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Abstract
We develop a technique for calculating the cohomology groups of spaces of complex
parametric knots in C

k , k ≥ 3, and obtain these groups of low dimensions.
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1 Introduction

V.I. Arnold asked (see [2], Problem 1998-10) how to “complexify” the theory of
Vassiliev invariants. We propose here an answer to this question by a straightforward
extension of constructions from [11, 13] to the case of complex parametric curves in
affine spaces. Namely, we describe a method of calculating the cohomology groups
of spaces of such curves that do have no cusps or self-intersections. For another view
of the Arnold’s problem (in the context of the “complexification” of the Gauss linking
number), see [8].

Let d be a natural number, and P(d, k) be the space of maps C
1 → C

k , k ≥ 3,
defined by arbitrary k polynomials in variable z of the form

zd + λ1z
d−1 + · · · + λd−1z + λd , (1)

λ j ∈ C
1. This space is obviously diffeomorphic to R

2kd .
A map f : C

1 → C
k of this type is called a complex knot of degree d if it is a

smooth embedding, i.e., has no self-intersections and no points of vanishing derivative.
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Table 1 Low-dimensional cohomology of complex knot spaces

i 0 2k − 5 4k − 9 4k − 7 6k − 14 6k − 13 6k − 12

Hi
Z Z Z2 Z3 Z2 Z3 Z3 ⊕ Z

The set of maps f ∈ P(d, k) that are not complex knots is called the discriminant
and is denoted by �.

Below we start computing the cohomology groups of the spaces P(d, k)\� for
sufficiently large d using a simplicial resolution of the discriminant space.

This method also allows us to prove the following stabilization theorem.

Theorem 1 For any natural numbers s and k ≥ 3, there is a number dk(s) such
that there are natural isomorphisms

Hi (P(d ′, k)\�) � Hi (P(dk(s), k)\�) (2)

for all d ′ > dk(s) and any i ≤ s.

Thus, for any k ≥ 3 the stable cohomology ring of spaces P(d, k)\� with
d → ∞ is well defined. It is natural to consider it as the cohomology ring of the
space of complex knots in C

k . In contrast to the real case, all its finite-dimensional
elements are definitely of finite type (while the analogous statement for real knots is
an uncertain conjecture).

Theorem 2 If d is sufficiently large and k > 3, then

(1) all non-trivial groups Hi (P(d, k)\�, Z) with i ≤ 6k − 12 are as shown in
Table 1.

(2) rational homology groups Hi (P(d, k)\�, Q) with i ≤ 8k − 17 are non-trivial
only for i = 0, 2k − 5, 6k − 12, 6k − 9, and 8k − 17; for k > 4 these groups
with i = 0, 2k − 5, 6k − 12 and 6k − 9 are one-dimensional, while if k = 4
then 6k − 9 = 8k − 17 and the corresponding group H15(P(d, 4)\�, Q) is at
least two-dimensional.

If d is sufficiently large, then

(1) all non-trivial groups Hi (P(d, 3)\�, Z) with i ≤ 4 are H0 � H1 � Z,
H3 = H4 = Z2, the group H5 is of order 18;

(2) all non-trivial groups Hi (P(d, 3)\�, Q) with i ≤ 7 are H0, H1, H6 and H7;
the first three of them are one-dimensional.

1.1 Notation

For a topological space X , B(X , k) is its k-th configuration space, i.e., the space of
subsets of cardinality k in X with a natural topology. ±Z is the sign local system
of groups on the space B(X , k): it is locally isomorphic to Z, but loops in B(X , k)
act on its fibers by multiplication by ±1 depending on the parity of corresponding
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Cohomology of Spaces of Complex Knots 325

permutations of k points. H̄∗(X) denotes the Borel–Moore homology group of the
topological space X , that is, the homology group of the complex of locally finite
singular chains in X .

1.2 Work Plan

In Sect. 2, we introduce the main tool of the work, a spectral sequence arising from the
simplicial resolution of the discriminant variety. Its construction almost repeats that
which is systematically used in [12]. Theorem 1 is proved in Sect. 3 using this spectral
sequence. In Sect. 4, a crucial technical tool of practical calculations is described: an
additional filtration on the resolution spaces, which simplifies the calculation of the
first page E1 of the main spectral sequence.

In Sects. 5–7, we apply these techniques to find three first columns of this page,
which provide almost all cohomology classes mentioned in Theorem 2. In Sect. 8, we
study some configuration spaces and local systems involved in the calculations of this
kind. In particular, we prove that all subsequent columns almost do not contribute to
cohomology groups of low dimensions mentioned in Theorem 2 (except for a class of
H8k−17(P(d, k)\�, Q) coming from the fourth column).

2 Simplicial Resolution andMain Spectral Sequence

2.1 Systems of Elementary Conditions and the First Reductions

Denote by W the space Sym2(C1) of unordered pairs of points {α, β} in C
1. By

Vieta theorem, it can be identifiedwith the space of polynomials of the form t2+ut+v

in the variable t with complex coefficients, in particular, is homeomorphic to C
2.

Definition 3 For any point χ = {α, β} ∈ W, the corresponding elementary condition
on the maps f : C

1 → C
k is the condition f (α) = f (β) if α �= β or f ′(α) = 0

if α = β. The space W is called the space of elementary conditions.
� ⊂ � is the set of all maps of class P(d, k) satisfying infinitelymany elementary

conditions.
For any natural d, the d-rank of a finite system of elementary conditions χ j =

{α j , β j } is the complex codimension of the set of polynomials ϕ : C
1 → C

1 of the
form (1) satisfying all corresponding conditions ϕ(α j ) = ϕ(β j ) or ϕ′(α j ) = 0 (if
α j = β j ) in the space of all polynomials (1). The rank of such a system of elementary
conditions is the common value of its d-ranks for all sufficiently large d.

Remark 4 By the interpolation theorem, for this “sufficiently large d” we can take
any d ≥ 2s − 1 where s is the number of conditions in the system. Accordingly, if
ρ < d

2 , then the rank of a system of elementary conditions is equal to ρ if and only
if its d-rank is equal to ρ.

Definition 5 An affine complex subspace K ⊂ P(d, k) is called decent if the closure
of K in the projectivization CP

dk of P(d, k)
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(a) is transversal to the stratified variety consisting of the discriminant � and the
“hyperplane at infinity” CP

dk\P(d, k),
(b) is transversal to the closures of all subspaces of codimension k in P(d, k)

defined by single elementary conditions, and has non-empty intersections with
each of them in P(d, k), and

(c) does not intersect the closure of the set � in CP
dk .

By the generalized Lefschetz plane section theorem (see, for example, [7], Sect.
2.2 of Introduction), if an affine subspace K ⊂ P(d, k) of complex dimension D is
decent, then for all i < D we have

Hi (P(d, k)\�) � Hi (K\�).

ByAlexander duality (cf. [1]), the cohomology groups of the space K\�, dimK =
D, are isomorphic to the Borel–Moore homology groups of the discriminant,

H̃ i (K\�) � H̄2D−1−i (� ∩ K). (3)

It is these groups that will be calculated in the rest of the work.

Proposition 6 1. If a map f = ( f1, . . . , fk) of class P(d, k) belongs to �,
then there exists a polynomial P(z) of degree greater than 1 and polynomials
Q1, . . . , Qk such that all k components f j of f have the form Q j (P(z)).

2. If f does not belong to � then it satisfies less than (d−1)2

2 distinct elementary
conditions.

Proof 1. If there are infinitely many points x ∈ C
k such that f (α) = x for more

than one point α ∈ C
1 or x is a critical value of f , then such points x form a

complex algebraic curve C ⊂ C
n . Infinitely many points of C

1 are mapped by f
to this curve, hence they all go to it. By Hartogs’ theorem, this map f : C

1 → C
can be lifted to a holomorphic map f̌ of C

1 to the normalization Č of C .
This curve Č is simply connected. Indeed, any element of its fundamental group
can be realized by a loop that avoids the critical values of f̌ , and therefore can
be lifted to a path in C

1 covering our loop. Since f̌ is a ramified covering
with finitely many preimages of each point, some finite iteration of our loop will
be lifted to a closed path, which can be contracted in C

1, and the projection of
this contraction contracts our iterated loop in Č . But the fundamental groups of
complex curves have no elements of finite order greater than 1, hence already
our loop is contractible in Č .
Thus, Č is a simply connected non-compact algebraic curve, hence it is isomorphic
to C

1, and f̌ is a polynomial P whose degree is equal to the number of
preimages of a generic point of C under the map f . Also, the composition of
the normalization map Č → C, the identical embedding C → C

k , and the
projection of C

k to the j th coordinate axis is an algebraic map Q j : C
1 → C

1

such that f j ≡ Q j ◦ P , hence Q j is also a polynomial.
2. At least some two components f j , fl of such a map f define a map C

1 →
C
2 satisfying only finitely many elementary conditions. The condition f j (α) =
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Cohomology of Spaces of Complex Knots 327

f j (β), α �= β, defines a curve of degree d − 1 in the complex plane with
coordinates α and β. The condition ( f j − fl)(α) = ( f j − fl)(β), α �= β,
defines a curve of degree at most d−2. Elementary conditions satisfied by f j and
fl correspond to the intersection points of these two curves, factorized through the
involution (α, β) → (β, α). This involution has at most d − 2 invariant points
(corresponding to the common zeros of derivatives of f j and fl ). So the number

of these conditions is estimated from above by (d − 2) + (d−2)2

2 <
(d−1)2

2 .
��

Corollary 7 The complex dimension of the variety � ⊂ P(d, k) is equal to a+k d
a −1,

where a is the least divisor of d greater than 1.
The decent subspaces form a non-empty Zariski open subset in the space of all

affine subspaces of dimension less than dk − dim(�) in P(d, k). �

2.2 Canonical Normalization of the Discriminant

Let K be a decent affine subspace in P(d, k). For any elementary condition χ ∈ W
denote by L(χ) the subspace in K consisting of maps satisfying this condition. By
item b) of Definition 5, codimensions of all these subspaces in K are then equal to k.

