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Abstract
The existence of a conjugate point on the volume-preserving diffeomorphism group
of a compact Riemannian manifold M is related to the Lagrangian stability of a
solution of the incompressible Euler equation on M . The Misiołek curvature is a
reasonable criterion for the existence of a conjugate point on the volume-preserving
diffeomorphism group corresponding to a stationary solution of the incompressible
Euler equation. In this article, we introduce a class of stationary solutions on an
arbitrary Riemannian manifold whose behavior is nice with respect to the Misiołek
curvature and give a positivity result of the Misiołek curvature for solutions belonging
to this class. Moreover, we also show the existence of a conjugate point in the three-
dimensional ellipsoid case as its corollary.
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1 Introduction

Let (M, g) be a compact n-dimensional Riemannianmanifold without boundary. Con-
sider the incompressible Euler equation on M :

∂u

∂t
+ ∇uu = − grad p,

div u = 0, (1.1)

u|t=0 = u0.

Let u be a stationary solution of this equation and v a divergence-free vector field on
M . Then, the Misiołek curvature mcu,v is defined by

mcu,v := −
∫
M
g([u, v], [u, v])μ −

∫
M
g(u, [[u, v], v])μ, (1.2)

where μ is the volume form on M (see [20, Lem. B.6]). The importance of this
functional is that mcu,v > 0 implies that the solution u contains a conjugate point
when viewed as a geodesic in the group Ds

μ(M) of volume-preserving Sobolev Hs

diffeomorphisms of M starting at the identity [21, Fact. 1.1] (see also Fact 2.2).
The question of whether geodesics in Ds

μ(M) contain conjugate points goes back
to Arnold [1, 2]. Examples have been found by multiple authors, e.g., [3–5, 12, 13,
17–19] among others, using several different techniques.

Conjugate points are related to the Lagrangian stability of the corresponding flow
[4, 5, 7, 12, 16, 22]. They can also be used to obtain detailed local information about
the data-to-solution map of the Cauchy problem (1.1) in Lagrangian coordinates [14],
[10].

Despite the aforementioned efforts, we still lack a good understanding of the nature
and structure of the set of conjugate points. Thismotivates our search for newexamples.

The criterion (1.2) was first used in [13] byMisiołek and recently attracted attention
again [7, 20–22]. A variant of this criterion was used in [5] to construct examples of
conjugate points along non-stationary geodesics.

In particular, the second and third authors considered two-dimensional ellipsoids,
and showed the positivity of the Misiołek curvature corresponding to almost every
zonal flow Z on them in [21], motivated by the existence of stable multiple zonal jet
flow on Jupiter, whose mechanism is not yet well understood.

The first aim of this article was to generalize the result of [21] to the three-
dimensional ellipsoid case. However, the result of [21] concerns zonal flows, which
are only defined on two-dimensional spheres or ellipsoids. Thus, to generalize the
result of [21], we give a new definition of a zonal flow on an arbitrary Riemannian
manifold (cf. Remark 1.3 below).

Unexpectedly, this definition behaves nicely with respect to the Misiołek curvature
and we obtain the following criterion for the positivity of the Misiołek curvature. See
Definition 3.4 for the meaning of non-geodesic, positive and S1-zonal flows.
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Theorem 1.1 Let Z be a non-geodesic positive S1-zonal flow on a compact Rieman-
nian manifold M with dim M ≥ 3. Then, there exists a divergence-free vector field Y
on M satisfying

mcZ ,Y > 0.

As a corollary of Theorem 1.1, we obtain an analog of the result in [21] in the case
of three-dimensional ellipsoids. More precisely, let

M3
a := {(x, y, z, w) ∈ R

4 | x2 + y2 = a2(1 − z2 − w2)}

for a > 0, and let

N := {(x, y, 0, 0) ∈ R
4 : x2 + y2 = a2},

S := {(0, 0, z, w) ∈ R
4 : z2 + w2 = 1}. (1.3)

Then, we have

Corollary 1.2 There exists a family Z = Z( f , p, q) of non-geodesic positive S1-zonal
flows on M3

a supported on M3
a\(N ∪ S). This family is parametrized by p, q ∈ Q with

p2a2 �= q2 and a single variable function f (see Sect. 5 for the detailed construction
of these flows). All such flows develop conjugate points, by M-criterion (Fact 2.2) and
Theorem 1.1.

Remark 1.3 Let M be an arbitrary Riemannian manifold with dim M = 3. In [11],
the first author, G. Misiołek, and S. C. Preston considered the space of axisymmetric
vector fields u on M , which means that u satisfies [u, X ] = 0 for some fixed Killing
vector field X on M [11, Sect. 3]. If Z = f X is a zonal flow in the sense of Definition
3.4, we have in particular that

[Z , X ] = [ f X , X ] = f [X , X ] − X( f )X = 0.

This implies that any zonal flow can be regarded as an axisymmetric vector field on
M . By Theorem 1.1, any non-geodesic positive S1-zonal flow Z on M has a conjugate
point on Ds

μ(M) by the M-criterion (Fact 2.2) if M is compact.

Remark 1.4 Any zonal flow on the two-dimensional sphere or an ellipsoid in the sense
of [21] is a non-geodesic S1-zonal flow in the sense of this article. Thus, Theorem 1.1
can be regarded as a generalization of [21, Thm. 1.2].

Remark 1.5 A different criterion for the existence of conjugate points was derived by
S. Preston in [17, Thm. 3.1 and (3.32)]. It differs from the M-criterion in that it is
specific to the 3D case, and relies on finding nontrivial solutions to an ODE localized
to some point p ∈ M . That criterion can also be used to prove the existence of the
conjugate points provided here. Nevertheless, our examples had never been found
before, to the best of our knowledge.
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284 L. A. Lichtenfelz et al.

This paper is organized as follows. We begin by reviewing material relevant to the
geometric approach to the Euler equations of hydrodynamics in Sect. 2. In Sect. 3,
we propose a definition of a zonal flow on an arbitrary Riemannian manifold and
investigate its properties. In Sect. 4, we calculate the Misiołek curvature of a zonal
flow, obtain a sufficient condition for the positivity of the Misiołek curvature, and
prove Theorem 1.1. Section5 contains our construction of a family of zonal flows
admitting conjugate points and the proof of Corollary 1.2. In Appendix A, we prove
some useful lemmas regarding compactly supported divergence-free vector fields on
Euclidean space.

2 Diffeomorphism Groups andMisiołek Curvature

In this section, we recall the theory of diffeomorphism groups in the context of inviscid
fluid flows for completeness. Our main references are [8, 12].

