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Abstract
As part of the development of the orbit method, Kirillov has counted the number of
strictly upper triangular matrices with coefficients in a finite field of q elements and
fixed Jordan type. One obtains polynomials with respect to q with many interesting
properties and close relation to type A representation theory. In the present work,
we develop the corresponding theory for the exceptional Lie algebra g2. In particu-
lar, we show that the leading coefficient can be expressed in terms of the Springer
correspondence.

Keywords Kirillov polynomials · Orbit method · Springer correspondence

1 Introduction

Let Fq be a finite field of characteristic p and consider the set n(n,Fq) of strictly
upper triangular n × n matrices with entries in Fq . The group Gn(Fq) of upper tri-
angular n × n matrices with 1’s on the diagonal acts on n(n,Fq) via conjugation.
The (complicated) structure of the adjoint orbits plays an important role in the orbit
method in representation theory. As an approximation to the structure of the adjoint
orbits, Kirillov initiated in [6, 7] a detailed study of the number Pλ(q) of elements in
n(n,Fq) of fixed Jordan type λ (here λ is a partition of n). One obtains polynomials
with respect to q (we will refer to them as Kirillov polynomials) with many interesting
properties that are strongly influenced by type A representation theory. For example,
the leading coefficient is given by the dimension of the irreducible representation Vλ

of the permutation group Sn associated to λ.
To illustrate the huge simplification that occurs when passing from adjoint orbits

to Jordan types, let us consider the case n = 4. Using a recursion relation with respect
to n, one can calculate, see [3], that for n = 4 the Kirillov polynomials are
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P4(q) = q3 · (q − 1)3,

P3,1(q) = q2 · (q − 1)2 · (1 + 3q),

P2,2(q) = q · (q − 1)2 · (1 + 2q),

P2,1,1(q) = (q − 1) · (1 + 2q + 3q2),

P1,1,1,1(q) = 1.

The elements in n(4,Fq) correspond bijectively to those in G4(Fq) via X �→ id+X
and this maps adjoint orbits to conjugacy classes. The G4(Fq) conjugacy classes are
classified in [10] in the following manner. Every conjugacy class contains a unique
so-called primitive element and these are classified by their type: each of the six
possibly non-zero entries is either a ramification point with zero entry (denoted by θ ),
a ramification point with non-zero entry (denoted by •), or an inert point with zero
entry (denoted by 0). We refer to [10] for the precise definitions. Order the indices
containing potentially non-zero matrix entries as

(3, 4) < (2, 3) < (2, 4) < (1, 2) < (1, 3) < (1, 4).

With respect to this ordering one lists the types of each matrix entry, for example,
matrices of type θ, θ, •, θ, θ, 0 are of the shape

⎡
⎢⎢⎣
1 θ θ 0
0 1 θ •
0 0 1 θ

0 0 0 1

⎤
⎥⎥⎦

The classification of conjugacy classes in Gn(Fq) (for n sufficiently small) in terms of
the types of primitive elements is achieved in [10], [11] and subsequent papers. To use
these results (which are available only for small n) to recover the Kirillov polynomials,
it remains to calculate the Jordan type for each conjugacy class. For example, the
conjugacy classes corresponding to the type θ, θ, •, θ, θ, 0 yield q · (q − 1) matrices
of Jordan type corresponding to the partition 4 = 2+ 1+ 1. This holds since the type
has one • entry yielding q − 1 choices and the size of the centralizer of a canonical
matrix of this type is given in [10] as q5 and therefore the size of the conjugacy class
is q6−5. We list the analogous calculations for all conjugacy classes:
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Conjugacy type Jordan type Number

θ, θ, θ, θ, θ, θ 1,1,1,1 1
θ, θ, θ, θ, θ, • 2,1,1 q − 1
θ, θ, •, θ, θ, 0 2,1,1 q(q − 1)
θ, •, 0, θ, 0, θ 2,1,1 q2(q − 1)
•, θ, 0, θ, θ, 0 2,1,1 q2(q − 1)
•, θ, 0, •, •, 0 3,1 q2(q − 1)3