Canonical normalization ̂� of � ∩ K is the subset of W × K consisting of
all pairs (χ, f ) such that f ∈ L(χ). The normalization map ̂� → � ∩ K is
induced by the projection W × K → K. The restriction of the standard projection
W × K → W to ̂� supplies ̂� with the structure of a complex affine bundle over
W with fibers isomorphic to C

dimK−k .

2.3 Simplicial Resolution of the Discriminant

Let us fix a generic polynomial embedding 	 : W → C
W into the space C

W of
a very large dimension compared to d. For any finite collection of distinct points
χ1, . . . , χN ∈ W, denote by 
(χ1, . . . , χN ) the convex hull of all N points 	(χi ) ∈
C
W , and by L(χ1, . . . , χN ) the intersection of all subspaces L(χ1), . . . , L(χN ) in

the decent subspace K ⊂ P(d, k).
If the number W is indeed large enough and 	 is generic, then 
(χ1, . . . , χN ) is

an N -vertex simplex for any set of points χi such that the space L(χ1, . . . , χN ) is non-
empty (by Proposition 6 (2) such numbers N are uniformly bounded). Moreover, any
two such simplices have only predictable intersections: these are their common faces
spanning the common vertices 	(χi ). We will always assume that these conditions
on W and 	 are satisfied.

Denote by σ the subset of C
W × K equal to the union of all products


(χ1, . . . , χN ) × L(χ1, . . . , χN ) (4)

over all natural N and all subsets {χ1, . . . , χN } ∈ B(W, N ). Denote by � the
image of the projection of σ to C

W .
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328 V. A. Vassiliev

Proposition 8 Under the above genericity conditions on 	, the map σ → � ∩ K
defined by the standard projection C

W × K → K is proper and surjective, and the
homomorphism H̄∗(σ ) → H̄∗(�) of the Borel–Moore homology groups induced by
this map is an isomorphism.

Proof is standard, see, for example, [12], Sects. V.2.3 and III.3.4. ��

2.4 Main Filtration andMain Spectral Sequence

Let K ⊂ P(d, k) be a decent subspace of complex dimension D.
The resolution space σ of � ∩ K has a natural finite increasing filtration σ1 ⊂

σ2 ⊂ · · · ⊂ σ : its term σρ is the union of all products (4) over all systems of
elementary conditions χ1, . . . , χN of d-rank ρ. The image � ⊂ C

W of the
projection of σ to C

W is also naturally filtered: its subspace �ρ is the image of
σρ .

This filtration on σ defines a homological spectral sequence Er
ρ,κ computing the

Borel–Moore homology group of the resolution space σ .
Define a cohomological spectral sequence by setting

E p,q
r ≡ Er−p,2D−q−1. (5)

By Alexander duality (3), this spectral sequence converges to the cohomology group
of K\�.

Proposition 9 The cohomological spectral sequence (5) has non-trivial groups E p,q
1

only in the wedge {p < 0, q ≥ −2p(k − 2)}, in particular, it has only finitely many
such non-zero groups on any diagonal {p + q = const}.

Proof For any ρ = 1, . . . , d, the complex codimension of the image of the projection
of σρ\σρ−1 to K is at least ρ(k−2). Indeed, the space of affine planes of codimension
kρ in P(d, k), defined by systems of elementary conditions of d-rank ρ, is at
most 2ρ-dimensional, so the union of the points of all these planes has (complex)
codimension at least ρ(k−2) in P(d, k). By transversality condition a) of Definition
5, the same is true for its intersection with K.

The preimage of any point f ∈ K of the image of this projection σρ\σρ−1 → K
is a simplex 
(χ1, . . . , χN ) ⊂ �, from which some of its faces (corresponding to
systems of elementary conditions defining subspaces of greater dimension in P(d, k))
are removed. The Borel–Moore homology group of this fiber is isomorphic to the
relative homology group of a certain pair of finite simplicial complexes of dimensions
ρ −1 and ρ −2, see [9] or §VI.7.1 of [12]. Namely, the first of these complexes is the
order complex of all planes in P(d, k) containing the point f and defined by systems
of elementary conditions of d-rank ≤ ρ, and the second complex is the link of this
order complex. Thus, by the Leray spectral sequence of our projection σρ\σρ−1 → K
the Borel–Moore homology groups of σρ\σρ−1 are trivial in dimensions exceeding
2(D − ρ(k − 2)) + ρ − 1. By (5), this implies the statement of proposition. ��
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2.5 Terms Ep,q1 for Stable Values of p

Definition 10 A D-dimensional affine subspace K of P(d, k) is sufficient if it is
decent, and any subspace of K defined by a system of elementary conditions of rank

ρ <
D + 1

k + 2
(6)

is non-empty and has codimension exactly kρ in K.

Proposition 11 If D < dk−dim(�) then the sufficient subspaces form a non-empty
Zariski open subset in the space of all D-dimensional affine subspaces of P(d, k).

Proof The set of not decent subspaces obviously is Zariski closed. By Remark 4,
any system of elementary conditions of rank ρ satisfying (6) defines a subspace of
codimension kρ in the space P(d, k). It is easy to calculate that the set of affine D-
dimensional subspaces in P(d, k) that are non-transversal or parallel to a particular
subspace of codimension kρ has codimension D − kρ + 1 in the space of all affine
subspaces of this dimension. The family of all subspaces of codimension kρ defined
by systems of elementary conditions of rank ρ is at most 2ρ-parametric, hence
the union of these sets corresponding to all such subspaces is a semialgebraic set of
(complex) codimension at least D + 1− ρ(k + 2) in the space of affine subspaces of
dimension D in P(d, k). By (6), this number is positive, so the subspaces satisfying
the last condition of Definition 10 also form a non-empty Zariski open set. ��
Corollary 12 For any two numbers d ′ > d, if K ⊂ P(d, k) and K′ ⊂ P(d ′, k)
are sufficient subspaces of dimensions D and D′, then all groups E p,q

1 (d ′), p ∈
[

−min
(

D+1
k+2 , D′+1

k+2

)

,−1
]

, of our cohomological spectral sequence calculating the

group H∗(K′\�) are isomorphic to groups E p,q
1 (d) with the same p and q.

Proof Since K is sufficient, for any ρ satisfying inequality (6) the difference
σρ\σρ−1 together with the restriction of the projection C

W × K → C
W to it is a

(D−kρ)-dimensional complex affine bundle over the semialgebraic set �ρ\�ρ−1 ⊂
C
W . In particular, we have the Thom isomorphism

E1
ρ,κ ≡ H̄ρ+κ(σρ\σρ−1) � H̄ρ+κ−2(D−kρ)(�ρ\�ρ−1). (7)

If K′ and K are sufficient subspaces of P(d ′, k) and P(d, k) respectively, then
these terms of homological spectral sequences calculating Borel–Moore homology
groups of (simplicial resolutions of) spaces � ∩ K′ and � ∩ K coincide up to the
shift of index q by 2(D′ − D). The corresponding transformations (5) erase this
difference. ��

However, to prove the commutation of these isomorphismswith higher differentials
of spectral sequences we need some additional effort and additional restrictions on
dimensions. This will be done in the next section.
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3 Proof of Theorem 1

We assume that a number k ≥ 3 is fixed for this entire section.

3.1 Definition of the Function dk(s) (see Theorem 1)

Definition 13 The degeneracy of a non-constant algebraic map f : C
1 → M , where

M is a manifold, is equal to 0 if f is a smooth embedding, otherwise it is equal to
the sum of

(1) numbers a − 1 over all points of M which are images of a > 1 points of C
1,

(2) the number of points of C
1 at which f ′ = 0, and

(3) the degeneracy of the induced map f̌ : C
1 → M̌ , where M̌ is the result of the

blow-up of M at all points of M mentioned in item (1) above and all critical
values of f .

The degeneracy of a map can be infinite, if the number of points mentioned in item
(1) of this definition is infinite.

Proposition 14 For any natural D there exist numbers T (D) and δ1(D) such
that generic affine subspaces of dimensions at most D in the spaces P(d, k) with
arbitrary d ≥ δ1(s) do not contain maps f : C

1 → C
k of degeneracy greater than

T (D). �

Further, for an arbitrary map f : C
1 → C

k of class P(d, k)\� consider the
space J ( f ) of multigerms (ψ1, . . . , ψr ) of holomorphic maps ψl : (C1, τl) → C

k ,
where τl are all critical points of f and all preimages of self-intersection points of
f . The restriction of f to these neighborhoods is the marked point { f } of this space.
The group H( f ) of simultaneous local holomorphic diffeomorphisms C

1 → C
1,

defined in neighborhoods of all points τl , and local holomorphic diffeomorphisms
C
k → C

k, defined in neighborhoods of all images of these points, acts on the space
J ( f ). The notion of an infinitesimally versal deformation of this action is defined in
the usual way, see [3]. Namely, a deformation of the multigerm (ψ1, . . . , ψr ) is a
collection of maps �l : (C1 × C

m) → C
k defined in some neighborhoods of points

τl × 0 ∈ C
1 × C

m such that ψl ≡ �l(·, 0) for all l. So, a deformation can be
considered as a family of collections of r maps C

1 → C
k defined in neighborhoods

of points τl and depending on the m-dimensional parameter μ = (μ1, . . . , μm).
Such a deformation is called infinitesimally versal if this family intersects transversally
the H( f )-orbit of the collection (ψ1, . . . , ψr ) in the space J ( f ) at the point { f }.
In formal terms, this means that any element of J ( f ), i.e., a collection of germs
θl(C

1, τl) → C
k , l = 1, . . . , r , can be represented as a sum of

(A) a collection of maps of the form V ◦ ψl : (C1, τl) → C
k where V is a

holomorphic vector field in C
k defined in a neighborhood of the union of all points

ψl(τl);
(B) a collection of Lie derivatives of all maps ψl along some holomorphic vector

fields in C
1 defined in neighborhoods of all points τl , and
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(C) a linear combination of the form

m
∑

i=1

αi

(

∂�1

∂μi

∣

∣

∣

∣

μ=0
, . . . ,

∂�r

∂μi

∣

∣

∣

∣

μ=0

)

,

where αi are some complex coefficients and μi are parameters of the deformation
(�1, . . . , �r ).