Let (M, g) be a compact n-dimensional Riemannian manifold without boundary
andDs(M) the group of Sobolev Hs diffeomorphisms of M andDs

μ(M) the subgroup
of Ds(M) consisting volume preserving elements, where μ is the volume form on
M defined by g. If s > 1 + n

2 , the group Ds(M) can be given a structure of an
infinite-dimensional weak Riemannian manifold (see [8]) and Ds

μ(M) becomes a
weak Riemannian submanifold (The term “weak” means that the topology induced
from the metric is weaker than the original topology of Ds(M) or Ds

μ(M)).
This weak Riemannian metric is given as follows: The tangent space TηDs(M) of

Ds(M) at a point η ∈ Ds(M) consists of all Hs vector fields on M which cover η,
namely, all Hs sections of the pullback bundle η∗T M . Thus for x ∈ M and V ,W ∈
TηDs(M), we have V (x),W (x) ∈ Tη(x)M . Then the L2 metric on TηDs(M) is defined
by

〈V ,W 〉 :=
∫
M
g(V (x),W (x))μ(η(x)) (2.1)

and we let |V | := √〈V , V 〉. This metric descends to a right-invariant metric on the
subgroup Ds

μ(M). In fact, it induces a direct sum decomposition

TηDs(M) = TηDs
μ(M) ⊕ {(grad f ) ◦ η | f ∈ Hs+1(M)}, (2.2)

with associated projections

Pη : TηDs(M) → TηDs
μ(M),

Qη : TηDs(M) → {(grad f ) ◦ η | f ∈ Hs+1(M)},

which follows from the fact that the gradient is the adjoint of the negative divergence.
The metric (2.1) also induces the right invariant Levi-Civita connections ∇̄ and ∇̃

on Ds(M) and Ds
μ(M), respectively. They can be defined as follows. Let V ,W be

vector fields on Ds(M). We write Vη ∈ TηDs(M) for the value of V at η ∈ Ds(M).
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Existence of a Conjugate Point in the Incompressible Euler Flow... 285

Then we have Vη ◦ η−1,Wη ◦ η−1 ∈ TeDs(M), where e ∈ Ds(M) is the identity
element ofDs(M). Namely, Vη ◦η−1 andWη ◦η−1 are vector fields on M . Moreover,
we have Wη ◦ η−1 is a vector field of class C1 on M by Sobolev embedding theorem
and the assumption s > 1 + n

2 . Thus we can consider ∇Vη◦η−1Wη ◦ η−1, where ∇ is
the Levi-Civita connection on M . Take a path ϕ on Ds(M) satisfying ϕ(0) = η and
Vη = ∂tϕ(0) ∈ TηDs

μ(M), then we define

(∇̄VW )η := d

dt

(
Wϕ(t) ◦ ϕ−1(t)

)
|t=0 ◦ η + (∇Vη◦η−1Wη ◦ η−1) ◦ η. (2.3)

Moreover, if V and W are vector fields on Ds
μ(M), we define

(∇̃VW )η := Pη(∇̄VW )η. (2.4)

These definitions are independent of the particular choice of ϕ(t). We note that
(∇̄VW )η = (∇̄VW )e ◦ η if V and W are right invariant vector fields on Ds(M)

(i.e., ∇̄ is right invariant). This is because if W is right invariant, or equivalently, if W
satisfies Wη = We ◦ η for any η ∈ Ds

μ(M), the first term of (2.3) vanishes.
A geodesic joining the identity element e ∈ Ds

μ(M) and p ∈ Ds
μ(M) can be

obtained from a variational principle as a stationary point of the energy function:

E(η)
t0
0 := 1

2

∫ t0

0
|η̇(t)|2 dt, (2.5)

where η is a curve on Ds
μ(M) satisfying η(0) = e and η(t0) = p and we set η̇(t) :=

∂tη(t) ∈ Tη(t)Ds
μ(M). Let ξ(r , t) : (−ε, ε) × [0, t0] → Ds

μ(M) be a variation of
a geodesic η(t) with fixed endpoints, namely, it satisfies ξ(r , 0) = η(0), ξ(r , t0) =
η(t0) and ξ(0, t) = η(t) for t ∈ [0, t0]. We sometimes write ξr (t) for ξ(r , t). Let
X(t) := ∂rξ(r , t)|r=0 ∈ Tη(t)Ds

μ(M) be the associated vector field on Ds
μ(M). Then

the first and the second variations of the above integral are given by

0 = E ′(η)
t0
0 (X) =〈X(t0), η̇(t0)〉 − 〈X(0), η̇(0)〉

−
∫ t0

0
〈X(t), ∇̃η̇(t)η̇(t)〉dt,

E ′′(η)
t0
0 (X , X) =

∫ t0

0
{〈∇̃η̇X , ∇̃η̇X〉 − 〈R̃η(X , η̇)η̇, X〉}dt . (2.6)

The reason why the geometry of Ds
μ(M) is important is that geodesics in Ds

μ(M)

correspond to inviscid fluid flows on M , which was first remarked by Arnol’d [1]. This
correspondence is accomplished in the following way. If η(t) is a geodesic onDs

μ(M)

(i.e., ∇̃η̇η = 0) joining e and η(t0), a time-dependent vector field on M defined by
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u(t) := η̇(t) ◦ η−1(t) is a solution to the Euler equations on M :

∂t u + ∇uu = − grad p t ∈ [0, t0],
div u = 0,

u|t=0 = η̇(0), (2.7)

with a scalar function (pressure) p(t) determined by u(t). Here, grad p (resp. div u)
is the gradient (resp. divergent) of p (resp. u) with respect to the Riemannian metric
g of M . In this context, the existence of conjugate points along a geodesic η can be
related to the Lagrangian stability of a fluid flow u = η̇ ◦ η−1.

In this context, Misiołek essentially established a criterion for the existence of a
conjugate point on a geodesic corresponding to a stationary solution of (2.7) in [13],
which we call M-criterion.

Definition 2.1 ([13], [21, (2.14)], [20, Lem. B.6]) Let u be a stationary solution of
(2.7) and v a divergence-free vector field on M . Then, the Misiołek curvature mcu,v

is defined by

mcu,v := 〈∇u[u, v] + ∇[u,v]v, v〉
= −|[u, v]|2 − 〈u, [[u, v], v]〉.

Fact 2.2 ([13, Lems. 2 and 3], [21, Fact. 1.1]) Let M be a compact n-dimensional
Riemannian manifold without boundary and s > 2 + n

2 . Suppose that u ∈ TeDs
μ(M)

is a stationary solution of (2.7) on M and take a geodesic η(t) on Ds
μ(M) satisfying

u = η̇ ◦ η−1. Then, if v ∈ TeDs
μ(M) satisfies mcu,v > 0, then, there exists a point

conjugate to e ∈ Ds
μ(M) along η(t) on 0 ≤ t ≤ t∗ for some t∗ > 0.

