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Abstract
Linear recursions with integer coefficients, such as the recursion that generates the
Fibonacci sequence Fn � Fn−1 + Fn−2, have been intensely studied over millen-
nia and yet still hide interesting undiscovered mathematics. Such a recursion was
used by Apéry in his proof of the irrationality of ζ (3), which was later named the
Apéry constant. Apéry’s proof used a specific linear recursion that contained integer
polynomials (polynomially recursive) and formed a continued fraction; such formulas
are called polynomial continued fractions (PCFs). Similar polynomial recursions can
be used to prove the irrationality of other fundamental constants such as π and e.
More generally, the sequences generated by polynomial recursions form Diophantine
approximations, which are ubiquitous in different areas of mathematics such as num-
ber theory and combinatorics. However, in general it is not known which polynomial
recursions create useful Diophantine approximations and under what conditions they
can be used to prove irrationality.Here,we present general conclusions and conjectures
about Diophantine approximations created from polynomial recursions. Specifically,
we generalize Apéry’s work from his particular choice of PCF to any general PCF,
finding the conditions under which a PCF can be used to prove irrationality or to
provide an efficient Diophantine approximation. To provide concrete examples, we
apply our findings to PCFs found by the Ramanujan Machine algorithms to represent
fundamental constants such asπ , e, ζ (3), and the Catalan constant. For each such PCF,
we demonstrate the extraction of its convergence rate and efficiency, as well as the
bound it provides for the irrationality measure of the fundamental constant. We further
propose new conjectures about Diophantine approximations based on PCFs. Looking
forward, our findings could motivate a search for a wider theory on sequences created
by any linear recursions with integer coefficients. Such results can help the develop-
ment of systematic algorithms for findingDiophantine approximations of fundamental
constants. Consequently, our study may contribute to ongoing efforts to answer open
questions such as the proof of the irrationality of the Catalan constant or of values of
the Riemann zeta function (e.g., ζ (5)).
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1 Introduction

1.1 Apéry’s Constant and His Polynomial Continued Fraction

In his paper [1, 2], Apéry ingeniously presented a specific linear recursion with integer
polynomial coefficients which is used to prove the irrationality of ζ (3). This polyno-
mial recursion generated two sequences pn , qn (given different initial values) such that
pn/qn →n→∞ 6/ζ (3), i.e., which constituted a Diophantine approximation of ζ (3).
Apéry then showed that this specific sequence pn/qn proved the irrationality of the
number to which it converges. It is also demonstrated [2] that the linear recursion is
equivalent to the following polynomial continued fraction (PCF):

6

ζ (3)
� 5 − 1

117 − 64
535− 729

1463···− n6

34n3+51n2+27n+5...

.

Apéry’s paper inspired other researchers to apply related strategies to other prob-
lems inDiophantine approximations, to study irrationalitymeasures of other constants,
and to find applications in other fields [3–10].

Apéry’s result hints at a more general question: Which PCFs prove the irrational-
ity of the number to which they converge? In other words: Which pairs of integer
polynomials (such as −n6 and 34n3 + 51n2 + 27n + 5 in Apéry’s case) can be used
to prove irrationality? This question is directly related to the intrinsic properties of
PCFs, specifically, their rate of convergence and the properties of the Diophantine
approximation sequences they create.

1.2 Polynomial Continued Fractions

In their most general form, PCFs are generalized continued fractions whose terms
an � a(n) and bn � b(n) are defined by two polynomials with integer coefficients,
a(n) and b(n):

PCF[an , bn] � a0 +
b1

a1 +
b2

a2+
b3

a3 ···+ bn
an ...

an � a(n), bn � b(n) ∈ Z[n].

Truncating a PCF at a finite step n produces a rational number
pn
qn

� a0 +
b1

a1 +
b2

a2+
b3

a3···+ bn
an

,
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called the n-th convergent of the PCF. The n-th convergent also results as the quotient
of the numbers pn and qn defined independently as the solutions of the following
linear recursion of depth 2

un � anun−1 + bnun−2, (1)

with initial conditions,

p−1 � 1, p0 � a0
q−1 � 0, q0 � 1.

We say that the value of the PCF is the limit of the sequence pn/qn , if it exists.
There exist Mobius transformations with integer coefficients that transform between
the limits of pn/qn for different initial conditions—for any two pairs of rational,
linearly-independent initial values [11].

PCFs appear in a wide range of fields of mathematics and are related to many spe-
cial functions, including all trigonometric functions, exponentials, Bessel functions,
generalized hypergeometric functions, the Riemann zeta function, and many other
important functions such as erf and log [12–14]. Moreover, any infinite sum can be
converted into a continued fraction, known as Euler’s continued fraction. The space
of PCFs also contains all linear recursions of depth 2 with rational polynomial coef-
ficients (and some of their generalizations). In his study, Apéry developed a linear
recursion of depth 2 with rational polynomials, which can be converted to a PCF,
using the standard definition above.

1.3 The Goals of this Paper

Looking at the bigger picture, it is interesting to generalize Apéry’s PCF. Consider
an arbitrary linear integer recursion (of any order) used to create the numerators and
denominators in a sequence of rational numbers. In other words, provided two sets of
initial conditions, for the numerator and denominator, the linear recursion creates a
Diophantine approximation sequence. Each such sequence may provide an efficient
representation of the limit of the sequence. Intuitively, the efficiency is described by
the rate (as a function of n) at which the sequence converges relatively to the sizes
of the denominators. What can be said about the resulting sequence? What condition
should the linear recursion fulfill for the generated sequence to prove that its limit
is irrational? More generally, what bounds on irrationality measures does each linear
recursion create?

In this paper, we describe the construction of a systematic method to find, for each
PCF, the efficiency of its limit approximation, i.e., the lower bound it provides for
the irrationality measure (we address a lower bound that simultaneously provides an
upper bound [2]). We develop a criterion on the PCF for proving the irrationality of
its limit. Specifically, Theorem 2 states a formula for the irrationality bound for each
PCF, yielding ln|α|−ln|B|+lnλ

ln|α|−lnλ , where α and B can be calculated directly from an’s and

bn’s coefficients and λ relates only to the growth rate of the PCF’s greatest common
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divisor, denoted as

GCDn
def� GCD[pn , qn]

(specifically, ln(λ) � limsupn→∞ 1
n ln
(

GCDn
n!degan

)
). A major advantage of this formula

is that it does not require the PCF’s limit as its input. Moreover, Conjecture 1.1 states
that, for the growth rate of GCDn to be sufficient for an irrationality proof, the poly-
nomial bn must have rational roots only.

PCFs that yield efficient Diophantine approximations are in general also better for
computingmore quickly the numbers towhich they converge.Consequently, the results
of our study could be used to develop faster means for high precision calculations
of fundamental constants, such as attempts to compute more digits and study the
normality of such constants [15–22].

Any mathematical expression that can be converted to PCFs, such as infinite sums
used for the computation of fundamental constants [15–17, 20, 21], could be analyzed
with the approach that we present in this paper. The conjectures that arise from our
study hint at a general theory that goes beyond PCFs to any polynomial recursion, and
maybe eventually beyond it to any linear recursion with rational coefficients.

Some of the conclusions of our study presented below go beyond PCFs and the
motivation of irrationality proofs. In general, when given any linear recursive formula
with integer coefficients, not necessarily one representing a PCF, it is interesting to
study the greatest common divisor of two (or maybe more) sequences arising from the
same recursion with different initial conditions. We find the solution for special cases
of linear recursions, showing the rate of growth of GCDn . We hope that our study will
contribute to efforts toward finding the general rules for greatest common devisors of
arbitrary linear recursions.

1.4 Motivation and Potential Applications

Many of the PCF formulas that led us to the conjectures and proofs in this paper were
originally found by theRamanujanMachine project [10, 30], which employs computer
algorithms to find conjectured formulas for fundamental constants. Various algorithms
are being developed as part of that project, and so far, they all focus on formulas in
the form of PCFs. Since the algorithms check candidate formulas by their numerical
match to target constants, the results are always in the form of conjectures rather than
proven theorems. The first algorithms succeeded in finding conjectured PCF formulas
for π , e, values of the Riemann zeta function ζ , and the Catalan constant [10]. These
latter formulas led to a new world record for the irrationality bound of the Catalan
constant. The theorems and conjectures below can also help improve future algorithms
that search for such conjectures.

We point out three interesting challenges that motivate this work, each having
prospects in Diophantine approximations, as well as in experimental mathematics,
i.e., computation-driven mathematical research (e.g., [10, 23, 24]):
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1. Given the polynomials an , bn , determine whether PCF[an , bn] provides a bound
on the irrationality measure of its limit (if it converges), and if so, find the bound
analytically from an , bn .