The space P(d, k) provides a deformation (with parameters λi ) of the collection
{ f } of germs of any map f ∈ P(d, k) at all points τl ∈ C

1 as above.

Definition 15 A map f ∈ P(d, k) is tame if the space P(d, k) is an infinitesimally
versal deformation of the action of the corresponding group H( f ) on the space J ( f )
at the point { f }.
Proposition 16 For any natural number T there exists a number δ2(T ) such that
all maps f ∈ P(d, k), d ≥ δ2(T ), of degeneracy at most T are tame.

Proof Given a map f ∈ P(d, k), let us compose it with a generic projection π :
C
k → C

2 and consider the set of obtained germs of plane curves at the projections
of all singular points of the curve f (C1).

For any T there is only a finite set of types of sets of plane curve singularities
(described by Puiseux exponents and tangency orders of different local components),
which can appear in this way from maps f of degeneracy ≤ T (where f can
belong to spaces P(d, k) with arbitrary d).

For each of these germs of the plane curve π( f (C1)) we have the following fact.

Lemma 17 Let γl : (C1, 0) → (C2, A), l = 1, . . . , u, be a finite collection of germs
of polynomial maps such that any point of a punctured neighborhood of A is the
image of at most one point of the disjoint union of u copies of C

1. The image
of the induced homomorphism from the algebra of germs of holomorphic functions
(C2, A) → (C1, 0) to the algebra of collections of u germs of functions (C1, 0) →
(C1, 0) (sending any germ θ : (C2, A) → (C1, 0) to the collection of maps θ ◦ γl)

then contains some finite degree of the latter algebra (i.e., there is a number ν such
that any collection of u functions (C1, 0) → (C1, 0) having zero of order ≥ ν at the
origins belongs to the image of this homomorphism). This degree ν can be effectively
estimated from above by the singularity type of our collection of parametric curves
γl .

Proof of the Lemma In the case of an irreducible curve (that is, if u = 1) this statement
easily follows from the existence of a Puiseux expansion of the corresponding map
γ1. If u > 1, consider the similar homomorphism to the algebra of functions on the
union of first u − 1 copies of C

1 (i.e., of preimages of maps γ1, . . . , γu−1). By
induction hypothesis, this homomorphism satisfies the statement of the Lemma. Its
kernel contains all holomorphic functions of the form ϕ · κ, where ϕ is an arbitrary
germ (C2, A) → (C1, 0) and κ is the product of the equations of all curves γl(C

1),
l = 1, . . . , u − 1. The restriction of κ to the u-th component is equal to a non-zero
polynomial of its parameter; the degree of the lowest non-zero term of this polynomial
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is determined by the singularity type of our collection {γl}. By induction hypothesis,
the space of restrictions of arbitrary functions ϕ contains a degree of the maximal
ideal in the space of functions in this parameter, hence the same (with a greater value
of the degree) is true for the space of restrictions of functions ϕ · κ. ��
Corollary 18 For any natural T there is a number δ3 such that for any map f of
degeneracy ≤ T already the summands of type (A) from the above definition of
infinitesimal versality corresponding to all singular points of the curve f (C1) contain
all collections of local maps (ψ1, . . . , ψr ), all of whose components are defined by
collections of function germs belonging to certain degrees of the maximal ideals of
corresponding algebras of holomorphic germs (C1, τ ) → C

1, and the sum of these
degrees over all these singular points is at most δ3. �

By the interpolation theorem, if d is large enough then the summands of type (C)
for the deformation P(d, k) of the collection of germs { f } generate the quotient space
of J ( f ) by the space of such collections (ψ1, . . . , ψr ). This implies Proposition
16. �

Definition 19 Given a natural number s, D(s) is the minimal natural number D
such that

s ≤ min

(

D − 1,

([

D

k + 2

]

+ 1

)

(2k − 5) − 2

)

. (8)

The number dk(s) assumed in Theorem 1 is equal to the maximum of the numbers
δ1(D(s)) and δ2(T (D(s))), where δ1(·) and T (·) are defined in Proposition 14,
and δ2(·) in Proposition 16.

3.2 Isomorphism of Spectral Sequences in the Stable Domain

The restriction of the main filtration of the space σ ⊂ � ×K to the term στ of this
filtration defines a spectral sequence Er

ρ,κ(στ ) converging to group H̄∗(στ ).

Proposition 20 For any numbers d < d ′, let K ⊂ P(d, k) and K′ ⊂ P(d ′, k) be
sufficient affine subspaces of dimension D, all points of which are tame. Then for any
τ < D+1

k+2 the homological spectral sequences defined by restricting our filtrations to
the terms στ and σ ′

τ of our resolutions σ ⊂ �×K and σ ′ ⊂ �×K′ respectively
are isomorphic to each other starting from their pages E1.

Proof Both K and K′ are affine subspaces of the space P̃(d ′, k) of maps C
1 →

C
k defined by systems of k polynomials of the form λ0zd

′ + λ1zd
′−1 + · · · +

λd ′ . Our construction of simplicial resolutions cannot be applied immediately to the
discriminant set �∩ P̃(d ′, k), since it has points satisfying infinitelymany elementary
conditions; however, the analog σ̃τ ⊂ �τ × P̃(d ′, k) of the τ -th term of this simplicial
resolution can be constructed in exactly the same way as previously.

Since all points f of K are tame, the subspace P(d, k) of P̃(d ′, k) is transversal
to the stratified variety � ∩ P̃(d ′, k) at all points of its subspace K. Since K is a
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decent subspace of P(d, k) (see Definition 5), it also is transversal to � ∩ P̃(d ′, k)
in P̃(d ′, k). Let B be a huge “exhausting” open ball in P̃(d ′, k) such that the
identical embeddings induce isomorphisms H̄∗(X ∩ B) � H̄∗(X) for all involved
algebraic varieties X (such as � ∈ P̃(d ′, k), � ∩ P(d, k), � ∩ K, different their
strata, etc), and the boundary of B is transversal to all these varieties.

By Thom isotopy lemma (see e.g., [7], Sect. I.1.5), there exists a tubular neighbor-
hood U of the subspace K in P̃(d, k) ∩ B such that the pair (U , � ∩ U ) is
homeomorphic to the direct product of the pair (K∩ B, � ∩K∩ B) and an open ball
of dimension 2(dimC P̃(d ′, k) − dimC K) ≡ 2((d ′ + 1)k − D). Consider the subset
σ̃τ (U ) of the space σ̃τ ⊂ �τ × P̃(d ′, k) consisting of only the points whose projec-
tions to P̃(d ′, k) belong to U . It can be considered as the τ th term of the simplicial
resolution of the set �̃(d ′, k) ∩ U . By construction, it is also homeomorphic to the
product of στ and anopenball of dimension 2((d ′+1)k−D). In particular, the spectral
sequences calculating the Borel–Moore homology groups of these spaces are isomor-
phic to each other up to a shift of dimensions: Er

ρ,κ(σ̃τ (U )) � Er
ρ,κ−2((d ′+1)k−D)

(στ )

for all r ≥ 1, ρ ≤ τ and any κ. On the other hand, the identical embedding
σ̃τ (U ) → σ̃τ induces a homomorphism of the corresponding spectral sequences.
This homomorphism is an isomorphism of all terms E1

ρ,κ : indeed, any set σ̃ρ\σ̃ρ−1
is the space of an affine bundle with base �ρ\�ρ−1, and its subset σ̃ρ(U )\σ̃ρ−1(U )

is the space of a fiber bundle, the base of which is a subspace of �ρ\�ρ−1 having the
same Borel–Moore homology groups, and the fibers are open balls in the fibers of the
former bundle. Thus, our spectral sequences calculating the Borel–Moore homology
groups of spaces στ ⊂ �τ × K and σ̃τ ⊂ �τ × P̃(d ′, k) are isomorphic up to a
shift of indices κ by 2((d ′ + 1)k − D).

In the same way, we prove that our spectral sequence computing the homology
groups of σ ′

τ is isomorphic to the same spectral sequence for σ̃τ up to the same shift
of indices κ. In particular, our spectral sequences for the spaces στ and σ ′

τ are
isomorphic to each other. ��
Corollary 21 1. In conditions of Proposition 20, spectral sequences (5) converging

to cohomology groups of corresponding spaces K′\�′ and K\� of complex
knots are isomorphic to each other starting from term E1 in the domain of the
(p, q)-plane where

p + q ≤
([

D

k + 2

]

+ 1

)

(2k − 5) − 2. (9)

In particular, groups Hi (K\�) and Hi (K′\�) are isomorphic to each other
for i not exceeding the right-hand part of (9).