3 A Generalization of Zonal Flow

In this section, we propose a definition of a zonal flow on an arbitrary closed Rieman-
nian manifold and investigate its properties.

3.1 Killing Vector Fields

In this section, we recall several properties of Killing vector fields, and provide some
of their proofs for convenience. See [6, Sect. 3] for further details.

A vector field X on a Riemannian manifold (M, g) is Killing if and only if

g(∇V X ,W ) = −g(∇W X , V ) (3.1)

for any vector fields V ,W on M , where ∇ is the Levi-Civita connection on M .
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Lemma 3.1 Let X be a Killing vector field on a Riemannian manifold M. Then, we
have the following identities.

2∇X X = − grad(‖X‖2) and X(‖X‖2) = 0. (3.2)

In particular, ∇X X = 0 if and only if ‖X‖ is a constant function.

Proof For the first identity, it is sufficient to prove

2g(∇X X ,W ) = −g(grad(‖X‖2),W ) (3.3)

for any vector field W on M by the nondegeneracy of the Riemannian metric g.
However, we have

g(grad(‖X‖2),W ) = W (‖X‖2) = 2g(∇W X , X). (3.4)

The second identity follows from (3.1) with V = W = X . ��

Lemma 3.2 Let M be a Riemannian manifold, X a Killing vector field on M, and f
a function on U := {x ∈ M | X(x) �= 0}. Then, f X is a Killing vector field on U if
and only if f is constant.

Proof We only show the “only if” part because the “if” part is obvious. Suppose that
f X is Killing. Then, we have

0 = div( f X) = X( f ) + f div(X) = X( f ) (3.5)

because any Killing vector field is divergence-free. Moreover, substituting f X
(resp. X ) for X (resp. W ) in (3.1), we have

V ( f )‖X‖2 + f g(∇V X , X) = −X( f )g(X , V ) − f g(∇X X , V ) (3.6)

for any vector field V on U . By (3.1) and (3.5), this is equivalent to

V ( f )‖X‖2 = 0 (3.7)

because X is Killing. Because U = {x ∈ M | X(x) �= 0}, this implies V ( f ) = 0 on
U . Since V is arbitrary, f is constant. This completes the proof. ��

We recall the following fact, whose proof can be found in [15, Lem. 3].

Lemma 3.3 Let M be a Riemannian manifold and X1, X2 be two Killing vector fields
defined on a connected open subset U ⊂ M. If there exists a point p ∈ U such that
X1(p) = X2(p) and ∇X1(p) = ∇X2(p), then X1 = X2 on U.
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3.2 A Definition of Zonal Flow

In this section, we propose a definition of a zonal flow on an arbitrary Riemannian
manifold M equipped with its Riemannian volume form μ. Recall that TeDs(M)

and TeDs
μ(M) denote the sets of all vector fields and divergence-free vector fields,

respectively, of class Hs on M . Denote by

P := Pe : TeDs(M) → TeDs
μ(M)

V �→ P(V ) := V − grad f

the L2 orthogonal projection at the identity e, where f := �−1 div(V ). Thus, for
V ∈ TeDs(M), P(V ) = 0 if and only if V = − grad f for some function f on M .

Definition 3.4 A vector field Z on M is called a zonal flow if it satisfies the following
three conditions.

(1) There exist a function f and a Killing vector field X on M such that Z = f X ,
(2) div(Z) = 0,
(3) P(∇Z Z) = 0.

In addition to this definition, we say that a zonal flow Z is:
A geodesic zonal flow if ∇Z Z = 0 everywhere.
A positive zonal flow if there exists a point in M where the vectors grad(‖X‖2) and
grad( f 2) are both nonzero and point in the same direction, i.e., one is a positive
multiple of the other (see also Definition 3.9).
An S1-zonal flow if X is induced by an S1-action on M .

We make several important remarks regarding Definition 3.4.
First, note that if Z = f X with X Killing, then condition (2) is equivalent to

X f = 0, since

div(Z) = div( f X) = X f + f div(X) = X f (3.8)

and every Killing vector field is divergence free.
Condition (3) implies that any zonal flow is a steady solution of the incompressible

Euler equations, whereas the much stronger geodesic condition means that the flow of
Z is a geodesic on the group of all diffeomorphisms of M , not just volume-preserving,
under the L2 metric. Although these flows can also develop conjugate points, the M-
criterion can fail to detect them. One such example is a rotation on a sphere (cf. [21,
Rem. 3]).

As will be shown in Lemma 3.6 below, the gradients of f 2 and ‖X‖2 are always
linearly dependent for any zonal flow. Thus, the positivity condition in the above
definition is really an alignment condition: if f 2 and ‖X‖2 increase in the same
direction, then this combined growth can lead to conjugate points.

Moreover, as will be shown in Lemma 3.7, the representation of a zonal flow Z as
a product of a function f and a Killing vector field X is essentially unique up to a
nonzero constant multiple. Therefore, the notion of an S1-zonal flow is well-defined
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because the property of being a vector field induced by an S1-action is invariant by
nonzero constant multiple.

Remark 3.5 The condition (3) of Definition 3.4 is unnecessary in the case of the two-
dimensional sphere or an ellipsoid considered in [21].Namely, if a vector field Z = f X
with a function f and a Killing vector field X on

M2
a := {(x, y, z) ∈ R

3 | x2 + y2 = a2(1 − z2)} (a > 0)

satisfies div(Z) = 0 (the condition (2) of Definition 3.4), then Z also satisfies the
condition (3) of Definition 3.4. However, in the general case, the condition (2) of
Definition 3.4 does not imply the condition (3) of Definition 3.4. An example is
Z = f (μ)∂ξ on M3

a for a non-constant function f = f (μ) depending only on the
variable μ in the notation of Sect. 5. This is because the gradients of f (μ)2 and ‖∂ξ‖2
are not linearly dependent by (5.6) and (5.11) if f (μ) is not constant, which contradicts
to Lemma 3.6.

Given a Killing vector field X and a function f with X f = 0, it is natural to ask
what further restrictions on f and X are imposed by condition (3) above, in order that
Z = f X be a zonal flow. We address this question below.

Lemma 3.6 Let Z = f X for some function f and some Killing vector field X on M,
such that X f = 0. Then

∇Z Z = f 2∇X X = − f 2

2
grad(‖X‖2). (3.9)

Furthermore, if Z is a zonal flow, then grad( f 2) and grad(‖X‖2) are everywhere
linearly dependent. If the first cohomology group H1(M) vanishes, then the converse
holds.

