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Abstract
In this note, we discuss an integral representation for the vertex function of the cotan-
gent bundle over the Grassmannian, X = T ∗ Gr(k, n). This integral representation
can be used to compute the � → ∞ limit of the vertex function, where � denotes the
equivariant parameter of a torus acting on X by dilating the cotangent fibers. We show
that in this limit, the integral turns into the standardmirror integral representation of the
A-series of theGrassmannianGr(k, n)with the Laurent polynomial Landau–Ginzburg
superpotential of Eguchi, Hori and Xiong.

Keywords Superpotentials · Vertex functions · J -functions · Landau–Ginzburg
model

Mathematics Subject Classification 14G33 · 11D79 · 32G34 · 33C05 · 33E30

1 Introduction

1.1. The vertex functions has been introduced in Ref. [23] as generating functions
counting rational quasimaps to Nakajima varieties. In this respect, the vertex function
is the “quasimap” analog of the J -function in quantum cohomology. In this paper
we consider the cohomological vertex function for cotangent bundle over Grassman-
nian X = T ∗ Gr(k, n). By definition, this function is a power series in the quantum
parameter z with coefficients in the equivariant cohomology:

Vertex(z) ∈ H•
T (X)[[z]],
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where T is a torus acting on X , see Sect. 2. Let V(z) denote the coefficient of the
fundamental class in the vertex function

V(z) :=
〈
Vertex(z), [X ]

〉
,

where 〈−,−〉 stands for the standard pairing in the equivariant cohomology. The
function V(z) is the analog of the so called A-series in quantum cohomology, which is
defined similarly as the pairing of J-function with the fundamental class. The function
V(z) depends non-trivially on the equivariant parameter �, which corresponds to the
torus acting on X bydilating the cotangent fibers. In this note,wedescribe the following
result (Theorem 4.1):

Theorem 1.1 In the non-equivariant specialization, one has the following limit:

lim
�→∞ V(z/�

n) = 1

(2π
√−1)k(n−k)

∮
e
1
ε
S(x,z)

∧
i, j

dxi, j
xi, j

, (1.1)

where S(x, z) denotes a Laurent polynomial in k(n − k) variables x = (xi, j ) given
by (4.1).

The integral in the right side of (1.1) denotes the constant term of the integrand,
see Sect. 4.2 for the definition. The Laurent polynomial S(x, z) appearing in the limit
above is the well-known version of a superpotential for Gr(k, n). It first appeared in
the work of Eguchi–Hori–Xiong [8] and was since then reconsidered and generalized
by many researchers in vast literature on quantum cohomology of Grassmannians, see
for instance Refs. [2, 3, 11, 15, 17, 18] for a very incomplete set of references. The
right side of (1.1) is thus the well-known integral representation for the A-series of
Grassmannian Gr(k, n). A closed combinatorial formula for the coefficients of this
series is also known, it was first conjectured in Ref. [2] and later proved in Ref. [18],
see Corollary 4.8 in Ref. [18] (our z is their q).

Informally speaking (1.1) means that in the limit � = ∞ the cotangent directions
of X do not contribute to the quasimap partition function and the vertex function of
T ∗ Gr(k, n) degenerates to the J -function of Gr(k, n). The idea that � = ∞ bridges
the vertex functions with the J -functions of flag varieties is not new, see Ref. [34] or
section 5 of Ref. [16]. However, the derivation of the Laurent superpotential of Ref.
[8] from the limit of V(z) has not been documented well. The goal of this letter is to
fill up this gap in the existing literature. The main technical tool which allows us to
compute the limit is the integral representation for V(z) obtained previously by the
authors in Theorem 3.2 of Ref. [30].
1.2. As an illustration, let us consider the statement of Theorem 1.1 in the simplest
case.