θ, θ, θ, θ, •, 0 2,1,1 q(q − 1)
θ, θ, •, θ, •, 0 2,2 q(q − 1)2

θ, •, 0, θ, 0, • 2,2 q2(q − 1)2

•, θ, 0, θ, •, 0 3,1 q2(q − 1)2

•, •, 0, θ, 0, 0 3,1 q3(q − 1)2

θ, θ, θ, •, 0, 0 2,1,1 q2(q − 1)
θ, θ, •, •, 0, 0 3,1 q2(q − 1)2

θ, •, 0, •, 0, 0 3,1 q3(q − 1)2

•, θ, 0, •, θ, 0 2,2 q2(q − 1)2

•, •, 0, •, 0, 0 4 q3(q − 1)3

Adding things up one obtains, as expected

P4(q) = q3 · (q − 1)3,

P3,1(q) = q2 · (q − 1)3 + q2 · (q − 1)2 + q3 · (q − 1)2 + q2

·(q − 1)2 + q3 · (q − 1)2

= q2 · (q − 1)2 · (1 + 3q),

P2,2(q) = q · (q − 1)2 · (1 + q + q)

= q · (q − 1)2 · (1 + 2q),

P2,1,1(q) = (q − 1) · (1 + q + q2 + q2 + q + q2)

= (q − 1) · (1 + 2q + 3q2),

P1,1,1,1(q) = 1.

Note that the number of adjoint orbits for n = 4 is 2q3+q2−2q, but even the question
whether for fixed n the number of orbits is always a polynomial with respect to q is
still an open question. As n grows, the classification of adjoint orbits quickly becomes
unknown, whereas the Kirillov polynomials have a simple recursion relation that we
now recall.

We write partitions as λ = (λ1, · · · , λN ) with λi non-increasing. Given λ, we
denote by λ′ = (λ′

1, · · · , λN ′) its dual partition. A cell of the Young diagram of λ is
called removable if after its removal the Young diagram remains the Young diagram
of a partition. Let s denote the number of removable cells and let (x j , y j ) be the
coordinates of the j’th removable cell, see [3] for coordinate conventions. Denote by
λ ↓ j the partition obtained by removing the j’th removable cell. Then by loc. cit.
(Proposition 3.1), one has
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Pλ(q) =
s∑

j=1

(q
n−λ′

y j − q
n−1−λ′

y j−1) · Pλ↓ j (q)

where we use the convention λ′
0 = ∞.

This recursion allows the efficient calculation of the polynomials Pλ(q), see [3] for
a table of all polynomials with n ≤ 10. Many fundamental properties of the Kirillov
polynomials can be obtained easily from the recursion. In particular, the occurrence
of factors of the form q and q − 1 can be explained in this manner. One obtains

Pλ(q) = q(n2)−(N2)−
∑N ′−1

i=1 λ′
iλ

′
i+1 · (q − 1)n−N · Rλ(q)

with Rλ(0) and Rλ(1) non-zero. Furthermore, the polynomial Rλ(q) =: ∑
i ri q

i

satisfies interesting properties. The constant term r0 equals to 1 and all coefficients
are strictly positive integers; the degree of Rλ(q) is expressed in terms of the partition
λ′ dual to λ as

deg Rλ(q) =
N ′−1∑
i=1

λ′
iλ

′
i+1 −

N ′∑
i=2

(
λ′
i + 1

2

)
.

Furthermore, the leading coefficient of Rλ(q) is dim Vλ, where as before Vλ is the
representation of the permutation group Sn associated with λ.

As an example, consider

P3,2,1,1(q) = −q5 − 2q6 − 3q7 − 3q8 + 4q9 + 25q10

+11q11 − 23q12 − 43q13 + 35q14.

