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Abstract
We generalize the construction of a toric variety associated with an integer convex
polyhedron to construct generalized analytic varieties associated with polyhedra with
not necessarily rational vertices. For germs of generalized analytic functions with
a given Newton polyhedron �, the generalized analytic variety associated with �

provides a stratified resolution of singularities of these functions; also ensuring a
full resolution for almost all of them. Thus, this constructive and elementary approach
replaces the non-effective previous proof of this result based on consecutive blow-ups.
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Introduction

This work deals with generalized analytic manifolds; that is, topological manifolds
with boundary and corners endowedwith a structure described by generalized analytic
functions (cf., [5, §3]). Briefly, a generalized analytic function is a real-valued contin-
uous function expressed in terms of a convergent power series whose exponents range
over tuples of non-negative real numbers, as defined in [2]. Our main goals here are to
exhibit generalized analytic manifolds bymeans of Newton polyhedra techniques, and
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then, to show how this construction solves not only the stratified resolution problem,
in the sense of [7], but also provides a full resolution of singularities for almost all
germs of generalized analytic functions with fixed Newton polyhedron. In doing so,
we follow Khovanskii’s exposition on Toric resolution of singularities as done in his
seminal papers [3, 4].

Let us briefly recall the main steps behind the construction of the Toric resolution
of singularities, as carried out in [3, 4] (see Varchenko’s paper [12], where the local
case is treated). Given any admissible finite collection of simplicial convex cones in
the dual space of Rn (nowadays commonly known as a simple fan), one can define
an algebraic (analytic) manifold, completely described by the combinatorics of this
object. Roughly, a simple fan is a finite collection of simplicial convex cones, which
are primitive; namely, the volume of the parallelepiped formed by all primitive (non-
multiple) integer vectors in its one-dimensional faces is one. All the computations and
constructions involved can be read in simple linear algebra terms. Therefore, given
any polynomial (or germ of an analytic function at the origin) with real or complex
coefficients in several variables, one can always look at its Newton polyhedron, i.e.,
the convex hull of the exponents of the monomials appearing in it with non-zero
coefficients. With this convex polyhedron, one associates a simple fan inscribed in the
non-negative orthant. Consequently, one can construct themanifold associatedwith the
latter. In the end, one gets that the algebraic (analytic) manifold thus defined, together
with its projection into an open neighborhoodof the origin, solves the desingularization
problem for almost all polynomials (germsof analytic functions)with the sameNewton
polyhedron.

Adapting the construction just described, we show generalized analytic manifolds
and morphisms between them explicitly. For this sake, we introduce a combinatorial
object called a pseudo-simple fan. Grossomodo, a pseudo-simple fan is a nice partition
of the non-negative orthant into simplicial convex cones (see Definition 6 below). We
prove that each of these combinatorial objects can be realized as a generalized analytic
manifold; namely, we have the following statement.

Theorem A Any given pseudo-simple fan gives rise to a unique, up to isomorphism,
generalized analytic manifold.

We stress that, in our case, a required step done in the analogous construction in
the standard (analytic) algebraic case is unnecessary; namely, the refinement process
to get a simple fan from the initial one associated with a given Newton polyhedron.
Primitiveness condition, crucial in the standard case, is absent in the framework of
generalized analytic manifolds; the analytic meaning is that for generalized analytic
manifolds, ramification maps are valid changes of coordinates. For instance, in one
variable, given any positive real number α, the correspondence rule x �→ xα :=
exp(α ln x), well defined in the non-negative ray {x ∈ R : x ≥ 0}, defines an actual
generalized analytic change-of-coordinates, with inverse given by x �→ x1/α .

Applying Theorem A to the case of the Newton polyhedron of a given general-
ized analytic function, we obtain a constructive and geometric proof of the so-called
stratified resolution of singularities of generalized analytic functions.

Theorem B (Stratified resolution of singularities) Let f ∈ R{x∗} be a germ of a
generalized analytic function at the origin. Let � = �( f ) be the Newton polyhedron
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of f , and let us consider M(�) the manifold associated with the Newton polyhedron
of f , as well as its projection into the non-negative orthant Rn+, π : M(�) → R

n+.
Then, the map π is proper, and for any corner point p of the manifold M(�), there is a
local system of coordinates centered at p, such that the germ ( f ◦ π)p is a monomial
multiplied by some unit; i.e., ( f ◦ π)p = xα

pU (xp), where α ∈ R
n+, U ∈ R{x∗

p},
U (0) �= 0.

