( f k(q)) (and W s(p), W u( f k(q)) as well) intersect transversally.
This defines an equivalence relation which decomposes the set of periodic saddles into
its homoclinic classes. There may exist infinitely many periodic saddles which are not
homoclinically related, but we conjecture that their hyperbolicity should drop.

Question 11 For any map fc,b and any infinite set of periodic saddles (pn) which are
pairwise not homoclinically related, do we have min(|λ−(pn)|, |λ+(pn)|) −→

n→∞ 0?

This questions goes beyond Hénon maps, but [51] implies a positive answer in the
particular case of mildly dissipative fc,b ∈ E0.

4 Symbolic Dynamics for Real Hénon and Lozi Maps (S. Štimac)

Kneading theory is a combinatorial tool to understand the dynamics of a piece-
wise monotone map from the interval to itself and was developed by Milnor and
Thurston [115]. Applications extend from the topological classification to the com-
putation of the entropy, to the counting of periodic orbits, and the construction of
measures of maximal entropy. We propose several problems connected to the exten-
sion of this theory to real Hénon maps and the Lozi maps H̃a,b, La,b : R

2 → R
2,

H̃a,b(x, y) = (1 + y − ax2, bx), La,b(x, y) = (1 + y − a|x |, bx),

respectively.8 The Lozi maps are piecewise affine map that display the same fold and
bend behavior as the Hénon maps, but are usually easier to analyze technically [76,
117].

In [118], the authors developed a kneading theory for the Lozi maps La,b with
(a, b) ∈ M, where M = {(a, b) ∈ R

2 : b > 0, a
√
2 − b > 2, 2a + b < 4} is a

set of parameters for which Misiurewicz proved the existence of a strange attractor
(for details see [118] and [119]). A kneading sequence k̄ is defined as the itinerary
of a turning point T , where turning points are points of transversal intersections of
the x-axis and the unstable manifold W u of the fixed point X of the attractor. Any
kneading sequence is a bi-infinite sequence of + and −.

The kneading set K = {k̄n : n ∈ Z} is the set of all kneading sequences k̄n , n ∈ Z,
and every kneading sequence k̄ = k̄n , for some n ∈ Z, has the following form:

k̄ = +∞ w ± −→
k0,

8 Observe that H̃a,b is affinely conjugated to H√
b,−a from the introduction.
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where +∞ = · · ·+++,w = w0 . . . wm , for somem ∈ N0,
−→
k0 = k0k1k2 . . . ,w0 = −,

k0 = +, wi , k j ∈ {−,+} for i = 1, . . . , m and j ∈ N, and the little black square
indicates where the 0th coordinate is located. Here for ± one can substitute any of +
and −.

In [118], the authors prove that K characterizes all itineraries of all points of the
attractor of La,b. The proof is given in two steps. We say that an itinerary is W u-
admissible if it is realized by a point on the unstable manifold W u . We first have:

Theorem 4 A sequence +∞ −→pn, where −→pn = pn pn+1 . . . such that pn = − for some

n ∈ Z, is W u-admissible if and only if for every kneading sequence +∞ w ± −→
k0, such

that w = pn pn+1 . . . pn+m for some m ∈ N0, we have σm+2(
−→pn) � −→

k0, where � is
the parity-lexicographical ordering.

Next, we equip the symbolic spacewith its natural product topology. Using topological
arguments, one may prove:

Theorem 5 A sequence p̄ = . . . p−2 p−1 p0 p1 . . . is admissible if and only if for
every positive integer n there is a W u-admissible sequence q̄ = . . . q−2q−1 q0q1 . . .

such that p−n . . . pn = q−n . . . qn.

Problem 2 Describe the set of kneading sequences K.

In [95], Ishii developed formulas that can be used to obtain a relation between
parameters a, b, a turning point T = (xT , 0) of the Lozi map La,b, and its itinerary k̄
(that is a kneading sequence of La,b). This relation is p(a, b, k̄) = xT = q(a, b, k̄),
where p = p(a, b, k̄) is given in formula [94, (4.2)] and q = q(a, b, k̄) is given in
formula [94, (4.3)]. Therefore, every kneading sequence k̄ gives an equation

p(a, b, k̄) = q(a, b, k̄). (1)

Numerical experiments show that if one has two kneading sequences, k̄0 of the right-
most turning point T0 and k̄−1 of the leftmost turning point T−1, and if these two
turning points lie in the stable manifolds of some periodic points with small periods,
then it is possible to calculate a and b from the corresponding two equations, implying
that these two kneading sequences govern all other kneading sequences.

4.1 Example

Let k̄0 = +∞ ± + − − +∞ and k̄−1 = +∞ − ± (+−)∞. The equation p(a, b, k̄0) =
q(a, b, k̄0) reads

a4 − 6a2 − 4a + 4b2 + a2b + (a3 + 2a − ab)
√
4b + a2 = 0, (2)

and the equation p(a, b, k̄−1) = q(a, b, k̄−1) reads

4(−a2 − 2b2 + 2b + a
√

a2 − 4b)

a − 2b − √
a2 − 4b

−
(
2 + a −

√
a2 + 4b

) (
3a −

√
a2 + 4b

)
= 0.

(3)
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Fig. 1 Graph of (2) is in orange
and of (3) in green. Graph of (1)
for k̄ = +∞ ± (+ − −)∞ is in
magenta and for
k̄ = +∞ − ± (+ − −)∞ in
brown. Graph of the line
2a + b = 4, that is a boundary
line of the Misiurewicz set, is in
red

Using the “NSolve” command of Wolfram Mathematica produces a unique solution
to this system of equations in the region a ∈ [1, 2], b ∈ [0, 1]. This solution is
approximately a = 1.655319602968851744592, b = 0.2765071079677260998121,
see Fig. 1.

Question 12 Is it true that any two distinct kneading sequences determine a unique
pair of parameters (a, b), and in that way govern all the other kneading sequences of
K?

Very recently, in [38], the authors developed a kneading theory for the Hénon maps
Ha,b within a set of parametersWY for which Wang and Young proved the existence
of a strange attractor. This set has positive measure and consist of maps which are
strongly dissipative. We refer to [38, 150] for details.

Problem 3 Describe the set of kneading sequences K of the Hénon map Ha,b, with
(a, b) ∈ WY .

Question 13 Is it true that any two distinct kneading sequences of the Hénon map
Ha,b, with (a, b) ∈ WY , determine a unique pair of parameters (a, b), and in that
way govern all the other kneading sequences in K of Ha,b?

5 HénonMaps Tangent to the Identity (X. Buff)

We propose to investigate the local dynamics of some specific Hénon maps. Consider
the quadratic complex Hénon map H2 : C

2 → C
2 defined by

H2 (x, y) =
(

y, x + y2
)

.

The origin is a fixed point and H◦2
2 is tangent to the identity at the origin.
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Note that H2 restricts to an orientation reversing diffeomorphism H2 : R
2 → R

2.
The dynamics in R

2 is well understood. There is an analytic map φ2 : R → R
2 such

that

H2 ◦ φ2(t) = φ2(t + 1) and φ2(t) ∼
(−2

t
,
−2

t

)

as t → +∞.

The curve φ2(R) is invariant by H2 and within φ2(R), every orbit converges to the
origin in R

2. Outside the origin and φ2(R), every orbit diverges to infinity (see Fig. 2).

Question 14 Can we describe the dynamics of H2 near the origin in C
2 ?

