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Abstract
We investigate the effect of an ε-room of perturbation tolerance on symmetric tensor
decomposition. To bemore precise, suppose a real symmetric d-tensor f , a norm‖·‖on
the space of symmetric d-tensors, and ε > 0 are given.What is the smallest symmetric
tensor rank in the ε-neighborhood of f ? In other words, what is the symmetric tensor
rank of f after a clever ε-perturbation? We prove two theorems and develop three
corresponding algorithms that give constructive upper bounds for this question. With
expository goals in mind, we present probabilistic and convex geometric ideas behind
our results, reproduce some known results, and point out open problems.

Keywords Symmetric Tensor Rank · Energy Increment Method · Maurey’s
Empricial Method · Approximate Sparsification · Polynomial Optimization

1 Introduction

Tensors encode fundamental questions in mathematics and complexity theory, such
as finding lower bounds on the matrix multiplication exponent, and have been exten-
sively studied from this perspective [13, 18, 30, 40]. In computational mathematics,
tensor decomposition-based methods gained prominence in the 1990s [11], and
became a common tool for learning latent (hidden) variable models after [3]. Tensor
decomposition-based methods are now broadly used in application domains rang-
ing from phylogenetics to community detection in networks. We suggest [32] as an
excellent survey for clarifying basic concepts and for many examples of tensor com-
putations. Tensor decomposition-based methods are also used for a large range of
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tasks in machine learning such as training shallow and deep neural nets [21, 37], ubiq-
uitous applications of the moments method [23, 34], computer vision applications
[38], and much more: see [1, 43] for surveys of results available as of 2008 and 2017,
respectively.

As opposed to using arbitrary tensors without any structure, the usage of
symmetric tensors appears as a common thread in wide-ranging applications of tensor-
decomposition-based methods. This is the main focus of our paper: the real symmetric
decomposition of real symmetric tensors. Let us be more precise:

Definition 1.1 (Symmetric Tensor Rank) Let f be an n-variate real symmetric d-tensor
and Sn−1 := {u ∈ R

n : ‖u‖2 = 1}. The smallest m ∈ N for which there exist
c1, . . . , cm ∈ R and v1, . . . , vm ∈ Sn−1 so that

f =
m∑

i=1

ci vi ⊗ vi ⊗ · · · ⊗ vi︸ ︷︷ ︸
d times

is called the symmetric tensor rank and we denote this rank by srank(f).

Symmetric tensor rank is sometimes called CAND in signal processing, and can be
named real-Waring rank after identification with homogeneous polynomials [8]. Anal-
ogous definitions for asymmetric tensors are called CANDECOMP, PARAFAC, or CP
as a short for these two names [12]. We emphasize that in our definition, real sym-
metric tensors are decomposed into rank-1 real tensors, whereas in basic references
such as [8, 12], the main focus is on the decomposition of real symmetric tensors
into complex rank-one tensors. One reason for using complex decomposition is to
be able to employ tools from algebraic geometry which work better on algebraically
closed fields, see, e.g., the delightful paper [35]. Our aim in this paper is to use convex
geometric tools to take advantage of the beauties of real geometry: being an ordered
field makes the geometry over the reals (and rank notions) intrinsically different than
the complex ones.

It is known that the tensor rank on reals is not stable under perturbation: It is
typical/expected for designers of tensor decomposition algorithms to exercise caution
not to let noise obscure a low-rank input tensor as a high rank one. In a similar spirit
to the smoothed analysis [44], we suggest viewing the inherent existence of error in
real number computations as an advantage rather than an obstacle. More formally, we
propose to relax the srank notion with an ε-room of tolerance.

Definition 1.2 (Approximate Symmetric Tensor Rank) Let ‖·‖ denote a norm on the
space of n-variate real symmetric d-tensors. Given a symmetric d-tensor f , we define
the ε-approximate rank of f with respect to ‖·‖ as follows:

srank‖·‖,ε( f ) := min{srank(h) : ‖h − f ‖ ≤ ε}.

Our main results, Theorems 3.1, 3.3, 4.1, 4.7, and Corollary 5.2 show that srank‖·‖,ε
behave significantly different than its algebraic counterpart srank(f).

From an operational perspective, one might prefer to use an “efficient” family of
norms instead of using an arbitrary norm as in Definition 1.2. Although some of our
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theorems hold for arbitrary norms, our main focus is on perturbation with respect
to L p-norms. This is due to the existence of efficient quadrature rules to compute
L p-norms of symmetric tensors [14, 25].

The rest of the paper is organized as follows: in Sect. 2, we introduce the vocabulary
and basic concepts; in Sects. 3, 4, and 5, we present three constructive estimates, based
on three different ideas, for approximate rank. Section3.4 presents implementation
details of the energy increment algorithm (Algorithm1). Finally, in Sect. 6,we consider
an application to optimization.

2 Mathematical Concepts

In this section, for the sake of clarity, we explicitly introduce all the mathematical
notions that are used in this paper.

