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Abstract
We use spinal open books to construct contact manifolds with infinitely many differ-
ent Weinstein fillings in any odd dimension > 1, which were previously unknown for
dimensions equal to 4n + 1. The argument does not involve understanding factoriza-
tions in the symplectic mapping class group.

Keywords Contact manifold · Weinstein filling · Spinal open book

1 Introduction

Contact manifolds arise naturally as convex boundaries of symplectic manifolds, it
was known by Gromov [15] and Eliashberg [10] in the late 1980s that not all contact
manifolds can be realized in such a way. Therefore understanding symplectic fillings
of contact manifolds is a fundamental question in contact topology. Such questions
were extensively studied by many researchers starting from the case of no fillings
[7–9, 11, 12, 14, 24, 31], the case of unique (only for the topological type in many
cases) fillings [5, 9, 13, 15, 25, 30, 32], and at the end of this spectrum, the case
of infinitely many filings [2–4, 6, 27, 28]. As one can always blow up a symplectic
filling to change the topology, we need to restrict to Liouville or Weinstein fillings
for the question of infinite fillings. Unlike the no-filling and unique-filling situations,
which typically depend on some rigidity arguments using pseudo-holomorphic curves,
the construction of contact manifolds with infinitely many fillings usually uses the
topological or flexible side of symplectic topology. The first contact manifold (beyond
the trivial case of S1) with infinitely many different Weinstein fillings was constructed
by Ozbagci and Stipsicz [28] in dimension 3. Nowadays, there are many constructions
with various constraints on the topology of fillings in dimension 3, see [2–4, 6]. Oba
[27] generalizedOzbagci and Stipsicz’s result to dimension 4n−1.Their constructions
were based on the open book construction of contact manifolds and finding infinitely
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many different factorizations by positive Dehn–Seidel twists of the monodromy in the
symplectic mapping class group. Such an approach is most efficient in dimension 3,
as the symplectic mapping class group agrees with the classical mapping class group
in the case of surfaces. In higher dimensions, the symplectic mapping class group is
different from the classical mapping class group in general, and much less is known.
It is worth pointing out that Lazarev [19] constructed contact manifolds with many
different Weinstein fillings in dimension ≥ 5, where the number of fillings can be
arbitrarily large, from a surgical perspective.

In this note, we give a new construction of contact manifolds with infinitely many
different Weinstein fillings in any dimension. The construction is based on spinal
open books—a generalization of contact open books, introduced by Lisi et al. [20].
The spinal open book was used by Baykur et al. [6] to construct contact 3-manifolds
which admit infinitelymanyWeinstein fillingswith arbitrarily big Euler characteristics
and arbitrarily small signatures. Heuristically speaking, spinal open books arise as the
contact boundary of a Lefschetz fibration over a general surface with boundary. Such
contact manifolds, especially in dimension 4, were studied systematically in [20, 21,
23]. Moreover, there are notions of spinal open books, which fiber over Liouville
domains of dimension higher than 2, see e.g. [22, 26]. In this note, we restrict to the
case of the surface base.

Theorem 1.1 Let V be the plumbing of two T ∗Sn along three points. Then the contact
boundary ∂(�1,1 × V ) has infinitely many different Weinstein fillings, where �1,1 is
a genus one Riemann surface with one boundary component, viewed as a Weinstein
filling of S1.

We point out that our construction is local in nature, i.e. if V contains the domain
in Theorem 1.1 as a symplectic subdomain and the homology computation in the
proof works, then the conclusion can be drawn for ∂(�1,1 ×V ). For example, it holds
for V in Theorem 1.1 taking boundary connected sum with any Weinstein domain.
Moreover, similar phenomena hold for more general plumbings of spheres. When n
is odd, i.e. when the contact manifold is of dimension 4k − 1, we can take V to be
two T ∗Sn plumbed at one point.

Our strategy is similar to [27, 28]: the contact boundary ∂(�1.1 × V ) is the trivial
spinal open book over �1,1, and any representation ρ : π1(�1,1) → π0(Sympc(V ))

such that ρ(∂�1,1) = id gives rise to aWeinstein filling by a V -fiber bundle over�1,1.

Sending a generator of π1(�1,1) to the identity always yields one such representation,
hence every element φ of π0(Sympc(V )), i.e. the image of the other generator under
ρ, induces a filling. Then by understanding the effect of φ on the homology of V , we
can get infinite many fillings. In particular, we do not need to consider factorizations
in the symplectic mapping class group.