Before specifying this question, let us consider the Hénon map H3 : C
2 → C

2

defined by

H3 (x, y) =
(

y, x + y3
)

.

This Hénon map also preserves R
2 and the dynamics in R

2 is also completely under-
stood. There is an analytic map φ3 : R → R

2 such that

H3 ◦ φ3(t) = −φ3(t + 1) and φ3(t) ∼
(

1√
t
,
−1√

t

)

as t → +∞.

The curves φ3(R) and −φ3(R) are exchanged by H3. Within those curves, every orbit
converges to the origin. Outside those curves and the origin, every orbit diverges to
infinity (see Fig. 3 left).

Set ω = ei
π
8 so that ω9 = −ω and consider the real planes 
1 ⊂ C

2 and 
2 ⊂ C
2

defined by


1 =
{(

ωx, ω3y
)

: x ∈ R, y ∈ R

}
and 
2 =

{(
ω3x, ωy

)
: x ∈ R, y ∈ R

}
.

Fig. 2 Left: an orbit converging to the origin. Right: an orbit diverging to infinity
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Fig. 3 Left: The points are colored according to whether x + y tends to +∞ (dark grey) or to −∞ (light
grey). Right: The dynamics of H◦2

3 : 
1 → 
1 exhibits KAM phenomena

Observe that H3 exchanges the planes 
1 and 
2:

H3

(
ωx, ω3y

)
=

(
ω3y, ω(x − y3)

)
and H3

(
ω3x, ωy

)
=

(
ωy, ω3(x + y3)

)
.

The dynamics of H◦2
3 : 
1 → 
1 is much more complex than that of H3 : R

2 → R
2

(see Fig. 3 right).
The second iterate of H3 is tangent to the identity at the origin. More precisely

H◦2
3 (x, y) = (x, y) +

(
y3, x3

)
+ O(‖x, y‖4).

It follows that near the origin, the orbits of H◦2
3 shadow the orbits of the vector field

�v3 = y3∂x + x3∂y .

The vector field is a Hamiltonian vector field. It is tangent to the level curves of the
function

�3 = x4 − y4.

Note that

�3

(
ωx
ω3y

)

= i(x4 + y4)

so that the intersection of the level curves of �3 with the real plane 
1 are topological
circles. Those topological circles are invariant by the flow of the vector field �v3. It
follows from the theory of Kolmogorov–Arnold–Moser that in any neighborhood of
the origin, there is a set of positive Lebesgue measure of topological circles which are
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invariant by H3 and on which H3 is analytically conjugate to a rotation R/Z � t �→
t + θ ∈ R/Z with bounded type rotation number θ ∈ (R � Q)/Z. Those invariant
circles are separated by small saddle cycles and small elliptic cycles. The analytic
conjugacies extend to complex neighborhoods of R/Z in C/Z. This proves that H3
has lots of Herman rings.

Coming back to our initial problem, observe that the second iterate of H2 is also
tangent to the identity at the origin with

H◦2
2 (x, y) = (x, y) +

(
y2, x2

)
+ O(‖x, y‖3).

It follows that near the origin, the orbits of H◦2
2 shadow the orbits of the vector field

�v2 = y2∂x + x2∂y .

The vector field is also a Hamiltonian vector field. The vector field �v2 is tangent to the
level curves of the function

�2 = x3 − y3.

We can no longer apply the theory of Kolmogorov-Arnold-Moser since there is no
invariant real-plane on which the level curves of �2 are topological circles. However,
we may wonder whether the complex dynamics of H2 exhibits KAM phenomena.

We say that H2 has small cycles if for any neighborhood U of the origin 0 in C
2,

there exists a cycle of H2 which is entirely contained in U � {0}.
Question 15 Does H2 have small cycles?

Question 16 Does H2 have both small saddle cycles and small elliptic cycles?

We say that H2 has a Herman ring with rotation number θ ∈ (R � Q)/Z if there
exists an annulus V = {

z ∈ C/Z : Im(z) < h
}
with h > 0, a holomorphic map

φ : V → C
2, and an integer n ≥ 2 such that

∀z ∈ V , H◦n
2 ◦ φ(z) = φ(z + θ).

Question 17 Does H2 have a Herman ring?

If the answer is yes, we may consider the set  ⊂ (R − Q)/Z of rotation numbers
θ such that H2 has a Herman ring with rotation number θ .

Question 18 Does have positiveLebesguemeasure?More precisely, is 0 aLebesgue
density point of ?

We believe that the answers to the previous questions are all affirmative. Regarding
the following question, we do not have an opinion.
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Question 19 Assume H2 has a Herman ring with bounded type rotation number θ . Is
it possible to find parameters a ∈ D�{0} arbitrarily close to 1 such that the dissipative
Hénon map H : C

2 → C
2 defined by

H(x, y) =
(

ay, x + y2
)

.

has a Herman ring with rotation number θ?

6 Quasi-Hyperbolicity and Uniform Hyperbolicity (E. Bedford)

6.1 Complex HénonMaps

Any Hénon map Ha,P (x, y) := (ay + P(x), x) where a ∈ C
∗ and P ∈ C[x] is a

polynomial of degree d ≥ 2 induces a polynomial automorphism of the affine plane
Ha,P : C

2 → C
2.

For a general polynomial automorphism f : C
2 → C

2, write ( f (x, y) =
(P(x, y), Q(x, y)) and define its degree deg( f ) := max{deg(P), deg(Q)}. In a
celebrated article [81], Friedland and Milnor have proved the following remark-
able result (see Sect. 10.1 below for more details). If the sequence of degrees
deg( f n) is unbounded, then f is actually conjugated to a composition of Hénon
maps Ha1,P1 ◦ · · · ◦ Hak ,Pk , and deg( f ) = deg(P1) · · · deg(Pk).

Any such composition will be called a generalized Hénon map.

6.2 Quasi-Expanding HénonMaps

Suppose f is a generalized Hénon map of degree d ≥ 2, and let S denote its set of
(periodic) saddle points. It is known to be infinite, and its distribution represents the
unique measure of maximal entropy, see [16].

Given a saddle point p, we denote by Eu
p the set

Eu
p = {v ∈ Tp(C

2) : ‖D f n
p v‖ → 0 as n → −∞}.

Let W u
loc(p) denote its local unstable manifold, and let W u(p) be its global unstable

manifold.
We now introduce the following three conditions measuring the expansion of f .

Condition 1 For each p ∈ S, there is a metric on Eu
p which is expanded by D f p

with a uniform bound independent on p. More specifically, this means that there exists
κ > 1 such that for each p, there is a metric ‖.‖p on Eu

p so that for each v ∈ Eu
p, we

have

‖D f pv‖ f (p) ≥ κ‖v‖p.
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If f is a Hénon map, then following Hubbard [90], we may define a Green function

G+(x, y) = lim
n→∞

1

dn
logmax{1, | f n(x, y)|}.

We let W u
r (p) denote the connected component of B(p, r) ∩ W u(p) containing p,

where W u(p) is the unstable manifold at p and B(p, r) the euclidean ball in C
2.

Condition 2 The unstable manifolds W u(p) satisfy the proper, locally bounded area
condition: there exist ε > 0 and A < ∞ such that for each δ > 0 there is an η > 0 such
that for each saddle point p we have: W u

ε (p) is closed in B(p, ε), Area(W u
ε (p)) ≤ A,

and supW u
δ (p) G+ ≥ η (see [20, Corollary 3.5]).