Proof A direct computation using Lemma 3.1 shows that

∇Z Z = ∇ f X f X = f
(
(X f )X + f ∇X X

)
= − f 2

2
grad(‖X‖2). (3.10)

Now if Z is a zonal flow, then by definition we can write

− f 2

2
grad(‖X‖2) = grad(p) (3.11)

for some function p. Changing this equation to 1-forms and taking an exterior deriva-
tive gives

d( f 2) ∧ d(‖X‖2) = 0 (3.12)

which is equivalent to the gradients of f 2 and ‖X‖2 being linearly dependent.
Conversely, if we assume H1(M) = 0, then linear dependence of grad( f 2) and
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grad(‖X‖2) implies that the 1-form −( f 2/2)d
(‖X‖2) is closed, therefore exact, and

Z is a zonal flow. ��
The following lemma shows that the representation of a zonal flow Z as a product

of a function f and a Killing vector field X is essentially unique, up to a nonzero
constant.

Lemma 3.7 Let Z be a nonzero zonal flow on a connected Riemannian manifold M.
If Z = f1X1 = f2X2 with functions f1, f2 and Killing vector fields X1, X2 on M,
then we have f1 = C f2 and CX1 = X2 for some C ∈ R\{0}.
Proof By Lemma 3.3, it is sufficient to prove that there exists a nonempty open subset
U ⊂ M on which we have X1 = CX2. By the nonzero assumption of Z ,

U := {x ∈ M | f1(x) �= 0}

is nonempty. Setting h := f2
f1
, we have

X1 = hX2 (3.13)

on U . Because X1 and X2 are Killing, we can apply Lemma 3.2. This completes the
proof because the nonzero assumption of Z implies h �≡ 0. ��

The following lemma expresses the positivity condition for a zonal flow in terms of
a proportionality function F , which will also play a key role in theMisiołek curvature.

Lemma 3.8 Let Z = f X be a zonal flowon M andU0 := {x ∈ M | grad(‖X‖2) �= 0}.
Then, there exists a function F on U0, unique up to a positive constant multiple, such
that

grad( f 2) = F grad(‖X‖2). (3.14)

Moreover, we have

X(F) = 0. (3.15)

Proof The existence of F follows from Lemma 3.6, since grad( f 2) and grad(‖X‖2)
are linearly dependent and the latter is nonzero on U0.

The uniqueness follows from the fact that f and X are unique up to a constant
multiple, by Lemma 3.7.

To see that X(F) = 0, switching (3.14) to 1-forms and taking an exterior derivative
on both sides gives

d( f 2) = F d(‖X‖2) ⇒ 0 = dF ∧ d(‖X‖2). (3.16)

Evaluating this 2-form on the pair (X , grad(‖X‖2)) gives

dF ∧ d(‖X‖2)(X , grad(‖X‖2)) = dF(X)‖grad(‖X‖2)‖2 (3.17)
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since the term containing d(‖X‖2)(X) vanishes by (3.2). It follows that dF(X) =
X(F) = 0 within U0 = {x ∈ M | grad(‖X‖2) �= 0}. ��

It turns out that the signature of F will be important in Sect. 4.2. Therefore wemake
the following definition.

Definition 3.9 Let Z be a zonal flow onM . Then, we define sgn(Z) : M → {−1, 0, 1}
by

sgn(Z) :=
{
sgn(F) on U0 := {x ∈ M | grad(‖X‖2) �= 0}
0 on M\U0,

(3.18)

where F is the function defined in Lemma 3.8 and sgn : R → {−1, 0, 1}. In terms of
this definition, Z is a positive zonal flow (see Definition 3.4) if the set

U+ := {x ∈ M | sgn(Z) > 0}

is nonempty.

It can be shown by a calculation that sgn(Z) depends only on Z and not on the
particular representation of Z through f and X . In fact, the following formula holds.

sgn(Z) = − sgn(g(grad(‖Z‖2) + 2∇Z Z , 2∇Z Z)).

We omit its proof since it will not be used in the paper.

3.3 S1-Zonal Flows

In this section, we specialize our discussion to zonal flows Z = f X where X is
induced by an S1-action on M , which we call S1-zonal flows (Definition 3.4).

They will be used in Sect. 4.2 to produce a sufficient condition for the positivity of
the Misiołek curvature.

Lemma 3.10 Let Z be a positive S1-zonal flow on M. Then, U+ := {x ∈ M |
sgn(Z) > 0} is an S1-invariant open subset of M.

Proof Let Z = f X with a function f and a Killing vector field on M . Take the
function F on U0 := {x ∈ M | grad(‖X‖2) �= 0} defined in Lemma 3.8. Then, we
have

X(F) = 0

by Lemma 3.8. Thus, F is constant on any S1-orbit because X is induced by the
S1-action. This completes the proof because it is obvious that U+ is open. ��

We recall the principal orbit type theorem for compact Lie groups.
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Fact 3.11 ([23, (1.1.4) and Lem. 1.1.5]) Let a compact Lie groupG act on a connected
compact manifold M . Then, there exist a homogeneous G-space G/H and a dense
open G-invariant subset Mpr of M such that for any x ∈ Mpr , there exists a G-
equivariant open embedding

φx : G/H × R
dim M−dimG/H → M (3.19)

satisfying

φx (G/H × {0}) = G · x . (3.20)

Here, G acts on G/H × R
dim M−dimG/H via the first factor.

In other words, this fact means that M looks like the product of the orbit G · x and
R
dim M−dimG/H in a small neighborhood of G · x for each x ∈ Mpr .

Corollary 3.12 Let S1 act nontrivially ona connected compactmanifold M.Then, there
exist a one-dimensional homogeneous S1-space N and a dense open S1-invariant
subset Mpr of M such that for any x ∈ Mpr , there exists an S1-equivariant open
embedding

φx : N × R
dim M−1 → M (3.21)

satisfying

φx (N × {0}) = S1 · x . (3.22)

Proof All assertion follows from Fact 3.11 except for the one-dimensionality of N . By
the nontriviality of the action, there exists a point x0 ∈ M such that the S1-orbit of x0
is one-dimensional. By the continuity of the action, there exists an open neighborhood
W of x0 such that for any x ∈ W , the S1-orbit of x is one-dimensional. This implies
N is one-dimensional because Mpr ∩ W is nonempty by the density of Mpr . ��

The aim of this section is to prove the following lemma, which is used in Sect. 4.2
in order to establish a sufficient condition for the positivity of the Miciołek curvature.