This factorizes as

P3,2,1,1(q) = q5 · (q − 1)3 · (1 + 5q + 15q2 + 34q3 + 58q4 + 62q5 + 35q6).

A natural question is if in addition to factors of the form q and q − 1 the Kirillov
polynomials are typically divisible by other polynomials. For example, the degree 6
factor R3,2,1,1(q) in the above example turns out to be an irreducible polynomial in
Q[q] (equivalently in Z[q]). A first guess is that Rλ(q) is always irreducible in the
polynomial ring Z[q], but this is not quite true as the following factorizations show:

R3,2,1(q) = (2q + 1) · (8q3 + 8q2 + 3q + 1),

R4,3,1(q) = (5q2 + 4q + 1) · (14q3 + 10q2 + 3q + 1),

R5,3,1(q) = (2q + 1) · (81q4 + 57q3 + 23q2 + 6q + 1),

R4,4,1(q) = (2q + 1) · (42q4 + 39q3 + 18q2 + 5q + 1),

R4,3,2(q) = (2q + 1) · (84q8 + 195q7 + 219q6

+171q5 + 100q4 + 47q3 + 18q2 + 5q + 1),
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R4,2,2,1(q) = (3q2 + 2q + 1) · (72q6 + 111q5 + 73q4 + 38q3 + 15q2 + 5q + 1),

R3,3,2,1(q) = (2q + 1) · (84q8 + 195q7 + 219q6

+171q5 + 100q4 + 47q3 + 18q2 + 5q + 1),

R7,3(q) = (5q + 1) · (15q2 + 4q + 1),

R4,4,2(q) = (2q + 1) · (126q6 + 180q5 + 126q4 + 62q3 + 24q2 + 6q + 1).

However, among themore than amillion partitions of all n ≤ 50, nomore reducible
cases show upwhen irreducibility is checkedwith SAGE. So far, we have not been able
to rigorously establish irreducibility for those Kirillov polynomials not listed above.
Partially motivated by such irreducibility questions, we establish in Theorem 1 the
existence and explicit formulas for the Kirillov polynomials for the exceptional Lie
algebra g2. The analogs of the Rλ(q)-polynomials for g2 turn out to be all irreducible.

There is a second phenomenon we address. As already indicated, the leading coef-
ficient of Pλ(q) and Rλ(q) is given by the dimension of Vλ, the representation of the
permutation group Sn associated with λ. The partitions λ can also be used to describe
the nilpotent orbits via their Jordan normal forms. The association

nilpotent orbit of type λ � Vλ

is a special case of the Springer correspondence [8, 9] that relates nilpotent orbits with
representations of Weyl groups. Hence, the leading order coefficients of the Kirillov
polynomials are expressed in terms of the Springer correspondence. We show that this
phenomenon persists for the exceptional Lie algebra g2 (a general relation between
Kirillov polynomials and the Springer correspondence will be described elsewhere).

2 The Case of g2

The analog of the number of conjugacy classes in Gn(Fq) for Chevalley groups of type
G2 has been computed in [4] and is given by

q3 + 2q2 − q − 1.

See also the related algorithm in [1]. So, one can say that a study of Kirillov polyno-
mials in this situation is not necessary, since the adjoint orbit structure is understood.
Nonetheless, this simple situation can be used to gain insight into the properties of
Kirillov polynomials beyond type A. In principle, one could approach the calculation
of g2 Kirillov polynomials by using the results of [1, 4] and calculating Jordan types,
with respect to a suitable representation, for representatives of each orbit. In the present
work, we carry out a more direct approach.