Recall that each unstable manifold is uniformized by an entire map ξp : C →
W u(p) ⊂ C

2 with ξp(0) = p. Using the Green function, we may normalize it by
putting ξ̂p(ζ ) := ξp(αζ ) so that

max|ζ |≤1
G+(ξ̂p(ζ )) = 1. (4)

The last condition we want to mention is:

Condition 3 The normalized maps {ξ̂p : p ∈ S} form a normal family of entire
mappings.

A consequence of Condition 3 is that for all x ∈ S we define a family of unstable
manifolds by setting W u(x) := ξx (C).

For generalized Hénon maps, Conditions 1, 2, and 3 are equivalent (see [20]), and
in case one/all of them hold, we say that f is quasi-expanding. A map f is said to be
quasi-hyperbolic if both f and f −1 are quasi-expanding.

Furthermore, a theorem from [12] asserts a quasi-hyperbolic map is uniformly
hyperbolic if and only if there is no tangency between W u(x1) and W s(x2) for any
x1, x2 in the closure of S.

Recall the following standard definitions (see [17]). Let K ± denote the set of points
with bounded forward orbits for f ±. We denote J± := ∂K ±. We also define J :=
J+ ∩ J− and J ∗ to be the closure of S (hence J ∗ ⊂ J ).

Question 20 If f is quasi-hyperbolic, then is int(K +) the union of a finite number of
basins of sink orbits?

Question 21 If f is quasi-hyperbolic, is J = J ∗?

Question 22 If f is quasi-hyperbolic, then is there no wandering Fatou component?

Question 23 If f is quasi-hyperbolic, do the unstable slices satisfy a John-type con-
dition (as in [19])?

Question 24 If f is quasi-hyperbolic and dissipative, and if J is connected, do the
external rays land at J? Is J a finite quotient of the real solenoid?
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Let us discuss the properties involved in this group of questions. In dimension one,
quasi-expansion is related to the Misiurewicz condition. In dimension two, quasi-
hyperbolic dynamics is expected to be close to hyperbolic. The answers are “yes” to
these questions in the uniformly hyperbolic case; the first three follow from [17], and
the last two follow from [19]. The properties in Questions 20 and 23 do not hold for
general Hénon maps. In connection with Question 22, Berger and Biebler [27] have
found wandering domains for some Hénon maps of degree 6 (which are not known to
be quasi-hyperbolic). The question whether J = J ∗ is well-known. In addition to the
hyperbolic case [17], it has been shown to hold in a few other cases [72, 86, 111], but
the case of a generalized Hénon map remains elusive.

6.3 Surface Automorphisms

Let X be any compact complexKähler surface, and let f : X → X be any holomorphic
automorphism having positive topological entropy log λ, λ > 1. By Cantat [42], X
is isomorphic to either the blow-up of P

2 at at least 10 points, or a K3 surface, or an
Enriques surface, or an Abelian surface.

In this context, Condition 1 is still meaningful, but we do not have a Green function
G+. However, since the dynamical degree of f is λ > 1, there exists an expanded
positive closed (1, 1) current T + with f ∗T + = λT + (see [42]). In this case, we can
replace the normalization (4) with a condition involving the mass of a slice of the
current T +:

Mass(T +|ξp(|ζ |<1)) = 1 (5)

Thus we may formulate a Condition 2′ to be the same as Condition 2 with the normal-
ization (4) replaced by (5), and we may formulate Condition 3′ similarly.

Question 25 Are Conditions 2′ and 3′ equivalent to Condition 1? And do Questions
20, 21, 22 above hold for quasi-hyperbolic surface automorphisms?

6.4 Real Maps

Let us now suppose that f is a real surface automorphism. In other words, we suppose
X to be projective and defined by real polynomial equations, and f to be also defined
over the real numbers. We may thus consider the restriction map fR to the set of real
points XR. Observe that htop( fR) ≤ log λ. It was proved in [20] that for generalized
Hénon maps htop( fR) = log λ implies f to be quasi-hyperbolic.

Question 26 If f is a real surface automorphism such that the entropy of fR is the
same as the entropy of f , does it follow that f is quasi-hyperbolic?

We refer to [57] for a discussion of real surface automorphisms satisfying this
condition on the entropy.
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7 Parameter Loci for the Hénon Family (Y. Ishii)

7.1 Connectedness Locus

Consider the complex Hénon family:

fc,b(x, y) := (x2 + c − by, x),

where (c, b) ∈ C
2 is a parameter.9 Let Jc,b be the Julia set of fc,b: by definition this is

the intersection between the boundaries of the sets of points having bounded forward
(resp. backward) orbits. By extension, we let Jc,0 be the Julia set of p(z) = z2 + c.
The connectedness locus of fc,b is defined as

M = {
(c, b) ∈ C

2 : Jc,b is connected
}
.

Conjecture 1 M is disconnected.

It has been shown that M ∩ R
2 is disconnected [3], which partially supports the

conjecture above.

7.2 Horseshoe Locus

We say that fc,b is a complex hyperbolic horseshoe if Jc,b is a hyperbolic set for fc,b

and the restriction fc,b : Jc,b → Jc,b is topologically conjugate to the full 2-shift. The
complex hyperbolic horseshoe locus is defined as

HC = {
(c, b) ∈ C

2 : fc,b is a complex hyperbolic horseshoe
}
.

One can see that HC is not simply connected since the monodromy representation:

ρ : π1(HC) −→ Aut({0, 1}Z)

of the fundamental group ofHC (with the base-point at (c, b) = (−4, 0)) to the group
of shift-commuting automorphisms of {0, 1}Z is non-trivial (see, e.g., [1, 21]).

Question 27 Is the locus HC connected?

For (c, b) ∈ R
2,we can consider the restriction of fc,b toR

2 andwe can analogously
define the real hyperbolic horseshoe locus HR ⊂ R

2. One of the main result of [2]
states that HR is connected and simply connected (see also [22]).

7.3 Isentropes

Take again (c, b) ∈ R
2 and consider the restriction fc,b|R2 : R

2 → R
2. Let

htop( fc,b|R2) be the topological entropy of the real Hénon map fc,b|R2 . For every

9 We include the case b = 0 to simplify the presentation.
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0 ≤ α ≤ log 2, the isentrope is defined as

Eα = {
(c, b) ∈ R

2 : htop( fc,b|R2) = α
}
.

In a topological term, monotonicity of the topological entropy of the real Hénon map
fc,b|R2 can be formulated as

Question 28 (van Strien [147]) Is the isentrope Eα connected for any 0 ≤ α ≤ log 2 ?

Milnor and Tresser [116] showed it is true for cubic polynomials. The main result
of [2] implies that the locus Elog 2 is connected and simply connected (see also [22]).

Several articles attempt at giving lower bounds for topological entropy of real
Hénon maps, e.g., [122, 123]. Among others, the paper [122] rigorously showed
that htop( fc,b|R2) > 0.46469 for the classical Hénon’s parameter, and this bound
is believed to be close to optimal. For upper bounds, the paper [16] has shown that
htop( fc,b|R2) < log 2 if and only if the Julia set of fc,b (as a complex dynamical sys-
tem) is not contained in R

2. However, there is no algorithm which provides rigorous
(non-trivial) upper bounds.

We thus propose the following problem.