We should say that this result was first proved in dimensions two and three in [9].
Recently, it has been proved in arbitrary dimension in [7] but using quite different
methods. In addition, we notice that Theorem B does not ensure a full resolution of
singularities for a given function, but tell us how its transform under the projection
π : M(�) → R

n+ looks like at the corners of the manifold M(�). As an illustration,
if f (x, y) = (x − y)2 + x10, then the map π in the statement of Theorem B turns
out to be the standard blow-up at the origin (cf., Example 3), but it does not give the
full resolution of singularities of f in the usual sense). Nevertheless, once a Newton
polyhedron is fixed, we get, under plausible generic conditions, a full resolution for
almost all germs of generalized analytic functions with such a Newton polyhedron.

Theorem C (On resolution of singularities)Let� ⊂ R
n+ be a fixedNewton polyhedron.

Then, for almost all germs of generalized analytic functions at the origin, whose
Newton polyhedron coincides with �, the projection π : M(�) → R

n+ ensures their
full resolution of singularities. That is to say, for any point p on the boundary of the
manifold M(�), there is a local system of coordinates centered at p, such that the
germ ( f ◦ π)p is a monomial multiplied by some unit; i.e., ( f ◦ π)p = xα

pU (xp),
where α ∈ R

n+, U ∈ R{x∗
p}, U (0) �= 0.

Note We add that our constructions, as they are straightforward satisfied when consid-
ering formal (non necessary convergent) generalized power series, could be applied
to study the so-calledGeneralized Quasi-analytic functions, as recently introduced by
Rolin and Servi in [10].

Structure of theWork

In Sect. 1, we introduce and recall the notations, definitions, and basic notions that we
use throughout the text. Section2 is devoted to the proof of Theorem A; that is to say,
therewe showhow to realize pseudo-simple fans as generalized analyticmanifolds.We
also prove that for any such generalized analytic manifold, its projection into the non-
negative orthant is well defined and proper (see Corollary 1). Although TheoremB is a
direct consequence of the constructions carried out in Sect. 2, we include the details in
Sect. 3 for completeness. In this same last section, we prove Theorem C; we elaborate
on the aforementioned generic conditions, showing that, indeed, the construction we
make ensures a full resolution of singularities for almost all germs of generalized
analytic functions with the same Newton polyhedron.

Our exposition is mainly based on Chapter 8, §8.1–8.2, of Arnold et al. [1], where
Varchenko’s construction of Toric resolution of singularities is covered, as presented
in [12]. It is, in turn, an adaptation of Khovanskii’s original approach; cf., [3, 4]; which
has also influenced our work.
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1 Preliminaries

Throughout this manuscript, we use the multi-index notation. Let n ∈ N be a natural
number. We denote by R

n+ the set of n-tuples of non-negative real numbers and by
R
n
>0 the set of n-tuples of positive real numbers. Let x = (x1, x2, . . . , xn) be a tuple

of n distinct variables. Given any two tuples α, β ∈ R
n+, we write

xα := xα1
1 xα2

2 . . . xαn
n , |α| := α1 + α2 + · · · + αn,

α + β := (α1 + β1, α2 + β2, . . . , αn + βn).

And, we put α ≤ β if and only if α j ≤ β j for all j ∈ {1, 2, . . . , n}. This partial order
relation is called the division order in R

n+. We stress that α ≤ β if and only if the
monomial xα divides the other xβ . We also write 〈α, β〉 := α1β1+α2β2+· · ·+αnβn .

1.1 Newton Polyhedra

We say that a set A ⊂ R
n+ is good if there are well-ordered subsets of the non-negative

real numbers S j ⊂ R+, j ∈ {1, 2, . . . , n}, such that A is a subset of their Cartesian
product; i.e., A ⊂ S1 × S2 ×· · ·× Sn (e.g., any subset A of the Cartesian product of n
copies of the non-negative integers Z+ is a good set); cf., [2, §4]. The following basic
properties of good sets are straightforward from the definition.

Proposition 1 [2, Lemma 4.2] Let A ⊂ R
n+ be a good set. Then

(1) The subset of A consisting of minimal elements with respect to the division order
is a finite set.

(2) The set {|α| : α ∈ A} is a well-ordered subset of R+. Moreover, for every non-
negative real number r ∈ R+, the set Ar := {α ∈ A : |α| = r} is finite.

Definition 1 Let A ⊂ R
n+ be a good set. The Newton polyhedron of A is the convex

hull in R
n+ of the set ∪α∈A(α + R

n+). We denote by �(A) the Newton polyhedron of
A.

Moreover, the union of all compact faces of the Newton polyhedron of A is called
the Newton diagram of A, and is denoted by �(A).

1.2 Formal Generalized Power Series

A formal generalized power series in the variables x = (x1, x2, . . . , xn) and with real
coefficients is a power series f (x) = ∑

α fαxα , such that its support; that is, the set
of exponents occurring in f , Supp( f ) := {α ∈ R

n+ : fα �= 0}, is a good set. If the
support of f is finite, we say that f is a generalized polynomial. We denote byR[[x∗]]
and R[x∗] the local ring of all formal generalized power series in the variables x with
real coefficients and the ring of all generalized polynomials, respectively.