Example. Let X = T ∗
P(C2). There is a two-dimensional torus A = (C×)2 naturally

acting on C
2 by dilating the coordinate subspaces. We denote the by u1 and u2 the

equivariant parameters. There is a one-dimensional torus C
×
�
acting on X by dilation

of the cotangent fibers, we denote the corresponding character by �. Finally, there is
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a one-dimensional torus C
×
ε which acts on the source of the quasimaps P

1 ��� X .
We denote the equivariant parameter corresponding to the character of T0P1 by ε.
By definition, the vertex function is a power series with coefficients in equivariant
cohomology [23]:

Vertex(z) ∈ H•
A×C

×
�

×C
×
ε
(X)loc[[z]],

where the subscript loc denotes localization with respect to C
×
ε . In the basis of

H•
A×C

×
�

×C
×
ε
(X)loc given by the classes of torus fixed points [1], [2] ∈ XA (those

correspond to the coordinate lines in C
2), we have closed formulas in terms of the

Gauss hypergeometric functions:

〈
Vertex(z), [p1]

〉
= 2F1

(
�

ε
,
u2 − u1 + �

ε
; u2 − u1 + ε

ε
; z

)
,

〈
Vertex(z), [p2]

〉
= 2F1

(
�

ε
,
u1 − u2 + �

ε
; u1 − u2 + ε

ε
; z

)
.

(1.2)

In the non-equivariant limit u1 = u2 = 0, corresponding to “turning off” the action
of torus A, the above functions coincide and give the coefficient of the vertex function
at the fundamental class [X ], thus we obtain

〈
Vertex(z), [X ]

〉
= 2F1

(
�

ε
,

�

ε
; 1; z

)
. (1.3)

We denote this coefficient by V(z). Explicitly, we have

V(z) =
∞∑
d=0

(�)2d

(d!)2ε2d zd , where (�)d = �(� + ε)(� + 2ε) . . . (� + (d − 1)ε).

Noting that lim
�→∞ (�)d/�

d = 1, we obtain

lim
�→∞ V(z/�

2) =
∞∑
d=0

zd

(d!)2ε2d .

Let S(x, z) = x + z/x , then

∮
dx

x
S(x, z)d := [S(x, z)d ]0 =

⎧
⎪⎪⎨
⎪⎪⎩

(d)!
(d/2)!(d/2)! z

d , d is even

0, d is odd
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where [S(x, z)d ]0 denotes the constant term in x in the Laurent polynomial S(x, z)d .
Combining all this together, we can write

lim
�→∞ V(z/�

2) =
∞∑
d=0

1

d!
∮

dx

x
S(x, z)d =

∮
dx

x
e

S(x,z)
ε ,

which is in agreement with Theorem 1.1. A more straightforward way to compute this
limit is to note that the hypergeometric function (1.3) has an integral representation:

V(z) =
∮

|x |=ε

dx

x

(
1 − x

)− �

ε
(
1 − z

x

)− �

ε
, (1.4)

where ε is any positive real number such that |z| < ε < 1. We note that change of
variables z → z/�

2, x → x/� together with change of the contour ε → ε/� does not
affect this condition for large |�|. Thus, for large |�|, we may have

V(z/�
2) =

∮

|x |=ε

dx

x

(
1 − x

�

)− �

ε
(
1 − z

x�

)− �

ε
,

which allows us to compute the limit using elementary tools:

lim
�→∞

(
1 − x

�

)− �

ε
(
1 − z

x�

)− �

ε = e
S(x,z)

ε .

1.3. In Sect. 2, we recall a combinatorial formula for the vertex functions generalizing
(1.2) to the case of X = T ∗ Gr(k, n). In Sect. 3, we describe the analog of the integral
representation (1.4) for this case. In Sect. 4, we use this integral representation to
compute the � → ∞ limit of V(z) similarly to how it was done in the example above.

In our previous paper [30], we show that certain truncations of V(z)with parameters
specialized to Qp satisfy the Dwork type congruence relations. In Sect. 5, we show
that a similar structure exists in the limit � → ∞.