Question 29 Construct an algorithm to compute a rigorous upper bound for the topo-
logical entropy of a real Hénon map fc,b|R2 .

Probably the only existing formula for (non-trivial) upper bound is given in [155].
However, according to Yomdin himself, the bound in the current form is far from sharp
and would not give non-trivial ones.

8 Topology and Rigidity of HénonMaps (R. Dujardin)

For polynomials and rational maps in dimension 1, there is a well-known list of
exceptional examples whose Julia sets and dynamical properties are unexpectedly
regular: Chebychev polynomials, monomial mappings and Lattès examples. They can
characterized in many different ways, see e.g., [46, 157].

For generalized Hénon maps (as defined in Sect. 6.1) it is expected that no such
exceptional example exists, but not so many actual results in this direction are known:

– Brunella proved in [40] that a generalized Hénonmap cannot preserve an algebraic
foliation of C

2, i.e., a singular algebraic foliation by holomorphic curves. Here by
preserving we mean that f maps leaves into leaves.

– Bedford and Kim proved in [13, 14] that neither J+ nor J− (see Sect. 6.2 for a
definition) can be a smooth C1 submanifold, nor a semi-analytic set.

Here we propose a few rigidity questions related to these results.
The first question is about a quantitative reinforcement of the Bedford–Kim theo-

rem. Recall from the introduction, the definition of the standard quadratic Hénon map
Ha,c(x, y) := (ay + x2 + c, ax), and the definition of K + and J+ from Sect. 6.2.

For (a, c) close to (0, 0), Ha,c is a small perturbation of themonomialmap (x, 0) �→
(x2, 0), whose Julia set is smooth, and in this case J+

a,c is a topological 3-manifold,
see [92, §7], and [144, §9].
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Question 30 Give an asymptotic expansion of the Hausdorff dimension of J+
a,c as

(a, c) tends to (0, 0). In particular is there a uniform lower bound of dim(J+
a,c) of the

form dim(J+
a,c) ≥ 3 + h(a) with h(a) > 0 in the neighborhood of c = 0?

Note that (a, c) �→ dim(J+
a,c) is real analytic in the domainwhere Ha,c is hyperbolic

(this was proved for one-dimensional maps by Ruelle in [133], and by Wolf [152] for
polynomial automorphisms). It is not clear whether the dimension of the Julia set
remains real-analytic when Ha,c degenerates to a unimodal map, for instance in a full
neighborhood of (a, c) = (0, 0).

Can we make Brunella’s theorem local? More precisely:

Question 31 Is it possible to find a generalized complex Hénon map f , an open set
U ⊂ C

2 intersecting J+ and a holomorphic foliation ofU such that J+ ∩U is a union
of leaves of this foliation?

We conjecture that the answer to this question is “no”. The answer is presumably
easier if we assume that U ∩ J ∗ �= ∅. It is also possible that if f is dissipative (i.e.,
| det(D f )| < 1), the assumption that J− is foliated is stronger than the assumption
that J+ is foliated (see [11, § 2]).

This would imply in particular that a generalized Hénon map cannot preserve a
(transcendental) holomorphic foliation F of C

2. Indeed in such a case, consider the
leaf L through a saddle periodic point p: L must be mapped into itself by f n , hence
coincide with the stable W s(p) or unstable W u(p) manifolds (see again §6.2 for a
discussion of these objects); changing f to f −1 if necessary, we may assume that
L = W s(p), and since W s(p) is dense in J+ it follows that J+ is a union of leaves
of F .

Remark 1 Note that the basin of attraction of the super-attracting point at infinity
�( f ) := {(x, y), | f n(x, y)| → ∞} carries a natural (transcendental) holomorphic
foliation which is f -invariant defined by the holomorphic 1-form ∂G+, see [91, §7].
However this foliation does not extend to C

2 (otherwise it would extend holomorphi-
cally to P

2 which is absurd, see [70, §3]).

Related results include:

– the classification of holomorphic Anosov diffeomorphisms on surfaces by Ghys
[82], in which a basic step is to prove that stable and unstable laminations are
actually holomorphic foliations;

– the classification of birational maps preserving algebraic foliations by Cantat and
Favre [43];

– the work of Pinto, Rand and others on the smooth rigidity of hyperbolic diffeo-
morphisms on surfaces (see e.g., [130]).

If the stable lamination is holomorphic, then by holonomy the unstable slices are
holomorphically equivalent. We can now forget the foliation and ask about holomor-
phic equivalence of stable/unstable slices.

Question 32 Under which circumstances is it possible that there exist saddle points p
and q, and relative open subsets U ⊂ W u(p) and V ⊂ W u(q) such that U ∩ K + is
biholomorphic to V ∩ K +?
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One obvious possibility is that p and q belong to the same cycle, and that the biholo-
morphism is induced by the action of f . We suspect that this is the only possibility.

A variant of this problem is when p and q are associated to different mappings.

Question 33 Let f1, f2 be two generalized Hénon maps. Under which circumstances
is it possible that some local unstable slice of f1 (i.e., a set of the form K + ∩U , where
U is a relatively open subset of an unstable manifold) is biholomorphically equivalent
to an unstable slice of f2?

We expect that this can happen only if f1 and f2 are related by some algebraic
correspondence. This question was raised in [73, Remark 4.4] for f2 = f −1

1 , and
a complete understanding would imply the main conjecture of [73]. The analogous
question of existence of local biholomorphisms between Julia sets for 1-dimensional
rational maps was addressed in [74, 98, 107].

Since a local unstable slice of a generalized Hénon maps contains essentially a
complete information about unstable multipliers, the previous question is reminiscent
of the classical “spectral rigidity” problem:

Question 34 To which extent is a generalized Hénon map determined by the list of its
unstable multipliers (resp. by the list of moduli of its unstable multipliers)?

We refer to [97] for a proof that the list of moduli of all multipliers determine a
finite set of conjugacy classes of rational map of the Riemann sphere.

9 Statistical Properties of Complex HénonMaps (F. Bianchi and T.-C.
Dinh)

We denote in this section by f a complex Hénon map and by μ its unique measure of
maximal entropy [16, 17, 140]. We are interested in the statistical properties of μ and
of other natural invariant measures associated to such systems.

9.1 Thermodynamics for HénonMaps

Consider a continuous function φ : C
2 → R, that will be called a weight. Following

[132] one can define the pressure P(φ) as

P(φ) := sup
(
hν + 〈ν, φ〉),

where the supremum is taken over all invariant probability measures ν for f and
hν denotes the measure-theoretic entropy of ν. A measure ν0 maximising the above
supremum is called an equilibrium state associated to φ and is necessarily ergodic
when it is unique. The equilibrium state associated to φ ≡ 0 is themeasure of maximal
entropy μ. We refer to [131] for an account on the properties of equilibrium states in
one-dimensional complex dynamics and to [7, 45, 47] and references therein for the
case of real Hénon maps and diffeomorphisms of compact manifolds satisfying some
hyperbolicity assumptions.
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Problem 4 Prove the existence and the uniqueness of the equilibrium state μφ asso-
ciated to any sufficiently regular weight φ (for instance, every Hölder continuous φ,
and possibly with some bound on max φ − min φ).