2. Estimate the efficiency of each PCF for computing fundamental constants to high
precision.

3. Develop faster algorithms to compute PCFs; more generally, compute any poly-
nomial recursion more efficiently.

1.5 TheMeasure of Irrationality

The irrationality measure of a number L is the largest δ for which there exists an
infinite sequence of rational numbers pn/qn �� L such that

∣∣∣L − pn
qn

∣∣∣ < 1
|qn |1+δ . (2)

This maximal δ is called the irrationality measure of the number L [2, 15], or the
Liouville–Roth exponent. For irrational numbers, this maximum can be obtained by
the regular continued fraction of L; however, its closed formula is often unknown
(e.g., in the case of π ). The Diophantine approximation is thought of as more effi-
cient when δ is larger. Rational numbers have an irrationality measure 0, meaning
that they cannot be approximated efficiently by other rational numbers. This prop-
erty is part of the irrationality criterion: if there exists a sequence pn/qn for which
the inequality in (Eq. 2) holds for some δ > 0, then L is irrational. Further, if there
exists a sequence pn/qn for which this inequality holds for some δ > 1, then L
is transcendental by the Siegel–Roth theorem. Finally, if the inequality holds for
arbitrarily large values of δ, then L is a Liouville number (infinite irrationality mea-
sure) [15]. Intuitively, for a sequence that proves irrationality, the growth of the
denominator should be sufficiently slow in relation to the convergence rate of the
PCF.

For each number L , there always exists a sequence that satisfy (Eq. 2) with δ �
0 (for a rational L) or δ ≥ 1 (for an irrational L). However, the largest known δ

can be smaller or larger than 0. To find even one explicit sequence that reaches the
maximal value is challenging. This challenge continues to motivate searches for new
sequences pn/qn , from which one can extract larger lower bounds for the irrationality
measures of constants. Each constant for which the rationality or irrationality is still
unknown has all its known sequences with δ ≤ 0 (as in the case of the Catalan constant
[19–22]). Then, finding one sequence for which δ > 0 will directly prove irrationality.
When δ is known to be positive, as in π , it is still interesting to find better PCFs
with larger δ values, because it improves the bounds on the constant’s irrationality
measure (e.g., π ’s upper bound [25] by Zeilberger and Zudilin). Therefore, it is of
interest to find sequences for which δ is as large as possible, even when the value is
negative.

In the rest of this paper, we use the symbol δ � δpn , qn to denote the lower bounds
on irrationality measures that we determine by analyzing sequences pn/qn generated
by PCFs. We identify a necessary and sufficient condition for the growth rate of
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GCDn , under which PCF[an , bn] provides a nontrivial δ (larger than −1). Utilizing
this criterion,wepresent an expression for δ andpropose conjectures for its dependence
on the choice of an , bn .

2 Results

2.1 Summary of theMain Results

Unless stated otherwise, we focus on “balanced-degree” PCFs, defined as those for
which degbn

degan
� 2.This PCF type is arguably themost common in the literature related to

mathematical constants (see “Appendix A”, Ref. [10], and further references therein).
We show that the growth rate (as a function of n) of GCDn is key to the analysis of
PCFs of this type. We find special interest in cases of PCF[an , bn] for which GCDn

upholds limsupn→∞ 1
n ln
(

GCDn
n!degan

)
> −∞. That is, while the denominator qn can be

shown to grow super-exponentially as n!degan , the reduced denominator qn
GCDn

is of
exponential order only. We call this phenomenon factorial reduction (FR).

Below, we prove that for a PCF to provide a nontrivial δ value, FR is necessary
(Theorem 1). We also derive formulas for this δ (Theorem 2), which could help pro-
vide irrationality proofs. The other results of our work are conjectures which attempt
to provide a complete characterization of PCFs with nontrivial δs. All the conjec-
tures are backed with extensive, computer-based, numerical tests and await formal
proof.

Numerical tests show that FR is possible if and only if bn has rational roots only
(Conjecture 1.1). We further conjecture that for every such bn , the PCF[an , bn] has FR
for infinitely many choices of polynomials an with rational coefficients (Conjecture
1.2). Other experiments revealed that, for the special case of degbn � 2 and degan � 1,
each bn with all-rational roots has exactly two infinite families of integer polynomials
an for which PCF[an , bn] has FR (Conjecture 1.4 presents the formula for the an , bn
pairs). A necessary and sufficient condition on an , bn of arbitrary degrees for PCF[an ,
bn] to have FR still awaits discovery and a proof.

2.1.1 Example: Apéry’s PCF

Let us explain how Apéry’s PCF appears as a special case in our study. First, his PCF
uses bn � −n6 which has only rational roots (a special case ofConjecture 1.1). Second,
Apéry’s PCF has FR and provides a nontrivial δ (a special case of Theorem 1), as he
proved that a lower bound for the size of GCDn is n!3/e3n . Third, Apéry proved that

δ � lnα−3
lnα+3 , for α � 17 + 12

√
2, which exactly matches our general expression (see

Theorem 2). Below, we generalize this process and conclusions to all PCFs, classify
their different GCDn s, and present a criterion for the PCF that allows us to prove
irrationality.
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2.2 Theorems About Factorial Reduction

We tested many PCFs for FR and identified a surprising phenomenon: despite the
rarity of FR in an experimentally random PCF, we have so far found FR in every
PCF that converges to a fundamental constant we tested (PCFs that converge to π , e,
ζ (3), ζ (5), and the Catalan constant). Specifically, we tested all the PCFs found so
far in the Ramanujan Machine project [10, 30] and many other PCF formulas. This
relation between FR and PCFs of fundamental constants is surprising because the
algorithmic search in [10] did not favor PCFs that have FR. This intriguing fact hints
at an underlying structure of PCFs that is required for formulas that converge to certain
mathematical constants.

Theorem 1 (The necessity of FR) Consider a balanced-degree PCF[an, bn] satisfying
A2 + 4B > 0. For the PCF to provide a nontrivial δ, it must have FR; i.e.,

limsup
n→∞

1

n
ln

(
GCDn

n!degan

)
> −∞.

In other words, GCDn divided by n!degan is of exponential order, and so, the reduced
denominators qn

GCDn
are of exponential order rather than factorial.

Satisfing A2 + 4B > 0 ensures the PCF’s convergence (see Appendices A and B).

Outline of the Proof An outline of the proof is presented here. For the complete proof
See “Appendix B”.

1. Bound the finite calculation error
∣∣∣ pnqn − limn→∞ pn

qn

∣∣∣ by
∣∣∣
∏n

i�1bi
qn+1qn

∣∣∣ (Lemma 2)

2. Extract an expression for δ from
∣∣∣
∏n

i�1 bi
qn+1qn

∣∣∣ < 1∣∣∣ qn
GCDn

∣∣∣1+δ (Lemma 1)

3. Estimate
∣∣∏n

i�1bi
∣∣ (Lemma 3) and |qn+1qn| (Lemmas 4, using Poincaré‘s [31])

4. Conclude that if GCDn does not grow super-exponentially as n!degan , then δ � −1

To size GCDn for any PCF, we define λ as the exponential order of GCDn divided
by the factorial part, i.e. (denoting ln0 � −∞),

ln(λ)
def� limsup

n→∞
1

n
ln

(
GCDn

n!degan

)
.

Hence, FR in fact means that λ > 0. So, assuming the above limit converges, we
can write

GCDn
.� λn · n!degan .

The notation xn
.� yn represents that for some κ ∈ {−1,1}

lim
n→∞

1
n ln κ xn

yn
� 0. (3)
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This is an equivalence relation implying that xn and yn exhibit identical exponential
growth rates as n approaches infinity, although theymay differ by sign, and factors that
grow (or decay)more slowly than exponentials, such as polynomial factors (nr

.� 1 for
any r ∈ R). This relation is particularly useful for comparing sequences in our analysis,
where the exponential terms are the dominant component and sub-exponential terms
are negligible. Also, note that we use the fact that xn

.� yn and x ′
n

.� y′
n implies

xnx ′
n

.� yn y′
n . �

Theorem 2 (A formula for δ) Consider a balanced-degree PCF[an, bn] with
A2 + 4B > 0 converging to a number L ∈ R. The irrationality measure of L is at
least

δ � ln|α| − ln|B| + lnλ

ln|α| − lnλ
,

where A and B are the leading coefficients of an and bn , respectively, and α is the
larger solution in absolute value of the equation

x2 − Ax − B � 0.

This formula establishes a link between the size of GCDn and the value of δ.
As anticipated, the larger GCDn is, the greater δ becomes, i.e., larger values of λ

imply larger values of δ, which is advantageous for proving irrationality. The minimal
possible λ value is λ � 0 which implies no FR and a trivial δ � −1, while themaximal
value is λ � |α| (as “Appendix B” shows pn

.� qn
.� αn · n!degan ), which implies an

infinite irrationality measure, i.e., a Liouville number. Any λ value exhibiting λ >
∣∣ B
α

∣∣
implies δ > 0 and proves the irrationality of the PCF’s limit.

Outline of the Proof Following Theorem 1, the formula for δ is derived from assuming
GCDn

.� λn · n!degan and inserting it into the expression from Lemma 1 (step 2 at the
outline of Theorem 1’s proof). For the complete proof See “Appendix B”. �

2.2.1 Examples: Different values of λ and δ

1. Apéry’s: bn � −n6 and an � 34n3 + 51n2 + 27n + 5, and therefore,

α � 34+
√

342−4
2 . Apéry showed [1] that

(
n!