2.1 Basic Terminology andMonomial Index

Let T d(Rn) := R
n ⊗R

n ⊗ · · · ⊗R
n be the set of all d-tensors. Then, we consider the

action of the symmetric group on the set {1, 2, 3, . . . , d}, Sd , on T d(Rn) as follows:
for σ ∈ Sd and u(1) ⊗ u(2) ⊗ · · · ⊗ u(d) ∈ T d(Rn), we have

σ(u(1) ⊗ u(2) ⊗ · · · ⊗ u(d)) = u(σ (1)) ⊗ u(σ (2)) ⊗ · · · ⊗ u(σ (d)).

The action of Sd extends linearly to the entire space T d(Rn). A tensor A ∈ T d(Rn)

is called a symmetric tensor if σ(A) = A for all σ ∈ Sd . We denote the vector space
of symmetric d-tensors on R

n by Pn,d . Equivalently, one can think about this space
as the span of self-outer products of vectors v ∈ R

n , that is,

Pn,d := span{v ⊗ v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
d times

| v ∈ R
n}.

Now, we pose the following question: Given a rank-1 symmetric tensor v⊗v⊗v ∈
Pn,3, what is the difference between [v ⊗ v ⊗ v]1,2,1 and [v ⊗ v ⊗ v]1,1,2? Due to
symmetry, these two entries are equal. Likewise, for any element A in Pn,d , two entries
ai1,i2,...,id and a j1, j2,..., jd are identical whenever {i1, i2, . . . , id} and { j1, j2, . . . , jd} are
equal as supersets. This allows the use of monomial index: A superset {i1, i2, . . . , id}
is identified with a monomial xα := xα1

1 xα2
2 . . . xαn

n , where α = (α1, . . . , αn), α j is
the number of j’s in {i1, i2, . . . , id}, and d = α1 + α2 + · · · + αn is the degree of
the monomial. In the monomial index, instead of listing

(d
α

)
equal entries for all the

supersets identified with xα , we only list the sum of these entries once.

2.2 Euclidean and Functional Norms

For f ∈ Pn,d and x ∈ Sn−1, when we write f (x) we mean f applied to [x, x, . . . , x]
as a symmetric multilinear form. For r ∈ [2,∞), the Lr functional norms on Pn,d are
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defined as

‖ f ‖r :=
(∫

Sn−1
| f (x)|r σ(x)

)1/r

, f ∈ Pn,d ,

where σ is the uniform probability measure on the sphere Sn−1. The L∞-norm on
Pn,d is defined by

‖ f ‖∞ := max
v∈Sn−1

| f (v)| .

For all Lr -norms, we use Br to denote the unit ball of the space (Pn,d , ‖ · ‖r ). That is,

Br := {p ∈ Pn,d : ‖p‖r ≤ 1}.

We recall an important fact about Lr -norms of symmetric tensors established in [6].

Lemma 2.1 (Barvinok) Let g ∈ Pn,d , then we have

‖g‖2k ≤ ‖g‖∞ ≤
(

kd + n − 1

kd

) 1
2k ‖g‖2k .

In particular, for k ≥ n log(ed), we have

‖g‖2k ≤ ‖g‖∞ ≤ c ‖g‖2k

for some constant c.

Definition 2.2 (Hilbert–Schmidt in the monomial index) Let p, q ∈ Pn,d indexed
using the monomial notation, that is p = [bα]α and q = [cα]α where α ∈ Z

n≥0
satisfies |α| := α1 + · · · + αn = d. Then, the Hilbert–Schmidt inner product of p and
q is given by

〈p, q〉HS :=
∑

|α|=d

bαcα(d
α

) .

Note that in algebraic geometry literature this norm is named as Bombieri–Weyl norm.
Now, for simplicity, we define qv := v ⊗ v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸

d times

for a v ∈ Sn−1, then we

have the following identity:

max
v∈Sn−1

|〈g, qv〉HS| = max
v∈Sn−1

|g(v)| = ‖g‖∞. (1)
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2.3 Nuclear Norm andVeronese Body

We start this section by recalling the connection between norms and the geometry of
the corresponding unit balls. Every centrally symmetric convex body K ⊂ R

n induces
a unique norm, that is, for x ∈ R

n

‖x‖K := min{λ > 0 : x ∈ λK }. (2)

For every v ∈ Sn−1,we have two associated symmetric tensors: pv = v⊗v⊗v⊗· · ·⊗v

and−pv . Using the terminology established in [41],we define theVeronese body,Vn,d ,
as follows:

Vn,d := conv{±pv : v ∈ Sn−1}. (3)

The norm introduced by the convex body Vn,d , ‖.‖Vn,d
, is called the nuclear norm

and it is usually denoted in the literature by ‖.‖∗. It follows from (2) that for every
q ∈ Pn,d , we have

‖q‖∗ = min

{
m∑

i=1

|λi | : q =
m∑

i=1

λi pvi , vi ∈ Sn−1

}
;

for background material on these facts see Section 3 of the survey [24]. Considering
(1), one may notice that for every q ∈ Pn,d

