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Abstract
We prove that the Euler characteristic of a collapsing Alexandrov space (in particular,
a Riemannian manifold) is equal to the sum of the products of the Euler characteristics
with compact support of the strata of the limit space and the Euler characteristics of
the fibers over the strata. This was conjectured by Semyon Alesker.
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1 Introduction

In this paper, we consider the following problem. We fix an upper bound n for dimen-
sion and a lower bound κ for sectional curvature.

Problem 1.1 Let Xbe a k-dimensional compact Alexandrov space, where k ≤ n. Sup-
poseμ = μ(X) > 0 is small enough and letM be an n-dimensional Alexandrov space
(in particular, a Riemannianmanifold) that isμ-close to X with respect to theGromov-
Hausdorff distance. Describe the topology of M in terms of the geometry of X .

AnAlexandrov space is ametric spacewith a lower sectional curvature bound, intro-
duced by Burago-Gromov-Perelman [6]. The motivation for the above problem stems
from thewell-known fact that the family of n-dimensional Riemannianmanifolds with
sectional curvature ≥ κ and diameter ≤ D is precompact in the Gromov-Hausdorff
topology. The limit objects are Alexandrov spaces with curvature ≥ κ and dimension
≤ n. More generally, the family of Alexandrov spaces with curvature ≥ κ , diameter
≤ D, and dimension ≤ n is compact in the Gromov-Hausdorff topology. Therefore,
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in principle, the solution to the above problem allows us to understand the topol-
ogy of spaces in these (pre)compact families by covering them by a finite number of
neighborhoods of limit spaces.

In the case k = n, Perelman’s stability theorem [20] (cf. [15]) solves the above
problem completely, that is, M is homeomorphic to X . Hence, we will consider the
case k < n, called collapse. Although collapsing in low dimensions has been well
studied ([3, 18, 25, 27]), so far there is no theory in general dimensions. The few
exceptions are special cases when X satisfies some regularity conditions ([22, 26]),
where some fibration structures of M over X are obtained. In general, it is expected
that M admits some singular fibration structure over X , where the singular fibers arise
over the singular strata of X . See also [7] and the references therein for collapsing
under two-sided bounds on sectional curvature.

Recently Alesker [1] proposed some conjectures on collapsing Riemannian man-
ifolds and Alexandrov spaces in terms of their intrinsic volumes (also known as
Lipschitz-Killing curvatures). For a closed n-dimensional Riemannian manifold M ,
the i-th intrinsic volume, denoted by Vi (M) (0 ≤ i ≤ n), is a geometric quantity
defined as follows (see [1] for the precise definition and references). We first embed
M isometrically into Euclidean space (by the Nash embedding, for example) and con-
sider the volume of its ε-neighborhood. Then, it is a polynomial in ε � 1, and its
coefficients, after appropriate normalization, turn out to be independent of the embed-
ding, which are called the intrinsic volumes of M . In fact they can be defined directly
in terms of integrals of the Riemann curvature tensor of M . For example, Vn(M) is the
volume of M , V0(M) is the Euler characteristic of M , and Vn−2(M) is proportional
to the integral of the scalar curvature of M (and Vi (M) vanishes if n − i is odd).

The following is a brief summary of part of Alesker’s conjecture.

Conjecture 1.2 (Alesker [1]) Let Mj be a sequence of n-dimensional Riemannian
manifolds with sectional curvature ≥ κ . Suppose Mj converges to a compact Alexan-
drov space X .

(1) If Mj does not collapse, then lim j→∞ Vi (Mj ) exists.
(2) If Mj collapses, then

(a) there is a subsequence such that lim j→∞ Vi (Mj ) exists;
(b) the limit value will be written as

∑

E∈E
F(E) · Vi (E),

where E denotes the set of the strata of X , F is an integer valued function defined
on E , and Vi (E) is the “i-th intrinsic volume” of E .