2 The Vertex Function of T∗ Gr(k,n)

2.1. For X = T ∗ Gr(k, n), we consider the following explicit power series:

〈Vertex(z), [1, . . . , k]〉 :=
∞∑
d=0

cd(u1, . . . , un, �) zd , (2.1)
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with the coefficients cd(u1, . . . , un, �) ∈ Q(u1, . . . , un, �, ε) given by

cd (u1, . . . , un, �) =
∑

d1,...,dk :
d1+···+dk=d

⎛
⎝

k∏
i, j=1

(ε − ui + u j )di−d j

(� − ui + u j )di−d j

⎞
⎠

⎛
⎝

n∏
j=1

k∏
i=1

(� + u j − ui )di
(ε + u j − ui )di

⎞
⎠ ,

(2.2)

where (x)d denotes the Pochhammer symbol with step ε:

(x)d =

⎧
⎪⎨
⎪⎩

x(x + ε) . . . (x + (d − 1)ε), d > 0
1, d = 0

1

(x − ε)(x − 2ε) . . . (x + dε)
, d < 0

The degree d coefficient of this series counts (equivariantly) the number of degree d
rational curves in X . More precisely, it is given by the equivariant integral

cd(u1, . . . , un, �) =
∫

[QMd (X ,∞)]vir
ωvir , (2.3)

over the virtual fundamental class on moduli space QMd(X ,∞) of quasimaps from
P
1 to X , which send ∞ ∈ P

1 to a prescribed torus fixed point [1, . . . , k] ∈ X , see
Section 7.2 of Ref. [23] for definitions. Using the equivariant localization, the integral
(2.3) reduces to the sum over the torus fixed points on QMd(X ,∞) which gives the
sum (2.2). We refer to Section 4.5 of Ref. [26] where this computation is done in some
details.

The parameters u1, . . . , un, �, ε are the equivariant parameters of the torus T =
(C×)n × C

×
�

× C
×
ε acting on the moduli space QMd(X ,∞) in the following way:

• (C×)n acts onC
n in a naturalway, scaling the coordinateswithweights u1, . . . , un .

• The set of torus fixes points X (C×)n corresponds to k-subspaces in C
n spanned by

any set of k coordinate lines. The fixed point [1, . . . , k] ∈ X (C×)n corresponds to
the k-subspace spanned by the first k coordinate lines.

• C
×
�
acts on X by scaling the cotangent fibers with weight �.

• C
×
ε acts on the source of the quasimaps C ∼= P

1 fixing the points 0,∞ ∈ P
1. The

parameter ε denotes the corresponding weight of the tangent space T0 C .

The full vertex function is a power series with coefficients in equivariant cohomol-
ogy:

Vertex(z) ∈ H•
T (X)loc[[z]],

where loc denotes the equivariant localization with respect to torus C
×
ε . Using the

equivariant localization, we can expand Vertex(z) in the basis of H•
T×C

×
ε
(X)loc given

by the classes of torus fixed points. The power series (2.1) gives the coefficient
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436 A. Smirnov, A. Varchenko

Vertex(z) at the “first” torus fixed point [1, . . . , k]. Other coefficients have the same
structure and can be obtained from (2.1) by permutations of parameters ui .
2.2. In this paper, we consider the specialization of the equivariant parameters:

u1 = 0, . . . , un = 0, (2.4)

which corresponds to non-equivariant limit when the action of the torus (C×)n is
“turned off”. The coefficients of Vertex(z) at the torus fixed points all reduce to the
same function (simply because without (C×)n-action these points are indistinguish-
able) which corresponds to the coefficient of the vertex function at the fundamental
class:

V(z) :=
〈
Vertex(z), [X ]

〉∣∣∣
u1=0,...,un=0

. (2.5)

Thus, V(z) can be obtained by specializing the coefficients of the power series (2.1) at
(2.4). We note that this specialization is non-trivial: already in the case of T ∗ Gr(2, 4)
the terms in the sum (2.2) have poles at ui = u j . The total sum (2.2) is, however,
non-singular since the vertex function is an integral equivariant cohomology class (we
recall that only C

×
ε - localization is required to define it).

3 Integral Representation of V(z)

3.1. In this section, we describe an integral representation for the function (2.5)

V(z) =
∫

γ

�(x, z) dx,

which has its origin in 3D-mirror symmetry, we refer to Section 3 of Ref. [30] for
more details.

3.2. Assume that n � 2k. Let vi , i = 1, . . . , n − 1 be integers defined by

vi =
⎧
⎨
⎩
i, i < k,
k, k � i � n − k,
n − i, n − k < i,

We denote by ω = �/ε and define the superpotential function:

�(x, z) =
( n−1∏

i=1

vi∏
j=1

xi, j
)−1+ω( vm∏

m=1

∏
1�i< j�vm

(xm, j − xm,i )
)2ω

×
( n−2∏

i=1

vi∏
a=1

vi+1∏
b=1

(xi,a − xi+1,b)
)−ω( k∏

i=1

(z1 − xk,i )(z2 − xn−k,i )
)−ω

.