2. The last isomorphisms are natural.

Proof 1. By Proposition 9, all non-zero terms E p,q
1 of these cohomological spectral

sequences with p < −
[

D
k+2

]

(which only can be different for these two spectral

sequences or provide different differentials) lie in the domain of the (p, q)-plane,

where p + q ≥
([

D
k+2

]

+ 1
)

(2k − 5).
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Table 2 Column p = −3 of main spectral sequence

q 6k − 11 6k − 10 6k − 9 6k − 8 6k − 7 6k − 6 6k − 5

E−3,q
1 Z2 Z3 Z ⊕ Z3 T T Z ⊕ T T

Fig. 1 Page E1 of main
spectral sequence for k = 3

2. We can connect our subspaces K and K′ by a path {Kτ }, τ ∈ [0, 1], in the
space of affine D-dimensional subspaces of P̃(d ′, k) satisfying all the samegenericity
conditions. Consider the space of pairs (τ, f ) where τ ∈ [0, 1] and f ∈ Kτ\�.
The inclusion of any fiber Kτ\� to this space induces then an isomorphism of all
homology groups in dimensions not exceeding the right-hand part of (9). ��

Corollary 22 Under the conditions of Proposition 13, the groups Hi (P(d, k)\�)

and Hi (P(d ′, k)\�) are naturally isomorphic to each other for i not exceeding the
right-hand part of (8).

Proof of this corollary is the composition of Corollary 21 and strong Lefschetz plane
section theorem, see [7]. ��

Proof of Theorem 1 By Propositions 14 and 16, for any natural s there are numbers
dk(s) and D(s) (see Definition 19) such that the conditions of Proposition 20 are
satisfied for generic D-dimensional subspaces of spaces P(d, k) with d ≥ dk(s)
and D = D(s). Then Theorem 1 follows from Corollary 22. ��
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3.3 Main Technical Result

Also by Propositions 14 and 16, and Corollary 21, when d grows to infinity, our
spectral sequences stabilize to a universal (depending only on k) spectral sequence.
We will call it the main cohomological spectral sequence of our problem.

Theorem 23 (see Fig. 1)

1. The column E−1,∗
1 of main cohomological spectral sequence contains only one

non-zero group E−1,2k−4
1 ∼ Z.

2. The column E−2,∗
1 of this spectral sequence contains only two non-zero groups,

E−2,4k−7
1 ∼ Z2 and E−2,4k−5

1 ∼ Z3.

3. All groups E−3,q
1 with q /∈ [6k − 11, 6k − 5] are trivial, while such groups

with q ∈ [6k − 11, 6k − 5] are as shown in Table 2, where T denotes finite (in
general, different) groups.

4. Group E−4,8k−13
1 is infinite.

5. For any p ≤ −2, group E p,q
1 of main spectral sequence

(a) is trivial for q ≤ −p(2k − 4),
(b) is isomorphic to Z2 for q = −p(2k − 4) + 1, and
(c) is finite for q ≤ −p(2k − 4) + 2.

The picture of this spectral sequence for k > 3 can be obtained from Fig. 1 by the
shift of any column {E p,∗

1 } by −2p(k − 3) in the vertical direction.
Statements 1, 2, 3, 4 and 5 of this theorem will be proved in Sects. 5, 6, 7, 8.1 and

8.2, respectively. Theorem 2 follows directly from this one.

4 On the Filtration Terms in the Stable Range

Spaces �ρ\�ρ−1 for ρ in the stable range (i.e., satisfying (6)) are naturally stratified
according to the structure of systems of elementary conditions of rank ρ.

Example 24 Some such systems of rank 2 are pairs of conditions f (α) =
f (β), f (γ ) = f (δ), where all points α, β, γ, δ are distinct; some others are of
the form f (α) = f (β) = f (γ ). The corresponding simplex 
(·) in �2 in the first
case is a segment (whose endpoints 	({α, β}) and 	({γ, δ}) lie in �1), while in the
second case we have four such simplices in �2\�1: the triangle spanned by points
	({α, β}), 	({β, γ }), 	({γ, α}), and each of its three edges (whose endpoints again
belong to �1).

Definition 25 (see [11]) Let A = (a1, . . . , as) be an unordered set of natural numbers
(some of which may be the same), all of whose elements a j are greater than 1. Then
an A-configuration is an arbitrary set of a1 + · · · + as pairwise distinct points of
C
1 divided into subsets of cardinalities a1, . . . , as . If additionally b is a non-

negative integer, then a (A, b)-configuration in C
1 is an arbitrary A-configuration

complemented by b pairwise distinct points (some of which may coincide with points
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of the A-configuration). Number

(a1 − 1) + · · · + (as − 1) + b (10)

is called the complexity of any (A, b)-configuration.

If a D-dimensional subspace K ⊂ P(d, k) is sufficient, then for any number ρ

satisfying (6), there is a one-to-one correspondence between (A, b)-configurations
of complexity ρ and subspaces of codimension kρ in K defined by systems of
elementary conditions of rank ρ. Namely, any (A, b)-configuration defines a subspace
consisting of maps that glue points of any of the s subsets of its A-configuration and
have zero derivative at any of additional b points.

4.1 Simplices Associated with (A, b)-Configurations and Complexes of Connected
Graphs

Any (A, b)-configuration �, A = (a1, . . . , as), also defines a simplex 
(�) with
(a1
2

) + · · · + (as
2

) + b vertices in C
W : this spans all points 	({α, β}), where α

and β are some two points of one of s subsets of this configuration, and all points
	({α, α}) such that α is a point of its b-part. Thus, the term �ρ of main filtration of
� is the union of such simplices defined by all (A, b)-configurations of complexity
≤ ρ.

If the symbol A consists of a single number, A = (a1), then the faces of such a sim-
plex associated with any A-configuration are in a natural one-to-one correspondence
with simple graphs with a1 vertices corresponding to points of this configuration:
we draw an edge connecting some two vertices α and β if and only if the point
	({α, β}) is one of the vertices of this face. This simplex belongs to the term �a1−1
of the main filtration, moreover, all its faces corresponding to not connected graphs
(in particular, graphs with isolated vertices) belong to �a1−2. Similarly, the faces
of a simplex associated with an arbitrary (A, b)-configuration are characterized by
collections of s graphs on a1, . . . , as vertices, and by additional marking or not each
of the b singular points. This entire simplex lies in �ρ where ρ is the complexity
∑

(ai − 1) + b of the symbol (A, b). Interior points of a face do not belong to the
lower term �ρ−1 of filtration if and only if all corresponding s graphs are connected
and all b singular points are marked.

Thus, the Borel–Moore homology groups of the parts of these simplices lying in
�ρ\�ρ−1 are described in the following terms.

Definition 26 The complex of connected graphs on a vertices is the factor complex of
the simplicial complex generated by faces of the

(a
2

)

-vertex simplex by the subcomplex
generated by faces corresponding to non-connected graphs.

Proposition 27 (see e.g., [12], Sect. V.3) The complex of connected graphs on a
vertices is acyclic in all dimensions other than a − 2, and its (a − 2)-dimensional
homology group is isomorphic to Z

(a−1)!.
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Corollary 28 For any (A, b)-configuration � of complexity ρ, A = (a1, . . . , as),
the Borel–Moore homology group H̄i (
(�)\�ρ−1) of the part of 
(�) lying in
�ρ\�ρ−1 is trivial in all dimensions other than ρ − 1 and is free Abelian of rank
∏s

m=1(am − 1)! for i = ρ − 1.

Indeed, the whole simplex 
(�) can be considered as the join of its s faces spanned
by the vertices 	(α, β) where α and β belong to the same subset of the configuration,
and additional b points 	(α, α) where α belongs to the b-part of the configuration.
The set 
(�) ∩ (�ρ\�ρ−1) is the union of interiors of faces of the whole simplex,
which are joins of the faces corresponding to connected graphs, and of all b additional
points. �

4.2 Inverse Auxiliary Filtration (see [13])

There is a convenient filtration �0 ⊂ �1 ⊂ · · · ⊂ �ρ−1 = �ρ\�ρ−1 in any space
�ρ\�ρ−1. For example, if ρ = 2 then the subspace �0 consists of all intervals from
the first case considered in Example 24 and the edges of triangles from the second
case; the set �1\�0 consists only of interior parts of these triangles. For certain
historical reasons, this filtration is called the inverse auxiliary filtration or just inverse
filtration of �ρ\�ρ−1.

Definition 29 For any symbol A = (a1, a2, . . . , as) as above, denote by |A| the
sum a1 + · · · + as and by #(A) the number s of elements a j in A.

The defect of an A-configuration is equal to twice its complexity minus the number
of geometrically distinct points of this configuration (obviously it is a non-negative
integer, and can be defined also as the difference of the complexity and #(A)). The
term � j of the auxiliary inverse filtration of the space �ρ\�ρ−1 is defined as the
closure in this space of the union of simplices 
(�) defined by A-configurations �

of complexity ρ and defect ≤ j .

Let us reveal the operation of closure in this definition.
First, any simplex 
(�) in � defined by a (A, b)-configuration with b > 0

belongs to the closure of the set of similar simplices defined by A′-configurations
where symbol A′ is obtained from A by adding b numbers 2. Therefore, the entire
of �ρ\�ρ−1 is indeed covered by the closures of terms � j .

Further, for any symbol A = (a1, . . . , a#(A)) define the corresponding configura-
tion space B(A) as the space of unordered collections of |A| points in C

1 (some of
which may be the same) split into subcollections of cardinalities a1, . . . , a#(A) such
that all points of any subcollection of cardinality a j > 2 are pairwise distinct.

To fix a topology on the space B(A), we realize it as the Cartesian product of
the spaces B(C1, a j ) over all indices j = 1, . . . , #(A) with a j > 2, and spaces
W corresponding to all a j = 2, factorized through permutations of such factors
corresponding to equal values of a j . The points of B(A) are called Ā-configurations.