Recall that saddle points are equidistributed with respect to the measure of maximal
entropy [15]. Namely, we have

1

dn

∑

x∈S Pn

δx → μ, (6)

where d is the algebraic degree of f (or, equivalently, log d is the topological entropy of
f , and the measure-theoretic entropy of μ) and S Pn is the set of the saddle n-periodic
points of f .

Question 35 Suppose φ is sufficiently regular, so that the equilibrium state μφ exists
and is unique. Is it true that

1

en P(φ)

∑

x∈S Pn

eSn(φ)δx → μφ ? (7)

A version of the previous question has been established in [29] in the (expanding)
setting of endomorphisms of P

k
C
, and in particular for polynomials maps on C.

Of a somehow different flavour, we recall that an explicit speed of convergence in
(6) is unknown. We believe it is a very natural and challenging question to quantify
such convergence when testing against sufficiently regular functions.

Question 36 Is the convergence (6) exponentially fast against Hölder continuous
observables? Is that also the case for (7)?

9.2 Statistical Properties of Equilibrium States and Spectral Gap for the Transfer
Operators

Suppose the existence and the uniqueness of an equilibrium state μφ have been estab-
lished. The (deterministic) problem of describing all orbits in the support of μφ is
essentially impossible as this support should be contained in the set of points with
chaotic behaviour in both forward and backward time. It is natural to adopt a probabilis-
tic (or statistical) approach to this problem, to consider an observable g : C

2 → R, and
to view the sequence {g ◦ f j } j∈N as a sequence of random variables on the probability
space (C2, μφ). Since μφ is invariant, these random variables have the same distribu-
tion. They are however not independent, since they arise from a deterministic setting.
The first goal is thus to show that the correlations 〈μφ, g ◦ f j1 · g ◦ f j2〉 − 〈μφ, g〉2
go to zero in a quantifiable way, as | j2 − j1| → ∞, see for instance [149, Problem 2].
When this happens and the convergence is fast enough, the sequence {g ◦ f j } j∈N is
then expected to satisfy a list of properties which are typical of independent identically
distributed (i.i.d.) random variables.
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As a first step, since μφ is ergodic, Birkhoff theorem asserts that

1

n
Sn(g)(x) := 1

n
(g(x) + g ◦ f (x) + · · · + g ◦ f n−1(x)) → 〈μφ, g〉 :=

∫

C2
g dμφ

(8)

for μφ-almost every x and every g ∈ L1(μφ). This can be seen as a version of the law
of large numbers in this setting. The next step is to show the Central Limit Theorem
(CLT) for sufficiently regular observables. As in the case of i.i.d. random variables,
this CLT gives the rate of the above convergence (8).

Problem 5 Show that μφ satisfies the CLT for Hölder continuous observables. Namely,
prove that, for any Hölder continuous observable g, there exists σ ≥ 0 such that for
any interval I ⊂ R, we have

lim
n→∞ μφ

({
Sn(g) − n〈μφ, g〉√

n
∈ I

})

=
⎧
⎨

⎩

1 when I is of the form I = (−δ, δ) if σ 2 = 0,
1√
2πσ 2

∫

I
e−t2/(2σ 2) dt if σ 2 > 0.

In the case of the maximal entropy measure μ, the CLT was established in [31]. A
natural question is also to characterize the observables for which σ = 0.

Sequences of (almost) independent random variables are also expected to satisfy
large deviations properties. Recall that a coboundary g is an observable of the form
ϕ ◦ f − ϕ.

Problem 6 Show that μφ satisfies the Large Deviation Principle (LDP) for Hölder
continuous observables. Namely, prove that, for any Hölder continuous observable g
with 〈μφ, g〉 = 0 and which is not a coboundary, there exists a non-negative, strictly
convex function c which is defined on a neighborhood of 0 ∈ R, vanishes only at 0,
and such that, for all ε > 0 sufficiently small,

lim
n→∞

1

n
logμφ

({

x ∈ X : Sn(g)(x)

n
> ε

})

= −c(ε).

Note that this question is still open even for the measure of maximal entropy.
A possible unified approach to the above statistical properties would be to find

Banach spaces (containing all Hölder continuous functions) where a suitable Ruelle-
Perron-Frobenius (transfer) operator associated to f would turn out to be a strict
contraction on the complement of an invariant line, see for instance [7, 83, 132]. In the
case of endomorphisms of P

k
C
in any dimension (in particular for any 1-dimensional

complex polynomial), this is the main result of [28] (see also [113, 134]).

Question 37 Do there exist norms for functions on the Julia set which are bounded on
Hölder continuous functions, contract (on the complement of an invariant line) under
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the action of f∗ (or, more generally, of f∗(eφ−P(φ)·)), and such that the contraction is
stable by perturbation of φ?

In the case of hyperbolic maps, such a good Banach space has been introduced
by Blank–Keller–Liverani [35, 106]. The norm is obtained by combining a regularity
condition on the unstable manifolds together with a dual condition on the stable mani-
folds. Note that this was the starting point of a long story (see, e.g., [8, 84]). As Hénon
maps are only non-uniformly hyperbolic (so that stable and unstable manifolds do not
behave nicely in general) the above result does not apply here.

A positive answer toQuestion 37would also give a unified proof formany statistical
properties of independent interest (including the Large Deviations as in Problem 6),
without the need of an ad hoc proof for each of them. For instance, the Local Central
Limit Theorem (LCLT) and the Almost Sure Invariance Principle (ASIP) are both
satisfied by sequences of i.i.d., and provide stronger results than the CLT, see, e.g.,
[83, 129] for definitions and criteria.

Problem 7 Let μφ as in Problem 4. Show that all Hölder continuous observables
which are not coboundaries satisfy the LCLT and the ASIP with respect to μφ .

Recall that the ASIP implies the Almost Sure Central Limit Theorem and the Law of
the Iterated Logarithm.

9.3 Higher Dimension and Other Generalizations

Until now, we restricted our attention to Hénon maps, i.e., polynomial automorphisms
of C

2. On the other hand, Problems 6 and 7, and Question 37 make perfect sense
for the equilibrium measures of general rational maps once this measure has been
successfully defined. We review below some partial results that have been obtained in
more general (invertible) settings than Hénon maps.

A polynomial automorphism of C
k is said to be regular if the indeterminacy sets

of the extensions to P
k
C
of f and f −1 are non-empty and disjoint (observe that every

Hénon map in dimension 2 satisfies this assumption, as these two sets are two distinct
points). The construction of the measure of maximal entropy is given in [140], and
the equidistribution of saddle points with respect to this measure is proved in [64]
(see [31, 58] for the exponential mixing and the CLT in this case). More generally,
one can also consider birational meromorphic maps of P

k
C
, see [10, 54, 56, 69] for the

construction of the measure of maximal entropy and its properties.
Given integers 1 ≤ p < k and open bounded convex domains M � C

p and
N � C

k−p, a horizontal-like map is a proper holomorphic map from a vertical subset
to a horizontal subset of M × N which geometrically expands in p directions and
contracts in k − p directions, see [62] for the precise definition. In this setting, the
unique measure of maximal entropy has been constructed and studied in [59, 62, 68].
In the invertible case, the CLT for this measure can be deduced from [31].