‖q‖∞ = max
f ∈Vn,d

〈q, f 〉HS,

meaning that the norm introduced by Vn,d on Pn,d is dual to the L∞-norm. Then, by
the duality of the norms ‖.‖∞ and ‖.‖∗, for every g ∈ Pn,d , we have

‖g‖∗ = max
q∈B∞

〈g, q〉HS. (4)

Formulation (4) suggests a semi-definite programming approach for computing ‖.‖∗
by approximating B∞ with the sum of squares hierarchy. Note that this approach
would yield lower bounds for the nuclear norm that improve as the degree of sum of
squares hierarchy is increased. Luckily for us, this increasing lower bounds via sum of
squares idea is already made rigorous and can be implemented using any semi-definite
programming software [36].

2.4 Type-2 Constant of a Norm

The type-2 constant allows us to create a sparse randomly constructed approximation
to a given vector with controlled error; the definition of the type-2 constant carries an
essential idea to control the trade-off between error and sparsity. We will give more
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details and intuition on this matter in Sect. 4. To define the type-2 constant, we first
need to recall that a Rademacher random variable ξ is defined by

P(ξ = −1) = P(ξ = 1) = 1/2.

Definition 2.3 (type-2 constant) Let ‖ · ‖ be a norm on R
n . The type-2 constant of

X = (Rn, ‖ · ‖), denoted by T2(X), is the smallest possible T > 0 such that for any
m ∈ N and any collection of vectors x1, . . . , xm ∈ R

n one has

Eξ1,...,ξm

∥∥∥∥∥

m∑

i=1

ξi xi

∥∥∥∥∥

2

≤ T 2
m∑

i=1

‖xi‖2, (5)

where ξi , i = 1, 2, . . . , m are independent Rademacher random variables.

Lemma 2.4 (Properties of Type-2 Constant [31, 46])

(1) Let A be an invertible linear map.
If ‖x‖D := ∥∥A−1x

∥∥
K for all x ∈ X, then T2(X , ‖.‖D) = T2(X , ‖.‖K )

(2) Every Euclidean norm has type-2 constant 1.
(3) If Y is a subspace of X, then T2(Y ) ≤ T2(X).
(4) If X is n-dimensional, then T2(X) ≤ √

n, and �1-norm has type-2 constant
√

n.
(5) Let 2 ≤ p < ∞. Then, T2(�n

p) � √
min{p, log n}, where �n

p = (Rn, ‖ · ‖p).

3 Approximate Rank Estimate via Energy Increment

Energy increment is a general strategy in additive combinatorics to set up a greedy
approximation to an a priori unknown object, see [45]. Our theorems and algorithms
in this section are inspired by the energy increment method as we explain below. We
begin by presenting an approximate rank estimate for Lr -norms.

Theorem 3.1 For r ∈ [2,∞], ‖.‖r denotes the Lr -norm on Pn,d . Then, for any f ∈
Pn,d and ε > 0, we have

srank‖·‖r ,ε( f ) ≤ ‖ f ‖2HS
ε2

,

where ‖·‖HS denotes the Hilbert–Schmidt norm.

One may wonder why this result is interesting for all Lr -norms when it takes the
strongest form for r = ∞. The reason is, of course, the computational complexity.
Symmetric tensors that are close to each other in terms of L∞-distance behave almost
identical as homogeneous functions on Sn−1, but it is NP-Hard to compute L∞-
distance for d ≥ 4. For r > n log(ed) the norms Lr and L∞ on Pn,d are equivalent, see
Lemma2.1.Therefore,weonly hope to be able to compute approximate decomposition
for Lr where r is not proportional to n. Algorithm 1 and Theorem 3.3 below delineate
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the trade-off between the tightness of the estimate depending on r and the cost of
computation.

Now, we present our energy increment algorithm. In Algorithm 1, �W denotes the
orthogonal projection on the subspace W with respect to the Hilbert–Schmidt norm,
and qv := v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸

d times

.

Algorithm 1 Approximate Rank via Energy Increment
1: Input f ∈ Pn,d , ‖.‖r for 2 ≤ r ≤ ∞, and ε > 0.
2: Initialize f̃ = 0, e = ∞, W = {0}.
3: repeat

4: Find a v ∈ Sn−1 such that 1
2

∥∥∥ f − f̃
∥∥∥

r
≤
∣∣∣( f − f̃ )(v)

∣∣∣.
5: W = span(W ∪ {qv})

f̃ = �W ( f ) , e =
∥∥∥ f − f̃

∥∥∥
r

6: until e < ε

7: Output f̃
8: Post-condition ‖ f − f̃ ‖r < ε, and srank( f̃ ) ≤ ε−2‖ f ‖2HS

Details on the implementation of steps in Algorithm 1 are explained in Sect. 3.4
alongside some experimental results. Our next theorem gives a sampling approach for
the search step (4).