To define the notion of a Lie algebra of type g2 over a finite field Fq , one starts
with a Chevalley basis of a complex simple Lie algebra of type g2. Then consider
the Fq vector space spanned by the Chevalley basis and view it as a Lie algebra by
reducing the complex structure constants modulo p. As is customary, we assume from
now on that the characteristic p of Fq satisfies p > 3. The next step for obtaining
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Kirillov polynomials is to choose a suitable representation. The paper [5] is a useful
reference for a general discussion ofmatrix representations of the complex exceptional
Lie algebras. In particular, via folding g2 from s08, one obtains a faithful seven-
dimensional representation ξ . Let α1, α2 be a set of simple roots and assume α1 is the
short root. The six positive roots are thenα1, α2, α1+α2, 2α1+α2, 3α1+α2, 3α1+2α2.
For a root α, let eα be the corresponding basis element of a Chevalley basis. A formula
for ξ(eα1) and ξ(eα2) is given in [5] (Section 3.6). Let ei, j be the 7× 7 matrix with 0s
everywhere except a 1 in the i, j entry. Then

ξ(eα1) = e1,2 + 2e3,4 + e4,5 + e6,7, (1)

ξ(eα2) = e2,3 + e5,6. (2)

Possibly up to signs, the other Chevalley basis elements for positive roots are given
by

eα1+α2 = [eα1 , eα2 ],
e2α1+α2 = 1

2
· [eα1+α2 , eα1 ],

e3α1+α2 = 1

3
· [e2α1+α2 , eα1 ],

e3α1+2α2 = [e3α1+α2 , eα2 ].

Let

X := ξ(a · eα1 + b · eα1+α2 + c · e2α1+α2 + d · e3α1+α2 + e · e3α1+2α2 + f · eα2).

By Equations (1) and (2), it follows that

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a b 2c d e 0
0 0 f −2b −c 0 e
0 0 0 2a 0 −c −d
0 0 0 0 a b c
0 0 0 0 0 f −b
0 0 0 0 0 0 a
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This yields a faithful representation ofg2 acting onF7
q .We show fromfirst principles

that there are indeed polynomials Pλ(q) in Z[q] counting those elements X of fixed
Jordan type λ. We call them the g2 Kirillov polynomials.

Theorem 1 Consider a finite fieldFq of characteristic p > 3. TheKirillov polynomials
Pλ(q) for the exceptional Lie algebra g2 with respect to its seven-dimensional faithful
representation exist and are given by

123



Kirillov Polynomials for the Exceptional Lie Algebra g2 455

P7(q) = q4 · (q − 1)2,

P3,3,1(q) = q2 · (q − 1)2 · (1 + 2q),

P3,2,2(q) = q2 · (q − 1) · (1 + 2q),

P2,2,1,1,1(q) = (q − 1) · (1 + q + q2),

P1,1,1,1,1,1,1(q) = 1.

Write

Pλ(q) = qa · (q − 1)b · Rλ(q)

for a, b in Z
≥0 and Rλ(0)Rλ(1) non-zero. The constant term of Rλ(q) equals 1, all

other coefficients are strictly positive integers, and Rλ(q) is irreducible in Z[q].

By Theorem 1, there are five Jordan types with non-zero g2 Kirillov polynomial.
This matches the number of nilpotent orbits in g2, and for each such orbit the Springer
correspondence [8, 9] associates a representation of the Weyl group. We show that
this correspondence yields the leading coefficients of the Kirillov polynomials:

Corollary 1 For each partition λ of 7 such that the g2 Kirillov polynomial Pλ(q) is
non-zero, there is a unique nilpotent orbit in g2 that has Jordan type λ in the seven-
dimensional representation. Let Vλ be the complex representation of the Weyl group
of g2 associated with this nilpotent orbit via the Springer correspondence. Then,

Pλ(q) = (dimVλ) · qdegPλ(q) + lower order terms.