Lemma 3.13 Let Z be a positive S1-zonal flow on a Riemannian manifold M. Then,
there exist a one-dimensional homogeneous S1-space N and an S1-equivariant open
embedding

φ : N × R
dim M−1 → M (3.23)

satisfying

φ(N × R
dim M−1) ⊂ U+ := {x ∈ M | sgn(Z) > 0}. (3.24)
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Proof The assertion of this lemma is local, we can assume M is connected. Moreover,
the positivity of Z implies that the S1-action is nontrivial. Thus, by Corollary 3.12,
there exist a homogeneous S1-space N and a dense open subset Mpr of M such that
for any x ∈ Mpr , there exists an S1-equivariant open embedding

φx : N × R
dim M−1 → M (3.25)

satisfying

φx (N × {0}) = S1 · x . (3.26)

On the other hand, U+ = {x ∈ M | sgn(Z) > 0} is nonempty because Z is
positive (see Definition 3.9). Because Mpr is dense by Corollary 3.12 andU+ is open
by Lemma 3.10,U+ ∩ Mpr is nonempty. Take x0 ∈ U+ ∩ Mpr and consider the map
of (3.25) for x0

φx0 : N × R
dim M−1 → M, (3.27)

which satisfies

φx0(N × {0}) = S1 · x0. (3.28)

We note that U+ is S1-invariant by Lemma 3.10. Thus, x0 ∈ U+ implies

φx0(N × {0}) = S1 · x0 ⊂ U+. (3.29)

Therefore, there exists a sufficiently small open subset W ⊂ R
dim M−1, we have

φx0(N × W ) ⊂ U+ (3.30)

because U+ is an S1-invariant open subset and φx0 is S1-equivariant. Taking some
diffeomorphism ψ : Rdim M−1 � W and φ := φx0 ◦ (idN ×ψ), we have the lemma. ��

4 Misiołek Curvature of Zonal Flow

In this section, we calculate the Misiołek curvature for a zonal flow on an arbitrary
compact Riemannian manifold M . Moreover, we establish a sufficient condition for
the positivity of the Misiołek curvature.
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4.1 A Formula of Misioek Curvature of Zonal Flow

The L2 metric will be denoted by

〈V ,W 〉 :=
∫
M
g(V ,W )μ, (4.1)

|V |2 := 〈V , V 〉 (4.2)

for any vector fields V and W on M . Recall that the Misiołek curvature mc is defined
as

mcZ ,Y := −|[Z ,Y ]|2 − 〈Z , [[Z ,Y ],Y ]〉 (4.3)

for a stationary solution Z of the Euler equations (1.1) and a divergence-free vector
field Y .

Lemma 4.1 Let Z = f X be a zonal flow on M. Then, we have

mcZ ,Y = −| f [X ,Y ]|2 + 〈2Y ( f 2)X , [X ,Y ]〉
− 〈 f 2X , [[X ,Y ],Y ]〉 − 1

2

∫
M
Y 2( f 2)‖X‖2μ.

Proof We have

[Z ,Y ] = [ f X ,Y ]
= f [X ,Y ] − Y ( f )X ,

[[Z ,Y ],Y ] = [ f [X ,Y ] − Y ( f )X ,Y ]
= f [[X ,Y ],Y ] − 2Y ( f )[X ,Y ] + Y 2( f )X .

Therefore, we have

|[Z ,Y ]|2 = | f [X ,Y ]|2 − 2〈 f [X ,Y ],Y ( f )X〉 + |Y ( f )X |2

and

〈Z , [[Z ,Y ],Y ]〉 = 〈 f X , f [[X ,Y ],Y ]〉 − 〈 f X , 2Y ( f )[X ,Y ]〉 + 〈 f X ,Y 2( f )X〉.

By (4.3), we have

mcZ ,Y = −| f [X ,Y ]|2 + 2〈 f Y ( f )[X ,Y ], X〉 − 〈Y ( f )2X , X〉
−〈 f 2X , [[X ,Y ],Y ]〉 + 2〈 f Y ( f )[X ,Y ], X〉 − 〈 f Y 2( f )X , X〉.
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We note that

2 f Y ( f ) = Y ( f 2), (4.4)

Y ( f )2 + f Y 2( f ) = 1

2
Y 2( f 2). (4.5)

Then,

mcZ ,Y = −| f [X ,Y ]|2 + 2〈Y ( f 2)[X ,Y ], X〉
−〈 f 2X , [[X ,Y ],Y ]〉 − 1

2
〈Y 2( f 2)X , X〉.

We note

〈Y 2( f 2)X , X〉 =
∫
M
g(Y 2( f 2)X , X)μ (4.6)

=
∫
M
Y 2( f 2)‖X‖2μ. (4.7)

This completes the proof of Lemma 4.1. ��
Before stating the next lemma, we recall that if Z = f X is a zonal flow, then,

there exists a function F unique up to positive constant multiple on U0 := {x ∈ M |
grad(‖X‖2) �= 0} satisfying

grad( f 2) = F grad(‖X‖2) (4.8)

on U0 by Lemma 3.8.

Lemma 4.2 Let Z = f X be a zonal flow on M and F a function on U0 := {x ∈ M |
grad(‖X‖2) �= 0} satisfying (4.8). Then, for any divergence-free vector field Y on M
with [X ,Y ] = 0, we have

mcZ ,Y = 1

2

∫
U0

FY (‖X‖2)2μ.

Proof By Lemma 4.1 and the assumption [X ,Y ] = 0, we have

mcZ ,Y = −1

2

∫
M
Y 2( f 2)‖X‖2μ. (4.9)

Applying the Stokes theorem, we have

mcZ ,Y = 1

2

∫
M
Y ( f 2)Y (‖X‖2)μ (4.10)
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= 1

2

∫
M
g(grad( f 2),Y )Y (‖X‖2)μ (4.11)

= 1

2

∫
U0

g(grad( f 2),Y )Y (‖X‖2)μ (4.12)

because

Y (‖X‖2) = g(grad(‖X‖2),Y ) = 0

on M\U0 = {x ∈ M | grad(‖X‖2) = 0}. Then, (4.8) implies

mcZ ,Y = 1

2

∫
U0

Fg(grad(‖X‖2),Y )Y (‖X‖2)μ (4.13)

= 1

2

∫
U0

FY (‖X‖2)2μ. (4.14)

This completes the proof. ��
Recall that sgn(Z) is the signature of F for a zonal flow Z (Definition 3.9).

Corollary 4.3 Let Z = f X be a zonal flow on M and Y a divergence-free vector field.
Suppose that Y satisfies the following.

