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Abstract
In this paper, the normality of a family of meromorphic functions is deduced from the
normality of a given family. Precisely, we have proved: LetF and G be two families of
meromorphic functions on a domain D, and a, b, c be three finite complex numbers
such that a �= 0 and b �= c. Suppose that G is normal in D such that no sequence in
G converges locally uniformly to infinity in D. If n ≥ 3 and for each function f ∈ F
there exists g ∈ G such that f

′ − a f n and g
′ − agn partially share the values b and c,

then F is normal in D. Further, examples are given to establish the sharpness of the
result.
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1 Introduction andMain Results

Let D be a domain in the complex plane C. A family F of meromorphic functions on
D is said to be normal if from every sequence { fn} inF ,we can extract a subsequence
{ fnk }which converges locally uniformly to f in D with respect to the spherical metric,
where f is either ameromorphic function or identically equal to infinity in D. A family
F is said to be normal at z0 ∈ D if it is normal in some neighborhood of z0; thus, F
is normal in D if and only if it is normal at each point z ∈ D. (see [14]).

Let f and g be two meromorphic functions in D and let a ∈ C. We shall denote by
E( f , a) the set of zeros of f − a (ignoring multiplicities). We say that f and g share
the value a if E( f , a) = E(g, a). Further, if E( f , a) ⊂ E(g, a), we say that f and
g share the value a partially (see [18]).
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According to Bloch’s principle [14], any condition which reduces a meromorphic
function in C to a constant is likely to force a family of meromorphic functions in a
domain D to be normal. Although this principle as well as its converse does not hold
in general (see, for example [2, 13]), still it serves as a guiding principle for obtaining
normality criteria corresponding to Picard-type theorems and vice versa (see [1]).

In 1959, Hayman [5] proved that if f is a meromorphic function in the complex
plane, a ∈ C\{0} and the differential polynomial f

′ − a f n, n ≥ 5, does not assume
a finite complex value in C, then f is constant. This result is not true for n = 3, 4 as
shownbyMues [10]. In viewofBloch’s principle,Hayman [6] in 1967 conjectured that
there exists a normality criterion corresponding to this Picard-type theorem. Over the
next few decades, the following normality criterion was established thereby proving
the Hayman’s conjecture.

Theorem 1.1 Let F be a family of meromorphic (holomorphic) functions in a domain
D, n ∈ N and a, b be two finite complex numbers such that n ≥ 3 (n ≥ 2) and a �= 0.
If for each f ∈ F , f

′ − a f n �= b, then F is normal in D.

The proof of Theorem 1.1 for meromorphic functions is due to S. Li [8], X. Li [9]
and Langley [7] for n ≥ 5, Pang [11] for n = 4, Chen and Fang [3] and Zalcman [17]
for n = 3 independently and the proof of Theorem 1.1 for holomorphic functions is
due to Drasin [4] for n ≥ 3 and Ye [16] for n = 2.

In 2008, Zhang [19] considered the idea of shared values and proved the following.

Theorem 1.2 Let F be a family of meromorphic (holomorphic) functions in D, n ∈ N

and a, b be two finite complex numbers such that n ≥ 4 (n ≥ 2) and a �= 0. If for
each pair of functions f and g in F , f

′ − a f n and g
′ − agn share the value b, then

F is normal in D.

In this paper, we consider the related problems concerning two families of
meromorphic functions and prove the following theorem:

Theorem 1.3 Let F and G be two families of holomorphic functions on a domain D,
and a, b, c be three complex numbers such that a �= 0 and b �= c. Suppose that G
is normal in D such that no sequence in G converges locally uniformly to infinity in
D. If n ≥ 2 and for each function f ∈ F , there exists g ∈ G such that f

′ − a f n and
g

′ − agn partially share the values b and c, then F is normal in D.

In the following example, we show that the condition ‘partial sharing of two values
b and c’ in Theorem 1.3 cannot be reduced to one.

Example 1.4 Consider the two families F := {
f j (z) = e jz : j ∈ N

}
and G := {1} of

holomorphic functions on D. Note that g
′
j − g2j ≡ −1. Therefore, f

′
j − f 2j = −1 ⇒

g
′
j − g2j = −1. But F fails to be normal at z = 0.

