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Abstract
We investigate the question of how many subgroups of a finite group are not in its
Chermak–Delgado lattice. The Chermak–Delgado lattice for a finite group is a self-
dual lattice of subgroups with many intriguing properties. Fasolă and Tărnăuceanu
(Bull Aust Math Soc 107(3):451–455, 2023) asked how many subgroups are not in
the Chermak–Delgado lattice and classified all groups with two or less subgroups
not in the Chermak–Delgado lattice. We extend their work by classifying all groups
with less than five subgroups not in the Chermak–Delgado lattice. In addition, we
show that a group with less than five subgroups not in the Chermak–Delgado lattice
is nilpotent. In this vein, we also show that the only non-nilpotent group with five or
fewer subgroups in the Chermak–Delgado lattice is S3.

1 Introduction

In this paper, we examine the question of how many subgroups of a finite group G are
not in the Chermak–Delgado lattice of G. Chermak and Delgado [6] first defined the
Chermak–Delgado lattice in 1989. In 2022, Fasolă and Tărnăuceanu [9] investigated
the question of how large the Chermak–Delgado lattice of a finite group can be. They
classified all groups with at most 2 subgroups not in their Chermak–Delgado lattice.
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266 D. Burrellet al.

In Theorem C, we extend their work by classifying all groups with less than five
subgroups not in their Chermak–Delgado lattice.

Throughout the paper, wewill use the notation H ≤ G tomean that H is a subgroup
of G. The Chermak–Delgado lattice is a sublattice of the subgroup lattice of G. To
define the Chermak–Delgado lattice of a finite groupG, which we write as CD(G), we
first need to define a functionmG called the Chermak–Delgado measure. The function
mG takes as input a subgroup ofG and returns the product of the order of the subgroup
and the order of its centralizer in G, i.e.,

mG(H) = |H | · |CG(H)|.

It is surprising that the set of subgroups with maximum Chermak–Delgado measure
have a very special property: they form a lattice, the Chermak–Delgado lattice.

For a finite group G, we write m∗(G) for the maximum value of mG on a finite
group, i.e.,

m∗(G) = max
H≤G

{mG(H)} .

If the group is clear from context, we will shorten m∗(G) to just m∗. If H , K ≤ G
satisfy mG(H) = mG(K ) = m∗, then HK = 〈H , K 〉 and mG(HK ) = mG(H ∩
K ) = m∗. Hence, the subgroups with maximum Chermak–Delgado measure form a
sublattice of the subgroup lattice of G: this is the Chermak–Delgado lattice of G. The
proof that CD(G) is a lattice can be found in Isaacs [11, 1.G].

Before stating our main results, we introduce some new notation. We write δCD(G)

for the number of subgroups of G not in CD(G). Hence, δCD(G) = 0, if all subgroups
of G are in CD(G) and δCD(G) = 1 if there is single subgroup of G not in CD(G).
The cyclic groups show that δCD maps onto the natural numbers.

Fasolă and Tărnăuceanu classified all groups where δCD(G) ≤ 2 [9, Theorem
1.1] and asked for such a classification when δCD(G) > 2. In this paper, we provide
such a classification when δCD(G) ≤ 4. To do this, we first investigate how δCD(G)

influences the structure of a finite group G.

Theorem A Let G be a finite group. If δCD(G) < 5, then G is nilpotent.

Of note, when δCD(G) = 5 and G is not nilpotent, we have the following theorem
where S3 is the symmetric group on 3 symbols.

Theorem B Let G be a finite group that is not nilpotent. If δCD(G) = 5, then G ∼= S3.

Using Theorem A together with a mixture of computational and theoretical results,
we are able to complete the classification of groups with δCD(G) < 5.

Theorem C Let G be a finite group. If δCD(G) < 5, then one of the following holds:

1. δCD(G) < 3;
2. δCD(G) = 3 and G is cyclic of order either p · q or p3 for primes p, q;
3. δCD(G) = 4 and G is isomorphic to either a cyclic group of order p4 for a prime

p, C2 × C2, or the extraspecial group of order 27 and exponent 9.
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Hence, we extend the classification of groups with δCD(G) < 3 to δCD(G) < 5.
The rest of the paper proceeds as follows: In Sect. 2,we collect somebasic properties

of the Chermak–Delgado lattice. In Sect. 3, we prove Theorem A and in Sect. 4, we
prove Theorem B. Sect. 5 contains our proof of Theorem C. Finally in our conclusion,
we ask some questions motivated by the study of δCD.