Theorem 3.2 Let n, d ≥ 1 and 2 ≤ r ≤ n log(ed). Let p ∈ Pn,d and suppose
v1, v2, . . . , vN are vectors that are sampled independently from the uniform probability
measure on the sphere Sn−1. Then, we have

P

(
max
i≤N

|p(vi )| ≥ 1

2
‖p‖r

)
≥ 1 − exp

(
−N/[α(n, d, r)]2r

)
,

where α(n, d, r) := min{(c1r)d/2,
(rd+n−1

rd

) 1
2r } for a constant c1. In particular, if

N ≥ t[α(n, d, r)]2r , we have

P

(
max
i≤N

|p(vi )| ≥ 1

2
‖p‖r

)
≥ 1 − e−t .

The proof of Theorem 3.2 is included in Sect. 3.2. As a consequence of Theorem 3.2
and the bounds obtained in the proof of Theorem 3.1, we have the following result on
Algorithm 1.

Theorem 3.3 For a given f ∈ Pn,d and r ∈ [2,∞],
• Algorithm 1 takes at most

‖ f ‖2HS
ε2

many loops before terminating;

• for step (4) in Algorithm 1: searching over a uniform sample on Sn−1 with size
N ≥ t[α(n, d, r)]2r , where α(n, d, r) as in Theorem 3.2, yields a point v ∈ Sn−1

such that 1
2 ‖ f ‖r ≤ | f (v)| with probability at least 1 − e−t ;
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• the output f̃ of Algorithm 1 satisfies the following properties:

∥∥∥ f − f̃
∥∥∥

r
≤ ε , srank( f̃ ) ≤ #{ loops before termination of Algorithm 1 } ≤ ‖ f ‖2HS

ε2
.

3.1 Upper Bound for the Number of Steps in Algorithm 1

The energy increment method gives a general strategy to set up a greedy procedure to
decompose a given object into “structured”, “pseudorandom”, and “error” parts [33,
45]. In what follows, we apply this strategy to obtain a low-rank approximation for a
symmetric tensor.

Lemma 3.4 (Greedy Approximation) Let (H , 〈·, ·〉) be an inner product space, τ :
H → [0,∞) a cost function, and suppose S ⊂ BH = {z ∈ H : ‖z‖2H = 〈z, z〉 = 1}
separates points in H with respect to τ , that is,

τ( f ) ≤ sup
w∈S

|〈 f , w〉|, f ∈ H .

Then, given f ∈ H and ε > 0 there exist m points w1, . . . , wm ∈ S with m ≤
�‖ f ‖2H /ε2� and scalars λ1, . . . , λm such that

τ

(
f −

m∑

i=1

λiwi

)
≤ ε.

Proof of Lemma 3.4 To begin with, we assume that for the given f ∈ H and ε > 0,
we have τ( f ) > ε. Then, by the separation property, there exists w1 ∈ S so that
|〈 f , w1〉| > ε. Now, let W1 := span{w1}, p1 := PW1( f ) be the orthogonal projection
of f onto W1, and note that

ε < |〈w1, f 〉| = |〈w1, p1〉| ≤ ‖p1‖H .

If τ( f − p1) ≤ ε the process stops. If τ( f − p1) > ε, then by the separation property
again, there exists w2 ∈ S so that

ε < |〈 f − p1, w2〉| = |〈p2 − p1, w2〉| ≤ ‖p2 − p1‖H ,

where p2 := PW2( f ) and W2 := span{w1, w2}. If τ( f − p2) ≤ ε, the process stops.
If τ( f − p2) > ε, we repeat. After m steps, we have extracted w1, . . . wm ∈ S, built
the flag of finite-dimensional subspaces

{0} = W0 ⊂ W1 ⊂ · · · ⊂ Wm

Ws = span{w1, . . . , ws}, s = 1, . . . , m,

and the lattice of their corresponding orthogonal projections PWs , s = 1, . . . , m with
‖ps − ps−1‖H > ε, where ps = PWs ( f ) for s = 1, . . . , m (here p0 = PW0 = 0).
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Claim. This process terminates after at most m steps where m < ‖ f ‖2H /ε2, that is
τ( f − pm) ≤ ε.
Proof of Claim. Indeed, we may write

‖ f ‖2H ≥ ‖pm‖2H =
∥∥∥∥∥

m∑

s=1

(ps − ps−1)

∥∥∥∥∥

2

H

=
m∑

s=1

‖ps − ps−1‖2H ,

wherewe have used that 〈pk − pk−1, p�− p�−1〉 = 0 for k < �. Since ‖ps − ps−1‖H >

ε, the claim is proved. To complete the proof of the lemma notice that pm ∈ Wm , hence
pm =∑m

i=1 λiwi for some scalars λ1, . . . , λm . ��
The intuition suggested by the lemma is easy to express: As long as one uses a cost
function τ that is upper bounded by supw∈S |〈 f , w〉|, Lemma 3.4 gives a greedy
approximation to input object f with controlled distance in terms of the cost τ .