We prove the theorem by calculating, in terms of the parameters a, b, c, d, e, f ,
the rank sequence (r1, · · · , r6), where ri = rank Xi . One sees that

X2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 a f 0 ac bc + d f 2ae − 2bd + 2c2

0 0 0 2a f −2ab −2b2 − 2c f −bc − d f
0 0 0 0 2a2 2ab ac
0 0 0 0 0 a f 0
0 0 0 0 0 0 a f
0 0 0 0 0 0 0
0 0 0 0 0 0 0,

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

X3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 2 a2 f 0 0 0
0 0 0 0 2 a2 f 0 0
0 0 0 0 0 2 a2 f 0
0 0 0 0 0 0 a2 f
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0,

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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X4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 2 a3 f 2 a2b f 2 a2c f
0 0 0 0 0 2 a2 f 2 −2 a2b f
0 0 0 0 0 0 2 a3 f
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0,

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 2 a3 f 2 0
0 0 0 0 0 0 2 a3 f 2

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0,

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

X6 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 2 a4 f 2

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0.

⎤
⎥⎥⎥⎥⎥⎥⎦

Since the overall number of matrices is q6, it suffices to obtain the matrix count
for all but one type of rank sequence. We will skip the count for the rank sequence
(4, 2, 0, 0, 0, 0). Furthermore, from the explicit formulas for the powers of X , it fol-
lows that unless a f 	= 0 the ranks of X4, X5, X6 are all zero.

Case 1: af �= 0

The direct calculations of all power Xi shows that the rank sequence is always
(6, 5, 4, 3, 2, 1). Letting a, f range through non-zero numbers and b, c, d, e arbitrary
one obtains (q − 1)2 · q4 matrices.

Case 2: a = 0 and f �= 0

An explicit calculation shows that the rank of X equals the rank of

⎡
⎢⎢⎢⎢⎣

f −2b −c 0 e
0 2(b2 + c f ) bc + d f 0 0
0 0 0 f −b
0 0 0 0 b2 + c f
0 0 0 0 −(bc + d f ).

⎤
⎥⎥⎥⎥⎦

Hence if

b2 + c f = 0 = bc + d f , (3)

then the rank of X is 2 and otherwise the rank is 4. The rank of X2 equals the rank of

[
bc + d f 2(c2 − bd)

−2(b2 + c f ) −(bc + d f ).

]
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Since

f (c2 − bd) = (b2 + c f )c − (bc + d f )b,

it follows that if Equation (3) holds, then the rank of X2 is 0. If not both of b2 + c f
and bc + d f vanish, then the rank of X2 equals to 1 if

(bc + d f )2 − 4(b2 + c f )(c2 − bd) = 0 (4)

and the rank equals 2 otherwise.
To sum up, the possible rank sequences are (4, 2, 0, 0, 0, 0), (4, 1, 0, 0, 0, 0), and

(2, 0, 0, 0, 0, 0). The latter occurs precisely when Equation (3) holds. Let us count
solutions a, b, c, d, e, f that also satisfy a = 0 and f 	= 0. If b = 0, then c = 0 and
d = 0 and so one obtains q · (q − 1) solutions. If b 	= 0, let f 	= 0 be arbitrary. This
uniquely determines c via the first equation and then d via the second equation. So
one gets q · (q − 1)2 solutions. Together, one gets

q2 · (q − 1)

matrices with rank sequence (2, 0, 0, 0, 0, 0). As we have seen, the rank sequence
(4, 1, 0, 0, 0, 0) occurs precisely when

(i) not both of b2 + c f = 0 and bc + d f = 0 hold
(ii) (bc + d f )2 − 4(b2 + c f )(c2 − bd) = 0.

We start by counting solutions to Equation (4), ignoring for now the condition
f 	= 0. We consider two cases, depending on whether d vanishes or not.

Case d �= 0

View Equation (4) as a quadratic equation for f . Looking at the discriminant, one sees
that given (b, c, d) there are solutions for f if and only if (c2 − bd)3 is a square, or
equivalently if and only if c2 − bd is a square. If it is a square and equal to 0, then
there is precisely one f solution, otherwise there are two distinct solutions for f .