2 Preliminary Material

In this section, we recall a few well-known properties of the Chermak–Delgado lattice
for a finite group G. We also present some elementary properties of the Chermak–
Delgado lattice for a few families of groups.

Lemma 2.1 Suppose G is a finite group. If H ∈ CD(G), then Z(G) ≤ H.

Proof If H ≤ G, then CG(H) = CG(HZ(G)), and so if H ∈ CD(G), and so H
attains the maximum Chermak–Delgado measure in G, then Z(G) ≤ H . 	

Corollary 2.2 Suppose that a finite nontrivial group G is a p-group. Then, 1 /∈ CD(G).

Proof A nontrivial p-group has a nontrivial center, and the result follows by
Lemma 2.1. 	


The following result appears in McCulloch [12, Corollary 7].

Lemma 2.3 ([12]) Suppose G is a finite group and 1 ∈ CD(G). Then CD(G) contains
no nontrivial p-group for any primes p.

We will often use the contrapositive to Lemma 2.3, which we state below as a
corollary.

Corollary 2.4 Suppose G is a finite group. If a nontrivial p-group is in CD(G), then
1 /∈ CD(G).

Another well-known result about Chermak–Delgado lattices of finite groups is the
following by Brewster and Wilcox [5, Theorem 2.9].

Lemma 2.5 ([5])Let G and H be finite groups. Then,CD(G×H) = CD(G)×CD(H).

Together with Corollary 2.2 above, this implies that in a finite nilpotent group, we
can greatly restrict the types of groups that appear in the Chermak–Delgado lattice.

Corollary 2.6 Let G be a finite nilpotent group. If p divides |G|, then p divides the
order of H for every H in CD(G).

Proof We can write G as S × K where S is a Sylow p-group of G and K is a p-
complement of S. We know that CD(G) = CD(S) × CD(K ). Since CD(S) does not
contain 1, we conclude that every element of CD(S) is a nontrivial p-group. Hence p
divides any H in CD(G). 	
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268 D. Burrellet al.

Another interesting result about the Chermak–Delgado lattice is that since H ∈
CD(G) if and only if Hg ∈ CD(G), we have that HHg is a group for all g ∈ G.
Recall that a subgroup H of a group G is called subnormal if

H = K0 � K1 � · · · � Kn = G.

Foguel showed that groups H that permute with their conjugates, i.e., HHg is a
subgroup, are subnormal [8]. Hence, subgroups in CD(G) are subnormal in G, which
is also noted in [5, 7].

The following lemma is part of a theme we will see throughout the paper: certain
conditions on G and CD(G) will exclude other groups from being in CD(G). We say
that a set of subgroups X = {H1, . . . , Hk : Hi ≤ G} of cardinality k witnesses that
δCD(G) ≥ k, if for each Hi ∈ X we have that Hi /∈ CD(G).

Lemma 2.7 Let G be a finite group. If G has k subgroups of prime order, then
δCD(G) ≥ k.

Proof If k = 0, then G is trivial and the result is trivially true. So suppose k > 0.
If 1 ∈ CD(G), then it follows from Lemma 2.3 that the k subgroups of prime order
witness that δCD(G) ≥ k. Suppose 1 /∈ CD(G) and suppose that H , K ≤ G are two
distinct subgroups of prime order and H , K ∈ CD(G). Then, 1 = H ∩K ∈ CD(G), a
contradiction. Hence among the subgroups of prime order, at most one of them can be
in CD(G). Thus, the other k − 1 subgroups of prime order, together with the identity
witness that δCD(G) ≥ k. 	


The following lemma concerns generalized quaternion groups. Recall that a group
is called a generalized quaternion group if G ∼= 〈a, b|a2k, b4, ak = b2, ab = a−1〉.
We will write the generalized quaternion group of order m as Qm . It is well-known
that a finite p-group with a single subgroup of order p is either cyclic or generalized
quaternion [13, 4.4]. We also need the following from Fasolă and Tărnăuceanu [9, The
proof of Lemma 2.1].

Lemma 2.8 ([9]) If G is a generalized quaternion 2-group, then

∣
∣CD (

Q2k
)∣
∣ =

{

5 if k = 3

1 if k > 3.

For the next lemma, we will need to introduce some notation. For a group G and
two subgroups H and K of G, we write [[H : K ]]G for the set of subgroups between
H and K , i.e.,

[[H : K ]]G = {J ≤ G : H ≤ J and J ≤ K }.