Definition 2 Let f ∈ R[[x∗]] be a formal generalized power series. The Newton
polyhedron (diagram) of f is the Newton polyhedron (diagram) of its support. We
denote by �( f ) the Newton polyhedron of f (and by �( f ) its Newton diagram).
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Newton Polyhedra and Stratified Resolution of Singularities... 375

Additionally, for any face γ of the Newton polyhedron of the power series f ,
the γ -part of f is the restriction of f to the intersection Supp( f ) ∩ γ ; that is,∑

α∈Supp( f )∩γ fαxα . If the face γ is compact, then the γ -part of f is a generalized
polynomial. We also call the principal part of the power series f to its restriction
to the intersection Supp( f ) ∩ �; that is, the principal part of f is the finite sum∑

α∈Supp( f )∩� fαxα . We denote by fγ the γ -part of the power series f , and by f�
we mean its principal part.

1.3 Monomial Maps

It is known (cf., [1, §8.1.2]) that any monomial map can be translated into a linear
transformation and that this translation is a linear representation. Therefore, we can
use simple linear algebra methods when dealing with monomial maps. Let us briefly
recall the linear representation we refer to.

Let h = (h1, h2, . . . , hn) : Rm
>0 → R

n
>0 be a monomial map defined com-

ponentwise, at any point x = (x1, x2, . . . , xm) ∈ R
m
>0, by the correspondence

rule

h j (x) = xα j = x
α
j
1

1 x
α
j
2

2 · · · xα
j
m

m , for some α j = (α
j
1 , α

j
2 , . . . , α

j
m) ∈ R

m .

The matrix of exponents of the monomial map h is the matrix E(h) ∈ Matn×m(R),
whose arrows are the m-tuples α1, α2, . . . , αn

h �−→ E(h) :=

⎡

⎢
⎢
⎢
⎣

α1
1 α1

2 · · · α1
m

α2
1 α2

2 · · · α2
m

...
... · · · ...

αn
1 αn

2 · · · αn
m

⎤

⎥
⎥
⎥
⎦

∈ Matn×m(R).

Let g : R
l
>0 → R

m
>0 and h : R

m
>0 → R

n
>0 be any two monomial maps. A

straightforward computation shows that

E(h ◦ g) = E(h) · E(g).

1.4 Cones, Projective Skeletons, and Pseudo-simple Fans

We now introduce the combinatorial-geometric objects that play the central role in
constructing those generalized analytic manifolds announced in the introduction. We
start by giving the definitions of cones, their projective skeletons (and their affine repre-
sentatives), and the notion of a pseudo-simple fan.We restrict ourselves to considering
cones inscribed in the non-negative orthant Rn+.

Definition 3 The cone generated by the vectors α1, α2, . . . , αm ∈ R
n+ is the cone

consisting of linear combinations of these vectors with non-negative coefficients.
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Let us notice that given any cone with a vertex at the origin, the union of all its
one-dimensional faces is finite. Each one of these one-dimensional faces determines
a point in the real projective space of dimension n − 1 in a natural way.

Definition 4 The projective skeleton of a cone with a vertex at the origin is the set of
all points in the real projective space of dimension n − 1 determined by the union of
all the faces of dimension one of the cone.

An affine representative skeleton of a cone is any choice of a complete ordered set
of representatives of the projective skeleton contained in the non-negative orthantRn+.
We notice that any affine representative skeleton of a cone generates the cone itself.

Definition 5 A cone with a vertex at the origin is called simplicial if there is an affine
representative skeleton that consists of linearly independent vectors in Rn .

Definition 6 A fan is a finite set of cones, all of them with a vertex at the origin,
satisfying the following properties:

(1) Each face of a cone from the set also belongs to the set.
(2) The intersection of any two cones from the set is a face of both.

We say that a fan is pseudo-simple if all its cones are simplices.

Definition 7 Let �1 and �2 be two pseudo-simple fans. We say that the fan �1 is
inscribed in the fan �2 if each cone in �1 is contained in some cone in �2.

1.5 Pseudo-simple Fans Associated with Newton Polyhedra

Let � be the Newton polyhedron of some good subset of the non-negative orthantRn+.
Let us denote byRn∗ the dual vector space ofRn . In this space, we consider the support
function of the Newton polyhedron �; that is to say, the function l� : Rn∗ → R that
to each covector α in Rn∗ associates

l�(α) := min{〈α, x〉 : x ∈ �}.

Let α ∈ R
n∗+ be a covector with non-negative components. The trace on the Newton

polyhedron � of the covector α is the face of the polyhedron that coincides with the
set

{x ∈ � : 〈α, x〉 = l�(α)}.