Any Ā-configuration � defines an affine subspace L(�) of the space of poly-
nomials (1): it consists of maps that take equal values at all points of each of #(A)

subcollections, and have zero derivative at all points α ∈ C
1 such that our Ā-

configuration � contains the subcollection {α, α}. The codimension of this subspace
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L(�) does not depend on d if d is sufficiently large (say, d > |A|). This stable
codimension does not exceed |A| − #(A); denote by B̃(A) the Zariski open subset
of B(A) consisting of configurations for which this codimension is exactly equal to
|A| − #(A).

Lemma 30 An Ā-configuration belongs to the space B̃(A) if and only if

(1) no two of its subcollections have a pair of common distinct points,
(2) it has no two equal subcollections of the form (α, α), and
(3) there are no closed chains of ≥ 3 its subcollections such that any two neighboring

subcollections of the chain have a common point.

This lemma is elementary. ��
Like A-configurations, any Ā-configuration � defines a polyhedron 
(�) in

C
W , namely, it is the convex hull of all points 	({α, β}), where α and β are

two distinct points of one of subcollections of �, and all points 	({α, α}) over
subcollections of the form {α, α}. If Ā-configuration � belongs to B̃(A) (and the
map 	 satisfies genericity conditions of Sect. 2.3), then 
(�) is a simplex with
(a1
2

) + · · · + (a#(A)

2

)

vertices. Now, a new definition of main and inverse filtrations on
� can be formulated.

Definition 31 Ā-configurations satisfying three restrictions of Lemma 30 are called
regular. For any symbol A = (a1, . . . , a#(A)) as above, the A-block in � ⊂ C

W is
the union of simplices 
(�) over all regular Ā-configurations �. For any natural ρ,
the ρ-th term �ρ of themain filtration of the space � is the union of A-blocks over
all symbols A with |A|−#(A) ≤ ρ. For any natural ρ and any j ∈ {0, 1, . . . , ρ−1},
the j-th term � j of the inverse filtration of the term �ρ\�ρ−1 of the main filtration
of � is the intersection of this term �ρ\�ρ−1 and the union of A-blocks over all
symbols A with |A| − #(A) = ρ and |A| − 2#(A) ≤ j .

Lemma 32 Definition 31 of the main and inverse filtrations is equivalent to their
definitions given in Sect. 2.4 and Definition 29, respectively.

Proof is straightforward: the expansion of the notion of A-configurations to that of
Ā-configurations is just an implementation of the word “closure” in Definition 4.2, cf.
[13]. ��

As in Sect. 4.1, any face of the simplex 
(�) defined by a Ā-configuration �

is characterized by a system of #(A) graphs on a1, . . . , a#(A) vertices associated
with points of subcollections of �; in particular if some subcollection of � is of
type {α, α}, then the corresponding graph is a disjoint pair of points (respectively,
a segment connecting two points) if the point 	({α, α}) is not (respectively, is) a
vertex of the face.

Definition 33 A simple graph is two-connected if it is connected, and removing from
it an arbitrary its vertex with all incident edges, we again obtain a connected graph.
The complex of two-connected graphs on a given set of vertices is defined analogously
to Definition 26, only with replacement of faces corresponding to connected graphs
by those corresponding to two-connected graphs.
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Theorem 34 (See [4, 10]) The complex of two-connected graphs on a vertices is
acyclic in all dimensions other than 2a − 4, and its (2a − 4)-dimensional homology
group is isomorphic to Z

(a−2)!. ��
Lemma 35 (See [13]) For any natural ρ and any j ∈ {0, 1, . . . , ρ − 1}, term
� j\� j−1 of inverse filtration of the term �ρ\�ρ−1 of main filtration of � is the
disjoint union of certain subsets of all A-blocks such that |A| − #(A) = ρ and
|A| − 2#(A) = j . Namely, any such subset of any such A-block is a fiber bundle, the
base of which is the corresponding configuration space B̃(A), and the fiber over any
regular Ā-configuration � ∈ B̃(A) is equal to the union of interior points of all faces
of the simplex 
(�), such that all corresponding #(A) graphs are two-connected.

��
Corollary 36 For any regular Ā-configuration �, the Borel–Moore homology group
of the fiber over the point {�}, described in the end of Lemma 35, is non-trivial only
in dimension 2|A| − 3#(A) − 1 and is isomorphic to a free Abelian group of rank
∏#(A)

j=1 (a j − 2)!. �

Remark 37 In further calculations, we use the same notation �0,�1, etc. for terms
of inverse filtrations of spaces �ρ\�ρ−1 with different ρ: I hope this will not cause
any confusion.

5 First Term of theMain Filtration

This term σ1 is isomorphic to the canonical normalization ̂� of the discriminant,
i.e., the space of a fiber bundle over �1 ≡ 	(W) � C

2 with fibers equal to complex
affine subspaces of codimension k in K. Thus group E1

1,κ of the main homological
spectral sequence is isomorphic to Z for κ + 1 = 2D − 2k + 4 and is trivial in all
other dimensions. By virtue of (5), the corresponding column p = −1 of the main
cohomological spectral sequence is as described in the first statement of Theorem 23.

6 The Second Term

Statement (2) of Theorem 23 concerning column E−2,∗
1 follows directly from identity

(5), the Thom isomorphism (7) for ρ = 2, and the following calculation of the Borel–
Moore homology group H̄∗(�2\�1).

Theorem 38 Let {Er
j,q} be the spectral sequence calculating group H̄∗(�2\�1)

and generated by the auxiliary inverse filtration {�0 ⊂ �1} of �2\�1. Then all
non-trivial groups of its term E1 are shown in Table 3 (left), and its differential
∂1 : E1

1,6 → E1
0,6 is an isomorphism.

Proof The term �0 in this case is a fiber bundle with base B(W, 2); its fiber over
a pair of points {χ1 �= χ2} ⊂ W is the interval in C

W with endpoints 	(χ1) and
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Table 3 Page E1 of inverse spectral sequences for �2\�1 and �3\�2

q

8 Z2 0
7 0 0
6 Z2 Z2

5 0 Z3

4 0 0
0 1 j

q

13 Z2 0 0
12 Z3 0 0
11 Z2 Z2 0
10 0 Z3 0
9 0 0 Z

8 Z6 Z ⊕ Z2 Z ⊕ Z2

7 Z3 Z Z2

0 1 2 j

	(χ2) (these endpoints lie in �0). So we have

H̄i (�0) � H̄i−1(B(W, 2),±Z) (11)

for any i . Since W � R
4, the space B(W, 2) is homeomorphic to R

4×(0,∞)×RP
3,

and the group H̄∗(B(W, 2),±Z) is isomorphic to Z2 in dimensions 5 and 7 and
is trivial in all other dimensions. This gives us the column j = 0 of the spectral
sequence shown in Table 3 (left).

Remaining part �1\�0 of �2\�1 is a fiber bundle over B(C1, 3): its fibers
are open triangles, the orientation of which is changed by the monodromy over
loops in the base that define odd permutations of three points. So H̄N (�1\�0) �
H̄N−2(B(C1, 3),±Z). ��
Lemma 39 Group H̄i (B(C1, 3),±Z) is isomorphic to Z2 for i = 5, to Z3 for
i = 4, and is trivial for all other i .

This easily follows from calculations in the standard (introduced in [6]) cell decom-
position of B(C1, 3), see e.g., [12], §I.4. ��

This lemma gives us column j = 1 of Table 3 (left). Let us calculate its differential
∂1 : E1

1,6 → E1
0,6.

Group E1
1,6 of this spectral sequence is generated by the homology class [∇]

of a fiber bundle over the hypersurface ∇ ⊂ B(C1, 3) consisting of configurations
of three points α, β, γ ∈ C

1, some two of which (let us call them β and γ )
have equal real parts. The fiber over such a configuration is a triangle spanned by
points 	(α, β), 	(β, γ ) and 	(γ, α). Any such configuration defines three points
in W ≡ Sym2(C1), namely the points {α, β}, {β, γ }, and {γ, α}. Choosing arbitrarily
some two of these three points, we obtain a point of the configuration space B(W, 2).
The image ∂1([∇]) of the homology class of the cycle [∇] under the homomorphism
∂1 : E1

1,6 → E1
0,6 � H̄6(�0) is the homology class of the subvariety in �0 swept

out by intervals over all points of B(W, 2) obtained in this way from the points of
the cycle ∇. So, by relation (11) it remains to calculate the homology class of the
set of all such points in the group H̄5(B(W, 2),±Z) ∼ Z2. The coefficient map
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H̄5(B(W, 2),±Z) → H̄5(B(W, 2), Z2) is an isomorphism. Therefore, this class
is characterized by the intersection index (mod 2) of this cycle (considered as a non-
oriented one) with any compact 3-cycle generating the group H3(B(W, 2), Z2) � Z2.
For such a 3-cycle, we can take the union of pairs of opposite points of the unit sphere
in W � C

2. So, we are looking for triples of distinct points α, β, γ ∈ C
1 such that

the real parts of β and γ are the same, and some two of three sets of coefficients
(−α − β, αβ), (−β − γ, βγ ), (−γ − α, αγ ) of quadratic polynomials with roots
{α, β}, {β, γ } and {α, γ } are opposite points of the unit sphere in C

2. It is easy to
calculate that this happens if and only if the set {α, β, γ } is equal to the set {0, i,−i},
with an arbitrary labeling of the points of the latter set by α, β and γ . So, each
of the three edges of the triangle over the point {0, i,−i} ∈ B(C1, 3) gives us an
intersection point of our cycles. Further, {0, i,−i} is a triple self-intersection point
of the subvariety ∇ ⊂ B(C1, 3), therefore we have 3× 3 intersections contributing
to the desired intersection index, which is therefore not equal to 0. �

7 Third Term

Recall that the third term of the main filtration is the space of an affine bundle with
base �3\�2 and fibers equal to C

kd−3k .