Suppose now c2 − bd is a square, so there is x with

bd = c2 − x2. (5)

For each of the (q + 1)/2 possible values of x2, one can choose c arbitrary, and since
d 	= 0 one obtains q−1 pairs (b, d) solvingEquation (5). Hence, there are q ·(q−1)2/2
triples b, c, d such that c2 − bd is a non-zero square and there are q · (q − 1) triples
b, c, d such that c2 − bd = 0. Since a = 0 and e are arbitrary, the number of choices
of a, b, c, d, e, f that solve Equation (4) is

q2 · (q − 1) + q2 · (q − 1)2

2
· 2 = q3 · (q − 1).
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Case d = 0

Equation (4) now yields

(bc)2 − 4(b2 + c f )c2 = 0. (6)

If c = 0, this automatically holds and this gives q3 solutions for a, b, c, d, e, f coming
from choosing b, e, f arbitrarily. For fixed c 	= 0, we solve −3b2 = 4c f . Letting b
be arbitrary, this uniquely determines f . Since e is arbitrary, one obtains q2 · (q − 1)
solutions of Equation (6) with c 	= 0.

Adding up the solutions with d = 0 and d 	= 0, one obtains

q3 · (q − 1) + q3 + q2 · (q − 1)

solutions to Equation (4). We have not yet imposed the condition f 	= 0. If f = 0,
we solve

(bc)2 − 4b2(c2 − bd) = 0.

If b = 0, this holds automatically and one gets q3 solutions for a, b, c, d, e, f . If
b 	= 0, we solve 3c2 = 4bd and in analogy with a previous calculation one obtains
q2 · (q − 1) solutions.

In conclusion, the amount of solutions to Equation (4) with f 	= 0 is

q3 · (q − 1).

We want to count the number of these solutions that additionally satisfy b2 + c f 	= 0
or bc + d f 	= 0. As calculated earlier, the number of choices for a, b, c, d, e, f with
a = 0, f 	= 0 and

b2 + c f = 0 = bc + d f

is given by q2 · (q − 1). It follows that the number of matrices with rank sequence
(4, 1, 0, 0, 0, 0) is

q3 · (q − 1) − q2 · (q − 1) = q2 · (q − 1)2.

Case 3: a �= 0 and f = 0

An explicit calculation shows that X has the same rank as

⎡
⎢⎢⎣
a b 2c d e 0
0 0 2a 0 −c −d
0 0 0 a b c
0 0 0 0 0 a

⎤
⎥⎥⎦
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and hence always has rank 4. The rank of X2 equals the rank of

[
2a2 2ab ac
0 0 4ae − 4bd + 3c2

]
,

and hence the rank of X2 is 1 if and only if

4ae − 4bd + 3c2 = 0

and equals 2 otherwise. Let us count the matrices with rank sequence (4, 1, 0, 0, 0, 0).
Let b, c, d be arbitrary. If 4bd = 3c2, then e = 0 and a 	= 0 is arbitrary, so one
gets q − 1 possible pairs (a, e). If 4bd 	= 3c2, then a 	= 0 is arbitrary and uniquely
determines e, so again one obtains q − 1 possible pairs (a, e). Hence, in total one
obtains q3 · (q − 1) matrices.

Case 4: a = 0 and f = 0

The rank of X is 4, if not both of b, c are 0. If both of b, c are 0, then the rank is 2, if
not both of d, e are 0. If b = c = d = e = 0, then the rank is 0. Let us now calculate
the rank of X2. If b 	= 0, then one sees that the rank is 1 if 3c2 − 4bd = 0 and the
rank is 2 otherwise. If b = 0 then the rank is 0 if c = 0 and 1 otherwise.

We now count how many matrices yield the rank sequence (4, 1, 0, 0, 0, 0). This
happens exactly if one of the following two cases holds:

• b 	= 0 and 3c2 − 4bd = 0,
• b = 0 and c 	= 0.