(a) [X ,Y ] = 0.
(b) supp(Y ) ⊂ U+ := {x ∈ M | sgn(Z) > 0}.
(c) Y (‖X‖2) �= 0 on U+.

Then, we have

mcZ ,Y > 0.

Proof Let F be the function for Z satisfying (4.8) on U0 := {x ∈ M | grad(‖X‖2) �=
0}. Then, by the assumption on Y , Lemma 4.2 implies

mcZ ,Y = 1

2

∫
U0

FY (‖X‖2)2μ

= 1

2

∫
U+

FY (‖X‖2)2μ.

Then, because F is positive onU+ by definition and Y (‖X‖2) �= 0 by the assumption,
we have the corollary. ��

4.2 A Sufficient Condition formc > 0

In this section, we give a sufficient condition for mcZ ,Y > 0. Namely, we prove
Theorem 1.1.
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Proof of Theorem 1.1 By Corollary 4.3, it is sufficient to show that there exists a
divergence-free vector field Y on M , which satisfies the following conditions:

(a) [X ,Y ] = 0,
(b) supp(Y ) ⊂ U+ := {x ∈ M | sgn(Z) > 0},
(c) Y (‖X‖2) �= 0 on U+.

On the other hand, by Lemma 3.13, there exist a one-dimensional homogeneous
S1-space N and an S1-equivariant open embedding

φ : N × R
dim M−1 → M (4.15)

satisfying

φ(N × R
dim M−1) ⊂ U+ := {x ∈ M | sgn(Z) > 0}. (4.16)

By this embedding, we regard

N × R
dim M−1 ⊂ U+. (4.17)

Thus, the existence of Y follows from Lemma 4.4 below by substituting h = ‖X‖2,
ω = μ, and k = dim M−1.Wenote that Lemma4.4 is applicable because X(‖X‖2) =
0 by Lemma 3.1, ‖X‖2 is not constant by the non-geodesic assumption of Z , k =
dim M − 1 ≥ 2 by the assumption of Theorem 1.1, and μ is S1-invariant by the
assumption that X is Killing and induced by the S1-action. ��
Lemma 4.4 Let N be a one-dimensional homogeneous S1-space,ω be an S1-invariant
volume form on N ×R

k , X a vector field on N ×R
k induced by the S1-action, and h

a non-constant function on N ×R
k satisfying X(h) = 0. Then, if k ≥ 2, there exists a

compactly supported divergence-free vector field Y on N ×R
k satisfying [X ,Y ] = 0

such that Y (h) �= 0.

Proof Although this is probably obvious, we prove this lemma in Appendix A for
completeness. ��

5 Zonal Flows on 3D Ellipsoids

In this section, we construct a class of zonal flows on three-dimensional ellipsoids that
will be shown to develop conjugate points.

5.1 Construction of the Family of Flows Z(f, p, q)

In this section, we calculate some formulae on three-dimensional ellipsoid in coordi-
nates to describe the particular class of flows we will be interested in. Recall that our
ellipsoid is defined for a > 0 by

M3
a := {(x, y, z, w) ∈ R

4 | x2 + y2 = a2(1 − z2 − w2)}. (5.1)
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Under the coordinate system

(−π, π) × (−π, π) × (0, π
2 ) → S3

∈ ∈

(ξ, μ, χ) �→ (a cos(ξ) sin(χ), a sin(ξ) sin(χ), cos(μ) cos(χ),

sin(μ) cos(χ))

(5.2)

we have

∂ξ �→ (−a sin(ξ) sin(χ), a cos(ξ) sin(χ), 0, 0),

∂μ �→ (0, 0,− sin(μ) cos(χ), cos(μ) cos(χ)),

∂χ �→ (a cos(ξ) cos(χ), a sin(ξ) cos(χ),− cos(μ) sin(χ),− sin(μ) sin(χ)).

Let g be the Riemannian metric on S3 induced by R
4. Then, we have

g = (gi j ) = (g(∂i , ∂ j )) =
⎛
⎝a2 sin2(χ) 0 0

0 cos2(χ) 0
0 0 a2 cos2(χ) + sin2(χ)

⎞
⎠ ,

(5.3)

where we make a correspondence

1 �→ ξ, 2 �→ μ, 3 �→ χ. (5.4)

Then, the inverse matrix of g is

g−1 = (gi j ) =
⎛
⎝1/a2 sin2(χ) 0 0

0 1/ cos2(χ) 0
0 0 1/(a2 cos2(χ) + sin2(χ))

⎞
⎠

(5.5)

and the gradient of f is given by

grad f = ∂1 f

a2 sin2(χ)
∂1 + ∂2 f

cos2(χ)
∂2 + ∂3 f

a2 cos2(χ) + sin2(χ)
∂3 (5.6)

for any function f on M3
a . It is clear from the metric coefficients that for any p, q ∈ R,

the vector field

X p,q = p∂ξ + q∂μ (5.7)
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is Killing. For any such vector field, we have

‖X p,q‖2 = a2 p2 sin2(χ) + q2 cos2(χ)

= a2 p2 − (a2 p2 − q2) cos2(χ).
(5.8)

In particular, if a2 p2 �= q2, then ‖X p,q‖2 is not constant. Now let f = f (χ) be a
scalar function of χ with the property that for some ε > 0,

f (χ) ≡ 0, on χ ∈ [0, ε) ∪
(π

2
− ε,

π

2

]
(5.9)

and let Z( f , p, q) = f (χ)X p,q . Then, we have supp(Z( f , p, q)) ⊂ M3
a\(N ∪ S) by

(5.9) (see (1.3) for the definitions of N and S). We assume also that f is non-trivial
(i.e., not a constant function).

Theorem 5.1 The vector fields Z( f , p, q) constructed above are all non-geodesic
positive zonal flows on M3

a .

Proof Let Z = f (χ)X p,q be one such vector field. By construction X p,q f = 0, so Z
is divergence-free. By Lemma 3.6, we have

∇Z Z = − f 2

2
grad(‖X p,q‖2). (5.10)

A straightforward computation shows

grad(‖X p,q‖2) = 2(a2 p2 − q2) sin(χ) cos(χ)

a2 cos2(χ) + sin2(χ)
∂χ . (5.11)

The formulae (5.6), (5.10), and (5.11) imply that we have ∇Z Z = grad h for some
function h = h(χ) by integrating the coefficient of ∂χ . Thus, Z is a zonal flow.
Moreover, (5.11) implies that grad(‖X p,q‖2) never vanishes on 0 < χ < π/2 by our
assumption a2 p2 �= q2. Since f is not identically zero, (5.10) shows that ∇Z Z does
not vanish identically, which means Z is non-geodesic.