Theorem 1.1 still uses classical topological invariants to differ symplectic fillings, a
natural question is whether the phenomena of infinite fillings can be purely symplectic,
that is:

Question 1.2 Are there contact manifolds with infinitely many different Wein-
stein/Liouville fillings with the same formal data, i.e. as the same differential/almost
complex/almost Weinstein manifold (relative to the boundary)?
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We expect the answer to the question to be yes, at least for dimensions high enough.
However, to the best of the author’s knowledge, we do not even know examples of
contact manifolds with more than one smoothly same, but symplectically different
fillings. Unlike Theorem 1.1, rigidity techniques, e.g. holomorphic curves or sheaves,
must enter the picture to solve the above question. Using spinal open books, we have
candidates for Question 1.2 at least for in dimension 4n + 1.

Question 1.3 Let φ ∈ π0(Sympc(V )) be generated by the eighth powers of the Dehn–
Seidel twist along any Lagrangian sphere in V , where dim V = 4n. Is the symplectic
fiber bundle induced from π1(�1,1) → π0Sympc(V ) by sending one generator to φ

and the other to id symplectomorphic to �1,1 × V ?

Clearly, the motivation behind such a question is the fact that eighth powers of
the Dehn–Seidel twist are smoothly isotopic to identity in dimension 4n [17], yet not
symplectically isotopic to identity [5, 29]. In dimensions 4 and 12, one can replace
the eighth power with a square.

2 Proof

Let V be a Liouville domain and φ ∈ π0(Sympc(V )). We can endow

�g,1 × ∂V ∪S1×∂V Vφ

a contact structure by a generalization of the Thurston–Winkelnkemper construction,
see [20, §2.3], where �g,1 is a genus g surface with one boundary component and Vφ

is the mapping torus V × [0, 1]/(x, 0) ∼ (φ(x), 1). This is a very special case of the
spinal open book considered in [20], where the vertebrae (�g,1 here) can have more
boundary components and be disconnected. In this paper, we only consider the case
of g = 1 and φ = id . Then the contact manifold is the contact boundary ∂(�1,1×V ).

Lemma 2.1 [6, 20] Let � be a connected Riemann surface with boundary and V
be a Weinstein domain. Any representation π1(�) → π0(Sympc(V )) mapping the
boundary to id gives rise to a Weinstein filling of ∂(� × V ), which is diffeomorphic
to the V -bundle over � from π1(�) → π0(Sympc(V )).

More generally, if the monodromy of the spinal open book is φ and there exist
φ1, ψ1, . . . , φg, ψg ∈ Sympc(V ) and τ1, . . . , τk are Dehn–Seidel twists along some
exact Lagrangian spheres in V , such that

φ =
∏

τi
∏

[φi , ψi ].

Then the spinal open book given by (�g,1, V , φ) is the contact boundary of a sym-
plectic Lefschetz fibration over �g,1 with k singular fibers. When V is Weinstein, the
total space of the Lefschetz fibration is a Weinstein filling of the spinal open book.
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Lemma 2.2 Let Vφ be the mapping torus, then we have short exact sequences

0 → ker(φ∗ − id) → H∗(Vφ) → coker(φ∗ − id)[−1] → 0.

Proof The homology of Vφ can be computed from the cone of C∗(V )
φ∗−id−→ C∗(V ).

We have an induced long exact sequence

. . . −→ H∗(V ) −→ H∗(Vφ) −→ H∗−1(V )
φ∗−id−→ H∗−1(V ) −→ . . .

see [16, Example 2.48] for details. Then the claimed short exact sequence follows
from the exactness of the above sequence. �	

More generally, let Vφ∨id be the V -fiber bundle over S1 ∨ S1 (or homotopically
equivalently over �1,1), such that the monodromy over one S1 is φ and is id over the
other S1. Then we have a short exact sequence

0 → ker(φ∗ − id)|Hk(V ;Z) → Hk(Vφ∨id;Z)

→ Hk−1(V ;Z) ⊕ coker(φ∗ − id)|Hk−1(V ;Z) → 0

for k ≥ 1. In particular, when V is a Weinstein domain of dimension 2n, then the
cardinality of the torsion of Hn+1(Vφ∨id)will be at least that of coker(φ∗−id)|Hn(V ;Z).

Lemma 2.3 (Picard–Lefschetz formula, [18, (6.3.3)])Let L be an oriented Lagrangian
n-sphere in an exact domain W and τL the Dehn–Seidel twist along L,1 then (τL)∗ :
H∗(W ;Z) → H∗(W ;Z) is given by

(τL)∗(c) =
{
c + (−1)

(n+1)(n+2)
2 〈 c, [L] 〉[L], c ∈ Hn(W ;Z);

c, c ∈ Hj (W ;Z), j �= n.

where 〈 ·, · 〉 : Hn(W ;Z) ⊗ Hn(W ;Z) → Z is the intersection product.