Here, the strata of X mean (the main parts of) primitive extremal subsets in the
sense of Perelman-Petrunin [23]. This stratification reflects both the geometric and
topological structures of Alexandrov spaces, and is very closely related to the col-
lapsing phenomena. Note that the number of such strata is finite and that the above
quantity Vi (E) has not yet been defined. It also should be mentioned that the existence
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of the expected function F was stated in [1, Theorem 4.6] as an unpublished result of
Petrunin. See [1] for more details and further conjectures.

At present only the following results are known for Conjecture 1.2.

• For Vn , the volume: the claim follows from the volume convergence theorem of
Burago-Gromov-Perelman [6, Theorem 10.8].

• For V0, the Euler characteristic: (1) follows from Perelman’s stability theorem
[20] (cf. [15]) and (2a) follows from Gromov’s Betti number theorem [14] (cf.
[17, 28]).

• For Vn−2, the total scalar curvature: (1) was recently proved by Lebedeva-Petrunin
[16, Subcorollary 1.3] and (2a) was proved by Petrunin [24].

• The special case of a Riemannian submersion was verified by Alesker [2].
• The 2-dimensional case was verified by Alesker-Katz-Prosanov [3].

In this paper, we prove (2b) of Conjecture 1.2 for the 0-th intrinsic volume, i.e.,
the Euler characteristic, not only for Riemannian manifolds but also for Alexandrov
spaces. We denote by χ the Euler characteristic and by χc the Euler characteristic
with compact support, where the coefficient field of singular cohomology is fixed and
omitted.

Theorem 1.3 Let X and M be Alexandrov spaces as in Problem 1.1. Then,

χ(M) =
∑

E∈E
χc(E̊) · χ(FE ),

where E denotes the set of primitive extremal subsets of X, E̊ is the main part of E,
and FE is a regular fiber over E in M (see Sect.2 for the definitions).

For a regular (= nonsingular) fibration, the Euler characteristic of the total space
splits into the product of those of the fiber and the base space. Therefore, the above
formula can be interpreted as capturing the expected singular fibration structure of M
over X , at least at the level of the Euler characteristic.

Remark 1.4 If k = n, then all the regular fibers are contractible. This follows from
the parametrized version of Perelman’s stability theorem [20, Theorem 4.3] (cf. [15,
Theorem 7.8]). In particular, we have χ(X) = ∑

E∈E χc(E̊).

Remark 1.5 If k < n and M is a Riemannian manifold with uniform two-sided bounds
on sectional curvature (independent of the Gromov-Hausdorff distance μ), then the
Euler characteristic of M vanishes. This follows from [8, Proposition 1.5] and [9,
Theorem 0.1].

Remark 1.6 Gromov’s Betti number theorem [14] and its generalization toAlexandrov
spaces ([17, 28]) tell us thatχ(M) is uniformly bounded in terms of dimension, a lower
curvature bound, and an upper diameter bound. As we will see later, this also holds for
χ(FE ) in the above formula. In particular, if Mj is a sequence of Alexandrov spaces
of fixed dimension that converges to X , then after passing to a subsequence, one can
assume that all the Euler characteristics appearing in the formula of Theorem 1.3 are
independent of the sequence. This demonstrates Conjecture 1.2(2b). See Appendix 1
for details.
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This paper is actually a continuation (or addendum) of [11], where the author proved
Theorem 1.3 in the case when X has no proper extremal subsets. Indeed the geometric
ingredients needed for the proof have already been obtained in the previous paper,
and what we do here is a purely topological argument. In [11], the author combined
Perelman’s Serre fibration theorem [22] with the good covering method developed
by Mitsuishi-Yamaguchi [19]. This makes it possible to compute the cohomology of
M via a spectral sequence associated with a presheaf on a good covering of X . This
presheaf is in a sense constant on the strata of X , and hence the Euler characteristic
splits on each stratum as in the case of a regular fibration. This reduces the computation
of the Euler characteristic of M to that of X in terms of its strata. The latter is done
with the help of another result of the author [12], which showed that each stratum has
a deformation retract neighborhood.
Organization In Sect. 2, we fix notation and recall some results from [11] and [12].
In Sect. 3, we prove Theorem 1.3. In Appendix 1, to complete the proof of Alesker’s
conjecture, we construct the integer valued function F on the strata of the limit space
asserted in Conjecture 1.2(2b). As already mentioned, this is an unpublished result of
Anton Petrunin.