To see that Z is positive (Definition 3.4), note that

grad( f 2) = ∂χ ( f 2)

a2 cos2(χ) + sin2(χ)
∂χ

by (5.6). However, the existence of a maximal value of f 2 implies that ∂χ ( f 2) takes
both positive and negative values on χ ∈ (0, π

2 ). Because a2 cos2(χ) + sin2(χ) is
always positive and the signature of grad(‖X p,q‖2) is constant on 0 < χ < π/2 by
(5.11), this completes the proof. ��

We conclude this section with the proof of Corollary 1.2. In view of Theorem 5.1,
it suffices to show that in the special case where p, q ∈ Q, still under the assumption
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p2a2 �= q2, the vector fields Z( f , p, q) are S1-zonal flows, in addition to being non-
geodesic and positive. Note that because to be S1-zonal flow is invariant by nonzero
constant multiple, we can assume that p, q ∈ Z (with p2a2 �= q2). We also note that
for each fixed 0 < χ0 < π/2, the vector fields ∂ξ and ∂μ are tangent to the torus
χ = χ0 sitting inside M3

a , which is just like the Clifford torus in S3. For integer p and
q, the map

t (ξ, μ, χ) = (ξ + tp, μ + tq, χ) (5.12)

generates an action of S1 = R/2πZwhose induced vector field is X p,q . This concludes
the proof of Corollary 1.2.
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A Proof of Lemma 4.4

In this section,we proveLemma4.4. For this end,we prepare some elementary lemmas
in the following three sections.

A.1 Compactly Supported Divergence Free Vector Fields onRk

In this section, we prove an elementary lemma, which states that there exist many
compactly supported divergence-free vector fields on R

k with respect to any volume
form on R

k .
Let M be an orientable manifold with a volume form μ, namely, μ is a nowhere

vanishing (dim M)-form on M . Note that we do not assume M is a Riemannian
manifold. Recall that the divergence of a vector field Y on M is defined by

div(Y )μ = LY (μ) = d ◦ iY (μ), (A.1)

where LY is the Lie derivative, iY is the interior derivative, and d is the exterior
derivative. We also write divμ(Y ) := div(Y ) when we want to emphasis that we
calculate the divergence with respect to μ. Let

Xμ(M) := {X ∈ X(M) | divμ(X) = 0} (A.2)

be the space of divergence-free vector fields on M .

Lemma A.1 Let M be a manifold with a volume form μ and H a nowhere vanishing
function on M. Define another volume form on M by μH := Hμ. Then, we have

divμH (Y )H = divμ(HY ). (A.3)
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In particular, Y ∈ XμH (M) if and only if HY ∈ Xμ(M).

Proof We have

divμH (Y )Hμ = divμH (Y )μH

= d ◦ iY (μH )

= d ◦ iY (Hμ)

= d ◦ iHY (μ)

= divμ(HY )μ,

which shows (A.3). The latter assertion follows from (A.3) and the assumption that
H is nowhere vanishing. ��

Let evp : X(M) → TpM be the evaluation map, where TpM is the tangent space
of M at p ∈ M . Namely,

evp : X(M) → TpM, (A.4)

Y �→ evp(Y ) := Yp. (A.5)

We write Xμ,c(M) for the space of compactly supported divergence-free vector fields
on M .

Lemma A.2 Let k ≥ 2 and μ0 the usual volume form on R
k . Then, for any p ∈ R

k ,
the restriction of the evaluation map evp : Xμ0,c(R

k) → TpR
k is surjective.

Proof We only prove in the case k = 2 and p = (0, 0) ∈ R
2. Let ρ : R → R be a

compactly supported smooth function satisfying ρ ≡ 1 on [−1, 1]. Define functions
R1, R2 by

R1 :=
√

(x − 1)2 + y2,

R2 :=
√
x2 + (y − 1)2,

for (x, y) ∈ R
2. Moreover, we define vector fields

Y1 := ρ(R1)
(
y∂x − (x − 1)∂y

)
,

Y2 := ρ(R2)
(
(y − 1)∂x − x∂y

)
.

Recall that for a vector field u = a∂x + b∂y , we have

divμ0(u) = ∂xa + ∂yb. (A.6)

Thus, it is obvious that Y1,Y2 ∈ Xμ0,c(R
k) and

ev(0,0)(Y1) = ∂y, ev(0,0)(Y1) = −∂x . (A.7)

This completes the proof. ��
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Corollary A.3 Let k ≥ 2 and μ a volume form on R
k . Then, for any p ∈ R

k , the
restriction of the evaluation map evp : Xμ,c(R

k) → TpR
k is surjective.

Proof By the assumption, there exists a nowhere vanishing function on Rk such that

μ = Hμ0, (A.8)

where μ0 is the usual volume form on R
k . Then, Y ∈ Xμ,c(M) if and only if HY ∈

Xμ0,c(M) for any Y ∈ X(M) by Lemma A.1. By definition, we have

evp(HY ) = H(p) evp(Y ). (A.9)

Moreover, H(p) �= 0 because H is nowhere vanishing. Thus, we have

evp
(
Xμ,c(R

k)
)

= evp
(
Xμ0,c(R

k)
)

.

Therefore, the corollary follows from Lemma A.2. ��

A.2 Lie Group Theory

In this section, we recall some elementary theories of Lie groups. For example, see
[9] for more details.

Let G be a Lie group, G/H a homogeneous G-space, and G act on G/H ×R
k via

the first factor. We write X(G/H ×R
k)G for the space of G-invariant vector fields on

G/H × R
k . For any gH ∈ G/H , let ιgH be a closed embedding

ιgH : Rk → G/H × R
k,

x �→ ιgH (x) := (gH , x).

Then, there exists an injection

X(Rk) ↪→X(G/H × R
k)G ,

Y �→ (
(gH , x) �→ Ỹ(gH ,x) := ιgH∗(Yx )

)
,

(A.10)

where ιgH∗ is the pushforward by ιgH . Moreover, if G is connected, we have

X(G/H × R
k)G = X(G/H × R

k)g, (A.11)

where g is the Lie algebra of G and we set

X(G/H × R
k)g := {Z ∈ X(G/H × R

k) | [X , Z ] = 0 for any X ∈ g}. (A.12)

Here, we identify X ∈ g with the corresponding vector field on G/H × R
k .
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Next, we suppose that there exists a G-invariant n-form ω0 on G/H , where n :=
dimG/H . Let

p : G/H × R
k → G/H , q : G/H × R

k → R
k (A.13)

be the projections for each factor. Then, we have an isomorphism

Ek(Rk) � En+k(G/H × R
k)G, (A.14)

μ �→ p∗(ω0) ∧ q∗(μ),

where Ek(Rk) is the space of k-forms on R
k and p∗ is the pull back by p.