Given α, β ∈ R
n∗+ two covectors in the non-negative orthant, we say that they are

equivalent relative to a Newton polyhedron � if they have the same trace on it. The
closure of any equivalence class shapes a cone with vertex at the origin, dual to the
face attached to it. Besides, the collection of all cones thus determined forms a fan,
from which we obtain a pseudo-simple one (namely, the finite collection of all normal
directions to the (n − 1)-dimensional faces of � determines it; cf., Step 1 indicated
in the proof of Theorem 1 in [4, §1.2, p. 2813]). Summing up, we have the following
result.
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Fig. 1 a The Newton polygon of f (x, y) = axα + byβ , and b the pseudo-simple fan associated with it

Proposition 2 Any given Newton polyhedron � determines a pseudo-simple fan in the
dual space of Rn.

The fan set in the previous proposition is called the pseudo-simple fan associated
with the Newton polyhedron �, and we denote it by �(�).

Example 1 Let us consider the generalized polynomial f (x, y) = axα + byβ , where
a, b ∈ R are non-zero real constants, and α, β ∈ R>0 are positive exponents. The
Newton polygon of f , say � = �( f ), has three edges (one-dimensional faces):
γ1 = {(x, y) ∈ R

2 : x ≥ α, y = 0}, γ2 = {(x, y) ∈ R
2+ : βx + αy = αβ} and

γ3 = {(x, y) ∈ R
2 : x = 0, y ≥ β}; and two vertices (zero-dimensional faces)

γ4 = {(α, 0)} and γ5 = {(0, β)} (see Fig. 1a).
The associated pseudo-simple fan with the Newton polygon � is the union of the

cones that are defined in terms of the support function of �, as we explained above.
Namely, to each edge, it is associated a one-dimensional cone (defined by the normal
direction to such face); γ j �−→ σ j , j ∈ {1, 2, 3}, where σ1 = span ({(0, 1)}) ∩ R

2∗+ ,
σ2 = span ({(β, α)})∩R

2∗+ and σ3 = span ({(1, 0)})∩R
2∗+ .While to the vertices γ4 and

γ5 correspond the two-dimensional conesσ4 andσ5 as indicated in Fig. 1b). In addition,
we notice that the projective skeletons associated with the edges are

[
Bσ1

] = {[0 : 1]},[
Bσ2

] = {[β : α]} and [
Bσ3

] = {[1 : 0]}. Therefore, the corresponding projective
skeletons to the two-dimensional cones σ4 and σ5 are

[
Bσ4

] = {[β : α], [0 : 1]} and[
Bσ5

] = {[1 : 0], [β : α]}, respectively.

2 Proof of Theorem A

In this section, we construct a generalized analytic manifold determined by the com-
binatorics and geometry of a given pseudo-simple fan. This manifold is covered by a
finite (generalized analytic) atlas. Plus, there is a one-to-one correspondence between
the charts of the atlas and the n-dimensional cones of the fan. Each chart is equal to
the non-negative orthant Rn+ (so the resulting manifold has boundary and corners). Of
course, such a manifold’s structure is characterized by how we glue together different
charts. We claim that the kind of structures we get is generalized analytic. At this
point, we use the curve selection result proved by van den Dries and Speissegger in [2,
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p. 4416]. It permits us to conclude that the topological space we construct is indeed
Hausdorff and that certain maps between these manifolds are proper.

2.1 Step-by-Step Construction of theManifold Associated with a Pseudo-simple
Fan

Let us fix a pseudo-simple fan �. Let σ be an n-dimensional cone in the fan �, and
let [Bσ ] be the projective skeleton of σ . First of all, let us take an affine representative
of the projective skeleton [Bσ ], say Bσ = {α1(σ ), α2(σ ), . . . , αn(σ )} ⊂ R

n+. At the
end of this subsection, we prove that our construction does not depend on the choice
we made. Besides, we associate with the cone σ a copy of the non-negative orthant
R
n+, denoted by Uσ . We refer to (Uσ , Bσ ) as the chart associated with the cone σ .
Let σ1 and σ2 be two n-dimensional cones of the fan �. Let (Uσ1 , Bσ1) and

(Uσ1 , Bσ2) be the charts associated with σ1 and σ2, respectively. We define a mono-
mial map from the first chart into the second one. Concretely, the monomial map we
look for is nothing but the one whose matrix of exponents coincides with the change-
of-basis matrix that transforms the second basis Bσ2 into the first Bσ1 . We denote by
ϕσ1,σ2 : Uσ1 → Uσ2 this (change-of-coordinates) monomial map.

Definition 8 Let p ∈ Uσ1 be a point in the first chart and let q ∈ Uσ2 be a point in
the second chart. We say that p is equivalent to q if the latter is the image of the
former under the monomial map defined from the first chart into the second one; i.e.,
ϕσ1,σ2(p) = q.