Proof of Theorem 3.1 We use the set S := {v ⊗ v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
d times

: v ∈ Sn−1}, the

inner product 〈., .〉HS, and the cost function ‖.‖r to set up the greedy approximation
outlined in Lemma 3.4. The proof relies on the following observations:

(1) ‖g‖r ≤ ‖g‖∞ = supq∈S |〈g, q〉HS| for all g ∈ Pn,d and all 2 ≤ r ≤ ∞,
(2) if one follows the proof of Lemma 3.4 applied to our specific case, one observes

that wi = vi ⊗ vi · · · ⊗ vi for some vi ∈ Sn−1.

Therefore, srank(
∑m

i=1 λiwi ) ≤ m ≤ ‖ f ‖2HS
ε2

. ��

3.2 Bounds on the Sample Size for Executing the Step (4) in Algorithm 1

This section is to prove Theorem 3.2.We start with proving a reverse Hölder inequality
for symmetric tensors.

Lemma 3.5 Let p ∈ Pn,d , then for n ≥ 2d and k ∈ [2, n/d], we have

‖p‖k ≤ (Ck)d/2 ‖p‖2 ,

where C > 0 is an absolute constant.

Proof of Lemma 3.5 Let Z ∼ N (0, In) be a standard Gaussian vector in R
n . We will

make use of the following facts:

Fact 3.6 Z/‖Z‖2 is uniformly distributed on Sn−1 and ‖Z‖2 is independent of
Z/‖Z‖2. Thereby, for r > 0, it follows that

E|p(Z)|r = E‖Z‖rd
2 · ‖p‖r

Lr
.

For a proof, the reader is referred to [42]. The next fact is a consequence of theGaussian
hypercontractivity, see, e.g., [4, Proposition 5.48.].
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Fact 3.7 For any tensor Q of degree at most d and for every r ≥ 2, one has

(
E|Q(Z)|r )1/r ≤ (r − 1)d/2

(
E|Q(Z)|2

)1/2
.

Finally, we need the asymptotic behavior of high-moments of ‖Z‖2.
Fact 3.8 For r > 0, we have E‖Z‖r

2 = 2r/2
( n+r
2 )/
( n

2 ). This follows by switching
to polar coordinates. Therefore, for r > 0, Stirling’s approximation yields

(
E‖Z‖r

2

)1/r � √
n + r .

Finally, taking into account the above facts, we may write

‖p‖k
k = E|p(Z)|k

E‖Z‖kd
2

≤ (k − 1)
kd
2 (E|p(Z)|2)k/2

E‖Z‖kd
2

≤ (k − 1)
dk
2 ‖p‖k

2

(
E‖Z‖2d

2

)k/2

E‖Z‖kd
2

.

Using the estimate for the moments of ‖Z‖2, we obtain

‖p‖k ≤ (Ck)d/2
(

n + 2d

n + kd

)d/2

‖p‖2,

and the result follows. ��

Proof of Theorem 3.2 First, note that we may write

P

(
max
i≤N

|p(Xi )| <
1

2
‖p‖r

)
=
[
P

(
|p(X1)| <

1

2
‖p‖r

)]N

=
[
1 − P

(
|p(X1)| ≥ 1

2
‖p‖r

)]N

≤ exp

(
−NP

(
|p(X1)| ≥ 1

2
‖p‖r

))
.

Second, we provide a lower bound for the probability P
(|p(X1)| ≥ 1

2‖p‖r
)
. By the

Paley–Zygmund inequality, we obtain

P

(
|p(X1)| ≥ 1

2
‖p‖r

)
≥ (1 − 2−r )2

‖p‖2r
r

‖p‖2r
2r

.

To bound the ratio ‖p‖2r / ‖p‖r , we employ Lemmas 2.1 and 3.5 as follows:

‖p‖2r ≤ (C1r)d/2 ‖p‖2 ≤ (C1r)d/2 ‖p‖r
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so

‖p‖2r ≤ ‖p‖∞ ≤
(

rd + n − 1

rd

) 1
2r ‖p‖r .

Therefore,

‖p‖2r

‖p‖r
≤ min{(c1r)d/2,

(
rd + n − 1

rd

) 1
2r },

which completes the proof. ��

3.3 Comparison with Earlier Results and Open Questions

First, let us write a consequence of Theorem 3.1 for an easier interpretation.

Corollary 3.9 For r ∈ [2,∞], ‖.‖r denotes the Lr -norm on Pn,d . Then, for any f ∈
Pn,d and for any 0 < δ < 1, there exists a q ∈ Pn,d with ‖ f − q‖r ≤ ‖ f ‖HS

(1−δ)
√

n
and

srank(q) ≤ n(1 − δ)2.