We demonstrate in the subsequent example that Theorem 1.3 fails to be true when
n = 1. Therefore, the condition n = 2 is the best possible for Theorem 1.3.
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Example 1.5 Consider the two families F := {
f j (z) = j z : j ∈ N

}
and G := {−1}

of holomorphic functions on D. Then, clearly, f
′
j (z) − f j (z) = j(1− z) �= 0, and for

each f j ∈ F , there exists g j ∈ G such that f
′
j (z) − f j (z) = 1 ⇒ g

′
j (z) − g j (z) = 1.

But F fails to be normal at z = 0.

The following example illustrates that Theorem 1.3 is not valid for the family of
meromorphic functions when n = 2.

Example 1.6 Consider the two families

F :=
{
f j (z) = j z

1 + j z2
: j ∈ N

}

and

G := {1}

of meromorphic functions on D. Take a = −1. Then, clearly, f
′
j (z) − a f 2j (z) =

j
(1+ j z2)2

�= 0 and for each f j ∈ F , there exists g j ∈ G such that f
′
j (z) − a f 2j (z) =

1 ⇒ g
′
j (z) − ag2j (z) = 1. But F is not normal at z = 0 since f j (0) = 0 and for

z �= 0, f j (z) → 1/z as n → ∞.

However, Theorem 1.3 can be extended to families of meromorphic functions
provided that n ≥ 3.

Theorem 1.7 Let F and G be two families of meromorphic functions on a domain D,
and a, b, c be three finite complex numbers such that a �= 0 and b �= c. Suppose that
G is normal in D such that no sequence in G converges locally uniformly to infinity in
D. If n ≥ 3 and for each function f ∈ F , there exists g ∈ G such that f

′ − a f n and
g

′ − agn partially share the values b and c, then F is normal in D.

In the following example, we show that the condition ‘partial sharing of two values
b and c’ in Theorem 1.7 cannot be reduced to one.

Example 1.8 Consider the two families

F :=
{
f j (z) = 1

j z
: j ∈ N

}

and

G :=
{

1

z + 1
j2

− 1
: j ∈ N

}

of meromorphic functions on D. Then for each f j ∈ F , there exists g j ∈ G such that
f

′
j − f 3j = 0 ⇒ g

′
j − g3j = 0. Also, g j (z) → g(z) = 1

z−1 �≡ ∞. But F fails to be
normal at z = 0.
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For n = 2, we have the following weak version of the Theorem 1.7.

Theorem 1.9 Let F and G be two families of meromorphic functions on a domain D
such that each f ∈ F has neither simple zeros nor simple poles. Let a, b and c be
three finite complex numbers such that a �= 0 and b �= c. Suppose that G is normal in
D such that no sequence in G converges locally uniformly to infinity in D. If for each
function f ∈ F , there exists g ∈ G such that f

′ − a f 2 and g
′ − ag2 partially share

the values b and c, then F is normal in D.

Note that Example 1.6 also shows that the condition ‘each f ∈ F has neither simple
zeros nor simple poles’ in Theorem 1.9 can not be omitted.

2 Lemmas and Proof of the Results

To prove our results, we need the following lemmas.

Lemma 2.1 [12] Let F be a family of meromorphic functions on the unit disk D such
that all the zeros of f ∈ F are of multiplicity at least p and all the poles of f ∈ F
are of multiplicity at least q. Suppose that F is not normal at z0 ∈ D. Then, for every
α ∈ (−p, q), there exist

(a) points zn in D : zn → z0;
(b) functions fn ∈ F;
(c) positive real numbers ρn : ρn → 0

such that the re-scaled sequence
{
gn(ζ ) = ρα

n fn(zn + ρnζ )
}
converges spherically

locally uniformly onC to a non-constant meromorphic function g onC of finite order.

Lemma 2.2 [3] Let f be a meromorphic function in C, and let n be a positive integer.
If f n f

′
does not assume a non-zero finite complex number in C, then f is constant.

Lemma 2.3 [15] Let f be a meromorphic function in C and b be a non-zero complex
number. If f has neither simple zero nor simple pole and f

′
(z) �= b, then f is constant.