Theorem 40 Let Er
j,q be the spectral sequence calculating the group H̄∗(�3\�2) and

generated by inverse filtration {�0 ⊂ �1 ⊂ �2} of �3\�2. Then its page E1 is as
shown in Table 3 (right). Its homomorphism ∂1 : E1

1,11 → E1
0,11 is an isomorphism,

and homomorphism ∂1 : E1
8,2 → E1

8,1 sends a free generator of E1
8,2 to an element

of infinite order.

The proof of this theorem takes the rest of Sect. 7.

7.1 Term 20 of Inverse Filtration of 33\32

The only symbol A of complexity 3 and defect 0 is (2, 2, 2). The corresponding
space B̃(A) is the subset B̃(W, 3) of the configuration space B(W, 3) consisting
of all independent triples of elementary conditions, i.e., triples defining subspaces of
complex codimension 3k in K. Namely, it are all points of B(W, 3) except for the
triples of the form {{α, β}, {β, γ }, {γ, α}}, where α, β and γ are arbitrary three
distinct points of C

1.
Term �0 of the inverse filtration of �3\�2 is the union of all open triangles

in C
W spanned by points 	(χ1), 	(χ2) and 	(χ3) for arbitrary configurations

{χ1, χ2, χ3} ∈ B̃(W, 3). In particular, this term is afiber bundlewith the base B̃(W, 3)
and open triangles as fibers. The Thom isomorphism of this fiber bundle gives us the
equality

H̄N (�0) � H̄N−2(B̃(W, 3),±Z) (12)

for any N .
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Lemma 41 The group H̄i (B(W, 3),±Z) is isomorphic to Z2 for i equal to 11 and
9, to Z3 for i equal to 10 and 6, and is trivial for all other i .

Proof Let us calculate groups H12−i (B(R4, 3),±Z) that are Poincaré dual to these
ones. By the well-known facts about the cohomology groups (with constant coeffi-
cients) of groups S(3) and Z3, and the exact sequence of the two-fold covering
K (Z3, 1) → K (S(3), 1), the group Hi (S(3),±Z) ≡ Hi (B(R∞, 3),±Z) is iso-
morphic to Z2 for all odd i , to Z3 for i ≡ 2(mod 4), and is trivial for remaining
values of i . By Theorem 2 of [12], §I.4, the map

Hm(B(R∞, 3),±Z) → Hm(B(R4, 3),±Z) (13)

induced by the inclusion R
4 ↪→ R

∞ is epimorphic for all i . The canonical decom-
position of the space B(R4, 3) into open cells used in this theorem has only cells of
codimension up to 6, therefore only the elements of groups Hm(S(3),±Z) with
m ≤ 6 can contribute to Hm(B(R4, 3),±Z). All stable cells of B(R∞, 3) of
codimension up to 3 appear in B(R4, 3), therefore for m ≤ 3 the map (13) is an
isomorphism. The only cell of codimension 6 (consisting of 3-configurations, all three
points of which have equal orthogonal projections to a fixed hyperplane) appears in
the boundary of each of two cells of codimension 5 with coefficient ±3, therefore the
group Z3 in dimension m = 6 survives the map (13). The group Z2 in dimension
5 does not, as follows easily from the consideration of cells of codimension 4, 5 and
6. Thus, the group Hm(B(R4, 3),±Z) is isomorphic to Z2 for m equal to 1 and
3, to Z3 for j equal to 2 and 6, and is trivial for all other j . By Poincaré duality,
this proves our lemma. ��

The difference B(W, 3)\B̃(W, 3) is obviously homeomorphic to the space
B(C1, 3), and the restriction of the local system ±Z (defined on the whole
B(W, 3)) to this difference is isomorphic to the local system ±Z defined in the
terms of B(C1, 3). Therefore, the statement of Theorem 40 concerning the column
j = 0 of Table 3 follows immediately from Lemmas 41 and 39 and the exact
sequence of Borel–Moore homology groups with coefficients in ±Z for the pair
(B(W, 3), (B(W, 3)\B̃(W, 3))).

7.2 Term 21\20 of Inverse Filtration

This term is covered by one Ā-block where A = (3, 2). It is the space of a fiber
bundle, whose base B̃((3, 2)) is the space B(3, 2) ≡ B(C1, 3) × W from which
something is removed, namely the set of pairs

(

{α, β, γ } ∈ B(C1, 3); {δ, ε} ∈ W
)

(14)

such that the system of conditions

f (α) = f (β) = f (γ ); f (δ) = f (ε) (15)
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on the map f ∈ K defines a subspace of codimension < 3k in K. It is easy to see
that the last set consists of pairs (14) not satisfying condition 1) of Lemma 30, i.e.,
such that both points δ �= ε belong to the set {α, β, γ }. Denote this set by �.

For any point � ∈ (B(C1, 3) × W)\ � of the form (14), the corresponding
subspace L(�) ⊂ K defined by conditions (15) has codimension 3k, and the
simplex 
(�) ⊂ C

W is spanned by four points 	({α, β}), 	({α, γ }), 	({β, γ }),
and 	({δ, ε}). The entire boundary of this simplex lies in the union of term �2
of main filtration and term �0 of the inverse filtration of �3\�2. Thus, the space
�1\�0 of the latter filtration is swept out by the interiors of these 3-simplices. By the
Thom isomorphism, we have

H̄N (�1\�0) � H̄N−3((B(C1, 3) × W)\ � ±Z), (16)

where ±Z is the local systemon the product B(C1, 3)×W lifted from the eponymous
local system on its first factor B(C1, 3). Let us calculate right-hand groups in (16).

By Lemma 39 and Künneth formula, the group

H̄i (B(C1, 3) × W,±Z)

is equal to Z2 for i = 9, to Z3 for i = 8, and is trivial for all other i .

Lemma 42 (1) The group H̄i ( � ,±Z) is isomorphic to Z ⊕ Z2 for i = 5, to Z

for i = 4, and is trivial for all other i .
(2) A free generator of the group H̄5( � ,±Z) can be realized by the fundamental

class of the 5-dimensional submanifold in � consisting of pairs (14) such that
δ �= ε, {δ, ε} is a subset of {α, β, γ }, and the point {α, β, γ }\{δ, ε} lies in the
interval (δ, ε) ⊂ C

1.
(3) For a generator of the group H̄4( � ,±Z) we can take the subvariety of the

previous cycle, consisting of such configurations where interval (δ, ε) is vertical.
(4) The group H̄2( � ,±Z) is generated by the fundamental cycle of the submanifold

in � consisting of points (14) such that α = δ = 0, and the points β = ε and
γ belong to the circles of radii 1 and 1/2 respectively centered at the origin in
C
1.

(5) The group H̄1( � ,±Z) is generated by the 1-cycle consisting of points (14)
such that α = δ = 0, β = ε = 1, and the point γ belongs to the circle of radius
1/2 with center at the origin in C

1.

Proof � is the space of a fiber bundle with base B(C1, 2) ∼ C
1 × (0,∞) × RP

1,
its fiber over any two-configuration {δ, ε} is equal to the space C

1\{δ, ε} of choices
of the point {α, β, γ }\{δ, ε}. The rest of the calculation of its homology groups is
elementary. It is also easy to check that four submanifolds indicated in statements
(2)–(5) as generators of corresponding homology groups are ±Z-orientable, and the
intersection indices of these manifolds of complementary dimensions in � are equal
to ±1. ��

The structure of groups H̄i ((B(C1, 3)×W)\ � ,±Z) now follows from the exact
sequence of the pair ((B(C1, 3) × W),� ). Namely, these groups are equal to Z2
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for i = 9, to Z3 for i = 8, to Z2 ⊕ Z for i = 6, and to Z for i = 5. Assertion
of Theorem 40 about the column j = 1 follows immediately from this calculation
and identity (16).

The statement of Theorem 40 about the differential ∂1 : E1
1,11 → E1

0,11 can be

proved in the same way as the statement of Theorem 38 about the map ∂1 : E1
1,6 →

E1
0,6.

7.3 Term 22\21 of Inverse Filtration

The only symbol A of complexity 3 and defect 2 is (4), so the part of �3\�2 not
covered by the above described subset �1 is covered by the (4)-block. This block is
the space of a fiber bundle over the space B(C1, 4) of quadruples of distinct points in
C
1. Its fiber over such a point � = {α, β, γ, δ} ⊂ C

1 is the 5-dimensional simplex

(�), six vertices 	({α, β}), 	({α, γ }), etc. of which correspond to two-element
subsets of the set {α, β, γ, δ}. According to Lemma 35, the part of such a simplex

(�) that lies in �2\�1 is the union of the interior points of its faces corresponding
to two-connected simple graphs on four vertices α, β, γ and δ. Namely, these are all
graphs with six or five edges, and all three graphs with four edges that define a 4-cycle.
Thus, term �2\�1 is the space of a fiber bundle over B(C1, 4), whose fiber over
the configuration {α, β, γ, δ} ∈ B(C1, 4) is the union of interior points of all faces
of the corresponding 5-simplex, which correspond to two-connected graphs on four
vertices. An elementary calculation (see [13]) gives us the following specialization of
Theorem 34.