To bring this result to its most simple form: for the case of symmetric matrices and
operator norm, i.e., d = 2 and r = ∞, this result says that the closest singular matrix
w.r.t. to the operator norm is at most ‖ f ‖HS√

n
away. Therefore, in this very special case,

the result seems to be tight; one can consider the case where all singular values of
f are equal and use the Eckart–Young theorem. However, for general tensor spaces
equipped with Lr -norms, for moderately small r , the result does not seem to be tight.
The following problem remains open:

Open Problem 3.10 Obtain sharp estimates on the approximate symmetric rank with
respect to all Lr -norms for r ∈ [2,∞) and for all Pn,d .

The main of result of [7] combined with the celebrated Alexander–Hirschowitz
Theorem, see, e.g., [9], provides a bound for the srank of real symmetric tensors. In
particular, the srank is typically between 1

n

(n+d−1
d

)
and 2

n

(n+d−1
d

)
for d > 2 except

for the cases (n, d) ∈ {(3, 4), (4, 4), (5, 4), (5, 3)}. This beautiful result coming from
algebraic geometry is exact, static and it universally holds for any symmetric d-tensor.
Our estimate in Theorem 3.1, and later in Theorem 4.1, are approximate, dynamic,
and give a different estimate depending on the norm of the input. This basically shows
that the symmetric rank and approximate symmetric rank are different in nature. Note
that we fix ε > 0, that is, the approximate rank notion is also different from the rank
notions that require taking limits.

If one is still interested in strict comparison, Theorem 3.1 improves upon the alge-
braic geometry estimate for

ln(
1

ε
) <

1

2
ln

(
n + d − 1

d

)
− ln ‖ f ‖HS − 1

2
ln n ≤ d − 1

2
ln n − ln ‖ f ‖HS
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Therefore, for Theorem 3.1 to be useful for small ε, we need ln ‖ f ‖HS to be smaller
compared to d−1

2 ln n. As a rule of thumb, we need ln ‖ f ‖HS ≤ d
4 ln n, and the smaller

is the better. To see if this is meaningful for applications, we looked at input models for
symmetric tensors that are considered in recent literature. As an example, in [28], the
input model for tensors is the following: one samples a1, a2, . . . , aK ∈ Sn−1 where

K = O(n
d
2 ) in a way makes the collection of rank-one tensors ai ⊗ ai ⊗ · · · ⊗ ai to

have “restricted isometry property”. Then, one considers the tensor p := ∑K
i=1 ai ⊗

ai ⊗ · · · ⊗ ai and adds a small perturbations to it. That is, we consider f := p + h
where h has very small norm, e.g., ‖h‖HS = O( 1n ). Due to the “restricted isometry
property”, one has

‖p‖2HS ∼
k∑

i=1

‖ai ⊗ ai ⊗ · · · ai‖2HS = K .

In the end, the input tensor f has ‖ f ‖HS = O(n
d
4 ), and f is O( 1n ) close to a tensor

p with rank O(n
d
2 ). A main result in [28, Theorem 16] is to show that the proposed

algorithm (with high probability) removes the “noise” in f , and recovers the decompo-

sition with rank O(n
d
2 ). Here, we will consider a much more flexible input model and

still obtain a similar result: let q ∈ Pn,d be a symmetric tensor with ‖q‖HS = O(n
d
4 ).

We impose no further assumptions on q. For instance, if q is a typical input, then it
has symmetric rank between 1

n

(n+d−1
d

)
and 2

n

(n+d−1
d

)
, that is, for a typical q, we have

srank(q) = �(nd−1). For this input tensor q, Theorem 3.1 yields the following: for
any ε > 0,

srank‖·‖r ,ε(q) ≤ O(n
d
2 )

ε2
.

The meaning of this is that for a fixed small ε, say 1
ε

= ln n, Theorem 3.1 (and

Algorithm 1) finds an ε-close symmetric tensor that has rank O(n
d
2 ln2 n).

The usage of random tensors as a testing ground also brings the following problem,
which remains open to the best of our knowledge.

Open Problem 3.11 Let f be an isotropic Gaussian, with respect to the inner product
〈., .〉HS, random element of the vector space Pn,d , and let ε > 0 be fixed. Prove upper
and lower bounds, that holds with high probability, for the quantity srank‖·‖r ,ε( f ) in
the range r ∈ [2,∞).

The development in this paper is entirely self-contained. Our search to locate earlier
appearance of a similar results in the literature yielded only the following. The main
result of [16] used for the specific case of symmetric tensors corresponds to our The-
orem 3.1 for r = ∞: computing with L∞ is generally intractable, but this nice result
was sufficient for the theoretical purposes the authors considered. Our contribution is
to prove algorithmic results that hold for all Lr -norms: Algorithm 1 and Theorem 3.3
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delineate the trade-off between the computational complexity (the sample size) and
the tightness of approximation for the entire range r ∈ [2,∞].