One can also consider automorphismsof compactKählermanifolds, see for instance
[42, 61, 69] for the construction of the measure of maximal entropy and its properties.
This setting shares a number of features with that of Hénon maps (in dimension 2) and
regular automorphisms (in any dimensions). On the other hand, the compactness of
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the manifold makes it more difficult to apply pluripotential techniques as in the case of
Hénon maps. For instance, the proof of the CLT for the measure of maximal entropy,
given in [30], requires the use of the theory of superpotentials on such manifolds [63].

10 Towards Higher Dimensions and Complex Differential Geometry
(C. Favre)

10.1 HénonMaps and the Group of Polynomial Automorphisms ofC
2

Let Aut[C2] be the group of polynomial automorphisms of C
2. Recall the definition

of degrees of a polynomial automorphism of the affine plane from Sect. 6.1. Jung [99]
proved that the group Aut[A2

C
] is generated by affine transformations and triangu-

lar maps of the form EP (x, y) := (x, y + P(y)). And the more precise version of
Friedland-Milnor’s main theorem ([81]) states that either f ∈ Aut[A2

C
] is conjugated

to a generalized Hénon maps Ha1,P1 ◦ · · · ◦ Hak ,Pk and deg( f n) � (d1 · · · dk)
n for all

n; or deg( f n) remains bounded and f is conjugated to an affine map or to a triangular
map.

Let us state the following general problem in vague terms.

Problem 8 Describe the growth type of the sequence {deg( f n)} for any polynomial
automorphism f of C

d , d ≥ 3.

Very few results are known. Recall that Russakovski and Shiffman [137] observed
that

deg( f n+m) ≤ deg( f n) deg( f m)

for all n, m ≥ 0 so that the following limit λ( f ) := limn deg( f n)1/n exists. We refer
to it as the dynamical degree of f .

The case of cubic automorphisms on C
3, and the case of automorphisms obtained

as a composition of an affine transformation and a triangular one were considered
by Blanc and Van Santen [33, 34]. Their computations lead them to formulate the
following intriguing problem. A weak Perron number is an algebraic integer λ ≥ 1
such that all its Galois conjugates satisfy |μ| ≤ λ.

Question 38 Is the dynamical degree of any polynomial automorphism of C
d equal

to a weak Perron number of degree ≤ d − 1?

It has been proven in [52], that λ( f ) is an algebraic number of degree ≤ 6 for any
polynomial automorphism f of C

3.
The case λ( f ) = 1 is also particularly interesting.

Question 39 Suppose f is a polynomial automorphism of C
d satisfying λ( f ) = 1.

Is it true that deg( f n) � nk for some k ∈ N? Moreover, if k ≥ 1, does f preserve a
rational fibration?
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Urech proved that deg( f n) tends to infinity whenever it is unbounded, see [145]. His
result was made stronger by Cantat and Xie in [44]: there exists a universal function
σ : N → N such that lim sup σ = ∞ and deg( f n) ≥ σ(n). They raised the following
weaker form of the previous problem.

Question 40 Suppose that λ( f ) = 1, and deg( f n) is unbounded for some polynomial
automorphism f of C

d . Does there exist C > 0 such that deg( f n) ≥ Cn?

Let Tame(3) be the subgroup of polynomial automorphisms of C
3 which is generated

by affine and triangular transformations. A theorem of Shestakov and Umirbaev [138]
states that Tame(3) is a strict subgroup of the full group of polynomial automorphisms
ofC

3 (as opposed to the 2-dimensional situation). A decisive progress on the structure
of Tame(3) was recently made by Lamy and Przytycky [105], who constructed a
CAT(0)-complex C over which Tame(3) acts by isometries.

Question 41 Is it possible to characterize those f ∈ Tame(3) for which λ( f ) = 1 in
terms of their action on C?

10.2 HénonMaps and Compact Complex Manifolds

Consider any generalized Hénon map f = Ha1,P1 ◦ · · · ◦ Hak ,Pk as in the previous
section. Recall that f extends to the projective planeP

2
C
as a birationalmap contracting

the line at infinity to the super-attracting fixed point p = [1 : 0 : 0]. The topology of
the basin of attraction of this point�( f ) := {q ∈ C

2, f n(q) → p} has been explored
by Hubbard and Oberste-Vorth [91]. They also observed that the map f acts properly
discontinuously on �( f ) so that the space of orbits S( f ) := �( f )/〈 f 〉 is naturally a
complex surface. One can then construct a compact complex surface Š( f ) having an
isolated normal singularity at a point 0 ∈ Š( f ) such that Š( f )\{0} is biholomorphic
to S( f ). The minimal resolution of Š( f ) is a compact complex surface S̄( f ) that is
non-Kähler, contains no smooth rational curve of self-intersection −1, and satisfies
b1(S̄( f )) = 1. In Kodaira’s classification of surfaces [9], it belongs to the class VII0
which is arguably the most mysterious class of compact complex surfaces. Dloussky
and Oeljeklaus [66] have investigated when these surfaces carry global holomorphic
vector fields.

Question 42 Let f be any generalized Hénon map. Describe the set of all generalized
Hénon maps g such that S̄( f ) is biholomorphic to S̄(g).

It follows from [77, Proposition 2.1] that under the preceding assumptions, f and g
have the same degree and the same jacobian. Some partial results have been obtained
by R. Pal for maps of the form Ha,P [127] generalizing former works on quadratic
Hénon maps by Bonnot-Radu-Tanase [37].

The surface S̄( f ) carries a unique (singular) holomorphic foliation by curves,whose
pull-back to C

2\K +
f is the holomorphic foliation F+ given by ∂G+

f = 0 (see §8
above).
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Question 43 Let f and g be two generalized Hénon maps. Suppose h : C
2\(K +

f ∪
K −

f ) → C
2\(K +

g ∪ K −
g ) is a homeomorphism mapping the leaves of F+

f and F−
f to

the leaves of F+
g and F−

g , respectively.
Is it true that h is either holomorphic or anti-holomorphic and extends as a polyno-

mial automorphism of C
2?

This problem has been investigated by Lyubich–Robertson [112] and then by
Firsova [78]. They proved that any conjugacies between C

2 \ (K + ∩ K −) of quadratic
Hénon maps that are small perturbation of one-dimensional hyperbolic polynomials
is affine or anti-affine if it preserves both foliations.

Returning to surfaces of the form S̄( f ), observe that they carry only finitely many
rational curves that are all contracted to the singular point 0 ∈ Š( f ). One can also
prove that it carries a unique holomorphic foliation which is induced by the Levi flats
of the Green function G+ on �( f ), see Remark 1.

An interesting feature of the complex surface S̄( f ) is that it admits a family of
charts (Ui , φi ) where Ui is an open cover of S̄( f ), and φi : Ui → C

2 is an open
immersion such that φi j is the restriction to an open domain of a birational self-map
of P

2
C
.

A complex manifold which admits a holomorphic atlas whose transition maps are
restriction of birational maps of P

d
C
is said to carry a birational structure.

The following problem is extracted from [65].

Question 44 Does any non-Kähler compact complex surface admit a birational struc-
ture?

This question is extremely challenging, and reduces to the case of VII0 surfaces. One
can ask whether any deformation S of a surface S̄( f ) associated to a polynomial
automorphism f as above admits a birational structure. This is true when the surface
satisfies b2(S) ≤ 3, see [65].