LCM[n]

)3|GCDn and thus

GCDn ≥
(

n!
LCM[n]

)3
, where LCM[n] is the least common multiple (LCM)

of 1,2 . . . n, which satisfies LCM[n]
.� en (as it is equal to the exponent of the

second Chebyshev function [2]). Therefore, λ ≥ 1
e3

and our formula provides

δ � ln|α|−ln|B|+lnλ
ln|α|−lnλ ≥ 0.080529 . . . , which exactly matches the Apéry’s result.
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2. Other irrational limits: For any integer k ≥ 3, take bn � −n2 and an �
k(2n + 1); therefore, α � k +

√
k2 − 1. The proof in “Appendix D” shows that

n!
LCM[n] |(GCDn · 2n) and thus GCDn ≥ n!

2nLCM[n] . Therefore, λ ≥ 1
2e , providing

δ ≥ ln
(
k+

√
k2−1

)
−ln2−1

ln
(
k+

√
k2−1

)
+ln2+1

> 0, and proving irrationality for all these PCFs’ lim-

its. Note that these PCFs satisfy the convergence condition A2 + 4B > 0 from
“Appendix A”.

3. Additional values in Table 1.

These examples emphasize the strength of our approach: the determination of an
irrationality measure δ without a need to find an explicit formula for a PCF’s sequence
or to find its limit.

2.3 Conditions for the Existence of Factorial Reduction

Theorems 1 and 2 raise two critical questions: (1) which PCFs have FR and if so, then
(2) what their exponential orders λ are. Following many computer tests, the following
conjecture is an effort to answer the first question. The second will be discussed later.

Conjecture 1.1 Given a polynomial bn, there exists an anfor which PCF[an , bn]has
FR if and only if bnis decomposable to linear factors over Q.

2.3.1 Examples: The roots of bn and their effect on FR

For the case where bn � n2 − 2, which possesses irrational roots, we did not discovere
any an for which PCF[an , bn] has FR. Similarly, in scenarios where bn has nonreal
roots, such as bn � n2 + 1, we observed the same outcome (see “Appendix E”).

In the case of bn � n2 − 2, which has irrational roots, we found no an such that
PCF[an , bn] has FR, and similarly in the case where bn has nonreal roots, such as
bn � n2 + 1 (see “Appendix E”).

On the other hand, we found numerically that for
bn � 8n2 − 2 � 2(2n + 1)(2n − 1), there exist choices of an that provide PCFs
with FR, for example:

PCF
[
7n + 3, 8n2 − 2

] � 3 + 6
10+ 30

17+ 70
24...

. (4)

Another example for bn � −n4 � −(n2)(n2) is

PCF
[
2n2 + 2n + 13, −n4

] � 13 − 1
17− 16

25− 81
37...

. (5)
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2.3.2 Families of an s for Which the PCFs Have Factorial Reduction

The above an choices are part of infinite families (see the following examples). In fact,
our computer tests always find the an s to belong to infinite families that all have FR,
and we propose the following conjectures.

Conjecture 1.2 For each bnthat is decomposable to linear factors over Q, there exists
at least one infinite family of ans for which every PCF[an , bn]has FR.

Such a family is presented in Conjecture 1.3.

This conjecture means that each PCF[an , bn] with FR could be generalized to an
infinite family of PCFs with the same bn and different ans. An interesting question is
whether there would always exist members of this family that prove the irrationality
of the constants to which they converge (see Theorem 3 for more information).

2.3.3 Example of an infinite family of PCFs for bn � − n4 (found empirically).

The PCF in (Eq. 5) can be generalized, and considered as a special case of the following
family of PCFs: For bn � −n4, and any k of the form k � m2 − m + 1, m ∈ Z, the
following PCF has FR:

PCF
[
2n2 + 2n + k, −n4

]
� k − 1

4 + k − 16
12+k− 81

24+k...

.

2.3.4 Example of an infinite family of PCFs for any general bn (found empirically)

Conjecture 1.3 For any d ∈ N, and B, x1, . . . , x2d ∈ Q, the following PCF[an ,
bn]has FR:

bn � B ·
2d∏
i�1

(n − xi )

an � B

m
·

d∏
i�1

(n + 1 − xi ) − m ·
2d∏

i�d+1

(n − xi )

for any m ∈ Q\{0, ±√|B|} (since then B � −A2/4, or A � 0).

2.3.5 The Complete Structure for degbn � 2 and degan � 1

Having performed many numerical tests, we propose the next general conjecture for
the an families for which the PCF has FR for a given reducible bn of degree 2.
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Conjecture 1.4 For every bnof the form bn � B(n − x1)(n − x2)with B, x1, x2 ∈ Q,
PCF[an , bn]has FR if and only if anbelongs to one (or more) of the families

a(k)
n � ( Bm − m

)
n + k, (6)

a(k)
n � k(2n − x1 − x2 + 1), (7)

for any k ∈ Q\{0}, and m ∈ Q\{0, ±√|B|}.
We emphasize that the above conjecture is formulated with rational parameters

(B, k, and m), yielding rational PCFs. Alternatively, an equivalent conjecture can be
formulated using integer parameters and yielding integer PCFs. The equivalence is
achieved by multiplying an and bn by a constant (see inflation process in “Appendix
C”). For the sake of simplicity and coherence, the examples below are chosen to be
integers (B ∈ Z, k ∈ Z or k ∈ 1

2Z, and m|B). However, the conjecture is presented
in the most general form, using rational numbers.

Numerical experiments show that these two families of PCFs, and only them, have
FR for a given reducible bn of degree 2. Based on these numerical tests, we found
exponentially tight

( .�) formulas for GCDn of some cases (“Appendix E”). Interest-

ingly, the families share additional properties, e.g., their GCDn s are always found to
be closely related (we do not yet understand the general structure).

2.3.6 Example of the Complete Structure for bn � 8n2 − 2

For bn � 8n2 − 2, the first family (Eq. 6) has the following PCFs for m � 1 and any
k ∈ Z [note that (Eq. 4) is a special case with k � 3]

PCF
[
7n + k, 8n2 − 2

]
� 0 + k +

6

7 + k + 30
14+k+ 70

21+k...

,

and for m � 2 and any k ∈ Z

PCF
[
2n + k, 8n2 − 2

]
� 0 + k +

6

2 + k + 30
4+k+ 70

6+k...

.

The second family (Eq. 7) contains for any k ∈ Z

PCF
[
k(2n + 1), 8n2 − 2

]
� k +

6

3k + 30
5k+ 70

7k...

.

We tested many of these PCFs numerically and indeed they all have FR, while other
PCFs with the same bn � 8n2 − 2 and different an s do not.

123



On the Connection Between Irrationality Measures and Polynomial…

2.4 Summary of Our Main Conjectures Regarding PCFs and Factorial Reduction

The above examples summarize the four aspects of our conjectures so far:

1. FR ofPCF[·, bn]: an an exists if and only if bn has rational roots only.
2. an families: for every such bn , there exist several infinite families of an s for which

the PCFs have FR.
3. Each an belongs to (at least) one of such families.
4. PCFs of the same family have closely related GCDn s.

2.4.1 A Hint for the Structure of Arbitrary Degrees

We expect similar results for any bn of degree≥ 2 and explain why. For any bn , of any
degree, we always find an s with leading coefficients

( B
m − m

)
for some m, same as

the first family (Eq. 6) for bn of degree� 2. For example, PCF
[
11n2 − 2n − 1, 12n4

]
,

PCF
[
4n2 − 4n − 2, 12n4

]
, and PCF

[
n2 − 6n − 3, 12n4

]
have FR, corresponding to

B � 12 and m � 1,2, 3, respectively. See “Appendix E” for more examples. We do
not yet know what conditions must be satisfied by the other coefficients of the an s to
have FR.

There exist other an s of a different and still unknown form, such as Apéry’s and
the example of Conjecture 1.2 shown above. Furthermore, the form of the leading
coefficient A � ( Bm − m

)
can be obtained by the following criterion: A is of this

form if and only if the equation m2 � A · m + B has a rational root. It is interesting
to try generalizing the above conjectures to discover the most general rules of this
mathematical structure. Additional hints of the mathematical complexity of the yet
unknown general structure are related to the existence of generalized Pythagorean
triples (see Sect. 2.7 below).

2.5 Closed-Form Formula of GCDn and the Exponential Order �

The goal of the next sections is to predict exponentially tight formulas for GCDn

s, i.e., up to a slower than exponential factor. For each PCF[an , bn], we aim to find
both the exponential order λ and the closed-form expression for GCDn that yields this
λ. Representative examples are provided in Table 1 below. This table includes PCF
examples of different sorts, some for which we found (numerically) exponentially
tight formulas and others for which we did not.

The term “exponentially coprime to GCDn” generalizes the idea of a coprime and
means that the highest powers of p dividing GCDn for the terms in the sequence
increase sub-exponentially. This statement implies that a certain prime does not affect
the reduction.