If the group G is clear from context, then we write [[H : K ]] for [[H : K ]]G . The
following lemma from An [1, Theorem 3.4] and [2, Theorem 4.4] shows that when
H ∈ CD(G), we can actually say something abut CD(H).
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Lemma 2.9 Let G be a finite group and H ≤ G. If H ∈ CD(G) then CD(H) is exactly
the set of subgroups of H containing Z(H) and in CD(G), i.e.,

CD(H) = [[Z(H) : H ]] ∩ CD(G).

3 Proof of Theorem A

Our proof of Theorem A depends on a connection between the Sylow subgroups and
the Chermak–Delgado lattice. One of the Sylow Theorems states that the total number
of Sylow p-subgroups in G is 1 if and only if any of the Sylow p-subgroups is normal
in G. The below lemma extends this observation.

Lemma 3.1 Let G be a finite group and let S be a Sylow subgroup of G. Then, S is
subnormal in G if and only if S is normal in G.

Proof A normal subgroup is also subnormal. Suppose now that S is subnormal in G,
and that S is a p-group for a prime p. This means there is a chain of subgroups

S = K0 � K1 � · · · � Kn = G.

We note that S is a Sylow subgroup of all of the Ki . Since S � K1, we know that S
is the unique Sylow p-subgroup of K1. Hence S is a characteristic subgroup of K1.
Thus, S is normal in K2 and by the same argument characteristic in K2. Continuing
in this manner, we see that S is normal in G. 	

Lemma 3.2 Let G be a finite group. Then at most one Sylow subgroup of G is in
CD(G). Furthermore, if a Sylow subgroup of G is in CD(G), then it is normal.

Proof Since all subgroups in CD(G) are subnormal, we have by Lemma 3.1 that if a
Sylow subgroup of G is in CD(G), then it is normal.

First suppose that 1 ∈ CD(G). Now 1 is a Sylow subgroup of G for any prime not
dividing |G|. It follows from Lemma 2.3 that no nontrivial Sylow subgroups of G are
in CD(G), and so in this case, 1 is the unique Sylow subgroup in CD(G).

Suppose p is a divisor of |G| and suppose a Sylow p-subgroup S of G is in CD(G).
Write |S| = pk . Since S is normal inG, we have that S is the unique Sylow p-subgroup
of G. Let T be another Sylow subgroup of G, and so T is not a p-group. We show
that T is not in CD(G).

By definition, S ∈ CD(G) means that m∗(G) = |S| · |CG(S)|. Since 1 < Z(S) ≤
CG(S), we conclude that pk+1|m∗(G). Since S is a Sylow subgroup of G with |S| =
pk , we know that pk+1 does not divide |CG(T )|. And so pk+1 does not divide |T | ·
|CG(T )| and we conclude that T is not in CD(G). 	

Corollary 3.3 Let G be a finite group and write n for the number of nontrivial Sylow
subgroups of G. Then δCD(G) ≥ n.

Proof If none of the nontrivial Sylow subgroups ofG are in CD(G), then the nontrivial
Sylow subgroups of G witness that δCD(G) ≥ n.
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270 D. Burrellet al.

Otherwise, suppose that a nontrivial Sylow subgroup S of G is in CD(G). By
Lemma 3.2 and Corollary 2.4,

{T : T �= S is a nontrivial Sylow subgroup of G} ∪ {1}

witnesses that δCD(G) ≥ n. 	

Another fact of Sylow theory is that the number of Sylow p-subgroup of a group

G is congruent to 1 modulo p, and this number divides the index in G of a Sylow
p-subgroup. Hence if a finite group G is not nilpotent, then it has at least four Sylow
subgroups with equality if and only if G is a {2, 3}-group and the Sylow 3-subgroup
is normal.

Proof of TheoremA The result for δCD(G) < 4 follows from Corollary 3.3 and the
fact that non-nilpotent groups always have at least four Sylow subgroups. Suppose
δCD(G) = 4 and that G is not nilpotent. Let S be the Sylow 3-subgroup of G.

We first argue that S ∈ CD(G). Suppose by way of contradiction that S /∈ CD(G).
Then the four subgroups that are not in CD(G) are the three Sylow 2-subgroups of
G and S. We conclude that 1 ∈ CD(G). It follows from Lemma 2.3 that all of the
nontrivial 2-groups and 3-groups of G are not in CD(G). Since δCD(G) = 4, G
has exactly four total nontrivial 2-groups or 3-groups, namely the three Sylow 2-
subgroups of G and S. So, all nontrivial Sylow subgroups must have prime order.
Thus, m∗(G) = mG(1) = |G| = 6. But S has a Chermak–Delgado measure of 9, a
contradiction.