Analogs of the construction of S̄( f ) have been explored by Oeljeklaus and Renaud
in [124] for some quadratic polynomial automorphisms of C

3, and further expanded
by Ruggiero [136, Chapter 4]. A polynomial automorphism f ∈ Aut[C3] is said to be
regular if the indeterminacy locus I ( f ) of its extension to P

3
C
is disjoint from I ( f −1).

This notion was introduced by Sibony in [139]. Let �( f ) be the basin of attraction of
I ( f −1): this is an open f -invariant set over which f acts properly discontinuously.
As above, denote by S( f ) the quotient space �( f )/〈 f 〉.
Problem 9 Let f ∈ Aut[Cd ] be any regular polynomial automorphism.

1. Prove that one can find a compact complex manifold S̄( f ) and an open immersion
S( f ) ⊂ S̄( f ) such that the complement S̄( f ) \ S( f ) is a divisor.

2. Prove that S̄( f ) is unique up to bimeromorphism.
3. Describe complex objects on S̄( f ) (analytic subvarieties, vector fields, holomor-

phic foliations, positive closed currents,...). Compute its deformation space.

It is unclear how to extend this construction to a larger class of polynomial auto-
morphisms of C

3. However when λ( f )2 > λ( f −1) an invariant valuation on the ring
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of polynomial functions in three variables10 is known to exist by [52], which suggests
the following question.

Question 45 Let f ∈ Aut[C3] be any polynomial automorphism such that λ( f )2 >

λ( f −1). Prove the existence of a projective compactification X of C
3 such that the

induced birational map f : X ��� X admits a super-attracting fixed point p on the
divisor at infinity.

Once such a compactification has been found, one can consider the basin of attrac-
tion � of the point p and try to construct a compactification of the space of f -orbits
in � as above.

11 HénonMaps Over Number Fields (P. Ingram)

Consider a sufficiently large field k, for example a number field. In general, one should
expect to be able to construct Hénon maps of the form

f (x, y) = (y, F(y) − δx)

with cycles of length deg(F)+ 2. Write F(y) = a0 + · · ·+ ad yd , and let y0, ..., yd+1
be variables ranging over k. Then, insisting that f sends

(y0, y1) → (y1, y2) → · · · → (yd , yd+1) → (yd+1, y0) → (y0, y1) (9)

is the same as insisting that

a0 + a1yn + · · · + ad yd
n − δyn−1 = yn+1,

for all n (mod d +2). One checks that the determinant of the associated Vandermonde-
like matrix

⎛

⎜
⎜
⎜
⎝

1 y0 · · · yd
0 −yd+1

1 y1 · · · yd
1 −y0

...
...

. . .
...

...

1 yd+1 · · · yd
d+1 −yd

⎞

⎟
⎟
⎟
⎠

is not identically zero (e.g., substituting yd+1 = yd into this determinant gives±(yd −
yd−1)

∏
0≤i< j≤d(y j − yi ), which is itself not identically zero), and so this matrix

is invertible over some affine-open subset of kd+1. Here, one can find coefficients
a0, ..., ad , and δ of f which enact (9).

Recently, Hyde and Doyle [67] exhibited single-variable polynomials over number
fields with more preperiodic points than this sort of naive interpolation construction

10 One way to interpret geometrically such an object is to say that it picks an irreducible subvariety in any
algebraic compactification of C

3 in a compatible way.
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gives. One might ask if similar phenomena could be exploited for generalized Hénon
maps.

Question 46 Over a number field K , is it possible to construct infinite families of
generalized Hénon maps of algebraic degree d, and K -rational cycles of length at
least d + 3? Can one construct maps with Nd periodic points, where Nd − d → ∞,
or even Nd/d → ∞ as d → ∞?

Next, it is natural to ask about bounds in the other direction. In analogy to the
UniformBoundedness Conjecture ofMorton and Silverman [121], it is natural to posit
the following, in which Per( f ) is the set of periodic points of f over the algebraic
closure of K .

Conjecture 2 Let K be a number field, let B ≥ 1, and let d ≥ 2. Then as f varies
over generalized Hénon maps of degree d over K , the quantity

#{P ∈ Per( f ) : [K (P) : K ] ≤ B}

is bounded just in terms of [K : Q], d, and B.

We have already seen why this bound must depend on d, and adjoining periodic points
of f to the base field shows why the bound must depend on [K : Q]. As a starting
point for further exploration, we mention two more readily falsifiable conjectures.

Conjecture 3 (See [94]) Over Q, (x, y) �→ (y, y2 + c + x) has no point of period N,
other than N ∈ {1, 2, 3, 4, 6, 8}.
Conjecture 4 For all but finitely many δ ∈ Q, the Q-rational periodic points of any
f (x, y) = (y, y2 + c − δx) with c ∈ Q have period dividing 2.

It should be noted that some infinite families of examples show that both of these
conjectures, if true, would be sharp.

It seems reasonable to posit something even stronger than Conjecture 2. Write
log+ x = logmax{1, x} for x ∈ R

+, and for an absolute value | · |v , set

‖x1, ..., xm‖v = max{|x1|v, ..., |xm |v}.

Recall that a number field K comes equipped with a standard set MK of absolute
values, and we define the naive Weil height of P ∈ A

N (K ) to be

h(P) =
∑

v∈MK

[Kv : Qv]
[K : Q] log+ ‖P‖v.

Kawaguchi [100] constructed a canonical height ĥ f associated to a generalizedHénon
map, which differs by a controllable amount from the naive height, and interacts
favorably with the dynamics of f , satisfying for example

ĥ f ◦ f + ĥ f ◦ f −1 =
(

d + 1

d

)

ĥ f ,
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and ĥ f (P) = 0 if and only if P is periodic. In light of partial results in this
direction [94], it seems reasonable to conjecture the following strengthening of Con-
jecture 2.

Conjecture 5 Let K be a number field, let B ≥ 1, and let d ≥ 2. Then, there exist
an ε > 0 and constant C (depending on these data) such that, as f varies over
generalized Hénon maps of degree d over K , the quantity

#{P ∈ (K )2 : [K (P) : K ] ≤ B and ĥ f (P) < εh( f ) + C}

is bounded uniformly, where h( f ) is the height of the tuple of coefficients of f .

Finally, let f be a generalized Hénon map defined over a number field K with good
reduction away from some finite set S of primes (so, the coefficients are S-integers,
and ad and δ are S-units), and let P0 ∈ (OK ,S)2 be some non-periodic point. Set
Pn+1 = f (Pn), for n ≥ 0, and

an = gcd(x(Pn) − x(P0), y(Pn) − y(P0)) ⊆ OK ,S .

That is, an is the largest ideal such that f n(P) ≡ P modulo an . Then an is a divisibility
sequence, i.e., m | n ⇒ am | an , which we will call a Hénon divisibility sequence. In
the case OK ,S = Z, we may identify the ideals with their unique positive generators,
and think of this as a sequence of positive integers.

Example 1 f (x, y) = (y, y2 + x − 2), P = (2, 3).

an : 1, 1, 8, 3, 1, 8, 1, 3, 8, 1, 5, 48, 11, 1, 8, 51, 1, 8, 1, 3, 8, 5, 7, 288, 13, 11, 8, 3, 1, ...

In analogy to other divisibility sequences, we probably expect this sequence to grow
slowly. By comparing to the height of Pn , one easily obtains an upper bound of size
Cdn

, for some C , on the norm of each of the terms in the gcd, but the gcd itself should
usually be much smaller.