Consider the first case. If c 	= 0, then d 	= 0 is arbitrary and b is uniquely determined,
if c = 0 then d = 0 and b 	= 0 is arbitrary. The variable e is always arbitrary. So one
obtains

q · ((q − 1)2 + (q − 1)) = q2 · (q − 1)

matrices. The second case yields q2 · (q − 1) matrices and hence in total one obtains

2q2 · (q − 1)

matrices with rank sequence (4, 1, 0, 0, 0, 0). The rank sequence (2, 0, 0, 0, 0, 0)
occurs if a = b = c = f = 0 and not both of d, e are 0. So this occurs for
(q − 1) · (q + 1) matrices. Finally, the rank sequence (0, 0, 0, 0, 0, 0) occurs for one
matrix.

2.1 Completion of the proof

Having completed the case by case analysis, we now count it all up. The rank sequence
(r1, · · · , r6) yields the partition of 7 in which 1 ≤ i ≤ 7 has multiplicity αi given by
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αi = ri−1 − 2ri + ri+1.

Here we put r0 = rank X0 = 7 and ri = rank Xi = 0 for i ≥ 7. So the rank sequences
that showed up correspond to the following partitions:

(6, 5, 4, 3, 2, 1) � 7 = 7

(4, 2, 0, 0, 0, 0) � 7 = 3 + 3 + 1

(4, 1, 0, 0, 0, 0) � 7 = 3 + 2 + 2

(2, 0, 0, 0, 0, 0) � 7 = 2 + 2 + 1 + 1 + 1

(0, 0, 0, 0, 0, 0) � 7 = 1 + 1 + 1 + 1 + 1 + 1 + 1.

Adding up our various matrix counts, one obtains

P7(q) = q4 · (q − 1)2,

P3,2,2(q) = q2 · (q − 1)2 + q3 · (q − 1) + 2q2 · (q − 1)

= q2 · (q − 1) · (1 + 2q),

P2,2,1,1,1(q) = q2 · (q − 1) + (q − 1) · (q + 1) = (q − 1) · (1 + q + q2),

P1,1,1,1,1,1,1(q) = 1.

As mentioned earlier, the count for one partition type comes for free if all others are
known and we obtain

P3,3,1(q) = q6 − q4 · (q − 1)2−q2 · (q − 1) · (1 + 2q)−(q − 1) · (1 + q + q2)−1

= q2 · (q − 1)2 · (1 + 2q).

This calculation of the Kirillov polynomials for g2 completes the proof of Theorem
1. We now show that the leading coefficients of these polynomials can be expressed
via the Springer correspondence.

The (complex) Springer correspondence [9] relates nilpotent orbits in the complex
algebra g2 with complex representations of the Weyl group of g2. In fact, the nilpotent
orbits themselves inject into the set of equivalence classes of representations and this
injection is sufficient for our purposes. To obtain a bijection, one enriches nilpotent
orbits by representations of a suitable group (the original correspondence is obtained
by choosing the trivial representations). For the explicit description of the Springer
correspondence for g2, see [8] (Section 7.16) and also [2] (p. 427), [9]. What matters
to us is the dimension of the representation associated with a nilpotent orbit and
we record these in the table below. For each orbit, we list a representative in terms
of the previously described Chevalley basis and calculate the Jordan type, written
as a partition of 7, via the representation ξ . Since there are different terminological
conventions for describing nilpotent orbits,we also list for each orbit the corresponding
weighted Dynkin diagram: the weighted Dynkin diagram with a corresponding to the
short root and b to the long root is denoted by (a, b).
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Nilpotent orbit Weighted diagram Representative Partition Dimension

0 0 1 + 1 + 1 + 1 + 1 + 1 + 1 1
A1 (0, 1) e3α1+2α2 2 + 2 + 1 + 1 + 1 1
Ã1 (1, 0) e2α1+α2 3 + 2 + 2 2
A1 + Ã1 (0, 2) eα1 + e2α1+α2 3 + 3 + 1 2
G2 (2, 2) eα1 + eα2 7 1

By comparing the listed dimensions to the leading coefficients of the g2 Kirillov
polynomials, one obtains Corollary 1.
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