Therefore, S ∈ CD(G), and the four subgroups that are not in CD(G) are the three
Sylow 2-subgroups of G and the identity subgroup. We conclude that G ∈ CD(G).

Note that any Sylow 2-subgroup of CG(S) is also a Sylow 2-subgroup of G. This
is because |S| · |CG(S)| = m∗(G) and since G ∈ CD(G), |G| divides m∗(G). Now,
we have that G = ST is a direct product where T is a Sylow 2-subgroup of CG(S),
which implies that G is nilpotent, a contradiction. 	


We can say more about the non-nilpotent case, as seen in the next section where
we prove Theorem B.

4 Proof of Theorem B

If a finite group G is not nilpotent, then it has at least four Sylow subgroups, and if G
has either four or five Sylow subgroups, thenG is a {2, 3}-group. In this section,wewill
sometimes use the non-standard notation Hp to denote a Sylow p-subgroup ofG. This
makes our proofs easier to read by reminding the reader of the prime associated with
the Sylow p-subgroup, especially as the prime p will shift between certain lemmata.
In addition, we wish to avoid confusion with Sp, the symmetric group on p symbols.

Lemma 4.1 Suppose that a finite {2, 3}-group G has exactly four Sylow 3-subgroups
and a normal Sylow 2-subgroup H2. Then δCD(G) > 5.
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Proof Since G has four Sylow 3-subgroups, it is not nilpotent. By Theorem A, we
conclude that δCD(G) ≥ 5. The four Sylow 3-subgroups of G witness that δCD(G) ≥
4. By way of contradiction suppose that δCD(G) = 5.

Note that 4 divides |H2| which equals the index in G of a Sylow 3-subgroup.
Suppose 1 ∈ CD(G). It follows from Lemma 2.3 that all of the nontrivial 2-groups

and 3-groups of G are not in CD(G). Since δCD(G) = 5, G has exactly five total
nontrivial 2-groups or 3-groups, namely the four Sylow 3-groups and the normal
Sylow 2-group. We conclude that all of the nontrivial Sylow subgroups have prime
order which contradicts |H2| ≥ 4.

Now suppose that 1 /∈ CD(G). By assumption, 1 and the four Sylow 3-subgroups
are the only subgroups of G not contained in CD(G). Hence, G and H2 are in CD(G).
This means that m∗(G) = |G| · |Z(G)| is divisible by |G|. However, m∗(G) =
|H2| · |CG(H2)|. Since H2 is a 2-group, we conclude that [H2, H3] = 1 for a Sylow
3-subgroup H3 of G. Then, H2H3 = G is a direct product and is, thus, nilpotent, a
contradiction. Hence, δCD(G) > 5. 	

Lemma 4.2 Suppose that a finite {2, 3}-group G has exactly three Sylow 2-subgroups
and a normal Sylow 3-subgroup H3. If δCD(G) = 5, then 1 /∈ CD(G).

Proof Suppose by way of contradiction that 1 ∈ CD(G). It follows from Lemma 2.3
that all of the nontrivial 2-groups and 3-groups ofG are not inCD(G). Since δCD(G) =
5, G has at most five nontrivial 2-groups or 3-groups, including the three Sylow 2-
subgroups and H3. And so G has at most two subgroups that are nontrivial 3-groups,
and at most one subgroup that is a nontrivial 2-group, but not Sylow. This means that
G is a {2, 3}-group with |G| ≤ 2232. Considering each of the possible orders of G,
2 · 3, 4 · 3, 2 · 9, or 4 · 9, we see that in every case, the Sylow subgroups are abelian
and one of them has Chermak–Delgado measure larger than m∗(G) = |G|. 	

Lemma 4.3 Suppose that a finite {2, 3}-group G has exactly three Sylow 2-subgroups
and a normal Sylow 3-subgroup H3. If δCD(G) = 5, then H3 ∈ CD(G).

Proof By Lemma 4.2, we know that 1 /∈ CD(G). Hence 1, together with the three
Sylow 2-subgroups witness that δCD(G) ≥ 4. There is one other subgroup of G not
in CD(G).

Suppose by way of contradiction that H3 /∈ CD(G). Let H2 be a Sylow 2-subgroup.
We claim that one of H3 or H2 must have prime order. Otherwise, if 1 < P < H3,
and 1 < Q < H2, then P, Q ∈ CD(G), and so 1 = P ∩Q ∈ CD(G), a contradiction.
Let K be a Sylow subgroup of prime order p.