Generalizing from these examples and many more (“Appendix E”), a conjectured
structure of the exact GCDn forms (up to sub-exponential factors) is presented next.
Note that there existmultiple equivalentways to present someof the forms, for example

using (2n − 1)! ! · 2n
LCM[2n] � n! ·

(
2n

0ptn

)

LCM[2n] (as shown in Table 1). Also, the notation
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fn � 	(gn) mean that f is bounded both above and below by g asymptotically, i.e.,
there exist positive constants c, C ∈ R

+ such that c · gn ≤ f n ≤ C · gn for large
enough ns.

Conjecture 2 (The exact forms of GCDn)We can represent every GCDnas a multiple
of two parts, a factorial and an exponential expression:

• The factorial part in general appears in the form
∏n

i�1 P(i), where P is an integer
polynomial of degree degan
(The special case of n! corresponds to P(x) � x and deg(an) � 1).

• The exponential part takes one of the following forms or their multiples:

• Power of a prime: p	(n)

• In the numerator: We found only integer or half-integer powers, such as 5n

and 7�n/2�. In some PCFs, these powers can be explained by inflation (see
Appendix C).

• In the denominator: Only primes p raised to the power of � n
p−1�deg(an), such

as 11� n
10� and 2n . Note that this exponent p� n

p−1� conforms to the highest

power of p that divides the factorial expression (un + v)!(u) (when u and p
are coprime). Hence, when this exponent appears in the denominator, GCDn

is exponentially coprime with p.
• When part of the expression is a “Zebra” (see below), we findmore complicated
fractional powers in the numerator, such as 2�3n/4�.

• LCM[ f · n] for some f ∈ N : For example, the Apéry’s work has LCM[n], and
Table 1 shows a case of LCM[2n]. This is seen only in denominators.

• Zebra: There is an additional pattern for which we lack an explicit formula. We find
this pattern in the denominators. We can identify this pattern in many PCFs but do
not entirely understand it. The investigation of the Zebra pattern is left to future
work.

For computational simplicity, most of our numerical analysis is focused on PCFs
of degbn � 2 and degan � 1. Based on this analysis and additional simulations, we
conjecture that the above description captures any GCDn sequence of a PCF, also of
the higher order an , bn . Furthermore, we expect analogous mathematical structures to
exist in greatest common divisors of any linear recursion with polynomial coefficients,
the investigation of which remains for future work. Note that, for PCFs without FR,
numerical analyses show that 	(π(n)) primes are exponentially coprime to GCDn ,
where π(n) is the prime-counting function.

2.6 Fast Calculation of PCFs Using Simplified Recursion Formulas and Factorial
Reduction

In this section, we discuss an application of the ability to predict the exact formulas
of FR and other forms of reduction. Provided we have a closed-form formula for
GCDn , we can apply the reduction straight to the recursion, so that the computation
is performed with smaller integer values. Such simplified recursions enable faster
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estimation of the PCF limit. The computation advantage of such recursion is substantial
with FR: it requires onlymanipulating sequences that grow exponentiallywith the PCF
depth (instead of super-exponentially).

2.6.1 Example: A Simple Recursion for the Reduced Numerator and Denominator

Forbn � 2n2 + n, an � n, we (numerically) find thatGCDn
.� n!

2n , and therefore, there

exist integer sequences p′
n and q

′
n such that

pn � n!

2n
· p′

n

qn � n!

2n
· q ′

n .

Thus, GCD
[
p′
n , q

′
n

] .� 1 so that the majority of the original GCDn is being used in

this reduction. We can substitute in the recursion (Eq. 1) that pn and qn both uphold,
and yield a recursion for p′

n and q
′
n (after simple manipulations)

n(n − 1)u′
n � 2nu′

n−1 + 4u′
n−2,

which has rational coefficients. This recursion generates the reduced numerator and
denominator sequences. In fact, for any integer initial values, this recursion generates
an integer sequence (or rational with sub-exponential denominators). Additional pairs
of polynomials an , bn with the same properties are presented in “Appendix E”.

2.7 Hints for a Deeper Mathematical Structure

This section provides additional examples of special mathematical properties that we
found numerically and hint at a much wider theory that still awaits discovery.

For every b(x)
n � x2

(
2n2 + n

)
, x ∈ Z, there exist families of an for which PCF[an ,

bn] has FR. These an families include

an � z(x) · n + k,

where k is an integer, but the options for integer z(x) are finite. These z(x) s are
precisely the integers for which there exists a (-6)-Pythagorean triple (x , y, z) for
some y; i.e., the Diophantine equation z2 � x2 + y2 + 6xy has a solution. This was
discovered with the help of OEIS [27]. This result is a special case that coincides with
the general structure we discovered for degbn � 2 (see Conjecture 1.4).

Apéry wrote twomore pairs of polynomials, the PCFs of which prove the irrational-
ity of ζ (2) and ln2. After considering Conjecture 1.2 (infinite families for a given bn),
we looked for these families with the others an s. For ln2, where bn � −n2, we dis-
covered an � k(2n + 1), k ∈ Z as the particular structure for degbn � 2 predicts.
Moreover, for odd k s, such as the Apéry’s (k � 3), we get GCDn

.� n!
LCM[n] , and for
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even k s, GCDn
.� n!

2nLCM[n] . A generalized proof for this case, even without knowing

the PCFs limits, is available in “Appendix D”. The theorem in the next section shows
how almost any k constructs a PCF that proves the irrationality of its limit, although,
apart from ln2, the identity of these irrational limits is still unknown to us.

2.8 Infinite ans That Prove Irrationality for a Given bn

This next section shows infinite families of PCFs that prove irrationality of certain
numbers. Specifically, we conjecture that for any bn , there exists an infinite set of ans
such that each constructs a PCF that proves the irrationality of its limit.

Theorem 3 We consider families of balanced-degree PCFs that have FR and are
created from a constant bn, and a(k)

n that are multiples of a single polynomial, i.e.,

a(k)
n ∈

{
k · a(1)

n |k ∈ Z

}
. Assuming that λ, the exponential orders of GCDn, is bounded

as a sequence in k(based on part 4 of Conjecture 1’s summary), we find

lim
k→∞ δ � 1.

In particular, for large enough k s, the limit will be irrational since δ > 0.

Proof (Straightforward) If k → ∞, then the leading coefficient of a(k)
n uphold Ak →

∞ and the characteristic equation α2 � Ak · α + B has a solution that certifies αk →
∞. Substituting in Theorem 2 with a constant B, while assuming lnλ is bounded, we
have

δ � ln|α| − ln|B| + lnλ

ln|α| − lnλ
→ ln|α|

ln|α| � 1.

Observation: Combining this theorem and Conjecture 1.4, we expect that, for any
bn of degree 2 with rational-only roots, there exists an infinite set of an s such that
PCF[an , bn] proves the irrationality of its limit. As for higher degrees, we conjecture
the existence of similar structures. �

2.9 Additional Properties of the Greatest Common Divisor

We investigate additional results that can help prove properties about GCDn , for all
PCFs cases, either with or without FR. Thus far in our paper we analyzed the growth
rate of the sequence GCDn as a function of the PCF’s depth, n. One property that
we examined and believe could be useful for proving some of our conjectures is
whether GCDn divides its consecutive GCDn+1. We find numerically that in many of
the fractions this does not hold for the definition of GCDn sequence, i.e., GCDn �

GCDn+1 for some n s.
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The above observation motivates the study of the greatest common divisor of two
consecutive numerators and denominators, defined as

GCD2n
def� GCD

[
pn , qn , pn−1, qn−1

]
.

By this definition and the recursion formula (Eq. 1) for pn and qn , one can show
that for all n

GCD2n|GCD2n+1.

Since GCD2n|GCDn , part of the reduction may be explained by GCD2n . It remains
to be seen what part of the FR and its exponential part is contained in GCD2n . Having
inspected many PCFs numerically, with or without FR, we conjecture the following.

Conjecture 3 For any PCF:

GCD2n
.� GCDn ,

The fact that both GCDn and GCD2n exhibit the same exponential order means that
all the theorems and conjectures presented heremay also apply toGCD2n . Specifically,
if FR exists, then both the factorial and the exponential part of GCDn will exist in
GCD2n . The important consequence is that we can use either GCDn or GCD2n for
purposes of irrationality proofs, as Theorem 2.

This conjecture enables us to treat GCD2n as a growing product of some integer
series and, at a given depth n, calculate and reduce only one integer term: GCD2n

GCD2n−1
. For

example, if GCD2n � n!
LCM[n] , we can reduce the numerators and the denominators at

each depth n by the factor n/p if n is a power of some prime number p and by n if it
is not.

Moreover, this definition is advantageous because GCD2n|GCDn for all n, and it
thus sorts out sub-exponential factors that have no effect on proving irrationality. This
observation facilitates the numerical analysis and helps identify the exact formula for
the GCD2n .

As a side note, Conjecture 3 helps show that GCDn s of PCFs that have FR always
have a factorial term such as (n! )d for some integer d, rather than a term such as nd·n

(which also grows like (n! )d up to an exponential factor by Stirling’s approximation).