The following result ensures that our construction makes sense as a topological
manifold. It is an adaptation to our case of Lemma 8.2 proved in [1].We can reproduce,
almost verbatim, its proof; the only step that could fail is where it is used the classical
curve selection lemma; cf., [6, §3]. Nevertheless, in the setting of generalized analytic
manifolds, the analogous result also takes place; cf., [2, p. 4416], so we are done.

Lemma 1 (cf., Lemma 8.2 in [1]) Let ϕσ1,σ2 : Uσ1 → Uσ2 be the monomial map
between the two charts Uσ1 and Uσ2 . Let {p j }∞j=1 ⊂ Uσ1 be a sequence of points in
the first chart satisfying:

(1) there is a point p0 in Uσ1 such that lim j→∞ p j = p0,
(2) the monomial map ϕσ1,σ2 is defined at each point of the sequence, and
(3) there is a point q0 in Uσ2 , such that lim j→∞ ϕσ1,σ2(p j ) = q0.

Then, the monomial map ϕσ1,σ2 is defined and nondegenerate at the limit point of the
sequence.

Consequently, we conclude that the relation between points in any two ordered
charts settled in Definition 8 is an equivalence relation. Then, arguing as in [1, p.
239], the manifold associated with the fan � is defined as the quotient space obtained
by means of the previous equivalence relation. Let us recall the general arguments.
From Lemma 1, we know that this topological space is Hausdorff. Moreover, the
canonical inclusion of all the charts Uσ gives rise to an open cover of it and defines a
homeomorphism from each one of these open sets into the non-negative orthant Rn+.
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Fig. 2 Geometric picture of the generalized analytic manifold associated with the pseudo-simple fan �(�)

The transition maps connected with these homeomorphisms are invertible monomial
maps. Hence, we have constructed a generalized analytic manifold determined by the
pseudo-simple fan �.

Example 2 Let us consider the generalized polynomial f (x, y) = axα+byβ again. As
we showed inExample 1, the pseudo-simple fan associatedwith theNewtonpolygonof
f possesses two cones of dimension two,σ4 andσ5. The respective projective skeletons
are

[
Bσ4

] = {[β : α], [0 : 1]} and [
Bσ5

] = {[1 : 0], [β : α]}. Let us choose the (ordered
bases) affine representatives B1 = {(1, α/β), (0, 1)} and B2 = {(1, 0), (β/α, 1)}, and
let us consider the charts (U1, B1) and (U2, B2), where U1 = U2 = R

2+. Then, the
monomial map from the first chart into the second, ϕ1,2 : U1 → U2, is codified by the
change-of-basis matrix

E(ϕ1,2) =
[
1 β/α

0 1

]−1 [
1 0

α/β 1

]

=
[

0 −β/α

α/β 1

]

.

Therefore, if (x, u) are coordinates in the first chart, and (v, y) are coordinates in the
second one, the transition map between them is given by the correspondence rule

ϕ1,2(x, u) = (u−β/α, xα/βu).

The manifold M(�) thus defined is depicted in Fig. 2.
We claim that our constructions do not depend on the choice of affine representative

skeletons. That is to say; if we had chosen any other pair of affine representative
skeletons, then we would obtain a generalized analytic manifold isomorphic to the
one just constructed. Indeed, let B̃1 = {(λβ, λα), (0, μ)} and B̃2 = {(ν, 0), (ξβ, ξα)}
be any other affine representative skeletons of the cones σ4 and σ5, respectively, where
λ,μ, ν, and ξ are some fixed real positive numbers. Repeating the process to construct
the manifold M(�), but using now the charts (Ũ1, B̃1) and (Ũ2, B̃2), we get another
generalized analytic manifold M̃(�). However, there is a quite natural isomorphism
between the manifolds M̃(�) and M(�). Namely, it is given in local charts by the
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Fig. 3 Independence of the choice of affine representative skeletons

monomial maps ψ1 : Ũ1 → U1, and ψ2 : Ũ2 → U2 codified by the diagonal (change-
of-basis) matrices

E(ψ1) =
[
λβ 0
0 μ

]

, E(ψ2) =
[
ν 0
0 ξα

]

,

respectively. It is straightforward to check that E(ϕ1,2) · E(ψ1) = E(ψ2) · E(ϕ̃1,2);
i.e., ϕ1,2 ◦ψ1 = ψ2 ◦ ϕ̃1,2. Hence, the manifold M̃(�) is isomorphic (as a generalized
manifold) to the manifold M(�), as claimed (see Fig. 3).

Let us prove, in general, that our constructions do not depend on the affine represen-
tative skeletons chosen. Do not forget that, as illustrated in the previous example, this
is due to the very construction of such kind of manifolds: the monomial maps defining
the structures on them correspond to change-of-basis matrices in an n-dimensional
real vector space.