Then K ∩Z(G) = 1, as otherwise, K ≤ Z(G), and it would follow that the {2, 3}-
groupG is nilpotent.And soZ(G) is a p′-group.Nowm∗(G) = |G|·|Z(G)| = p·(p′)i
for some i . But also K < KZ(G) < G, and so KZ(G) ∈ CD(G). But KZ(G) is
abelian, and so KZ(G) ≤ CG(KZ(G)), and so p2 divides |KZ(G)|·|CG(KZ(G))| =
m∗(G), a contradiction. 	


We can now prove Theorem B, which states that for a non-nilpotent group if
δCD(G) = 5, then G ∼= S3.
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272 D. Burrellet al.

Fig. 1 Subgroup diagram of S3
with a circle around the
Chermak–Delgado sublattice,
which consists of the single
subgroup isomorphic to C3. This
is the only non-nilpotent group
with δCD(G) = 5

S3

C2 C2 C2

C3

1

Proof of Theorem B FromLemma 4.1we conclude thatG is a {2, 3} groupwith exactly
three Sylow 2-subgroups, and a normal Sylow 3-subgroup H3. From Lemmata 4.2
and 4.3, we have that H3 ∈ CD(G) and that the five subgroups of G not in CD(G) are
the three Sylow 2-subgroups, the identity subgroup, and one other subgroup X . We
will show that X = G. Suppose instead that G ∈ CD(G).

Note that any Sylow 2-subgroup of CG(H3) is also a Sylow 2-subgroup of G. This
is because |H3| · |CG(H3)| = m∗(G) and since G ∈ CD(G), |G| divides m∗(G). And
so now we have that G = H3H2 is a direct product where H2 is a Sylow 2-subgroup
of CG(H3), which implies that G is nilpotent, a contradiction.

So X = G, and the three Sylow 2-subgroups, the identity subgroup, and G witness
that δCD(G) = 5.

Let H2 be a Sylow 2-subgroup ofG.We argue that |H2| = 2. Otherwise, there exists
1 < X ≤ Z(H2) with X < H2, and so X ∈ CD(G). Then m∗(G) = |X | · |CG(X)| =
|H3| · |CG(H3)|, and so |H3| divides |CG(X)|. This implies that H3 ≤ CG(X). Hence
[X , H2] = 1 and [X , H3] = 1. Since Z(G) ≤ H3, we have X ≤ Z(G) ≤ H3, a
contradiction. Hence |H2| = 2. Since |H2| = 2, we note that CG(H3) is a 3-group
as otherwise a Sylow 2-subgroup would be contained in CG(H3) which would imply
that G is nilpotent. So m∗(G) = |H3| · |CG(H3)| is a power of 3.

We now argue that H2 is self-normalizing. Otherwise, let Y be a nontrivial Sylow
3-subgroup of NG(H2). So 1 < Y < H3 (note that Y < H3 as otherwise H3 and H2
would normalize one another, and so G = H3H2 would be nilpotent). Then H2Y is a
subgroup, and H2 < H2Y < G, and so H2Y is in CD(G), which contradicts the fact
that m∗(G) is a power of 3.

So H2 is self-normalizing, and 3 = |G : NG(H2)| = |G : H2| = |H3|. So H3 is
cyclic of order 3, H2 is cyclic of order 2, and G ∼= S3. 	


Figure 1 shows the subgroup diagram of S3.

5 Proof of Theorem C

Lemma 5.1 Let G be a nonabelian nilpotent group. If δCD(G) < 7, then G is a
p-group. If δCD(G) < 6, then G is a 2-group or a 3-group.
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Proof Suppose that there are at least two prime divisors of |G|. Corollary 2.6 tells
us that no groups of prime-power order are in CD(G). Moreover, since G is a non-
abelian nilpotent group, then at least one Sylow subgroup of G is nonabelian. Let p be
a prime such that G has a nonabelian Sylow p-subgroup and let q be another prime
divisor of G.

Let S be a nonabelian Sylow p-subgroup of G. Then S has at least p+2 subgroups
above the center, which means that S has at least p + 4 subgroups total (including
Z(S) and 1). Thus G contains at least p + 4 distinct p-groups for the prime p. These
p-groups, together with a nontrivial Sylow q-group T form a set of p + 5 subgroups
that witness δCD(G) ≥ p + 5.

Thus, we have

p + 5 ≤ δCD(G) < 7.