2 Preliminaries

The reader is assumed to be familiarwith the theory ofAlexandrov spaces and extremal
subsets (see [11, Section 3] for a brief summary). Here, we fix notation and recall some
results from [11] and [12].

Let X and M be Alexandrov spaces as in Problem 1.1 that are μ-close in the
Gromov-Hausdorff distance. Note that X is a fixed space, whereas M is a variable
space depending on the choice of μ. We fix a μ-approximation between X and M and
use the hat symbol ˆ to indicate lifts from X to M . For example, for p ∈ X , we denote
by p̂ ∈ M a point that is μ-close to p under this approximation.

Recall that the distance function from p ∈ X is called regular at x ∈ X \ {p} if
∠̃pxy > π/2 for some y ∈ X , where ∠̃ denotes the comparison angle. Note that there
exists a neighborhood of p on which the distance function from p is regular except at
p. We denote by B̄(p, r) the closed r -ball around p.

Definition 2.1 Let p ∈ X and let r > 0 be such that the distance function from p
is regular on B̄(p, r) \ {p}. We call such a pair (p, r) fiber data on X . We say that
B̄( p̂, r) is a regular fiber over p in M , provided μ � r .

Remark 2.2 The choice of μ will be determined in the proof of each statement.

Remark 2.3 Fiber data are defined on a fixed space X , whereas its regular fiber depends
on a variable space M .

Remark 2.4 One can also use the open ball B( p̂, r) instead of the closed ball to define
a regular fiber. Indeed, they are homotopy equivalent by Perelman’s fibration theorem
([20, Theorem 1.4.1], [21, Theorem 1.4(B)]).

Let E be an extremal subset of X (see [11, Section 3C] for extremal subsets).
By definition, E is closed under the gradient flow of any semiconcave function. The
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family of extremal subsets is closed under taking union, intersection, and closure
of difference. The number of extremal subsets in X is finite. In fact, it is uniformly
bounded in terms of dimension, a lower curvature bound, and an upper diameter bound
([1, Theorem 4.5], [10, Theorem 1.1(1)]).

Recall that E is called primitive if it cannot be represented as a union of two proper
extremal subsets. For a primitive extremal subset E , its main part E̊ is defined as the
relative complement of all proper extremal subsets in E . Note that p ∈ E̊ if and only if
E is the minimal extremal subset containing p, that is, the intersection of all extremal
subsets containing p, which is primitive. It is known that E̊ is a topological manifold.
Therefore the main parts of all primitive extremal subsets define a stratification of X
([23, Section 3.8]).

The next lemma shows that regular fibers are constant on each stratum of X .

Lemma 2.5 ([11, Lemma 5.11]) Let E be a primitive extremal subset of X. Let (p, r)
and (q, s) be fiber data on X such that p, q ∈ E̊ . Ifμ is small enough, then the regular
fibers B̄(p, r) and B̄(q, s) are homotopy equivalent.

Note that the choice of μ depends on r and s, and hence on p and q. This lemma
allows us to define the notion of a regular fiber over E up to homotopy equivalence,
which appeared in Theorem 1.3. Strictly speaking, we choose some fiber data (p, r)
such that p ∈ E̊ for each primitive extremal subset E of X , and then take μ to be
sufficiently small so that the conclusion of the theorem holds.

Let {Uα}Nα=1 be a good covering of X (see [11, Section 3D] for good coverings).
Recall that each Uα is a superlevel set of a strictly concave function constructed from
distance functions. For any nonempty subset A ⊂ {1, . . . , N }, we denote by UA the
intersection of all Uα such that α ∈ A. We also denote by I the set of A such that
UA is nonempty. For any A ∈ I , UA is contractible by gradient flows of semiconcave
functions. In particular, it is a good cover in the topological sense. SinceUA is defined
by distance functions, it can be lifted to M , denoted by ÛA.