In fact, all the PCFs with FR that we encountered could be written as (n! )d · Sn
Rn

with

Sn and Rn being integer sequences that grow exponentially. Some cases are more
complex, such as when GCDn

.� (3n + 1)! ! !, but these do not contradict the above
statement. It would be interesting to try to prove this phenomenon.
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3 Discussion and Open Questions

3.1 Outlook andMotivation

By their further development, the conjectures presented can provide useful tools for
irrationality proofs, as well as for fast calculations of polynomial integer recursions
of mathematical constants.

Specifically, the results related to FR can be applied to shrink the search space
of the Ramanujan Machine algorithms [10, 30]. By focusing on PCFs with FR, the
algorithms would have a better chance to find new conjectures that are simultaneously
of a relatively fast computation time and have nontrivial δs that we can extract. That
is, removal of the cases that have no FR avoids all the hard-to-compute PCFs that also
provide trivial δs.

Looking forward, we believe that by generalizing the mathematical structure of
PCFs with FR, it would be possible to find universal structures in PCFs made from
arbitrary-degree polynomials. As a more ambitious step, it is interesting to consider
deeper linear recursions (beyond depth 2), which can also be harnessed to find new
conjectures. One can search for analogous algebraic structures and ideas as presented
above.

In the following, we present several ideas and open questions that arise from our
mathematical experiments and from our conjectures. These open questions may be
simple or complex, and we hope that they can engender more ideas for future research
in different communities.

3.2 Implications of Factorial Reduction for a Faster Computation of PCFs

Once a closed formula for GCDn has been found, numerical calculations of PCFs will
becomeeasier and faster since theFRconsiderably decreases the numbers participating
in the arithmetic operations. In particular, PCFs with FR benefit greatly from this
reduction since pn and qn decrease from a super-exponentially (factorial) growth to
exponential growth. In other words, finding the exact formula for the reduction enables
one to construct a simpler recursion formula that directly gives the reduced numerators
and denominators.

3.3 Families of PCFs

Following Conjecture 1.2, it is natural to try to generalize the families of an ,bn for
higher degrees. What affects the number of families and subfamilies? Conjecture 1.4
claims that only two families exist for the discussed degrees, and one of them is
branched into several subfamilies. In this case, the number of subfamilies depends
merely on the number of divisors of B (the leading coefficient of bn). We do not yet
have a solid and more general conjecture that relates to all degrees. Another question
regarding families of an or bn is whether a relation exists between the limits of any
sibling PCFs. For example, if this relation hints that the limits are equivalent, for proofs
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of irrationality, it will suffice to find just one limit and use Theorem 3 (infinite ans that
proves irrationality).

3.4 Finding and Proving the Exact Form of GCDn

We did not find the exact form of the GCDn , but nevertheless tried to list the different
types of expressions that comprise it. The motivation to find the closed form of GCDn

is the possibility of writing a reduced recursion that yields the reduced numerators and
denominators, which can simplify any numerical calculation of the PCF. Moreover, a
closed-form formula would also directly predict the bound δ given by the PCF.

We note that Apéry proved his case by finding an explicit expression for the PCF
at each depth n, i.e., pn/qn . As an example of taking a more general approach, in
“Appendix D” we address various GCDns and bypass the need for an explicit expres-
sion. As examples that can promote future research, we present in “Appendix E” a set
of unproven examples that precisely yield same simplified recurrence relations.

3.5 Predicting the Exponential Order �

To search for conjectures in the form of PCFs that prove the irrationality of constants, it
suffices to predict only the exponential order λ. Using this value, Theorem 2 calculates
the bound δ on the irrationality measure. It remains to find a direct relation from an ,
bn to λ.

Appendix A: Classification of PCFs

All PCFs can be split into three cases by the ratio of the degrees of the polynomials
an , bn (Table 2). This ratio determines the PCF’s convergence rate and the growth rate
of pn and qn . In most of this paper, we focused on Case 2, balanced-degree PCFs,
where db

da
� 2 (3rd column in the table below). PCFs of this case are those that prove

the irrationality of ζ (3), and ζ (2) in the Apéry’s work [1, 2], as well as many more
mathematical constants.

In this section, the other cases are presented and analyzed to ensure completeness
and to lay the groundwork for future research. Interestingly, the analysis of the three
cases demonstrates that not only Case 2 but also Cases 1 and 3 can provide expressions
for δ used for irrationality proofs. These cases are generally less interesting because δ

is independent of the size of GCDn , and thus provide proofs of irrationality only under
stricter conditions. This comparison underscores the importance of PCFs of Case 2,
where the size of GCDn (both factorial and exponential components) significantly
influences δ and its analysis is pivotal in the pursuit of irrationality proofs. Refer to
the 5th row in Table 2 for further details.
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Appendix B: Proof for Theorems 1 and 2

The goal of this appendix is to provide a provide a proof for Theorems 1 and 2 from
the main text. For convenience, we collect our notation at this point.

Let a, b ∈ Z[X ] be two fixed polynomials of degrees da , db and leading coefficients
A, B, respectively. We write an � a(n) and bn � b(n) for any integer n, and consider
the polynomial continued fraction PCF[an , bn] as introduced in Sect. 1.2. The numbers
pn and qn denote the numerator and denominator of the n-th convergent pn/qn of
PCF[an , bn], satisfying the recursion un � anun−1 + bnun−2. We will assume that
bn �� 0 for all n ∈ N to guarantee that the PCF is infinite.

We also denote by L
def� limn→∞ pn

qn
the limit of the PCF—assumed to exist for

the sake of Theorems 1 and also finite for Theorem 2. For integer sequences pn , qn
generating a rational sequence pn/qn �� L converging to L , we define

δpn , qn
def� sup

{
δ ∈ [−1, ∞]|

∣∣∣∣L − pn
qn

∣∣∣∣ <
1

|qn|1+δ
for infinitely many n

}
.

We will prove a lower bound on the irrationality measure of L by bounding the
above expression.

Without loss of generality, we will assume that A > 0. Otherwise, one could
consider PCF[−an , bn], whose limit is −L and convergents are −pn/qn , as can be
proven using inflation (see “Appendix C”) by the constant sequence −1.

Step 1: A Lower Bound on the Irrationality Measure

The first step towards proving our theorems consists of producing a controllable lower

bound on δp′
n , q

′
n
where

(
p′
n , q

′
n

) def�
(

pn
GCDn

, qn
GCDn

)
.

Lemma 1 With the notation above, we have the inequality

δp′
n , q ′

n
≥ δ

def� limsup
n→∞

ln|qn+1| − ln
∣∣∏n

i�1bi
∣∣ + lnGCDn

ln|qn| − lnGCDn
.

This is a consequence of the subsequent lemma.

Lemma 2 The following inequality holds for sufficiently large n

∣∣∣∣L − p′
n

q ′
n

∣∣∣∣ �
∣∣∣∣L − pn

qn

∣∣∣∣ ≤
∣∣∣∣
∏n

i�1bi
qn+1qn

∣∣∣∣.

Proof See [29] at “Appendix D”. �

Proof of Lemma 1 Observe that the expression defining δ can be obtained by
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δ � sup

⎧
⎪⎨
⎪⎩
d ∈ [−1, ∞]|

∣∣∣∣
∏n

i�1 bi
qn+1qn

∣∣∣∣ <
1∣∣∣ qn

GCDn

∣∣∣1+d
for infinitely many n

⎫
⎪⎬
⎪⎭

.

� sup

{
d ∈ [−1, ∞]|d <

ln|qn+1| − ln
∣∣∏n

i�1 bi
∣∣ + ln GCDn

ln|qn | − ln GCDn
for infinitely many n

}
.

In combination with Lemma 2, this equality establishes δp′
n , q

′
n

≥ δ. �

Also, we conjecture this lower bound to be tight, suggesting that the largest lower
bound provided by this PCF on the irrationality measure of L is the δ we defined.

Step 2: Exponentially Tight Estimation for
∏n

i�1bi

Lemma 3 For any polynomial bn

n∏
i�1

bi
.� Bn · n!db .

Proof We claim that
∏n

i�1 bi and Bn · n!db differ by factors that grow (or decay) more
slowly than exponentials, and possibly a constant sign. To show that claim, assume
first that B > 0, and define some positive integer k such that

∣∣∣bn − B · ndb
∣∣∣ ≤ k · B · ndb−1,

∣∣∣an − A · nda
∣∣∣ ≤ k · A · nda−1,

for all n ∈ N. Then, for n > k, we have

0 < B · ndb( n−k
n

) ≤ bn ≤ B · ndb( n+kn
)
, (B1)

0 < A · nda ( n−k
n

) ≤ an ≤ A · nda ( n+kn
)

(B2)

[we will use (Eq. B2) later]. Thus,

∏n
i�1 bi

Bn · n!db ≤
∏k

i�1 bi
Bkk!

n∏
i�k+1

i + k

i
�
∏k

i�1 bi
Bkk!

k!