This is a contradiction. We conclude that G must be divisible by a single prime.
Now suppose that δCD(G) < 6. The group G must be divisible by a single prime

p. Recall that a nonabelian p-group of odd order must contain p + 1 subgroups of
order p. By Lemma 2.7 this means that

p + 1 ≤ δCD(G) < 6

andwe conclude that p < 4.Hence if a nonabelian nilpotent groupG has δCD(G) < 6,
then G is a 2-group or a 3-group. 	


We note that for an odd prime p, δCD(Q8 ×Cp) = 7 and is a nonabelian nilpotent
group. We also note that the extraspecial group of order 53 and exponent 25 satisfies
δCD(G) = 6, so both bounds in Lemma 5.1 are sharp.

Lemma 5.2 Let G be a nonabelian p-group and suppose that 3 ≤ δCD(G) ≤ 4. Then
G contains at least p+ 1 subgroups of order p. Of these, p of the subgroups together
with the identity witness that δCD(G) ≥ p + 1.

Proof If p > 2, then every nonabelian p-group contains at least p + 1 subgroups of
order p.

If p = 2, and G contains a single subgroup of order 2, then G is generalized
quaternion. Since the generalized quaternion 2-groups of order greater than 8 contain
more than 7 subgroups and contain a single subgroup in their Chermak–Delgado
lattices, we conclude that for such groups δCD(G) > 4. Moreover, δCD(Q8) = 1. 	


Hence for a nonabelian p-group G with 3 ≤ δCD(G) ≤ 4 there are p subgroups of
order p, which together with the identity witness that δCD(G) ≥ p + 1. We will use
this to derive a set of conditions for a subgroup of G to satisfy.

Lemma 5.3 Let G be a nonabelian p-group and suppose 3 ≤ δCD(G) ≤ 4. For every
K ≤ G, the following hold:

1) There are at most 4 subgroups of order p in K .
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2) There is a subgroup Z ≤ Z(K ) with |Z | = p such that

|{H ≤ K : p2 ≤ |H | and Z �< H}| ≤
{

0 p > 2

1 p = 2.

3) If |K | ≥ p3, then K ∈ CD(K ) and at most one subgroup H of K can satisfy
Z(K ) ≤ H and H /∈ CD(K ).

Proof As noted in Lemma 5.2, the group G has at least p+1 subgroups not in CD(G)

consisting of the identity and the p subgroups of order p. 1) If K had more than 4
subgroups of order p, then it would have at least 5 such groups. Hence, G would have
at least 5 subgroups of order p and by Lemma 2.7 we would have that δCD(G) ≥ 5.

2) If K has a single subgroup of order p it is cyclic or generalized quaternion and all
groups of order greater than p2 contain the unique subgroup of order p. Now, suppose
that K has p + 1 involutions. Hence, G has p + 1 witnesses from Lemma 5.2. There
can only be one additional witness with order greater than p if p = 2.

Suppose that p = 2. Then, K contains the three subgroups A = 〈a〉, B = 〈b〉,
and C = 〈ab〉 of order 2. If none of them are in CD(G), then the four subgroups
not in CD(G) are {1, A, B,C}. Now 〈a, b〉 contains a central involution, and hence
is a product of any two of the subgroups of order 2 and has order 4. Now 〈a, b〉 is
in CD(G), and it follows that Z(G) = 〈a, b〉. Moreover, since δCD(G) = 4 in this
case, we conclude that every subgroup of G of order 4 or larger is in CD(G), and thus
contains Z(G) = 〈a, b〉.

Otherwise, let Z ≤ K of order 2 in CD(G). Since Z ∈ CD(G), we know that
Z = Z(G) and hence Z ≤ Z(K ). Moreover, since the other two involutions and the
identity would not be in CD(G), we have δCD(G) ≥ 3 and, thus, at most one other
subgroup of G (which must have order greater than 2) could not be in CD(G) and thus
not contain Z .

Suppose that p > 2. Then by Lemma 5.1, p = 3 and from 5.2 we note that exactly
one subgroup of order 3 is in CD(G); call this subgroup H and note that H = Z(G).
Then, every subgroup of G of order greater than 3 is in CD(G) and must contain H
as a subgroup.

3) We note that if K is cyclic then Z(K ) = K ∈ CD(K ). Suppose that |K | ≥ p3 is
not cyclic and by way of contradiction that K /∈ CD(K ). By Lemma 2.9 we have that
K /∈ CD(G). Moreover, since CD(G) is closed under products we must have that at
least p of the maximal subgroups of K (which have order ≥ p2) are not in CD(G).
Hence δCD(G) ≥ 2(p + 1) > 5. We conclude that K ∈ CD(K ).