(3.1)
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Fig. 1 Set of variables xi, j for
k = 4 and n = 8

We note that this function is an example of themaster functions in the theory of integral
representations of the trigonometric Knizhnik–Zamolodchikov equations. In particu-
lar, (3.1) corresponds to theKZ equation associatedwith theweight subspace ofweight
[1,…,1] in the tensor product the k-th and (n − k)-th fundamental representations of
gln , see Refs. [20, 31].

3.3. The dimension vector vi and the variables xi, j have a convenient combinatorial
visualization. Let us consider a k × (n − k) rectangle rotated counterclockwise by
45◦, see Fig. 1. Note that in this picture, the number of boxes in i-th vertical column
is exactly vi . In this way, we may assign the variables xi, j to the boxes in this picture.
We will order them as in Fig. 1. Note that the total number of variables xi, j equals to
dimGr(k, n) = k(n − k). To a box (i, j) in Fig. 1, we assign a weight

mi, j = (|i − k| + 2 j − 1) ∈ N. (3.2)

This function ranges frommk,1 = 1 tomn−k,k = n−1. The definition ofmi, j is clear
from Fig. 2. We have a partial ordering on the boxes (i, j) corresponding to

mk,1 < mk−1,1 = mk+1,1 < · · · < mn−k,k . (3.3)

For a small real number 0 < ε � 1, let us define the torus by the following equations:

γk,n ⊂ C
k(n−k), |xi, j | = mi, jε, (3.4)

where i, j run through all possible values.

Proposition 3.1 Assume that |z1| < ε and (n − 1)ε < |z2|, then the superpotential
(3.1) has a single-valued branch on the torus γk,n, which is distinguished in the proof
and which will be used in the paper.
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Fig. 2 The values of the weight
function mi, j

Proof Let us denote

L(xi,a, x j,b) =
{

(1 − xi,a/x j,b)−ω, mi,a < m j,b, i = j
(x j,b/xi,a − 1)−ω, mi,a > m j,b, i = j .

(3.5)

Each of these ratios xi,a/x j,b, x j,b/xi,a restricted to γk,n has absolute value less than
1. We replace (1 − xi,a/x j,b)−ω on γk,n with

∑∞
m=0

(−ω
m

)
(−xi,a/x j,b)m and replace

(x j,b/xi,a − 1)−ω with e−π
√−1ω ∑∞

m=0

(−ω
m

)
(−x j,b/xi,a)m .

Next, we denote L(z1, xk,a) = (1 − z1/xk,a)−ω and L(z2, xk,a) = (1 −
xn−k,a/z2)−ω. On γk,n , we have |xk,i | � ε, and |xn−k,i | � |xn−k,k | = nε,
therefore, |z1/xk,i | < 1 and |xn−k,i/z2| < 1. We replace on γk,n the factor
(1− z1/xk,a)−ω with

∑∞
m=0

(−ω
m

)
(−z1/xk,a)m and the factor (1− xn−k,a/z2)−ω with∑∞

m=0

(−ω
m

)
(−xn−k,a/z2)m .

Finally, we denote �(xm,i , xm, j ) = (1 − xm,i/xm, j )
2ω for 1 � i < j � vm .

On γk,n , we have |xm,i/xm, j | < 1. We replace on γk,n the factor �(xm,i , xm, j ) with∑∞
m=0

(2ω
m

)
(−xm,i/xm, j )

m . In these notations, we have

�(x, z) =
( n−1∏

i=1

∏
a<b

�(xi,a, xi,b)
)

×
( n−2∏

i=1

vi∏
a=1

vi+1∏
b=1

L(xi,a, xi+1,b)
)

×
( k∏
i=1

L(z1, xk,i )L(z2, xn−k,i )
)

×
n−1∏
i=1

vi∏
j=1

x−1
i, j ,

(3.6)

and for each factor a single-valued branch is chosen by replacing that factor with
the corresponding power series. The product of those power series distinguishes a
single-valued branch of �(x, z) on γk,n . ��
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Example For X = T ∗ Gr(2, 4), we have

�(x, z) = (x11x21x22x31)
−1(1 − x21/x22)

2ω

×(
(x21/x11 − 1)(1 − x21/x31)(z1/x21 − 1)(1 − x21/z2)

)−ω

×(
(1 − x11/x22)(x31/x22 − 1)(z1/x22 − 1)(1 − x22/z2)

)−ω
.