Lemma 43 The Borel–Moore homology group of such a fiber is non-trivial only in
dimension 4 and is isomorphic to Z

2 : it is generated by the classes of arbitrary two
of the three chains

β

α

γ

δ

�

�

�

�

�
�
�

� −
β

α

γ

δ

�

�

�

�

�
�
�

�
, β

α

γ

δ

�

�

�

�

�
� −

β

α

γ

δ

�

�

�

�

�
�

, β

α

γ

δ

�

�

�

�

�
�
�

� −
β

α

γ

δ

�

�

�

�

�
�
�

�
(17)

(where the orientations of the faces represented by these graphs are determined by
the order α < β < γ < δ). The sum of all these three chains is equal to the boundary
of entire simplex (depicted by the complete graph). �
Remark 44 There is an important one-to-one correspondence between these three basic
chains and matchings in the set {α, β, γ, δ}: say, the chain (17) containing graphs
with missing edge (α, γ ) or (β, δ) corresponds to the matching (α, γ )(β, δ).

Let A2 be the quotient lattice of Z
3 along the diagonal sublattice consisting of

the points (t, t, t). Denote by {A2} the representation of the braid group Br4 ≡
π1(B(C1, 4)) in A2 defined as the composition

Br4 → S(4) → S(3) → Aut(A2), (18)

where the first homomorphism takes any braid to the corresponding permutation of
points of a distinguished 4-configuration, the second one takes any rotation of a
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Table 4 Homology of
4-configuration space

i 8 7 6 5

H̄i (B(C1, 4), Z) Z Z 0 Z2

H̄i (B(C1, 4), {̂A2}) Z Z
2

Z ⊕ Z2 (Z2)
2

H̄i (B(C1, 4), {A2}) 0 Z Z ⊕ Z2 Z2

tetrahedron to the corresponding permutation of pairs of its opposite edges, and the
last one is the standard action of S(3) in A2 by permutations of coordinates in Z

3.

Lemma 45 H̄N (�2\�1) � H̄N−4(B(C1, 4), {A2}) for any natural N .

Proof It is easy to check that any permutation of points α, β, γ, δ acts on the set of
cycles (17) in exactly the same way as the automorphism of A2 obtained from this
permutation by the composition of two last arrows in (18) acts on the images of the
basic vectors of Z

3 under the factorization by the diagonal. Namely, any transposition
of some two of these four points preserves the cycle containing the graph with missing
edge connecting these points, and permutes two other generators. ��

Let also {̂A2} be a representation of Br4 in Aut(Z3) defined by a composition
analogous to (18), in which the last homomorphism is the action by permutations on
the whole Z

3 and not on its quotient lattice A2.

Theorem 46 All non-trivial groups H̄i (B(C1, 4), Z), H̄i (B(C1, 4), {̂A2}) and
H̄i (B(C1, 4), {A2}) are as shown in Table 4.

The column j = 2 of Table 3 (right) follows immediately from Lemma 45 and
the last row of Table 4.

Proof of Theorem 46 The second row of Table 4 is proved in [1].
Consider the decomposition of the space B(C1, 4) into open cells used in [6].

Namely, we denote by
�

�

�

�

� � � � the cell consisting of configurations, all four points of
which have different real parts, and by

�

�

	



�

�
� � the 7-dimensional cell (called e(2, 1, 1)

in [6]) consisting of configurations in which only the two leftmost points have equal
real parts. Analogously, denote by

�

�

	




�
�

�
� ,

�

�

	




� �
�

� ,
�

�

	



�
�
�
� ,

�

�

	



�
�
�
� ,

�

�

	




�
�
�
�

, and
�

�

	



�
�
�
�

the cells called in
[6] respectively e(1, 2, 1), e(1, 1, 2), e(3, 1), e(2, 2), e(1, 3), and e(4). In particular,
�

�

	



�
�
�
�

is the only 5-dimensional cell of this decomposition: it consists of configurations,
all whose points have equal real parts.

H̄∗(B(C1, 4), {̂A2}) is the homology group of a 3-fold covering over B(C1, 4).
The decomposition of this covering space into cells is lifted from the previous one:

the preimage of each of our cells
�

�

�

�

� � � � ,
�

�

	



�

�
� � ,

�

�

	




�
�

�
� , . . . ,

�

�

	



�
�
�
�

consists of three cells,
the notation of which is obtained from that of the original cell by adding a subscript
equal to 2, 3 or 4. Namely, these three cells are in one-to-one correspondence with
matchings of points of an arbitrary 4-configuration {α, β, γ, δ} from the original cell.
We order lexicographically the points of any such 4-configuration: first by increase
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of their real parts and then by decrease of imaginary parts. This order is continuous
along any of our cells. Then, given a cell augmented by a matching of four points of
corresponding 4-configurations, we mark it with the subscript equal to the number of
the point matched with the first one. ��
Definition 47 The standard orientation of any our cells is determined by our lexico-
graphic order of points of configurations from this cell and is given by the following
differential form:

d(the smallest real value of its points)∧
∧d(the next smallest real value) ∧ · · · ∧ d(the largest real value)∧
∧d(the imaginary part of the first ordered point) ∧ · · · ∧
∧d(the imaginary part of the fourth point),

cf. [14].

It is easy to calculate that differentials in the arising complex are as follows:

∂
(
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� � � �

2

)
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= �
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∂
(
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The statement of Theorem 46 concerning groups H̄i (B(C1, 4), {̂A2}) follows
immediately from these formulas. Namely, the group H̄8 = Z is generated by the
cycle

�
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4, the group H7 = Z
2 by cycles
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and
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3 ; (20)

a free generator of the group H̄6 = Z⊕Z2 can be realized by the cycle
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4, and its element of order 2 by
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3; finally the group H̄5 = (Z2)
2

is generated by arbitrary two of the three cycles
�
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2
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3 and
�
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4.
It is easy to calculate (see also [14]) that groups H̄i (B(C1, 4), Z) of the second row

of Table 4 are generated by the following cycles:
�

�

	




� � � � for i = 8,
�

�

	



�

�
� � − �

�
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� + �
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for i = 7, and
�

�

	



�
�
�
�

for i = 5.
Consider now the exact sequence of all homology groups studied in Theorem 46,

defined by the short exact sequence of coefficients Z → {̂A2} → {A2}. Its map
H̄i

(

B(C1, 4), Z
) → H̄i (B(C1, 4), {̂A2}) is monomorphic for any i . Namely, it is

an isomorphism for i = 8, its image for i = 7 is generated by cycle (19), and for

i = 5 by cycle
�

�
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�

2 −
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�
�
�

3 +
�

�

	



�
�
�
�

4. This implies the statement of Theorem 46 on the
structure of groups H̄i

(

B(C1, 4), {A2}
)

. ��

7.4 Homomorphism @1 : E1
2,8 → E1

1,8

By Lemma 45, the source group E1
2,8 of this homomorphism is naturally isomorphic

to the group H̄6(B(C1, 4), {A2}). According to the previous calculation, we can take
the cycle

�

�

	



�
�
�
�

2 − �

�

	




�
�
�
�

2 for its free generator.
By (16), the target group E1

1,8 of this homomorphism is isomorphic to the group

H̄6((B(C1, 3) × W)\ � ,±Z). By exact sequence of the pair (B(C1, 3) × W, �)

(see Sect. 7.2), any element of this group is characterized by the class of its boundary in
the group H̄5( � ,±Z). By Lemma 42, the last class modulo torsion is characterized
by its intersection index in the manifold � with the one-dimensional cycle described
in statement 5) of this lemma. Let us calculate this intersection index for the boundary

of the cycle ∂1
({

�

�

	



�
�
�
�

2 − �

�

	




�
�
�
�

2

})

.

Consider first the contribution of the boundary of the chain

{

�

�

�

�
�

�

�

�

2

}

. The cell
�

�

�

�
�

�

�

� ⊂ B(C1, 4) consists of configurations as in Fig. 2 (left), i.e., with coinciding
three leftmost real values of the corresponding four complex numbers. Recall that we
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Fig. 3 Boundary of cell
�

�

�

�
�

�

�

�

2 in �1\�0 and its boundary over �

denote these numbers by α, β, γ, δ in such a way that Re α = Re β = Re γ < Re δ,

Im α > Im β > Im γ . Subscript 2 in
�

�

�

�
�

�

�

�

2 indicates the cell over
�

�

�

�
�

�

�

� in the 3-fold
covering of B(C1, 4) characterized by matching (α, β)(γ, δ) of these points. This
cell corresponds to a 10-dimensional chain in �2\�1, which is a fiber bundle over

our cell
�

�

�

�
�

�

�

� . Its fiber over the configuration shown in Fig. 2 (left) is a chain in the
complex of graphs with vertices α, β, γ, δ (see Lemma 43), namely the difference of
two 4-dimensional simplices represented by graphs obtained from the complete graph
by removing edges [α, β] and [γ, δ], see Fig. 2 (right). The boundary of this chain in
�1\�0 is the algebraic sum of eight chains corresponding to the three-dimensional
boundary faces of these four-dimensional simplices, depicted by not two-connected
graphs, see top row of Fig. 3.

Each of these chains is represented by a map to �1\�0 of the space of some fiber

bundle over the cell
�

�

�

�
�

�

�

� , whose fiber over the configuration � = {α, β, γ, δ} ∈ �

�

	



�
�
�
� is

the corresponding three-dimensional face of the 5-simplex 
(�). This map takes this
face isomorphically to a three-dimensional simplex which is the fiber of the bundle
�1\�0 → (B(C1, 3) × W)\ � over a certain point of this base space, depending
on both the configuration {α, β, γ, δ} and the mapped face. For example, the first
picture in the top row of Fig. 3 consists of a triangle with vertices β, γ, δ and the
additional edge (α, δ), therefore the corresponding face of the 5-simplex over the
configuration {α, β, γ, δ} ∈ B(C1, 4) goes to the fiber over the point {β, γ, δ} ×
{α, δ} ∈ B(C1, 3) × W.