Suppose that H and J are subgroups of K with Z(K ) ≤ H and Z(K ) ≤ J such
that neither H nor J are in CD(K ). Then H and J are not in CD(G) by Lemma 2.9.
Since K ∈ CD(K ), we conclude that Z(K ) < H and Z(K ) < J and thus the orders
of both H and J are greater than or equal to p2. Hence, H , J , the identity, and p of
the subgroups of order p in G would witness that δCD(G) ≥ p + 3 ≥ 5. 	


Lemma 5.3 gives us conditions on the types of subgroups a 2-group or 3-group G
can have if 3 ≤ δCD(G) ≤ 4. This allows us to specify what types of subgroups G can
have of a given order. For example, a 2-group G with 3 ≤ δCD(G) ≤ 4 cannot contain
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Fig. 2 Groups of order 32 that
satisfy at least one of conditions
1), 2), and 3) of Lemma 5.3
identified by their SmallGroup
index among groups of order 32,
e.g., 1 corresponds to
SmallGroup(32,1) which is the
cyclic group of order 32

the dihedral group of order 8 as a subgroup because the dihedral group of order 8 has
5 involutions. Similarly, it cannot contain the elementary abelian group of order 8 as
a subgroup. This means all of its subgroups of order 8 are either cyclic, quaternion, or
isomorphic to C4 × C2. We can computationally then search over all of the 2-groups
of a given order to look for potential subgroups of a 2-group G with 3 ≤ δCD(G) ≤ 4.

We will pause to introduce the reader to another family of p-groups. These groups
are commonly written as Mpk = 〈a, b|a pk−1

, bp, ab = a pk−2+1〉. For an odd prime
p, the groups Mpk are the only nonabelian p-groups with cyclic maximal subgroups.

Lemma 5.4 Let G be a 2-group and suppose 3 ≤ δCD(G) ≤ 4. Then all subgroups of
order 32 in G are isomorphic to one of the following groups: C32, C16 ×C2, or M32.

Proof Using GAP [10], we can sort through all groups of a given order that meet the
conditions of Lemma 5.3. For groups of order 32, we obtain the Venn diagram in Fig 2.
Code todo this in theGITHUB repo: https://github.com/7cocke/chermak_delgado_lt5.
Different authors wrote the code independently of each other in the two languages.

	

We could continue our calculations and would see that there are 3 possible sub-

groups of order 64 which are C64,C32 × C2 and M64. Similarly, we would see that
there are 3 possible subgroups of order 128, i.e., the groups C128,C64 × C2, M128.

There are also 3 possible subgroups of order 256. This observation motivates the fol-
lowing theorem whose proof relies heavily on the exhaustive work of Berkovich and
Janko [3].

Theorem 5.5 Let G be a p-group with order |G| = pk+1 for k > 4. Suppose that G
contains at most p+1 subgroups of order p and that every maximal subgroup of G is
isomorphic to one of Cpk ,Cpk−1 × Cp, and Mpk . Then G is isomorphic to one of the
groups Cpk+1 ,Cpk × Cp, or Mpk+1 .

Proof If G is abelian, then it must be isomorphic to either Cpk or Cpk−1 × Cp.
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The rest of the proof will cite a number of results from the encyclopedic work of
Berkovich and Janko [3] which classifies p-groups all of whose subgroups of index
p2 are abelian.

Suppose that all maximal subgroups of G are abelian. Then G is minimal non-
abelian. Berkovich and Janko [3, 3.1] attribute the classification ofminimal nonabelian
p-groups to Rédei. Our group G contains at most p+ 1 subgroups of order p and has
order greater than p4. If G were minimal nonabelian, it would have to be isomorphic
to Mpk+1 .

Hence G must contain a nonabelian maximal subgroup. Thus G is an A2-group,
i.e., a group all of whose subgroups of index p2 are abelian. Moreover, all proper
subgroups of G would be metacyclic. If G itself were not metacyclic, then it would
be minimal nonmetacyclic. Berkovich and Janko [3, 1.1(l)] cite Blackburn [4, 3.2]
for the classification of minimal nonmetacyclic groups, none of which could be our
group G. Hence the group G is a metacyclic A2-group. Such groups are classified by
Berkovich and Janko [3, 5.2]. Again, since we have restricted the maximal subgroups
of G, it cannot be any of these groups.

We conclude that G is either abelian or isomorphic to Mpk+1 . 	

For 3-groups, Lemma 5.3 can be used to establish the following.