Let E be an extremal subset of X (not necessarily primitive). We denote by IE the
set of A ∈ I such that UA intersects E . Moreover, if E is primitive, we denote by
I̊E the set of A ∈ IE such that UA does not intersect E \ E̊ . Since F = E \ E̊ is
also extremal, we see that A ∈ I̊E if and only if E is the minimal extremal subset
intersecting UA. Clearly IE is the disjoint union of I̊E and IF .

For any extremal subset E of X , the restricted cover {Uα ∩ E}α∈IE is also good
in the topological sense. This follows from the fact that any gradient flow preserves
extremal subsets. Note that A = {α1, . . . , αk} ∈ IE if and only if A ∈ I and {αi } ∈ IE
for any 1 ≤ i ≤ k (see the paragraph after the proof of [11, Lemma 5.14]). In other
words, IE defines a full subcomplex of I in the associated nerve, but we will not use
this fact (cf. Proposition 2.7).

The following proposition is the key ingredient in the proof of Theorem 1.3.

Proposition 2.6 ([11, Proposition 5.13]) Let E be a primitive extremal subset of X. If
A ∈ I̊E , then ÛA has the homotopy type of a regular fiber over E. More precisely, for
any fiber data (p, r) such that p ∈ E̊ , ifμ is small enough, ÛA is homotopy equivalent
to B̄( p̂, r).

We also use the following fact from [12].
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Proposition 2.7 ([12, Theorem 1.5]) Let E and F be extremal subsets of X such
that F ⊂ E. Then, any sufficiently small metric neighborhood of F in E admits a
deformation retraction to F.

The case E = X was proved in [12, Theorem 1.5]. Since the deformation retraction
of this theorem was given by a gradient flow which preserves extremal subsets, the
general case follows by restricting it to E .

Remark 2.8 In Lemma 2.5 and Proposition 2.6, the homotopy equivalences can be
chosen to preserve extremal subsets of M . For example, in Lemma 2.5, if G is an
extremal subset of M , then B̄(p, r) ∩ G is homotopy equivalent to B̄(q, s) ∩ G by
the restriction of the original homotopy equivalences. This is because the fibration
theorem and the gradient flows used in the proofs preserve extremal subsets (see [15,
Section 9] for the fibration theorem). This observation allows us to generalize Theorem
1.3 to each extremal subset of M (see Remark 3.4).

3 Proof

In this section, we prove Theorem 1.3. We refer to [4, Chapter III] for the basic theory
of spectral sequences.

Proof of Theorem 1.3 Let X and M be as in Problem 1.1. Let {Uα}Nα=1 be a good
covering of X . Let I p be the set of A ∈ I with cardinality p + 1 (see Sect. 2 for the
definition of I ). We denote by Sq(U ) the module of singular q-cochains on U , where
the coefficient field is fixed and omitted.

We consider the Mayer-Vietoris double complex {∏A∈I p Sq(ÛA)}p,q≥0, that is,
the rows have the Čech coboundary operator (alternating sum of restrictions) and the
columns have the singular coboundary operator. The spectral sequence associatedwith
this double complex converges to the cohomology of M .

Let E denote the set of primitive extremal subsets in X . For each E ∈ E , we take
fiber data (pE , rE ) such that pE ∈ E̊ and denote its regular fiber by FE . Note that I
is the disjoint union of I̊E for all E ∈ E (see Sect. 2 for the definition of I̊E ). Let I̊

p
E

be the intersection of I p and I̊E . Since taking homology does not change the Euler
characteristic, by looking at the E1 term of the spectral sequence, we get

χ(M) =
∑

p,q≥0

∑

A∈I p
(−1)p+q dim Hq(ÛA)

=
∑

p,q≥0

∑

E∈E

∑

A∈ I̊ pE
(−1)p+q dim Hq(FE ) (∵ Proposition 2.6)

=
∑

E∈E

⎛

⎜⎝
∑

q≥0

(−1)q dim Hq(FE ) ·
∑

p≥0

∑

A∈ I̊ pE
(−1)p

⎞

⎟⎠

=
∑

E∈E

⎛

⎜⎝χ(FE ) ·
∑

p≥0

∑

A∈ I̊ pE
(−1)p

⎞

⎟⎠ .
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Hence, it remains to show that

∑

p≥0

∑

A∈ I̊ pE
(−1)p = χc(E̊).