Boundary points in � of either of these eight chains are approached in the degen-

eration of underlying configurations {α, β, γ, δ} ∈
�

�

�

�
�

�

�

� , when the only 1-valent
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vertex of the corresponding graph tends to some other vertex (not joined with it by an
edge). All these degenerations are shown in the bottom row of Fig. 3.

The limit configuration obtained by such a degeneration can belong to the basic
1-cycle of the group H1(�,±Z) indicated in statement 5) of Lemma 42 only if it is

the configuration
�

�

�
� �

��� or �
�

�

�

�

��� with vertices of triangles at the points 0 (right
angle), 1 and ∓i/2. These points appear only in three pieces shown in the bottom row
of Fig. 3: the first, third and fourth; each of them defines a transversal intersection of
the corresponding cycles and makes contribution ±1 to the intersection index.

Similar considerations with the summand
�

�

�

�

�

�

�

�

2 of our generator of the group E1
2,8

give us no boundary components in �1 that might contribute to the intersection index
with this 1-cycle. Thus, this index is an odd number, and the last statement of Theorem
40 is proved. ��

8 Estimates in the Stable Spectral Sequence

Proposition 48 For any natural ρ in stable range (i.e., satisfying (6)) and any j ∈
{0, 1, . . . , ρ − 1}, the Borel–Moore homology group

H̄i (� j\� j−1)

of term � j\� j−1 of the inverse filtration of term �ρ\�ρ−1 of main filtration of �

(or, which is the same, group E1
j,i− j of the auxiliary spectral sequence defined by this

inverse filtration) is trivial for all i > 5ρ − j − 1.

Proof By Lemma 35 and Corollary 36, � j\� j−1 is the union of spaces associated
with sets A such that |A| − #(A) = ρ and j = |A| − 2#(A). Since ρ is in
stable range, each of these spaces is a fiber bundle, whose base is 2|A|-dimensional,
and the Borel–Moore homology group of the fiber is non-trivial only in the dimension
2|A|−3#(A)−1 (see Corollary 36). Therefore the Borel–Moore homology group of
any such space is trivial in dimensions greater than 4|A| − 3#(A) − 1 ≡ 5ρ − j − 1.

��
Lemma 49 (see e.g., [5]) If ρ > 1 then the group H̄i (B(W, ρ),±Z) ≡
H̄i (B(R4, ρ),±Z) is finite for any i , trivial for i = 4ρ, and isomorphic to
Z2 for i = 4ρ − 1. ��
Proposition 50 For any ρ > 1 in the stable range, the Borel–Moore homology group
H̄i (�0) of term �0 of �ρ\�ρ−1 is

(a) trivial for i > 5ρ − 2,
(b) isomorphic to Z2 for i = 5ρ − 2, and
(c) finite for i > 5ρ − 6.

Proof This term contains only one A-block, where A = (2, 2, . . . , 2) (ρ deuces).
Similarly to Sect. 7.1,

H̄i (�0) � H̄i−(ρ−1)(B̃(W, ρ),±Z),
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where B̃(W, ρ) is obtained from the configuration space B(W, ρ) by removing a
subset of complex codimension ≥ 3 (consisting of non-regular Ā-configurations).
All statements of the proposition follow from the homological exact sequence of the
pair (B(W, ρ), B(W, ρ)\B̃(W, ρ)), Lemma 49 and dimensional restrictions on
homology groups of the removed subset. ��
Proposition 51 For any ρ > 1 in the stable range, the Borel–Moore homology group
of term �1\�0 of �ρ\�ρ−1 is

(a) trivial in dimensions exceeding 5ρ − 3,
(b) finite in dimensions exceeding 5ρ − 6.

Proof The unique A-block covering this term is {3, 2, 2, . . . , 2} (ρ − 2 deuces).
This term is the space of a fiber bundle with 2(2ρ − 1)-dimensional base B̃(A) and
fibers equal to ρ-dimensional simplices. This base is orientable, but the orientation
of fibers is violated by some loops in the base, therefore the homology group in top
dimension 5ρ − 2 is trivial, which implies statement (a).

The base space B̃(A) is the direct product B(C1, 3)×B(W, ρ−2), fromwhich a
subset � of complex codimension 2 is removed. The local systemon this base formed
by ρ-dimensional homology groups of fibers is isomorphic to one induced from the
tensor product of local systems ±Z on the factors B(C1, 3) and B(W, p−2). Denote
the last tensor product by .ג By the Künneth formula and Lemma 39, the homology
group of the product B(C1, 3) × B(W, ρ − 2) with these coefficients is finite, so by
Thom isomorphism and exact sequence of pair ((B(C1, 3) × B(W, ρ − 2)),�) we
get isomorphism

H̄i (�1\�0, Q) � H̄i−ρ(B̃(A), ג ⊗ Q) � H̄i−(ρ+1)(�, ג ⊗ Q). (21)

The dimension of � is equal to 4ρ − 6, which implies the triviality of groups (21)
for all i > 5ρ − 5. To also overcome the top dimension 5ρ − 5, note that a Zariski
open subset of � coincides with a Zariski open subset of the direct product of the
space � considered in Sect. 7.2 and configuration space B(W, ρ − 2). This open
set is orientable, but the restriction to it of the one-dimensional local system ג is not
constant, so the group (21) with i = 2(2ρ − 3) + (ρ + 1) ≡ 5ρ − 5 is also trivial. ��
Proposition 52 For any ρ > 3 in the stable range,

(a) Borel–Moore homology group H̄i (�2\�1) of term �2\�1 of inverse filtration
of �ρ\�ρ−1 is trivial if i > 5ρ − 4;

(b) if ρ > 4, then this group is finite for any i > 5ρ − 6;
(c) in the case ρ = 4, H̄16(�2\�1) � Z.

Proof This term �2\�1 is covered by two A-blocks corresponding to A =
{4, 2, 2, . . . , 2} (ρ − 3 deuces) and A = {3, 3, 2, . . . , 2} (ρ − 4 deuces).
The first A-block is a fiber bundle over the base B̃(A) equal to the product
B(C1, 4)×B(W, ρ−3), fromwhich a subset of complex codimension 2 is removed.
By Theorem 34, the Borel–Moore homology group of any of its fibers is isomorphic
to Z

2 in dimension ρ + 1 and is trivial in all other dimensions. The local system

123



Cohomology of Spaces of Complex Knots 351

on B̃(A) formed by these homology groups of fibers is isomorphic to the tensor
product of the local systems induced from local systems {A2} and ±Z on the factors
of B(C1, 4) × B(W, ρ − 3). The estimates of Proposition 52 applied exclusively to
the homology groups of this A-block follow now from the exact sequence of the pair
(B(C1, 4)× B(W, ρ −3), {the removed set}), statements of Theorem 46 and Lemma
49 on homology of factors, the Künneth formula, and dimensional restrictions on the
homology groups of the removed set.

In the case of the A-block with A = (3, 3, 2, ..., 2), the proof is similar, with
Theorem 46 replaced by Lemma 39 and additional accounting of the factorization by
the permutation of two sets of cardinality 3 of Ā-configurations (which does not
increase the rational homology groups). ��

8.1 Proof of Statement 4 of Theorem 23

According to Propositions 50 (c), 51 (b), 52 (a), and 48, the following groups E1
j,q of

the spectral sequence defined by the inverse filtration of the term �4\�3 are finite:
E1
0,q for q > 14, E1

1,q for q > 13, E1
2,q for q > 14, and E1

j,q for q > 19 − 2 j

and all j . By Proposition 52 (c), group E1
2,14 is equal to Z.

Thus all infinite groups E1
j,q with j + q ≥ 16 are only E1

2,14 � Z and possibly

E1
3,13 (which is presumably also finite). Both differentials ∂1 : E1

2,14 → E1
1,14 and

∂2 : E2
2,14 → E2

0,15 act into finite groups. Therefore group

H̄16(�4\�3) � H̄2D−8k+16(σ4\σ3) ≡ E1
4,2D−8k+12

is infinite. By (5), this implies statement 4 of Theorem 23. �

8.2 Proof of Statement 5 of Theorem 23

(a) By Propositions 48 (applied to all j ≥ 1) and 50 (a), all groups E1
j,q with

j + q > 5ρ − 2 of the spectral sequence defined by the inverse filtration of any term
�ρ\�ρ−1 are trivial. Hence, the groups

H̄i (�ρ\�ρ−1) � H̄2D−2kρ+i (σρ\σρ−1) ≡ E1
ρ,2D−(2k+1)ρ+i (22)

are also trivial for i > 5ρ − 2.
(b) By Propositions 48 (applied to all j ≥ 2), 50 (b) and 51 (a), the only such

non-trivial group with j + q = 5ρ − 2 is E1
0,5ρ−2 � Z2. Therefore the group

H̄5ρ−2(�ρ\�ρ−1) � H̄2D−(2k−5)ρ−2(σρ\σρ−1) ≡ E1
ρ,2D−(2k−5)ρ−2

is isomorphic to Z2.
(c) By Proposition 48 (applied to all j ≥ 3), 50 (c), 51 (b) and 52 (b), all such

groups with j + q > 5ρ − 4 are finite. Therefore, groups (22) are also finite for
i > 5ρ − 4.
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Transformation (5) turns these three facts into three assertions of statement 5 of
Theorem 23. �

9 Two Problems

1. Find an interpretation and a combinatorial formula for the basic element of stable
group H6k−12(P(∞, k)\�, Q) (at least for k = 3).

2. Calculate the multiplication

H2k−5(P(∞, k)\�, Q) ⊗ H6k−12(P(∞, k)\�, Q) → H8k−17(P(∞, k)\�, Q).
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