Lemma 5.6 Let G be a nonabelian 3-group with δCD(G) = 4. Then all subgroups of
order 243 in G are isomorphic to one of C243, C81 × C3, or M243.

These are the same3 types of groups that occur inTheorem5.5. Thismeans that as in
the 2-group case, for a 3-group with δCD(G) = 4, there are at most three isomorphism
classes of subgroups for every order greater than 243.

Theorem 5.7 If G is a nonabelian 2-group and δCD(G) ≤ 4, then G is the quaternion
group of order 8.

Proof If G has a single involution, then G is generalized quaternion and we note that

m∗(G) =
( |G|

2

)2
. If |G| > 8, then CD(G) is a single subgroup and δCD(G) > 4.

Suppose by way of contradiction that G is not the quaternion group of order 8. We
must have that 3 ≤ δCD(G) ≤ 4. As noted, in Lemma 5.4 the only subgroups of order
32 in G would be isomorphic to C32,C16 × C2, or M32. By Theorem 5.5, the only
subgroups of order 64 inG would be isomorphic toC64,C32×C2 or M64. Continuing
in this manner, we see that G itself would be isomorphic to either C2k ,C2k−1 ×C2 or
M2k . However, none of these groups satisfy δCD(G) ≤ 4.

Thus |G| ≤ 32. A computational search using either GAP orMAGMA shows that
there is no such nonabelian 2-group. 	


We note that the dihedral group of order 8 has exactly 5 groups not contained in
CD(G), i.e., δCD(G) = 5.

Theorem 5.8 If G is a nonabelian 3-group, then δCD(G) ≥ 4with equality if and only
if G is the extraspecial group of order 27 and exponent 9.
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M27

C9 C9 C9 C3 × C3

C3C3 C3C3

1

Fig. 3 The subgroup diagram of G = M27, i.e., the extraspecial group of order 27 and exponent 9. The four
subgroups not in CD(G) are contained wthin the ellipse in the figure. This is the only nonabelian group
with δCD(G) = 4

Proof Using the same code as in Lemma 5.4 we see that all of the subgroups of G of
order 243 are isomorphic toC243,C81×C3, orM243. By Theorem 5.5, either |G| ≤ 81
or G itself is isomorphic to one of C3k ,C3k−1 × C3, or M3k . Regardless, G does not
satisfy δCD(G) = 4 except for whenG is M27 which is the extraspecial group of order
27 and exponent 9. 	


In Fig 3, we display the subgroup diagram of M27 the only nonabelian nilpotent
group with δCD(G) = 4.

Combining Theorems 5.7 and 5.8 provides the proof of Theorem C.

Proof of Theorem C If G is nonabelian, then G is either a 2-group or a 3-group by
Lemma 5.1. Combining Theorem 5.7 and 5.8, we see that G must be the extraspeical
group of order 27 and exponent 9.

If G is abelian, then we know that δCD(G) is equal to the number of subgroups of
G minus 1. Counting the subgroups of abelian groups finishes the proof. 	


6 Conclusion

We have extended the results by Fasolă and Tărnăuceanu [9] by classifying all finite
groups with 3 ≤ δCD(G) ≤ 4. Obvious questions exist about classifying all groups,
where δCD(G) = k for k ≥ 5. In particular, for δCD(G) = 5 combining Theorem B
and Lemma 5.1 means one only needs to classify nonabelian 2-groups and 3-groups
with δCD(G) = 5.

Corollary 3.3 establishes that δCD(G) is greater than the number of distinct prime
divisors of a groupG. Is it the case that for a fixed k we can also bound the multiplicity
of a prime divisor of G? We ask this in three distinct, but highly related questions:

123



278 D. Burrellet al.

Question 1 Let n beapositive integer not equal to 8. If G has order n, then is δCD(G) ≥
δCD(Cn), i.e., the number of proper divisors of n?

Question 2 Let G be a finite group. If G has exactly k prime divisors up to multiplicity,
is it the case that δCD(G) is bounded by a function depending on k?

Question 3 Let G be a finite group, p a prime divisor of |G| and k an integer. Is

δCD(G) ≥
{

k pis odd,

k − 2 p = 2

when G has a subgroup of pk?

Theorem A shows that when δCD(G) < 5, we have that G is nilpotent. One can
ask the same ques for solvable groups.

Question 4 What is the maximal value of m, such that if a finite group satisfies
δCD(G) < m, then G must be solvable?

We note that Theorem C shows that there is no nonabelian group G with
δCD(G) = 3.

Question 5 Is there a positive integerm such that for every k ≥ m there is a nonabelian
group G with δCD(G) = m?
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