The following lemma states that the injection (A.10) preserves the divergent if a
given volume form on G/H × R

k is G-invariant.

Lemma A.4 Let G be a Lie group, G/H a homogeneous G-space. Suppose that there
exists a G-invariant n-form ω0 on G/H with n := dimG/H. Then, for any G-
invariant (n + k)-form ω on G/H × R

k , there exists a k-form μ on R
k such that we

have

divμ(Y ) = divω(Ỹ )

for any Y ∈ X(Rk), where Ỹ is defined in (A.10). In particular, the injection (A.10)
induces

Xμ(Rk) ↪→Xω(G/H × R
k)G ,

Y �→Ỹ .
(A.15)

Proof Let ω be a G-invariant (n+ k)-form on G/H ×R
k , namely, ω ∈ En+k(G/H ×

R
k)G . Then, by the isomorphism (A.14), there exists a k-form μ on R

k such that we
have

ω = p∗(ω0) ∧ q∗(μ). (A.16)

Moreover, for any Y ∈ Xμ(Rk), we have

divω(Ỹ )ω = d ◦ iỸ
(
p∗(ω0) ∧ q∗(μ)

)

by (A.1). By the graded Leibniz rule of the interior derivative, we have

iỸ
(
p∗(ω0) ∧ q∗(μ)

) = (
iỸ p

∗(ω0)
) ∧ q∗(μ) + (−1)n p∗(ω0) ∧ (

iỸ q
∗(μ)

)
.

By the definition of the pull back, this is equal to

= p∗ (
i p∗Ỹ (ω0)

)
∧ q∗(μ) + (−1)n p∗(ω0) ∧ q∗ (

iq∗Ỹ (μ)
)

. (A.17)
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However, by the definition of Ỹ , we have

p∗(Ỹ ) = 0, q∗(Ỹ ) = Y .

Thus, (A.17) is equal to

= (−1)n p∗(ω0) ∧ q∗ (iY (μ)) .

Thus, we have

divω(Ỹ )ω = d
(
(−1)n p∗(ω0) ∧ q∗ (iY (μ))

)
.

By the graded Leibniz rule of the exterior derivative, this is equal to

= (−1)n
(
dp∗(ω0)

) ∧ q∗ (iY (μ)) + (−1)2n p∗(ω0) ∧ (
dq∗ (iY (μ))

)
= p∗(ω0) ∧ (

dq∗ (iY (μ))
)
.

Because d and the pull back is commutative, we have

divω(Ỹ )ω = p∗(ω0) ∧ (
q∗ (d ◦ iY (μ))

)
= p∗(ω0) ∧ (

q∗ (
divμ(Y )μ

))
= divμ(Y )

(
p∗(ω0) ∧ q∗ (μ)

)
= divμ(Y )ω.

This completes the proof. ��

A.3 S1 Case

In this section, we apply the results of Sect.A.2 to the case G = S1.
Let N be a one-dimensional S1-space. Then, it is obvious that there exists an S1-

invariant 1-form ω0 on N . Therefore we have the following.

Lemma A.5 Let N be a one-dimensional S1-homogeneous space. Then, for any S1-
invariant (k + 1)-from ω on N ×R

k , there exists a k-form μ on Rk such that we have
an injection

Xμ,c(R
k) ↪→Xω,c(N × R

k)S
1
,

Y �→Ỹ .

Proof Note that N is compact because S1 is compact. Moreover, the injection (A.15)
preserves the compact support property because N is compact. Thus, this is an imme-
diate corollary of Lemma A.4. ��
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Corollary A.6 Let N be a one-dimensional S1-homogeneous space, and X a vector
field on N ×R

k induced by the S1-action. Then, for any S1-invariant (k + 1)-from ω

on N × R
k , there exists a k-form μ on R

k such that we have an injection

Xμ,c(R
k) ↪→Xω,c(N × R

k)X ,

Y �→Ỹ ,

where we set

Xω,c(N × R
k)X := {Z ∈ Xω,c(N × R

k) | [X , Z ] = 0}. (A.18)

Proof Because S1 is connected, we have

Xω,c(N × R
k)S

1 = Xω,c(N × R
k)g (A.19)

by (A.11), where g is the Lie algebra of S1. Moreover, we have g = RX because S1

is one-dimensional. Thus, by the definitions (A.12) and (A.18), we have

Xω,c(N × R
k)g = Xω,c(N × R

k)X . (A.20)

The equations (A.19) and (A.20) complete the proof by Lemma A.5. ��
Recall that the evaluation map evp defined in (A.4).

Corollary A.7 Let N be a one-dimensional S1-homogeneous space, ω an S1-invariant
(k + 1)-form on N ×R

k , X a vector field on N ×R
k induced by the S1-action. Then,

we have

Tp(N × R
k) = RX + evp

(
Xω,c(N × R

k)X
)

for any p ∈ N × R
k .

Proof Set G := S1 and write N � G/H and p = (gH , x) ∈ G/H × R
k . Then, for

any Y ∈ X(Rk), we have

evp(Ỹ ) = Ỹ(gH ,x)

= ιgH∗(Yx )
= ιgH∗ evx (Y ) (A.21)

by definition of Ỹ (see (A.10)). Therefore, the injection of Corollary A.6 and (A.21)
imply

evp
(
Xω,c(N × R

k)X
)

⊃ιgH∗
(
evx (Xμ,c(R

k))
)

=ιgH∗(TxRk)

123



306 L. A. Lichtenfelz et al.

by Corollary A.3. Because

Tp(N × R
k) = RX + ιgH∗

(
TxR

k
)

,

we have the corollary. ��

A.4 Proof of Lemma 4.4

We rewrite Lemma 4.4 using the notation introduced in this section.

Lemma A.8 Let N be a one-dimensional homogeneous S1-space,ω be an S1-invariant
volume form on N ×R

k , X a vector field on N ×R
k induced by the S1-action, and h

a non-constant function on N × R
k satisfying X(h) = 0. Then, if k ≥ 2, there exists

Y ∈ Xω,c(N × R
k)X such that Y (h) �= 0.

Proof Suppose that for any Y ∈ Xω,c(N × R
k)X , we have Y (h) = 0. Then, because

X(h) = 0 by the assumption, Corollary A.7 implies that h is killed by all the deriva-
tives. This contradicts the non-constant assumption of h. Thus, we have the lemma.

��
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