From the previous proposition, the integral of �(x, z) over γk,n is an analytic
function of z = z1/z2 in the disc |z| < ε.

Theorem 3.2 ([30]) The function (2.5) has the following integral representation:

V(z) = α

(2π
√−1)k(n−k)

∮

γk,n

�(x, z)
∧
i, j

dxi, j , (3.7)

where �(x, z) is the branch of superpotential function (3.1) on the torus γk,n chosen

in Proposition 3.1, and α = eπ
√−1Nω is a normalization constant where N is the

number of factors in (3.6) having the form (x j,b/xi,a − 1)−ω.

Definition 3.3 Let γ
′
k,m be another contour defined by |xi, j | = Ri, j for Ri, j ∈ R such

that the conditions |z1| < R1,1, Rn−k,k < |z2| and

mi, j < ma,b �⇒ Ri, j < Ra,b (3.8)

are satisfied for all pairs of indices (i, j) and (a, b). Then,we say that γ
′
k,m is equivalent

to γk,m and write γ
′
k,m ∼ γk,m .

Note that (3.7) remains invariant if we replace γk,m by an equivalent γ
′
k,m . This

is simply because the evaluation of the integral over γ ′
k,n is again by computing the

residues at xi, j = 0, and the residues are computed in the same order as for γk,n , and
therefore, the result remains the same.

3.4 Relation to 3D-Mirror Symmetry

Let us explain the origin of the superpotential function (3.1). The factors of (3.1)
correspond to the edges of the quiver which describes the 3D-mirror variety X !.
For X = T ∗Gr(k, n), the quiver of X ! is given in Sections 3.2−3.3 of Ref. [30],
the correspondence between the factors of (3.1) and the edges of this quiver is also
explained there.

For the Nakajima quiver varieties, the superpotential function (3.1) is constructed
by the same procedure if the quiver for the 3D-mirror X ! is known. For the Nakajima
quiver varieties of type A, which include cotangent bundles over partial flag varieties
as special cases, a conjectural description of the 3D-mirrors was given by physicists.
It is explained for instance in Ref. [9]. We expect that the results of this note and of
Ref. [30] have straightforward generalizations to these cases.
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The 3D-mirror symmetry conjecture is formulated on the level of K-theory rather
than cohomology. Recall, that the quantum difference equations [25] are the K-
theoretic generalizations of quantum differential equations in quantum cohomology.
The 3D-mirror symmetry conjecture claims that the quantum difference equations for
X and X ! are equivalent. The K-theoretic vertex functions of X and X ! provide two
different bases of solutions to the this common system of q-difference equations. For
cotangent bundles over Grassmannians this conjecture was proved by Dinkins in Ref.
[5] and for full flag varieties in Ref. [6]. For the hypertoric varieties, this result is
obtained in Ref. [33].

An alternative definition of 3D-mirror symmetry postulates the equality of the
elliptic stable envelopes [1] of X and X !. This idea was first proposed in Ref. [24]
and later examined for various cases of X in Ref. [27–29]. It was shown in Ref.
[13, 14] that the elliptic stable envelope of X determines the corresponding quantum
difference equation of X and vice versa. This established an equivalence between the
two definitions of 3D-mirror symmetry.

Theorem 1.1 says that the mirror description of J -function for Gr(k, n) arises as a
double limit of 3D-mirror symmetry. In the first limit, one considers the cohomological
limit of K-theoretic vertex functions for T ∗ Gr(k, n). In this limit, the 3D-mirror
symmetry description of these functions [5] degenerates to the integral representation
(3.7). In the second limit � → ∞, we obtain Theorem 1.1.