There is a vast literature on tensor decomposition algorithms. We do not intend to
survey this vast and interesting literature due to following reason: our Algorithm 1
and existing tensor decomposition algorithms in literature have different goals. The
goal of Algorithm 1 is to show that the approximation in Theorem 3.1 is efficiently
computable as long as the used Lr -norm is efficiently computable, i.e., r is small and
independent of n. Existing algorithms on symmetric tensor decomposition aims to
solve a much harder problem, that is, to find an optimal low-rank approximation for
a given symmetric tensor. This requires finding the “latent” rank-one tensors, and is
known to be a hard problem [12, 26].We do not aim to solve thisNP-Hard problem: our
algorithm only gives an upper bound for the approximate rank. Practically, Algorithm
1 can be used to pre-process a given tensor before deploying a more expensive tensor
decomposition algorithm: most tensor decomposition algorithms require a guess on
the rank of the input tensor, forwhich the guaranteed rank upper bound fromAlgorithm
1 can be used.

3.4 Implementation of Algorithm 1

We note from the outset that our current implementation is in a preliminary form. Our
main goal is to show that the approximate rank estimate in Theorem 3.1 is constructive:
a decomposition that realizes the estimate is effectively computable. We do not claim
to have a scalable implementation.

We used a Windows 11 PC, with a Intel Core i7 2.3 GHz processor and 32.0 GB
installed ram to experiment with the implementation. The code is available on first
authors’ personal webpage.

(1) We computed Lr -norms by (re)implementing (with Cristancho andVelasco’s kind
permission) the quadrature rules from [14] in Python. The quadrature rule for
computing the Lr -norms is by far the most expensive step of the algorithm.

(2) Theorem 3.2 provides a bound on the sample size for step (4). In practice, as long
as one finds a vector that satisfies the requirement in step 4 of Algorithm 1 the
computation is correct. For experiments, we fixed a sample size of 100, 000 and
loop in case a vector with such characteristics is not found. We observe that even
with this fixed sample size a vector with the correct characteristics was always
found.

(3) A practical improvement for Algorithm 1 came from the following observation:
in the implementation, we put the extra constraint of the new vectors for step 4
should have an angle bigger than arccos(0.8) with the older ones. This practical
trick observably improved the performance. In future work, this idea needs to be
improved and analyzed.

(4) For the experiment, we consider a randomly generated n-variate 2d-tensors of the
type

f =
m∑

i=1

ci vi ⊗ vi ⊗ · · · ⊗ vi︸ ︷︷ ︸
2d times

+ ε

2

∑

i1,i2,...,id

ei1 ⊗ ei1 ⊗ ei2 ⊗ ei2 ⊗ · · · ⊗ eid ⊗ eid
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where c1, . . . , cm ∈ R uniformly distributed according to a standard Gaussian,
and v1, . . . , vm are uniformly distributed on the n-dimensional sphere. Basically,
the input f is a very high-rank symmetric tensor that is ε

2 -close to a rank m tensor.
We get the following results for different values of m, n, d, r , ε in the experiment:

• For m = 10, n = 4, 2d = 4, r = 4, ε = 0.3, the dimension of the space is 35,

and the algorithm found an f̃ of rank 3 for which
∥∥∥ f − f̃

∥∥∥
r

< 0.29 in 3.43 s.

• For m = 10, n = 4, 2d = 24, r = 4, and ε = 0.3, the dimension of the space

is 2925, and the algorithm found an f̃ of rank 2 for which
∥∥∥ f − f̃

∥∥∥
r

< 0.21

in about 4.8 s.
• For m = 10, n = 6, 2d = 18, r = 4, and ε = 0.3, the dimension of the space

is 33649, and the algorithm an f̃ of rank 1 for which
∥∥∥ f − f̃

∥∥∥
r

< 0.22 in

about 2 min 48s.
• For m = 10, n = 8, 2d = 8, r = 8, and ε = 0.3, the dimension of the search
space is 6435, and the algorithm found an f̃ of rank 4 for which

∥∥∥ f − f̃
∥∥∥

r
<

0.29 in about 6 min 57s.
• For m = 14, n = 12, 2d = 10, r = 8, and ε = 0.3, we were not able to run
the algorithm due to quadrature rule taking too much space in memory.

Our experiment enforced our belief that Algorithm 1 is as efficient as the quadrature
rule to compute the Lr -norm; the rest of the steps do not create much computational
overhead. This is evident from the sensitivity of the computing time to the number of
variables rather than the degree of the tensor: the size of the quadrature nodes grows
moderately with respect to degree but drastically with respect to variables. A more
optimized implementation of the quadrature rule, or a parallelized version, would
greatly improve the performance and allow computations with more variables.

4 Approximate Rank Estimate via Sparsification

Algorithm 2 Approximate Rank via Sparsification

1: Input p(x) =∑N
i=1 ci vi ⊗ vi · · · ⊗ vi , T = T2(Pn,d , ‖.‖), and ε > 0.

2: μ is the measure supported on set {1, 2, . . . , N } with μ(i) = |ci |∑
i |ci |

3: Sample k := �4ε−2T 2(
∑N

i=1 |ci |)2� many elements λ1, λ2, . . . , λk from μ.