(2k)!
· (n + k)!

n!
� 	

(
nk
)
,

∏n
i�1 bi

Bn · n!db ≥
∏k

i�1 bi
Bkk!

n∏
i�k+1

i − k

i
�
∏k

i�1 bi
Bkk!

k! · (n − k)!

n!
� 	

(
n−k
)
.

These bounds show that
∏n

i�1 bi and Bn · n!db differ by (up to) polynomial factors,
and perhaps a constant sign, as required for the relation “

.�”, defined at (Eq. 3).
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Note thatminor adjustments are required for establishing similar bounds to (Eq. B1)
when B < 0. �

Step 3: Exponentially Tight Estimation for qn

Our first step towards estimating the behavior of qn as n → ∞ will be to understand
the asymptotic behavior of the quotient qn/qn−1. The situation for this quotient is
particularly simple in the case of constant coefficients a′

n � A′ and b′
n � B ′, which

we briefly describe here.

Example The recursion q ′
n � A′q ′

n−1 + B ′q ′
n−2 can be re-written in a matrix form as

(
q ′
n

q ′
n−1

)
�
(
A′ B ′
1 0

)

︸ ︷︷ ︸
T

(
q ′
n−1

q ′
n−2

)
� T n

(
q ′
0

q ′−1

)
.

In terms of the Möbius action, this translates to the equality

q ′
n

q ′
n−1

� T n
(

q ′
0

q ′−1

)
(B3)

for every n. Observe now that the characteristic polynomial of T is x2 − A′x − B ′,
and that

T � P

(
λ− 0
0 λ+

)
P−1for P �

(
λ− λ+

1 1

)
,

where λ± � (A′ ±
√
A′2 + 4B ′)/2 are the roots of the characteristic polynomial. In

virtue of the assumptions A′ > 0 and A′2 + 4B ′ > 0, the roots are real, distinct, and
|λ+| > |λ−|. Combining this diagonalization statement with (Eq. B3), we conclude
that

lim
n→∞ q ′

n/q
′
n−1 � λ+

for all initial conditions (q ′
0, q ′−1), except if

q ′
0

q ′−1
� λ−, in which case

limn→∞ q ′
n/q

′
n−1 � λ−.

In words, the example above shows that the quotient q ′
n/q

′
n−1 converges to the

dominant (larger in absolute value) eigenvalue λ+ of the characteristic polynomial for
generic initial conditions (q ′

0, q
′−1), under the assumption of constant coefficients. The

following theorem by Poincaré [31] states that an similar behavior is also expected
when the coefficients are not necessarily constant, yet admit finite limits as n → ∞.

TheoremA (Poincare 1885) Let un � a′
nun−1 +b′

nun−2, n ∈ N, be a linear recurrence
with real-valued coefficients a′

n , b
′
n and initial conditions (u0, u−1) ∈ R

2 \ {(0,0)}.
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Assume that a′
n , b′

n have limits limn→∞ a′
n � A′, limn→∞ b′

n � B ′ with
A′2 + 4B ′ > 0, and λ+, λ− are two distinct real solutions of the equation
x2 − A′x − B ′ � 0. Then, every non-zero solution un of the recurrence fulfills.

lim
n→∞

un
un−1

� z ∈ {λ+, λ−}. (B4)

Moreover, if |λ+| > |λ−|, there exists at most one number c ∈ R ∪ {} such that

z � λ+

for all initial conditions (u0, u−1) except if
u0
u−1

� c.

About the proof Equation (B4) is a theorem due to Poincaré [31] (see also [Sect. 2.14]
as a secondary reference). The remaining statement follows from (Eq. B4), the equality

un
un−1

� Sn

(
u0
u−1

)
with Sn � Tn · · · T1and Tk �

(
a′
k b′

k
1 0

)

for every n, and a theorembyPiranian andThron [28], Theorem1], regarding the point-
wise limit of sequences of Möbius transformations, applied to the sequence Sn . �

Relying on Theorem A, we will now prove the lemma below. Following the rea-
soning at “Appendix A”, we split in its statement all PCFs into three cases by the ratio
db
da

of the degrees of the polynomials.

Lemma 4 Let α be the solution of the equation x2 − Ax − B � 0 with larger absolute
value, assume that A2 + 4B > 0 if db/da � 2, and that B > 0 if db/da > 2. Then

qn
.�

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

B
n
2 · n! db2 if db

da
> 2 (Case 1)

αn · n!da if db
da

� 2 (Case 2)

An · n!da if db
da

< 2 (Case 3)

.

Proof Let d
def� max

{
da ,

db
2

}
. Applying the substitution q ′

n � qn
n!d

to the original

recurrence, we obtain the new recurrence

q ′
n � a′

nq
′
n−1 + b′

nq
′
n−2

where a′
n
def� an

nd
and b′

n
def� bn

nd (n−1)d
for n ≥ 2 (see inflation process at “Appendix

C”), and q−1, q0, q1 are as in the original recurrence. Observe that the new recurrence
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satisfies the condition of Theorem A, and the dominant eigenvalue λ+ equals

λ+ �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B1/2 if db/da > 2 (Case 1)

α if db/da � 2 (Case 2)

A if db/da < 2 (Case 3)

.

Then, (Eq. B4) yields

q ′
n

q ′
n−1

→ z as n → ∞.

This implies that for every ε > 0, there exist positive constants r , R ∈ R
+ and

κ ∈ {−1,1} such that for large enough n

r(1 − ε)n ≤ κ
q ′
n
zn � κ

qn
zn ·n!d ≤ R(1 + ε)n .

If z � λ+, then the above proves that ln(1 − ε) ≤ limn→∞ 1
n lnκ

qn
λn+·n!d ≤ ln(1 + ε)

for any ε > 0, implying qn
.� λn+ and establishing the lemma. On the other hand, if

z � λ−, then, given c � q0/q−1 �� p0/p−1, we find
pn
qn

.�
(

λ+
λ−

)n
, resulting in a PCF

that does not have a finite limit, which was excluded from our discussion. �

Step 4: Combining These Results with the Irrationality Criterion

Now, for each case, we insert the estimation we found for qn into the expression

δ � limsup
n→∞

ln|qn+1| − ln
∣∣∏n

i�1bi
∣∣ + lnGCDn

ln|qn| − lnGCDn
.

For convenient, define for some sub-exponential pre-factor as Eb
n

def�
∏n

i�1 bi
Bnn!db

.� 1,

allowing us to use the exact equality
∏n

i�1 bi � Eb
n · Bnn!db (and not just “

.�”). Sim-

ilarly, define EGCD
n for GCDn and Eq

n for qn with its exponentially tight estimations
at each case from Lemma 4. Also, note that lnn!∈ 	(nlnn).

Case 1: db
da

> 2, qn
.� B

n
2 · n! db2

Note that

∣∣∣∣
∏n

i�1 bi
qn+1qn

∣∣∣∣
.� Bn · n!db
(
B

n
2 · n! db2

)2
.� 1,
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so we do not have a bound on the convergence rate. By numerical tests, we con-
jecture the converge rate to be polynomial. For this reason, to provide a nontrivial
δ, GCDn must be exponentially equal to qn , so that both sides of the inequality∣∣∣
∏n

i�1 bi
qn+1qn

∣∣∣ ≤ 1∣∣∣ qn
GCDn

∣∣∣1+δ will decrease sub-exponentially. This requires a more delicate

analysis that is outside the scope of this paper. In conclusion, we conjecture the con-
dition

GCDn
.� qn

.� B
n
2 · n! db2

to be necessary but not sufficient for yielding a nontrivial δ in this case.
Case 2: db

da
� 2, qn

.� αn · n!da
Note that

∣∣∣∣
∏n

i�1 bi
qn+1qn

∣∣∣∣
.�
∣∣∣∣∣

Bn · n!db(
αn · n!da )2

∣∣∣∣∣ �
∣∣∣∣
B

α2

∣∣∣∣
n

,

and since |B| < α2, the convergence rate is exponential. For the expression for δ, we
have

ln|qn+1| − ln
∣∣∏n

i�1 bi
∣∣ + ln GCDn

ln|qn | − ln GCDn

�
(n + 1) ln|α| + da(n + 1) ln(n + 1) + ln

∣∣∣Eq
n+1

∣∣∣− n ln B − 2dan ln n − ln
∣∣∣Eb

n

∣∣∣ + ln GCDn

n ln|α|+dan ln n + ln
∣∣∣Eq

n

∣∣∣− ln GCDn

Dominant terms that determine the behavior of the expression are highlighted in
bold. Here comes the crucial part of the proof for Theorem 1: To provide a nontrivial
δ, the limsup of this expression must not be −1. Thus, GCDn must contain a super-
exponential factor at the size n!da—i.e., factorial reduction, proving Theorem 1. Note
that a bigger super-exponential factor is not possible since pn

.� qn
.� αn · n!da .