4 The Limit � → ∞
4.1 Polynomial Superpotential

Let 
 be an oriented graph, with vertices given by boxes inside the k × (n− k) Young
diagram, plus two extra vertices corresponding to z1 and z2, see Fig. 3. The edges of
the graph are defined as follows: every two adjacent boxes are connected by an edge.
Each edge is oriented in the direction of decrease of weight function mi, j , which is
defined by (3.2). Two additional edges are from xk,1 to z1 and from z2 to xn−k,k , Fig. 3.
Given an edge e of 
, we denote by h(e) and t(e) the corresponding head and tail. We
define the following Laurent polynomial:

S(x, z) =
∑

e∈edges(
)

xh(e)

xt(e)
. (4.1)

Example For k = 1, we obtain

S(x, z) = z1
x1,1

+ x1,1
x2,1

+ x2,1
x3,1

+ · · · + xn−2,1

xn−1,1
+ xn−1,1

z2
. (4.2)

Substituting z1 = q, z2 = 1, and introducing new variables by

x1,1 = a1a2 . . . an−1, x2,1 = a1a2 . . . an−2, . . . , xn−1,1 = a1,

123
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Fig. 3 The graph 
 associated
with X = T ∗ Gr(k, n)

we arrive at the standard Givental’s superpotential of projective space

S(x) = a1 + a2 + · · · + an−1 + q

a1 · · · an−1
.

Example For X = T ∗ Gr(2, 4), we obtain

S(x, z) = z1
x2,1

+ x2,1
x1,1

+ x2,1
x3,1

+ x3,1
x2,2

+ x1,1
x2,2

+ x2,2
z2

. (4.3)

4.2 Exponential Integral

For S(x, z) defined by (4.1), we consider the power series:

1

(2π
√−1)k(n−k)

∮
e
1
ε
S(x,z)

∧
i, j

dxi, j
xi, j

=
∞∑
d=0

[
S(x, z)d

]
0

d!εd , (4.4)

where
[
S(x, z)d

]
0 denotes the constant term of the Laurent polynomial S(x, z)d in

variables x = (xi, j ). From the structure of the superpotential (4.1), it is easy to see
that

[
S(x, z)d

]
0 is a monomial in z = z1/z2 and thus (4.4) is a power series in z.

Example For X = T ∗
P
n−1, the superpotential is given by (4.2). In this case, elemen-

tary computations shows that
[
S(x, z)d

]
0 is non-vanishing only if the degree d is of
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the form d = nm for some m ∈ N. In this case, we have

[
S(x, z)mn]

0 = (z1/z2)m(nm)!
(m!)n .

We thus conclude that

∮
e
1
ε
S(x,z)

∧
i, j

dxi, j
xi, j

=
∞∑

m=0

zm

(m!)nεmn
.

Example For X = T ∗ Gr(2, 4), the superpotential is given by (4.3). In this case,[
S(x, z)d

]
0 is non-vanishing only if d = 4m, in which case

[
S(x, z)4m

]
0

= (2m)!(4m)!
(m!)6

zm

ε4m
.

Thus, we obtain

∮
e
1
ε
S(x,z)

∧
i, j

dxi, j
xi, j

=
∞∑

m=0

(2m)!
(m!)6ε4m zm .

4.3 TheVertex Function in � = ∞ Limit

Theorem 4.1 Let V(z) be the function (2.5), then

lim
�→∞ V(z/�

n) = 1

(2π
√−1)k(n−k)

∮
e
1
ε
S(x,z)

∧
i, j

dxi, j
xi, j

,

where the integral is defined by (4.4) and S(x, z) is the polynomial superpotential
(4.1).

Proof By Theorem 3.2, we have

V(z) = α

(2π
√−1)k(n−k)

∮

γk,n

�(x, z)
∧
i, j

dxi, j ,

where the contourγk,n is definedby (3.4) and�(x, z) is the branchof the superpotential
(3.6) distinguished by Proposition 3.1. It will be convenient to define

L̃(xi,a, x j,b) =
{

(1 − xi,a/x j,b)−ω, mi,a < m j,b,

(1 − x j,b/xi,a)−ω, mi,a > m j,b,
(4.5)
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which differ from (3.5) by a factor