Recall the plumbing of two cotangent bundles T ∗Q1 and T ∗Q2 at one point is
given by choosing balls Bi around the plumbing point in Qi , and identifying their
disc cotangent bundles D∗Bi ⊂ D∗Qi by a symplectomorphism which interchanges
the zero-section and fiber directions. We refer readers to [1, §2.3] for details of the
plumbing construction. Let V 2n be plumbing of two T ∗Sn along three points. We
use L1, L2 to denote the two Lagrangian spheres, oriented such that 〈 [L1], [L2] 〉 =
(−1)

n(n+1)
2 3. More precisely, we first choose an orientation of L1, then we orient L2

by the induced orientation of the fiber T ∗
q L1, where q is an intersection point, since

the fiber is identified with a neighborhood of q in L2 in the plumbing construction.
Then the intersection number of L1, L2 using the orientation on T ∗L1 induced from
the orientation of L1 is 3. The extra sign comes from the fact that the symplectic

1 Strictly speaking, the Dehn–Seidel twist depends on a parametrization Sn � L,which can yield different
Dehn–Seidel twists in the symplectic mapping class group in general. However, such an ambiguity does
not play a role in our discussions.
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Fig. 1 The Lagrangian skeleton and homology basis

orientation (using −d
∑

pidqi , i.e. the standard symplectic orientation on R
2n =

T ∗
R
n) is different from the induced orientation on T ∗L1 from that of L1 by (−1)

n(n+1)
2 .

Note that 〈 [L1], [L1] 〉 = 〈 [L2], [L2] 〉 = 0 when n is odd and 〈 [L1], [L1] 〉 =
〈 [L2], [L2] 〉 = (−1)

n(n+1)
2 2 when n is even. When n > 1, under the free basis

[L1], [L2] of Hn(V 2n;Z), by the Picard–Lefschetz formula, the effect of the Dehn–
Seidel twists τL1 , τL2 on Hn(V 2n;Z) is given by

[
1 −3
0 1

]
,

[
1 0
3 1

]

for n odd respectively, and

[−1 −3
0 1

]
,

[
1 0

−3 −1

]

for n even respectively.
When n = 1, H1(V ;Z) = Z

4 and (τL1)∗, using the basis [L1], [L2] and two other
cycles (with suitable orientation) glued from two arcs from L1, L2, is given by

⎡

⎢⎢⎣

1 −3 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ . (2.1)

To see this, the Lagrangian skeleton of the plumbing is sketched below, where the
dashed blue line is the part of L2 that goes under L1. The extra middle crossing of
the projection is necessary as the intersection points between L1, L2 have the same
orientation (Fig. 1).

The two green loops are the other two free generators of H1(V ;Z), whose inter-
section numbers with L1 are ±1 from the middle intersection point of the green solid
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line with L1. It is clear that we can choose orientations of those two green loops to
form a basis of H1(V ;Z) such that (τL1)∗ on H1(V ;Z) is (2.1).

Proof of Theorem 1.1 Let γ1, γ2 be two loops in �1,1, representing the bases of the
fundamental group in the torus. We consider the representation ρ : π1(�1,1) →
π0(Sympc(V )), γ1 �→ φ, γ2 �→ id .ByLemma 2.1, it gives rise to a filling of ∂(�1,1×
V ), which is homotopically equivalent to Vφ∨id.

When n > 1 is odd, we take φ to be τL1 . Since φk∗ on Hn(V ;Z) is given by

[
1 −3k
0 1

]
.

Then by the discussion after Lemma 2.2, we know that Hn+1(Vφk∨id;Z) has a torsion
of Z/3k. As a consequence, each k yields a different Weinstein filling.

When n = 1, we take φ to be τL1 . Then φk∗ on Hn(V ;Z) is given by

⎡

⎢⎢⎣

1 −3k −k −k
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦ .

We know that H2(Vφk∨id;Z) has a torsion of Z/k. As a consequence, each k yields a
different Weinstein filling.

When n is even, we take φ to be τL1 ◦ τL2 . Then φ∗ on Hn(V ;Z) is given by

[
8 3

−3 −1

]
.

This matrix has positive eigenvalues λ1 = 7+3
√
5

2 > 1, λ2 = 7−3
√
5

2 < 1. As a
consequence, we have

| det((φ∗)k − id)| = |2 − λk1 − λk2|,

which grows exponentially. The torsion of Hn+1(Vφk∨id) is of size |2 − λk1 − λk2|,
which yields infinitely many different fillings as before. �	

When n is odd, we can simply take V to be the plumbing of two T ∗Sn at one point.
Then τ kL1

acts on Hn(V ;Z) by

[
1 −k
0 1

]

which yields infinitely many fillings.
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