Proof of the Theorem 1.3 We may consider D to be an open unit disk D. Suppose that
the family F is not normal at z0 ∈ D. Then by Lemma 2.1, there exist points z j ∈ D

with z j → z0, a sequence of positive numbers ρ j → 0 and a sequence of functions
f j ∈ F such that

Fj (ζ ) = ρ
1

n−1
j f j (z j + ρ jζ ) → F(ζ ) (2.1)

is locally uniformly on C, where F is a non-constant entire function of finite order.
From (2.1), we have

ρ
n

n−1
j {( f ′

j − a f nj )(z j + ρ jζ ) − b} = (F
′
j − aFn

j )(ζ ) − ρ
n

n−1
j b → F

′
(ζ ) − aFn(ζ )

(2.2)
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and

ρ
n

n−1
j {( f ′

j − a f nj )(z j + ρ jζ ) − c} = (F
′
j − aFn

j )(ζ ) − ρ
n

n−1
j c → F

′
(ζ ) − aFn(ζ )

(2.3)

locally uniformly on C.
For each f j ∈ F , there exists g j ∈ G such that f

′
j − a f nj and g

′
j − agnj share the

values b and c partially in D. Since G is normal, there exists a subsequence in {g j },
again denoted by {g j }, that converges uniformly to a holomorphic function g(z) �≡ ∞
in some neighborhood of z0.

Suppose (F
′ − aFn) �≡ 0 otherwise −1

n−1
1

Fn−1 ≡ aζ + d, for some d ∈ C, which
contradicts to the fact that F is an entire function and n ≥ 2. Further, suppose that

(F
′ − aFn)(ζ ) �= 0, ζ ∈ C. Then F

′
Fn �= a. By setting F = 1/φ, we have φn−2φ

′ �=
−a. When n ≥ 3, φ is constant by Lemma 2.2 and when n = 2, φ is again constant
by Hayman’s alternative since φ �= 0 and φ

′ �= −a. In both cases, φ is constant. This
implies that F is constant, a contradiction. Thus, (F

′ − aFn) has at least one zero.
Now we have two cases:
Case-I. (g

′ − agn)(z0) �= b.
Suppose that (F

′ − aFn)(ζ0) = 0, for some ζ0 ∈ C. From (2.2), by Hurwitz’s
theorem, there exists a sequence {ζ j } with ζ j → ζ0 such that for sufficiently large j

(F
′
j − aFn

j )(ζ j ) − ρ
n

n−1
j b = 0,

and thus

( f
′
j − a f nj )(z j + ρ jζ j ) = b.

By hypothesis, we have (g
′
j − agnj )(z j + ρ jζ j ) = b and so (g

′ − agn)(z0) = b, a
contradiction.

Case-II. (g
′ − agn)(z0) = b.

By using (2.3) instead of (2.2) in Case-I, we obtain (g
′ −agn)(z0) = c ( �= b)which

is not true. This completes the proof. ��
Proof of the Theorem 1.7 We may consider D to be an open unit disk D. Suppose that
the family F is not normal at z0 ∈ D. Then there exists a sequence { fn} ⊂ F which
has no locally convergent subsequence at z0. Thus, by Lemma 2.1, there exist points
z j ∈ D with z j → z0, a sequence of positive numbers ρ j → 0, and a sequence of
functions in { f j } again denoted by { f j } such that

Fj (ζ ) = ρ
1

n−1
j f j (z j + ρ jζ ) → F(ζ ) (2.4)

locally uniformly on C with respect to spherical metric, where F is a non-constant
meromorphic function on C of finite order.
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From (2.4), we have

(
F

′
j − aFn

j

)
(ζ ) − ρ

n
n−1
j b = ρ

n
n−1
j {( f ′

j − a f nj )(z j + ρ jζ ) − b} → F
′
(ζ ) − aFn(ζ )

(2.5)

and

(
F

′
j − aFn

j

)
(ζ ) − ρ

n
n−1
j c = ρ

n
n−1
j {( f ′

j − a f nj )(z j + ρ jζ ) − c} → F
′
(ζ ) − aFn(ζ )

(2.6)

spherically locally uniformly on C except possibly at the poles of F .
For each f j ∈ F , there exists g j ∈ G such that f

′
j − a f nj and g

′
j − agnj partially

share the values b and c in D. Since G is normal, there exists a subsequence in {g j },
again denoted by {g j }, that converges uniformly to ameromorphic function g(z) �≡ ∞
in some neighborhood of z0.

Claim. (F
′ − aFn)(ζ0) = 0, for some ζ0 ∈ C.

Suppose that (F
′ − aFn)(ζ ) �= 0. Then F

′
Fn �= a. By setting F = 1/φ, φn−2φ

′ �=
−a. By Lemma 2.2, φ and so F is constant, a contradiction. This proves the claim.