The left hand side
∑

p≥0
∑

A∈ I̊ pE (−1)p is the Euler characteristic of the Čech

complex CE̊ = {∏A∈ I̊ pE C(UA)}p≥0, where C(U ) denotes the module of constant

functions on U . Let F = E \ E̊ , which is also an extremal subset. Consider the Čech
complexes CE = {∏A∈I pE C(UA)}p≥0 and CF = {∏A∈I pF C(UA)}p≥0. Note that CE̊
is the quotient of CE by CF . Recall that {Uα ∩ E}α∈IE and {Uα ∩ F}α∈IF are topolog-
ical good covers of E and F , respectively. Hence, the cohomologies of CE and CF

are isomorphic to the singular cohomology groups H∗(E) and H∗(F), respectively,
via spectral sequences. Moreover, since the contractions of the good covers are given
by the same gradient flows, these natural isomorphisms commute with the horizontal
exact sequences in the following diagram:

−−−−→ H∗(CE̊ ) −−−−→ H∗(CE ) −−−−→ H∗(CF ) −−−−→
⏐⏐�

⏐⏐�
⏐⏐�

−−−−→ H∗(E, F) −−−−→ H∗(E) −−−−→ H∗(F) −−−−→ .

Therefore, H∗(CE̊ ) is isomorphic to H∗(E, F) (see also the following Remark 3.1).

By Proposition 2.7, H∗(E, F) is isomorphic to the cohomology group H∗
c (E̊) with

compact support. This completes the proof. ��
Remark 3.1 More generally, the pair (E, F) is homotopy equivalent to the geometric
realization of the pair of the nerves of the restricted good covers ({Uα ∩E}α∈IE , {Uα ∩
F}α∈IF ). This also yields the above isomorphism. See [13, Complement 8.4] for the
proof.

Remark 3.2 As shown in the above proof, the Betti numbers with compact support of
E̊ are finite. Moreover, they are uniformly bounded in terms of dimension, a lower
curvature bound, and an upper diameter bound, since theBetti numbers of any extremal
subset are uniformly bounded in terms of these constants ([10, Theorem 1.1(2)]).

Remark 3.3 The Betti numbers without compact support of E̊ are also uniformly
bounded. Indeed, since the distance function from F is regular near it ([23, Lemma
3.1(2)]), the complement of a small metric neighborhood of F in E is a deforma-
tion retract of E̊ by the gradient flow. This, together with the proof of the uniform
boundedness in [10, Section 5] (cf. [28, Theorem 5.2]), implies the claim.

Remark 3.4 In view of Remark 2.8, if G be an extremal subset of M , then

χ(G) =
∑

E∈E
χc(E̊) · χ(FE ∩ G),

where we regard χ(FE ∩ G) = 0 if FE ∩ G = ∅. The proof is the same as above.
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Appendix A.

In this appendix, to complete the proof ofAlesker’s conjecture,we construct the integer
valued function F on the strata of the limit space asserted in Conjecture 1.2(2b). This is
an unpublished result of Petrunin stated in [1, Theorem 4.6] without proof. As before,
we fix and omit the coefficient field of singular cohomology.

Theorem A.1 (Petrunin) Let M j be a sequence of n-dimensional Alexandrov spaces
converging to a compact Alexandrov space X. LetE denote the set of primitive extremal
subsets in X. Passing to a subsequence, one can construct a function F : E → Z

satisfying the following properties:

(1) Let (p, r) be fiber data on X (see Definition 2.1) and let E be a primitive extremal
subset of X such that p ∈ E̊ . Then we have

F(E) = lim
j→∞ χ(B̄(p j , r))

for any sequence p j ∈ Mj converging to p.