L̃(xi,a, x j,b) =
⎧
⎨
⎩
L(xi,a, x j,b), mi,a < m j,b,

e−π
√−1�/εL(xi,a, x j,b), mi,a > m j,b,

Recall that α = eπ
√−1N�/ε where N is the total number of factors in �(x, z) for

which L̃(xi,a, x j,b)/L(xi,a, x j,b) = e−π
√−1�/ε . Thus, in these notations,

V(z) = 1

(2π
√−1)k(n−k)

∮

γk,n

�̃(x, z)
∧
i, j

dxi, j
xi, j

, (4.6)

where

�̃(x, z) =
( n−1∏

i=1

∏
a<b

�(xi,a, xi,b)
)( n−2∏

i=1

vi∏
a=1

vi+1∏
b=1

L̃(xi,a, xi+1,b)
)

( k∏
i=1

L̃(z1, xk,i )L(z2, xn−k,i )
)
.

In this integral, we rescale the variables by: z1 → z1, z2 → z2�n . Since in our
notations z = z1/z2, this is equivalent to substitution z → z/�

n in the left side of
(4.6). Let γ ′

k,n(�) be a contour defined by

|xi, j | = mi, jε|�|mi, j

assuming that |�| > 1, we have

mi, j < ma,b �⇒ mi, jε|�|mi, j < ma,bε|�|ma,b

for all pairs (i, j) and (a, b). By assumption of Proposition 3.1 |z1| < |x1,1| and
|xn−k,k | < |z2�n| on γ ′

k,n(�). Therefore, γ ′
k,n(�) ∼ γk,n in the sense of Definition 3.3.

Thus,

V(z/�
n) = 1

(2π
√−1)k(n−k)

∮

γ
′
k,n(�)

�̃(x, z)
∧
i, j

dxi, j
xi, j

. (4.7)

Now, in this integral, we change the variables of integration by xi, j = yi, j�mi, j . The
contour γ

′
k,n(�) in the variables yi, j is given by |yi, j | = mi, jε, i.e., in the coordinates

yi, j we integrate over the original contour γk,n . Overall, we obtain

V(z/�
n) = 1

(2π
√−1)k(n−k)

∮

γk,n

�̃(y, z)
∧
i, j

dyi, j
yi, j

, (4.8)
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where

�̃(y, z) =
( n−1∏

i=1

∏
a<b

�(yi,a�
mi,a , yi,b�

mi,b )
)( n−2∏

i=1

vi∏
a=1

vi+1∏
b=1

L̃(yi,a�
mi,a , yi+1,b�

mi+1,b )
)

×
( k∏
i=1

L̃(z1, yk,i�
mk,i )L̃(z2�

n, yn−k,i�
mn−k,i )

)
. (4.9)

We have

L̃(yi,a�
mi,a , yi+1,b�

mi+1,b ) =

⎧
⎪⎨
⎪⎩

(
1 − (yi,a/yi+1,b)/(�

mi+1,b−mi,a )
)−�/ε

, mi,a < mi+1,b,(
1 − (yi+1,b/yi,a)/(�mi,a−mi+1,b )

)−�/ε

, mi,a > mi+1,b.

Note that the powers of � appearing in these factors are positive integers. Thus, we
compute

lim
�→∞ L(yi,a�

mi,a , yi+1,b�
mi+1,b ) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e
1
ε

yi,a
yi+1,b , mi,a = mi+1,b − 1,

e
1
ε

yi+1,b
yi,a , mi,a = mi+1,b + 1,

1, else.

We also have

L̃(z1, yk,i�
mk,i ) =

(
1 − (z1/yk,i )/�

mk,i
)−�/ε

,

L̃(z2�
n, yn−k,i�

mn−k,i ) =
(
1 − yn−k,i�

mn−k,i−n/z2
)−�/ε

.

with mk,i = 2i − 1 and mn−k,i = n − 2k + 2i − 1, therefore,

lim
�→∞ L̃(z1, yk,i�

mk,i ) =
{
e
1
ε

z1
yk,1 , i = 1,

1 i = 1

and

lim
�→∞ L̃(z2�

n, yn−k,i�
mn−k,i ) =

{
e
1
ε

yn−k,k
z2 , i = k,

1 i = k

Finally,

�(yi,a�
mi,a , yi,b�

mi,b) = (1 − yi,a/yi,b/(�
mi,b−mi,a ))2�/ε,
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and since mi,b − mi,a � 2 for b > a, we have

lim
�→∞ �(yi,a�

mi,a , yi,b�
mi,b) = 1.