Now we have three cases:
Case-I. (g

′ − agn)(z0) �= b,∞.
By Claim, (F

′ −aFn)(ζ0) = 0, for some ζ0 ∈ C. Since (F
′ −aFn) �≡ 0, otherwise

−1
n−1

1
Fn−1 ≡ aζ + d, for some d ∈ C, which contradicts to the fact that F is a non-

constant meromorphic function and n ≥ 3, by (2.5), there exists a sequence {ζ j } with
ζ j → ζ0 such that for sufficiently large j , ( f

′
j −a f nj )(z j +ρ jζ j ) = b.By assumption,

we have (g
′
j − agnj )(z j + ρ jζ j ) = b and so (g

′ − agn)(z0) = b, a contradiction.

Case-II. (g
′ − agn)(z0) = b.

Using (2.6) instead of (2.5) in Case-I, we obtain (g
′ − agn)(z0) = c ( �= b), which

is not true.
Case-III. (g

′ − agn)(z0) = ∞.

Then, clearly, g(z0) = ∞. Suppose that z0 is a pole of g with multiplicity k ≥
1. Then, for sufficiently large j , g j has exactly l ≤ k distinct poles z1j , . . . , z

l
j in

D(z0, r) with multiplicities α1, . . . , αl respectively such that zij → z0 (i = 1, . . . , l)

and
∑l

i=1 αi = k. Renumbering if possible, we may assume that the number l and
multiplicities αi , i = 1, . . . , l are independent of j . Now set

Hj (z) := g j (z)
l∏

i=1

(z − zij )
αi .

Then the functions Hn are holomorphic in D(z0, r) and Hn → H on D(z0, r/2)\{z0},
where H(z) = g(z)(z − z0)k is holomorphic on D(z0, r). Note that H(z0) �= 0,∞.

Hence by maximum principle, Hn → H on D(z0, r/2).
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We have

g
′
j (z) =

(

Hj (z)
l∏

i=1

(z − zij )
−αi

)′

= H
′
j (z)

l∏

i=1

(z − zij )
−αi − Hj (z)

l∑

i=1

αi (z − zij )
−αi−1

∏

s �=i

(z − zsj )
−αs

=
l∏

i=1

(z − zij )
−αi−1

⎛

⎝H
′
j

l∏

i=1

(z − zij ) − Hj (z)
l∑

i=1

αi

∏

s �=i

(z − zsj )

⎞

⎠ . (2.7)

Then

g
′
j (z) − agnj (z) − b = K j (z)

l∏

i=1

(z − zij )
−αi−1, (2.8)

where

K j (z) =H
′
j

l∏

i=1

(z − zij ) − Hj (z)
l∑

i=1

αi

∏

s �=i

(z − zsj )

− aHn
j (z)

l∏

i=1

(z − zij )
−αi (n−1)+1 − b

l∏

i=1

(z − zij )
αi+1. (2.9)

Since H(z0) �= 0,∞, we have

K j (z) → H
′
(z)(z − z0)

l − H(z)k(z − z0)
l−1 − aHn(z)

(z − z0)k(n−1)−l
− b(z − z0)

k+l

= 1

(z − z0)k(n−1)−l

{
H

′
(z)(z − z0)

k(n−1) − kH(z)(z − z0)
k(n−1)−1

−aHn(z) − b(z − z0)
nk

}
(2.10)

and

(
H

′
(z)(z − z0)

k(n−1) − kH(z)(z − z0)
k(n−1)−1 − aHn(z) − b(z − z0)

nk
)

z=z0

= −aHn(z0) �= 0. (2.11)

Therefore, K j (z) and so g
′
j (z)−agnj (z)−b has no zeros in some neighborhood of z0.

By assumption, we find that f
′
j (z) − a f nj (z) − b has no zero in some neighborhood

of z0. By Theorem 1.1, the sequence { f j } is normal at z0, a contradiction. ��
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Proof of the Theorem 1.9 Following the proof of Theorem 1.7, we only need to prove
that F

′ − aF2 �≡ 0 and F
′ − aF2 has at least one zero. Suppose that F

′ − aF2 ≡ 0.
Then ( 1

F )
′ ≡ a which implies that 1

F ≡ aζ + d, for some d ∈ C, which contradicts

the fact that F has no simple pole. Next, suppose that F
′ − aF2 �= 0. Then F

′
F2 �= a.

We set F = 1/φ, φ
′ �= −a. By Lemma 2.3, φ and so F is a constant, a contradiction.
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