(2) Assume that there is another way of convergence M j
GH−→ X. Passing to a sub-

sequence again, one can also construct F ′ : E → Z for this convergence. Then
there exists an isometry ι : X → X such that the induced bijection ι∗ : E → E
satisfies

F = F ′ ◦ ι∗.

Remark A.2 In (1) the sufficiently large index j at which χ(B̄(p j , r)) becomes con-
stant depends on r and hence on p. Note that r is smaller than the distance from p to
the extremal subset E \ E̊ .

Remark A.3 As in Remark 2.4, one can use open balls instead of closed balls in the
above statement and the following proof.

Remark A.4 Alesker mentioned that the function F will be independent of the choice
of the coefficient field.

Proof Foreach E ∈ E , we take fiber data (pE , rE ) such that pE ∈ E̊ as in the
proof of the main theorem. Let p j

E ∈ Mj be a sequence converging to pE . By the
generalization of Gromov’s Betti number theorem to Alexandrov spaces ([17, 28]),
the total Betti number of the regular fiber B̄(p j

E , rE ) is uniformly bounded indepen-
dent of j . Indeed, by [28, Theorem 5.2], the rank of the inclusion homomorphism
H∗(B̄(p j

E , rE/2)) → H∗(B̄(p j
E , rE )) is uniformly bounded in terms of dimension

and a lower curvature bound (note that the bound is independent of rE by rescaling).
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Since the distance function from p j
E is regular on B̄(p j

E , rE ) \ B(p j
E , rE/2) for suffi-

ciently large j , the inclusion B̄(p j
E , rE/2) ↪→ B̄(p j

E , rE ) is a homotopy equivalence
by Perelman’s fibration theorem ([20, Theorem 1.4.1], [21, Theorem 1.4(B)]). Hence
the totalBetti number of this regular fiber is uniformly bounded independent of j . Since
the number of primitive extremal subsets is finite, after passing to a subsequence, one
can assume that χ(B̄(p j

E , rE )) is constant independent of j for any E ∈ E . We define
this value to be F(E).

Let us prove (1). Let (p, r) be fiber data on X such that p ∈ E̊ and assume
that p j ∈ Mj converges to p. By Lemma 2.5, B̄(p j , r) is homotopy equivalent to

B̄(p j
E , rE ) for sufficiently large j (depending on r ). This implies the first claim.

Let us prove (2).We define F ′ for the second convergence in the sameway as above.
The isometry ι is constructed as follows. For any p ∈ X , take a sequence p j ∈ Mj

converging to pwith respect to the first convergence. Passing to a subsequence, one can
assume that p j also converges in the second convergence. This limit point should be
ι(p). By a standard diagonal argument, one can define ι on some countable dense sub-
set of X . Clearly ι preserves distance. Hence there exists a unique distance-preserving
extension of ι onto X . Since X is compact, it is surjective (see [5, Theorem 1.6.14]).

It is easy to see that F = F ′ ◦ ι∗. Indeed, if (p, r) is fiber data with p ∈ E̊ , then
(ι(p), r) is also fiber data and ι(p) is contained in the main part of ι∗(E). Moreover, if
p j ∈ Mj is a sequence converging to p in the first convergence, then it also converges
to ι(p) in the second convergence. These together with the property (1) imply the
second claim. ��
Remark A.5 As shown in the first paragraph of the above proof, the total Betti number
of a regular fiber is uniformly bounded in terms of dimension and a lower curvature
bound.

Remark A.6 Althoughwe only consider the Euler characteristics of regular fibers in the
above theorem, one can actually consider their Betti numbers. Furthermore, one can
consider the Betti numbers of the intersections of regular fibers with extremal subsets
of Mj , as in [1, Theorem 4.6(1)]. This is because the numbers of extremal subsets in
Mj are uniformly bounded ([1, Theorem 4.5], [10, Theorem 1.1(1)]) and Gromov’s
Betti number theorem also holds for extremal subsets ([10, Theorem 1.1(2)]).
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