Theorem 6 (Bugeaud, Corvaja, and Zannier [41]) If a, b ≥ 2 are multiplicatively
independent integers and ε > 0, then

gcd(an − 1, bn − 1) 	ε eεn .

Theorem 7 (Huang [89]) If f (x), g(x) ∈ Z[x] of degree d ≥ 2, then “generically”
and under Vojta’s Conjecture

gcd( f n(a) − α, gn(b) − β) 	ε eεdn
.

On the other hand, it is certainly true that every prime p ⊆ OK ,S divides some term
in the sequence, since the image of P in the residue fieldOK ,S/p must be periodic of
period at most Norm(p)2.
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Question 47 Under what circumstance is it true that

logNorm(an) = o(dn)

as n → ∞? Under what circumstance does there exist an ideal b ⊂ OK ,S such that
an|b for infinitely many n? Note that, since a1|an for all n, b = a1 is a reasonable
candidate.
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131. Przytycki, F., Urbański, M.: Conformal Fractals: Ergodic Theory Methods. London Mathematical

Society Lecture Note Series, vol. 371. Cambridge University Press, Cambridge (2010)
132. Ruelle, D.: Thermodynamic formalism, volume 5 of Encyclopedia of Mathematics and its Applica-

tions. Addison-Wesley Publishing Co., Reading, MA, 1978. The mathematical structures of classical
equilibrium statistical mechanics, With a foreword by Giovanni Gallavotti and Gian-Carlo Rota

133. Ruelle, D.: Repellers for real analytic maps. Ergodic Theory Dyn. Syst. 2(1), 99–107 (1982)
134. Ruelle, D.: Spectral properties of a class of operators associated with conformal maps in two dimen-

sions. Commun. Math. Phys. 144(3), 537–556 (1992)
135. Ruelle, D.: Historical behaviour in smooth dynamical systems. In: Global analysis of dynamical

systems, pp. 63–66. Inst. Phys., Bristol (2001)

123

http://arxiv.org/abs/2101.12148
http://arxiv.org/abs/2205.14768


J. X. de Hénon

136. Ruggiero, M.: The valuative tree, rigid germs and kato varieties. Tesi di Perfezionamento in Matem-
atica (2011)

137. Russakovskii, A., Shiffman, B.: Value distribution for sequences of rational mappings and complex
dynamics. Indiana Univ. Math. J. 46(3), 897–932 (1997)

138. Shestakov, I.P., Umirbaev, U.U.: The tame and the wild automorphisms of polynomial rings in three
variables. J. Am. Math. Soc. 17(1), 197–227 (2004)

139. Sibony, N.: Dynamics of rational maps on P
k . In: Dynamique et géométrie complexes. Société

Mathématique de France, pp. 97–185. American Mathematical Society, Providence (1999)
140. Sibony, N.: Dynamique des applications rationnelles de P

k . In: Dynamique et géométrie complexes
(Lyon, 1997), volume 8 of Panor. Synthèses, pages ix–x, xi–xii, 97–185. Soc. Math. France, Paris
(1999)

141. Silverman, J.H.: Geometric and arithmetic properties of the Hénon map. Math. Z. 215(2), 237–250
(1994)

142. Takahasi, H.: Abundance of non-uniform hyperbolicity in bifurcations of surface endomorphisms.
Tokyo J. Math. 34(1), 53–113 (2011)

143. Talebi, A.: Non-statistical rational maps. Math. Z. 302(1), 589–608 (2022)
144. Tanase, R.: Complex Hénon maps and discrete groups. Adv. Math. 295, 53–89 (2016)
145. Urech, C.: Remarks on the degree growth of birational transformations. Math. Res. Lett. 25(1), 291–

308 (2018)
146. van Strien, S.: One-dimensional dynamics in the new millennium. Discrete Contin. Dyn. Syst. 27(2),

557–588 (2010)
147. van Strien, S.: Milnor’s conjecture on monotonicity of topological entropy: results and questions. In:

Frontiers in complex dynamics. In: Celebration of JohnMilnor’s 80th birthday. Based on a conference,
Banff, Canada, February 2011, pp. 323–337. Princeton University Press, Princeton (2014)

148. Viana, M.: Strange attractors in higher dimensions. Bol. Soc. Bras. Mat. (N.S.) 24(1), 13–62 (1993)
149. Viana,M.: Stochastic dynamics of deterministic systems. ColóquiosBrasileiros deMatemática. IMPA

(1997)
150. Wang, Q., Young, L.-S.: Strange attractors with one direction of instability. Commun. Math. Phys.

218(1), 1–97 (2001)
151. Wang, O., Young, L.-S.: Toward a theory of rank one attractors. Ann. Math. (2) 167(2), 349–480

(2008)
152. Wolf, C.: Dimension of Julia sets of polynomial automorphisms ofC

2.Mich.Math. J. 47(3), 585–600
(2000)

153. Xia, Z.: Area-preserving surface diffeomorphisms. Commun. Math. Phys. 263(3), 723–735 (2006)
154. Yoccoz, J.-C.: A proof of Jakobson’s theorem. Astérisque 410, 15–52 (2019)
155. Yomdin, Y.: Local complexity growth for iterations of real analytic mappings and semicontinuity

moduli of the entropy. Ergodic Theory Dyn. Syst. 11(3), 583–602 (1991)
156. Yuan, X.: Big line bundles over arithmetic varieties. Invent. Math. 173(3), 603–649 (2008)
157. Zdunik, A.: Parabolic orbifolds and the dimension of the maximal measure for rational maps. Invent.

Math. 99(3), 627–649 (1990)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Hénon Maps: A List of Open Problems
	Abstract
	1 Introduction (C. Favre, T. Firsova, L. Palmisano, J. Raissy, and G. Vigny (Eds.))
	2 Real Hénon Maps (P. Berger)
	2.1 Strange Attractors
	2.2 Non-statistical Behavior
	2.3 Conservative Dynamics

	3 Dissipative Real Hénon Maps (S. Crovisier and E. Pujals)
	3.1 Mild Dissipation
	3.2 Maps with Zero Entropy
	3.3 Set of Periodic Points

	4 Symbolic Dynamics for Real Hénon and Lozi Maps (S. Štimac)
	4.1 Example

	5 Hénon Maps Tangent to the Identity (X. Buff)
	6 Quasi-Hyperbolicity and Uniform Hyperbolicity (E. Bedford)
	6.1 Complex Hénon Maps
	6.2 Quasi-Expanding Hénon Maps
	6.3 Surface Automorphisms
	6.4 Real Maps

	7 Parameter Loci for the Hénon Family (Y. Ishii)
	7.1 Connectedness Locus
	7.2 Horseshoe Locus
	7.3 Isentropes

	8 Topology and Rigidity of Hénon Maps (R. Dujardin)
	9 Statistical Properties of Complex Hénon Maps (F. Bianchi and T.-C. Dinh)
	9.1 Thermodynamics for Hénon Maps
	9.2 Statistical Properties of Equilibrium States and Spectral Gap for the Transfer Operators
	9.3 Higher Dimension and Other Generalizations

	10 Towards Higher Dimensions and Complex Differential Geometry (C. Favre)
	10.1 Hénon Maps and the Group of Polynomial Automorphisms of mathbbC2
	10.2 Hénon Maps and Compact Complex Manifolds

	11 Hénon Maps Over Number Fields (P. Ingram)
	Acknowledgements
	References