Lemma 2 (Independence of the choice of affine representative skeletons) Let σ1
and σ2 be two n-dimensional cones of the same pseudo-simple fan �. Let Bσ1 ,
B̃σ1 be two affine representative skeletons of the first cone σ1, and let Bσ2 , B̃σ2 be
two affine representative skeletons of the second σ2. Let us consider the pairs of
charts {(Uσ1 , Bσ1), (Uσ2 , Bσ2)}, and {(Ũσ1 , B̃σ1), (Ũσ2 , B̃σ2)}, aswell as the respective
change-of-coordinates maps between them; ϕσ1,σ2 : Uσ1 → Uσ2 , and ϕ̃σ1,σ2 : Ũσ1 →
Ũσ2 . Then, there are invertible monomial maps ψσ1 : Ũσ1 → Uσ1 , and ψσ2 : Ũσ2 →
Uσ2 , such that ϕσ1,σ2 ◦ ψσ1 = ψσ2 ◦ ϕ̃σ1,σ2 .
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Proof By definition, the sets

Bσ1 = {α1(σ1), α
2(σ1), . . . , α

n(σ1)} , B̃σ1 = {α̃1(σ1), α̃
2(σ1), . . . , α̃

n(σ1)} ,

Bσ2 = {α1(σ2), α
2(σ2), . . . , α

n(σ2)} , B̃σ2 = {α̃1(σ2), α̃
2(σ2), . . . , α̃

n(σ2)} ,

are ordered bases ofRn contained in the non-negative orthantRn+. Moreover, for each
j ∈ {1, 2}, and each k ∈ {1, 2, . . . , n}, we know that1 the vectors αk(σ j ) and α̃k(σ j )

are colinear in R
n . Therefore, for each j ∈ {1, 2} and each k ∈ {1, 2, . . . , n}, there is

a positive real number λkj > 0, such that

λkjα
k(σ j ) = α̃k(σ j ).

Let Dσ j be the diagonal matrix whose entries correspond to the positive numbers
{λkj }nk=1; that is

Dσ j :=

⎡

⎢
⎢
⎢
⎣

λ1j 0 · · · 0
0 λ2j · · · 0
...

...
. . .

...

0 0 · · · λnj

⎤

⎥
⎥
⎥
⎦

, j ∈ {1, 2}.

Then, we define the monomial maps ψσ1 : Ũσ1 → Uσ1 , and ψσ2 : Ũσ2 → Uσ2 as the
monomial maps whose matrices of exponents are given by the matrices Dσ1 , and Dσ2 ,
respectively. Thus, recalling the definition of the (change of coordinates) monomial
maps ϕσ1,σ2 , and ϕ̃σ1,σ2 , it is straightforward that ϕσ1,σ2 ◦ ψσ1 = ψσ2 ◦ ϕ̃σ1,σ2 , as
desired. ��

In conclusion, Lemma 2 ensures that our construction does not depend on the affine
representative skeletons chosen for each projective cone in the fan �. In the end, we
get isomorphic generalized analytic manifolds.

The generalized analytic manifold constructed above is called the (generalized
analytic) manifold associated with the pseudo-simple fan �. We denote it by M(�).

2.2 Maps BetweenManifolds Associated with Pseudo-simple Fans

Let us show how we can define maps between this class of generalized analytic
manifolds.

Proposition 3 Let �1 and �2 be two pseudo-simple fans. Let us suppose that �1 is
inscribed in�2. Let M1 = M(�1) and M2 = M(�2) be themanifolds associated with
the fans �1 and �2, respectively. Then, there is a well-defined generalized analytic
map from the manifold M1 into the manifold M2.

1 Recall that, by definition of affine representative skeletons, both vectors αk (σ j ) and α̃k (σ j ) are

representatives of the same point in the real projective space RPn−1; i.e., [αk (σ j )] = [α̃k (σ j )] ∈ RPn−1.
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Proof We define the map from M1 to M2 locally; that is to say, we define it on each
chart of the first manifold. LetU be a chart of themanifoldM1. Then, toU corresponds
an n-dimensional cone in the first fan�1, say σ1 ∈ �1. By hypothesis,�1 is inscribed
in�2; so, there is an n-dimensional cone σ2 in�2 that contains the cone σ1. Moreover,
the cone σ2 determines a chart V of the manifold M2. Thus, as discussed before, we
consider the monomial map defined from U to V . We point out that the exponents
occurring in such a map belong all to the non-negative orthant, since the first cone σ1
is contained in the second σ2. Therefore, it defines a generalized analytic map from the
chartU into the other V . To finish the proof, we must check that these local monomial
maps define a global well-defined generalized analytic map from the first manifoldM1
to the second M2. However, this is clear using the matrices of exponents of monomial
maps recalled in Sect. 1.3. ��

The proof of Theorem A is done. Finally, among the maps we have shown, there
is a particular subclass when one additional condition is considered. Namely, if we
suppose that the union of the cones of the first fan contains the union of the cones of
the second fan, then the map between them is proper. This statement can be proved by
reproducing verbatim the proof given in [1] of its Theorem 8.1; cf., [1, pp. 241–242].