Now, to prove Theorem 2, inserting GCDn
.� λn · n!da into the last expression

yields

(n + 1)ln|α| + da(n + 1)ln(n + 1) + ln
∣∣∣Eq

n+1

∣∣∣− nln|B| − 2danlnn − ln
∣∣∣Eb

n

∣∣∣ + nlnλ + danlnn + ln
∣∣∣EGCD

n

∣∣∣
nln|α|+danlnn + ln

∣∣∣Eq
n

∣∣∣− nlnλ − danlnn − ln
∣∣∣EGCD

n

∣∣∣

→
n→∞

ln|α| − ln|B| + lnλ

ln|α| − lnλ
.

The terms containing multiples of nlnn canceled out and the ones determining the
behavior of this expression are highlighted in bold. This matches the expression for δ

in Theorem 2 and proves it.
Case 3: db

da
< 2, An · n!da
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Note that

∣∣∣∣
∏n

i�1 bi
qn+1qn

∣∣∣∣
.�
∣∣∣∣∣

Bn · n!db(
An · n!da )2

∣∣∣∣∣ �
∣∣∣∣
B

A2

∣∣∣∣
n

· n!db−2da ,

and since db − 2da < 0, the convergence rate is super-exponential. For the expression
for δ, even if GCDn � 1, we have

ln |qn+1| − ln
∣∣∏n

i�1bi
∣∣ + lnGCDn

ln |qn| − lnGCDn

� (n + 1) ln |A| + da (n + 1) ln (n + 1) + ln
∣∣Eq

n
∣∣− nlnB − dbnlnn − ln

∣∣Eb
n

∣∣ + 0

danlnn + n |A| + ln
∣∣Eq

n
∣∣− 0

→
n→∞

da − db
da

,

which is positive, and proves irrationality, if and only if da > db.
For GCDn to modify the limit above, it must be of factorial order. If so, and the

factorial power is of size n!r (the exponential factors have no effect), then

ln |qn+1| − ln
∣∣∏n

i�1bi
∣∣ + lnGCDn

ln |qn| − lnGCDn

� (n + 1) ln |A| + da (n + 1) ln (n + 1) + ln
∣∣Eq

n
∣∣− nlnB − dbnlnn − ln

∣∣Eb
n

∣∣ + 0

danlnn + n |A| + ln
∣∣Eq

n
∣∣− 0

→
n→∞

da − db + r

da − r
,

which is better (larger) than before. In conclusion, it is not necessary or sufficient for
GCDn to be of factorial order to provide a nontrivial δ in this case.

Appendix C: Inflation and Deflation of Continued Fractions

In his paper, Apéry showed a linear recursion of depth 2 with rational function coef-
ficients (ratio of two polynomial) and a related PCF is presented in [2]. The direct
translation of the Apéry’s recursion into a continued fraction has an and bn as rational
functions and not integer polynomials. However, they can be converted to a PCF form.
To see the conversion, we multiply an and bn by a non-zero sequence, thus converting
them to integer polynomials without changing the limit or the number pn/qn at each
n. We call this process “inflation”. This process is also needed when some rational
coefficient is used in Conjecture 1.4.

Conversely, any PCF that has been multiplied by a non-zero sequence can be sim-
plified by removing that sequence. We call this process “deflation”. Deflating makes
the PCFs’ bn and an smaller (possibly of a lower degree), and most importantly, helps
simplify GCDn s, despite not changing the induced δ. This process can explain some
powers of prime in Table 1.
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Property 1 (Inflation and deflation of continued fractions). Let cn be a sequence of
non-zero numbers. For every n

a0 +
b1

a1 +
b2

a2+
b3

a3···+ bn
an

� a0 +
c1b1

c1a1 +
c1c2b2

c2a2+
c2c3b3

c3a3···+ cn−1cnbn
cnan

.

i.e., if pn and qn are the numerator and denominator of the left hand side and p′
n

and q ′
n are those of the right hand side, then for every n,

pn
qn

� p′
n

q ′
n
.

Example: the relation between Apéry’s recursion and his PCF

Setting an � 34n3+51n+27n+5
(n+1)3

and bn � − n3

(n+1)3
, Apéry used the recursion

un+1 � an+1un + bn+1un−1

with the initial conditions

p−1 � 1, p0 � 5

q−1 � 0, q0 � 1,

which generates the following rational continued fraction:

6

ζ (3)
� 5 −

1
8

117
8 − 8

27

535
27 −

27
64

1463
64 ...−

n3

(n+1)3

34n3+51n+27n+5
(n+1)3

.

Applying Property 1, we can inflate this continued fraction using the denominators
of an and bn , i.e., the sequence cn � (n + 1)3, and obtain the PCF

6

ζ (3)
� 5 −

1
8 · 23

117
8 · 23 − 8

27 ·23·33
535
27 ·33−

27
64 ·43·33

1463
64 ·43 ...−

n3

(n+1)3
·n3(n+1)3

34n3+51n+27n+5
(n+1)3

·(n+1)3
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� 5 − 1

117 − 64
535− 279

1463...− n6

34n3+51n2+27n+5
,

that is, [2]’s PCF, which is presented in our introduction.
To prove Property 1, and examine effect of this process on GCDn , we present the

following lemma.

Lemma 5 Consider the recursions

u′
n � a′

nu
′
n−1 + b′

nu
′
n−2

un � anun−1 + bnun−2,

where a′
n � cn · an and b′

n � cn−1cn · bn for some non-zero sequence cn . If the
recursion have the same initial values, we have

u′
n �

(
n∏

i�1

ci

)
·un .

Proof Initializing the induction at n � −1,0, is trivial since the product is empty.
To prove the induction at n + 1, write

u′
n+1 � a′

n+1u
′
n + b′

n+1u
′
n−1 � cn+1an+1u

′
n + cncn+1bn+1u

′
n−1

�︸︷︷︸
assumption

cn+1an+1

(
n∏

i�1

ci

)
un + cncn+1bn+1

(
n−1∏
i�1

ci

)
un−1

�
(
n+1∏
i�1

ci

)
(an+1un + bn+1un−1) �

(
n+1∏
i�1

ci

)
un+1.

As a corollary, we can prove Property 1 since

p′
n

q ′
n

�
(∏n

i�1 ci
)
pn(∏n

i�1 ci
)
qn

� pn
qn

.

Also, we state the following property, showing effect of this process on GCDn . �

Property 2. Using Lemma 5 notation, for an inflated PCF, or any inflated rational
GCF,

GCD
[
p′
n , q

′
n

] � GCD

[(
n∏

i�1

ci

)
pn ,

(
n∏

i�1

ci

)
qn

]
�
(

n∏
i�1

ci

)
GCD[pn , qn].
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Example Considering the following PCF from Table 1:

PCF
[
a′
n , b

′
n

] � 1 +
3

3 + 15
5+ 35

7···+ (3n+1)(3n−2)
3n+1

,

and observe that it is inflated by the sequence cn � 3n + 1. By deflating it, we obtain
the regular continued fraction of the golden ratio ϕ:

1 +
1

1 + 1
1+ 1

1···+ 1
1
,

which upholdspn � Fn+2, qn � Fn+1, where Fn is the nth Fibonacci number. There-
fore, for the original PCF we obtain

GCD
[
p′
n , q

′
n

] �
(

n∏
i�1

ci

)
GCD[pn , qn] �

n∏
i�1

(3i + 1) � (3n + 1)! ! !

since consecutive Fibonacci numbers are coprime.

Inflation by“
√
p”

An interesting special case of deflation occurs when for some integer r , we have r |an ,
r |bn , but r2 � bn (so we do not have a trivial inflation by cn � r ). In this case, GCDn is

divided by powers of r of the forms r�n/2�. For instance, for PCF
[
3n + 6,3n2 + 9n

]
,

we found (numerically)

GCDn
.� n! ·√3

n

We call this phenomenon inflation with
√
p, and it can be explained by considering

inflation with the following sequence

cn �
{
r i f n is even
1 i f n is odd

.

Appendix D: Analysis and Proof of GCDn Formula for Some PCFs

This section concentrate onvariousPCFs forwhichwe identified andproven an explicit
part of GCDn . As example 2 in Sect. 2.2 shows, for certain families of PCFs this part
prove the existence of FR with sufficiently large λ for proving irrationality. This proof
is presented here hoping it will promote future research of additional proofs.
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Theorem 5 If PCF[an, bn] satisfies for all n

an � −a−1−n , (D1)

bn � b−n , (D2)

b0 � 0, (D3)

then for all n

n!

LCM[n]

∣∣∣∣GCDn · 2n .

Note that conditions in (Eqs. D1, D2) involves negative-indexed coefficients that
are not used (or defined) by the PCF. Nevertheless, since an and bn are given by
polynomials, we can extend them to all values of n.

Proof Recall that both pn and qn satisfy the recursion

un � anun−1 + bnun−2. (D4)

We first prove that for any odd prime p, un is divisible by p for all n ≥ 2p. We do
so by analyzing the sequence un modulo p.

Let p � 2h + 1, we prove by induction that for all −1 ≤ m < h

uh+m � uh−m−2 · bh · bh−1 · . . . · bh−m(mod p). (D5)

Initializing the induction at m � −1 is trivial since uh−1 � uh−1.
Initializing the induction at m � 0 requires uh � uh−2bh(mod p). To prove that

we start by using (Eq. D1) at n � h, i.e.,

ah � −a−1−h .