In summary, the limit � → ∞ of a factor in (4.9) is non-trivial only if it corresponds
to an edge of the graph 
 and

lim
�→∞ �̃(y, z) =

∏
e∈edges(
)

e
1
ε

yh(e)
yt(e) = e

S(y,z)
ε . (4.10)

Finally, the point-wise limit (4.10) on the compact set γk,n is uniform, the limit com-
mutes with the integration and from (4.8), we obtain

lim
�→∞V(z/�

n) = lim
�→∞

1

(2π
√−1)k(n−k)

∮

γk,n

�̃(y, z)
∧
i, j

dyi, j
yi, j

= 1

(2π
√−1)k(n−k)

∮

γk,n

e
S(y,z)

ε

∧
i, j

dyi, j
yi, j

.

��

5 Dwork Congruences

Let �(k, n) = N(S(x, z)) ⊂ R
k(n−k) be the Newton polygon of the Laurent polyno-

mial (4.1) in variables x = (xi, j ). Let fi, j with i = 1, . . . , k, j = 1, . . . , n−k denote
the standard basis in R

k(n−k). The elements fi, j correspond to boxes in k × (n − k)
diagram in Fig. 3. From (4.1), we see that �(k, n) is the convex hull of the vectors:

f1,1, fi, j+1 − fi−1, j+1, i = 2, . . . , k, j = 0, . . . , n − k − 1

− fk,n−k, fi, j+1 − fi, j , i = 1, . . . , k, j = 1, . . . , n − k − 1.

This polytop was has been considered in many publications, in particular it is known
to be reflexive see Theorem 3.1.3 in Ref. [2]. We recall that the origin (0, 0) is the only
integral point in a reflexive polytop, see for instance Ref. [22] for an overview.

Theorem 5.1 Let p be a prime number. Let us consider the power series:

F(z) =
∞∑
d=0

[
S(x, z)d

]
0

∈ Z[[z]], (5.1)

and a system of its polynomial truncations:

Fs(z) =
ps−1∑
d=0

[
S(x, z)d

]
0

∈ Z[z], s = 0, 1, 2, . . .
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Then, for every s � 1, one has a congruence

F(z)
F(z p)

= Fs(z)
Fs−1(z p)

mod ps

In particular, the polynomials Fs(z) satisfy the Dwork type congruences:

Fs+1(z)

Fs(z p)
= Fs(z)

Fs−1(z p)
mod ps, s = 1, 2, . . .

Proof The proof follows from Theorem 1.1 in Ref. [21], after simple modifications.
Let S(x, 1) denote the superpotential (4.1) with z1 = z2 = 1. Clearly, this Laurent
polynomial has the same Newton polygon N(S(z, 1)) = N(S(x, z)) = �(k, n). Let
us consider

M(ξ) =
∞∑
d=0

[S(x, 1)d ]0 ξd , Ms(ξ) =
ps−1∑
d=0

[S(x, 1)d ]0 ξd .

By Theorem 1.1 in Ref. [21], these functions satisfy the desired congruences:

M(ξ)

M(ξ p)
= Ms(ξ)

Ms−1(ξ p)
mod ps,

Ms+1(ξ)

Ms(ξ p)
= Ms(ξ)

Ms−1(ξ p)
mod ps . (5.2)

From the structure of the superpotential S(x, z), it is clear that

[S(x, z)d ]0 = [S(x, 1)d ]0z d
n .

In particular, this coefficient is equal to zero unless n divides d. From this, we find

F(z) =
∞∑
d=0

[
S(x, 1)d

]
0
z
d
n = M(z

1
n ),

and similarly Fs(z) = Ms(z
1
n ). The theorem follows from (5.2) after substitution

ξ → z
1
n . ��

For further discussion of Dwork congruences for vertex functions and solutions of
qKZ equations, we refer to Refs. [30, 32, 35, 36].

Remark The above theorem implies an infinite factorization:

F(z) =
∞∏
i=0

Fs(z p
i
)

Fs−1(z p
i+1

)
mod ps .
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