Lemma 3 Let �1 and �2 be two pseudo-simple fans. Let us suppose that �1 is
inscribed in �2. Let M1 = M(�1) and M2 = M(�2) be the manifolds associated
with the fans�1 and�2, respectively, and let h : M1 → M2 be the map constructed in
Proposition 3. Then, if the union of the cones of the first fan contains the union of the
cones of the second fan, the map h is proper and invertible on an everywhere dense
subset of M1. The converse is also true.

Corollary 1 Let � be a pseudo-simple fan, and let M(�) be the manifold associated
with it. Then, there is a proper map from M(�) into the non-negative orthant Rn+.
Moreover, this map is invertible on an everywhere dense subset of M(�).

Before going forward, let us come back once again to Example 1, and let us see
how its projection into the non-negative quadrant looks like.

Example 3 Let us consider the same generalized polynomial as in Example 1; i.e.,
f (x, y) = axα + byβ , and let M(�) be the manifold associated with the pseudo-
simple fan �(�), as described in Example 2. That is to say, we consider the
generalized analytic structure arising from the atlas {(U1, B1), (U2, B2)}, where
B1 = {(1, α/β), (0, 1)} and B2 = {(1, 0), (β/α, 1)} are affine representative skele-
tons of the two-dimensional cones σ4, and σ5, respectively. Then, the local pictures of
the projection map π : M(�) → R

2+ are given by the monomial maps π1 : U1 → R
2+

and π2 : U2 → R
2+ codified by the matrices

E(π1) =
[

1 0
α/β 1

]

, E(π2) =
[
1 β/α

0 1

]

,

respectively. Equivalently

π1(x, u) = (x, xα/βu), π2(v, y) = (vyβ/α, y).
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Fig. 4 Newton polygons of the composition f ◦ π at both corner points of the manifold M(�)

Fig. 5 Newton polygons of the composition f ◦ π̃ at both corner points of the manifold M̃(�)

To end this example, let us compute the composition of the initial generalized
polynomial f (x, y) = axα + byβ followed by the projection of the manifold M(�)

into the non-negative quadrant:

f ◦ π1(x, u) = xα(a + buβ), f ◦ π2(v, y) = yβ(avα + b).

Finally, we observe that both Newton polygons �( f ◦π1) and �( f ◦π2) are quadrants
(see Fig. 4).

Remark 1 If we had chosen another system of coordinates; i.e., another generalized
analytic structure, as done at the end of Example 2, the result would be essentially the
same. Indeed, let M̃(�) be the generalized analytic manifold determined by the atlas
{(Ũ1, B̃1), (Ũ2, B̃2)}, where B̃1 = {(λβ, λα), (0, μ)} and B̃2 = {(ν, 0), (ξβ, ξα)}.
Then, its projection into the non-negative quadrant, π̃ : M̃(�) → R

2+, in local
coordinates is given by the correspondence rules π̃1(x̃, ũ) = (x̃λβ, x̃λα ũμ), and
π̃2(ṽ, ỹ) = (ṽν ỹξβ, ỹξα). Hence

f ◦ π̃1(x̃, ũ) = xλαβ(a + buμβ), f ◦ π̃2(ṽ, ỹ) = yξαβ(avνα + b).

Therefore, at both corner points of the manifold M̃(�), the composition f ◦ π̃ is also a
monomial multiplied by some unit. Both Newton polygons corresponding to the local
pictures f ◦ π̃1 and f ◦ π̃2 are drafted in Fig. 5a, b, respectively.
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3 Proofs of Theorems B and C

Let us finally prove the statements on resolution of singularities announced in the
introduction. In the proof of Theorem B, we are about to present, the most basic con-
ditions that would lead to the proof of Theorem C are suggested. In consequence, after
proving Theorem B, we shall finish our work verifying that such natural conditions
are in fact generic.