Note that for modulo r , every polynomial has a period of p � 2h + 1, namely

−a−1−h � −ah � 0(mod p).

Substituting this into the recursion (Eq. D4) at n � h, we obtain as required

uh � ahuh−1 + bhuh−2 � bhuh−2(modp).

To prove the induction at m + 1, write (Eqs. D1, D2) for n � h + m + 1

ah+m+1 + a−h−m−2 � 0,

bh+m+1 − b−h−m−1 � 0.
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Using periodicity modulo p � 2h + 1,

a−h−m−2 � ah−m−1(mod p),

b−h−m−1 � bh−m(mod p),

and combining this with the symmetries, we obtain

ah+m+1 � −ah−m−1(mod p),

bh+m+1 � bh−m(mod p).

Now, substitute these into the recursion (Eq. D4) at n � h + m + 1 gets

uh+m+1 � ah+m+1uh+m + bh+m+1uh+m−1 � −ah−m−1uh+m + bh−muh+m−1(mod p).

Using the induction assumption at m and m − 1, we have

uh+m+1 � −ah−m−1uh−m−2bhbh−1 . . . bh−m + bh−muh−m−1bhbh−1 . . . bh−m+1(mod p),

and by rearranging, we get

uh+m+1 � (−ah−m−1uh−m−2 + uh−m−1)bhbh−1 . . . bh−m(mod p).

Substituting the recursion (Eq. D4) at n � h−m−1 achieve the induction atm +1

uh+m+1 � uh−m−3bhbh−1 . . . bh−m−1(mod p),

completing the proof of the induction.
Using the periodicity of an and bn modulo p, the relation

uh+m � uh−m−2 · bh · bh−1 · . . . · bh−m(mod r )

can be proven also after shifting by p, i.e.,

u p+h+m � u p+h−m−2 · bp+h · bp+h−1 · . . . · bp+h−m(mod p).

Now, seth ≤ m < p + h. Then bp exists among the multipliers of the right hand
side. Combining periodicity and (Eq. D3), implyingbp � b0 � 0(mod p), we finally
haveu p+h+m � 0(mod p). So in other words, p divides un starting atn � p + 2h �
2r − 1.

We now explain why this result suffices to prove the theorem. We proved that an
odd prime p divides both pn and qn for n ≥ 2p−1, and therefore, it divides GCDn , in
line with the fact that p divides n!

LCM[n] for n ≥ 2p. Furthermore, since un is divisible

by p for n ≥ 2p − 1, we can set a new sequence

u′
n � un+2p

p
,
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which is well defined for n ≥ −1. Since the sequence is obtained by shifting (by a
multiple of p) and scaling un , it satisfies the same recursion (D.4) at n ≥ 1. However,
unlike the original sequence, u′

n in fact also satisfies the recursion also at n � 0. This
follows from the fact that b0 � 0, and therefore the recursion at n � 0 does not involve
u′−2. Note that the original sequence un has an arbitrary initial condition at u0 and u−1
that may not satisfy the recursion. This is not the case for u′

n since it was generated
by the recursion even at n � 0.

Following that, we apply the above induction result (Eq. D5) and prove that p
divides u′

n starting at n � p− 1 (instead of n � 2p− 1 as in the original un). In other
words, p2 divides the original un starting at n � 3p − 1. In general, pk divides un
starting at n � (k + 1)p − 1. Note that for p >

√
n, pk divides n!

2lLCM[n]
starting at

n � (k+1)p, and therefore, the requirement is met. Moreover, n! obtains an additional
p factor at n � k · p2. For k � 1, this factor is canceled by the denominator’s LCM[n],
but for k > 1 we must prove this additional factor of GCDn .

To do that, observe that the original proof that p divides un for n ≥ 2p − 1 was
valid also when substituting p with any power of prime. Thus, at n � 2p2 − 1, the

sequence un in fact obtain a factor of p2 instead of the expected single factor of p.
Appling this for any prime power fulfills the requirements of the theorem. �

Appendix E: Additional Examples of PCFs with Factorial Reduction

One may wonder whether the conjectures discovered in this study are indeed mathe-
matical truth or merely mathematical coincidences that break down at higher degrees
or larger coefficients. However, the method employed in this study makes it fairly
unlikely that the conjectures will break down. Nevertheless, such an assumption does
not replace the need for formal proof. We believe that many (if not all) of the new
conjectures are indeed truths awaiting rigorous proof, relying on vast search spaces
examined in this work. To strengthen our conjectures, we give additional examples
abundantly. Moreover, this appendix addresses three further causes:

1. Visualizing the results.
2. Present a piece of the yet unknown general structure toward revealing it whole.
3. Lay the groundwork and provide more data for proofs or additional conjectures.

FR and Rational Roots

Conjecture 1.1 states that, for a given bn , there exists an an such that PCF[an , bn] has
FR if and only if bn has only rational roots. Table 3 shows a classification, by numerical
tests, of all the bn polynomials of degree 2 and with integer coefficients between 1
and 4. For each such bn , we search for an polynomials in the integer coefficient range
1–5.
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Table 3 bn from degree 2 and coefficients 1–4, classified by the existence of FR

Have FR Do not have FR

bn bn ’s roots an example bn bn ’s roots an example

n2 + 2n + 1 −1

−1

3 + 2n n2 + 4n + 2 −2 − √
2

−2 +
√
2

None found

2n2 + 3n + 1 −1

−1/2

n + 1 n2 + 4n + 1 −2 − √
3

−2 +
√
3

None found

3n2 + 4n + 1 −1

−1/3

1 + 2 n2 + 1 i

−i

None found

4n2 + 4n + 1 −1/2

−1/2

n + 1 n2 + 2n + 2 −1 − i

−1 + i

None found

n2 + 3n + 2 −2

−1

2n + 4* 4n2 + 4n + 2 −1/2 − i/2

−1/2 + i/2

None found

2n2 + 4n + 2 −1

−1

n + 1 n2 + 2n + 3 −1 − i
√
2

−1 + i
√
2

None found

n2 + 4n + 3 −3

−1

5 + 2n Everything else Not rational None found

n2 + 4n + 4 −2

−2

2n + 5 … … …

Wecan see that, for degree 2, only the bn polynomials with FR have all-rational roots and vice versa. Further,
note that all the an examples belong to the conjectured complete structure for degbn � 2, degan � 1
(Conjecture 1.4)

*This PCF is an inflation of the regular continued fraction of
√
2 + 1

A Piece of Structure for All Degrees

In this section we urge a generalizing of Conjecture 1.4, that deals only with bn s of
degree 2, by demonstrating families of balanced-degree PCFs with bn s of degrees
> 2 and that have FR (Table 4).

More Rational Recurrence Relations That Yield Integer Sequences

As follows from Sect. 2.6, a conjectured GCDn formula can be proven to be true if the
following recurrence yields coprime integer sequences for any linearly-independent
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Table 5 an and bn examples for special simplified recurrence relations yielding integer sequences

GCDn
.� n! GCDn

.� n! /2n

1 n(n − 1)u′
n � (n − 1)anu′

n−1 + bnu′
n−2

1 n(n − 1)u′
n �

2(n − 1)anu′
n−1 + 2bnu′

n−2

an bn an bn an bn an bn

3n + 1 4n2 + 2n n + 3 2n2 + 4n n − 2 2n2 − n 3n + 1 −2n2 − 1

−n + 1 6n2 + 12n 2n + 4 3n2 + 9n 3n − 2 4n2 − n −n + 2 2n2 − n

n − 1 6n2 + 12n 7n + 3 8n2 + 4n −n − 2 6n2 + 3n 5n + 1 6n2 + 9n

7n + 1 8n2 + 2n 8n + 2 9n2 + 3n 7n − 2 8n2 − n −2n + 1 8n2 + 2n

3n + 1 10n2 + 20n 15n + 1 16n2 + 2n 2n − 1 8n2 + 2n 4n + 1 12n2 + 6n

−n + 1 12n2 + 6n 15n + 3 16n2 + 4n n − 2 12n2 + 3n −n + 2 12n2 + 3n

n − 1 12n2 + 6n 17n + 5 18n2 + 6n 15n − 2 16n2 − n 6n − 1 16n2 + 2

A proof of this property also proves the formula for GCDn . Note that these are special cases as Sect. 2.6, and
can be generalized to all GCDn forms. 1If the expressions used are only exponentially equal to GCDn , and
not exactly equal, the simplified recursions formulasmight generate rational sequenceswith sub-exponential
denominators

pairs of integer initial values:

u′
n � GCDn−1

GCDn
anu

′
n−1 +

GCDn−2

GCDn
b
n
u′
n−2.

We address the community to prove this property for simple GCDn s with the
following examples. Furthermore, we request general conditions on an and bn so that
this property holds, either for the presented special cases or hopefully for other cases
(of Conjecture 2) (Table 5).
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