Proof of Theorem B Let f = ∑
α fαxα ∈ R{x∗} be a germ of a convergent generalized

power series. Let� = �( f ) be its Newton polyhedron. Let�(�) be the pseudo-simple
fan associatedwith theNewton polyhedron�, and let us denote byM(�) := M(�(�))

the manifold associated with the pseudo-simple fan �(�).
First of all, Corollary 1 makes sure that the projection of the manifold M(�) into

the non-negative orthant Rn+, π : M(�) → R
n+, is proper. Therefore, to accomplish

our goal, we have to verify that, at each corner point p of the manifold M(�), the
germ of the composition f ◦ π is a monomial multiplied by some unit. Let (U , B)

be a chart in M(�). By definition, the local picture of the map π in the chart U ,
say π |U : U → R

n+, is codified by the change-of-basis matrix that transforms the
standard basis of Rn , B0 := {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)} into the
basis B = {α1, α2, . . . , αn}. That is to say, the monomial map π |U is defined in terms
of the matrix E (π |U ) = (ai j ) whose columns are the ordered column-vectors of the

basis B; i.e., ai j = α
j
i for all i, j ∈ {1, 2, . . . , n}. We stress that the composition

f ◦ π |U (x) is a monomial multiplied by some unit at the origin in U whenever the
principal part of f is transformed into a germ of the same style. That is to say, it is
enough to show that the composition f� ◦ π |U (x) is a monomial multiplied by some
unit, where f� is the principal part of f . However, a direct computation shows that
under the projection π |U , each monomial xα , with α ∈ R

n+, is transformed into the

monomial x 〈α1,α〉
1 x 〈α2,α〉

2 · · · x 〈αn ,α〉
n . Therefore, recalling the definition of the pseudo-

simple fan �(�) (see Sect. 1.5), we conclude that f� ◦ π |U (x) = xα0 f̃ (x), for some
convergent power series f̃ ∈ R{x∗}, such that f̃ (0) �= 0. The proof of Theorem B is
complete. ��

3.1 Proof of Theorem C

From now on, � ⊂ R
n+ will denote a fixed Newton polyhedron. Looking carefully

into the previous arguments, we notice that, for any germ of a generalized analytic
function at the origin, its stratified resolution of singularities, as done above, is ruled by
its Newton diagram; i.e., by the union of all compact faces of its Newton polyhedron.
Besides, such a monomialization process would be a full resolution of singularities of
a given germ f , whenever the local monomial description of the composition f ◦ π

remained true at any point on the boundary of the manifold M(�), and not just at the
corner ones. However, those points where could fail this belong to the zero-level set of
the γ -parts of the germ f , intersected with the positive orthant R+

>0, where γ ranges
over all compact faces of the Newton polyhedron �. Said that, next, we estate the
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simplest conditions under which the previous construction provides a full resolution
for germs of generalized analytic functions whose Newton polyhedron is exactly �.

Definition 9 Let f ∈ R[[x∗]] be a formal generalized power series, such that its
Newton polyhedron coincides with �. We say that the principal part of the power
series f is �-nondegenerate if none of the generalized polynomials fγ has a zero in
the positive orthant Rn

>0, where the index γ ranges over all the compact faces of the
Newton polyhedron �.

In consequence, all we need to do is to prove that being �-nondegenerate is a
generic condition in the set of all principal parts of formal generalized power series,
whose Newton polyhedron coincides with �.

Indeed, let γ be a compact face of the Newton polyhedron �, and let f ∈ R[x∗] be
a generalized polynomial that is a γ -part; i.e., the generalized polynomial f is a finite
sum of monomials f = ∑

α∈γ fαxα , where all the exponents belong to the compact
face γ .

Before continuing, we remark that we can assume that for any exponent α ∈ γ , it
happens that n + 1 ≤ min{α j : j ∈ {1, 2, . . . , n}} (if were not the case, it is enough
to multiply f by somemonomial xα0

, with α0 ∈ R
n+). In consequence, we can assume

that the generalized polynomial f defines a Ck-differentiable function, with n ≤ k.
The generalized polynomial f has also one special property: there are a tuple

β ∈ R
n+ and a positive real number ν > 0, such that it can be rewritten as follows:

f =
∑

〈β,α〉=ν

fαx
α.

Then, a straightforward computation shows us that it satisfies the followinggeneralized
Euler identity:

ν · f = β1x1
∂ f

∂x1
+ β2x2

∂ f

∂x2
+ · · · + βnxn

∂ f

∂xn
.

Thus, we observe that the zero-level set of f contains the intersection of the zero-level
sets of all its partial derivatives in the positive orthant Rn

>0. Plus, it is clear that if the
generalized polynomial is �-nondegenerate, then, the intersection of the zero-level
sets of all its partial derivatives is empty in the positive orthantRn

>0. It follows that the
set of all γ -parts that do not have any zeros at all in the positive orthant, is a subset of
all the γ -parts which are regular in the positive orthant Rn

>0. Therefore, arguing as in
Lemma 6.1 in [1, §6.2, pp. 188–189], but using Morse–Sard Theorem; cf., [8, 11] (we
apply the Ck-version of the statement, with n ≤ k), instead of Bertini–Sard Theorem
as done in [1], we finally get that: in the space of all generalized polynomials which
are γ -parts, the subset of all �-nondegenerate ones is everywhere dense. Therefore,
we are done.
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