4: Set qk := 1
k
∑k

i=1 sign(cλi )vi ⊗ vi · · · ⊗ vi
5: if ‖p − qk‖ > ε then
6: Return to step 3
7: else
8: Set q = qk
9: end if
10: Output q
11: Post-condition ‖p − q‖ ≤ ε , and srank(q) ≤ 4ε−2T 2(

∑ |ci |)2
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Algorithms and theorems in this section rely on Maurey’s empirical method from
geometric functional analysis which was presented in the 1980s paper by [39]. Special
cases of this lemma have been (re)discovered many times in recent literature, e.g., [5,
27] where further algorithmic results were also obtained. We reproduceMaurey’s idea
in Sect. 4.1 for expository purposes. Note that the type-2 constant, T2, was defined in
Sect. 2.3.

Theorem 4.1 Let ‖·‖ be a norm on Pn,d such that ‖v ⊗ v ⊗ · · · ⊗ v‖ ≤ 1 for all
v ∈ Sn−1. Let T denote type-2 constant of Pn,d , ‖.‖, let ‖·‖∗ denote the nuclear norm.
Then, for any f ∈ Pn,d and ε > 0, we have

srank‖·‖,ε( f ) ≤ 4T 2 ‖ f ‖2∗
ε2

.

Algorithm 2 admits any decomposition as an input and gives a low-rank approxima-
tion via sparsification. In the specific case of the input being a nuclear decomposition,
the algorithm finds an approximation that is a realization of Theorem 4.1.

Theorem 4.2 Algorithm 2 terminates in � steps with a probability of at least 1−2−2�.

Theorems 4.1 and 4.2 are proved in Sect. 4.1.

4.1 Sparsification via Maurey’s Empirical Method

Lemma 4.3 (Empirical Approximation) Let (X , ‖ · ‖) be a normed space and a set
S ⊂ BX := {x ∈ X : ‖x‖ ≤ 1}. For any x ∈ convS and m ∈ N, there exist z1, . . . , zm

in S (not necessarily distinct) such that

∥∥∥∥∥∥
x − 1

m

m∑

j=1

z j

∥∥∥∥∥∥
≤ 2T2(X)√

m
.

Proof Since x ∈ convS, there exist v1, . . . , v� ∈ S and λ1, . . . , λ� ∈ [0, 1] with
λ1 + · · · + λ� = 1 and x = λ1v1 + · · · + λ�v�. We introduce the random vector Z
taking values on {v1, . . . , v�} with probability distribution P where P(Z = vi ) = λi

for i = 1, 2, . . . , �. Clearly, E[Z ] = x . Now, we apply an empirical approximation
of E[Z ] in the norm ‖ · ‖. To this end, let Z1, . . . , Zm be a sample, that is, Zi are
independent copies of Z . We set Ym := 1

m

∑m
j=1 Z j and note thatE[Ym] = E[Z ] = x .

Now, we use a symmetrization argument: introduce Z ′
i independent copies of Zi ,

whence E[Y ′
m] = E[ 1

m

∑m
i=1 Z ′

i ] = x . Thus, by Jensen’s inequality, we readily get

E‖Ym − x‖2 = E‖Ym − E Y
′
m‖2 ≤ E‖Ym − Y ′

m‖2 = 1

m2E

∥∥∥∥∥∥

m∑

j=1

(Z j − Z ′
j )

∥∥∥∥∥∥

2

.

Next, Zi − Z ′
i are symmetric, whence, if (εi ) are independent Rademacher random

variables, and independent from both Zi , Z ′
i , then the joint distribution of εi (Zi − Z ′

i )
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is the same with (Zi − Z ′
i ). Thereby, we may write

1

m2E

∥∥∥∥∥∥

m∑

j=1

(Z j − Z ′
j )

∥∥∥∥∥∥

2

= 1

m2E

∥∥∥∥∥∥

m∑

j=1

ε j (Z j − Z ′
j )

∥∥∥∥∥∥

2

≤ 4

m2E

∥∥∥∥∥∥

m∑

j=1

ε j Z j

∥∥∥∥∥∥

2

where in the last passage, we have applied the triangle inequality and the numerical
inequality (a + b)2 ≤ 2(a2 + b2). Using the definition of the type-2 constant, we

have E
∥∥∥
∑m

j=1 ε j Z j

∥∥∥
2 ≤ T 2∑m

j=1 ‖Z j‖2 ≤ mT 2, where we have used the fact that

‖Z j‖ ≤ 1 a.s. The result follows from the first-moment method. ��
Proof of Theorem 4.1 Let p ∈ Pn,d with p �= 0 and set p1 := p/ ‖p‖∗. Since the
nuclear norm is induced by the convex body Vn,d , we have that p1 ∈ Vn,d . Hence, by

Lemma 4.3, we infer that there exist vi ∈ Sn−1 for i = 1, 2, . . . , m, m =
⌈
4T 2‖p‖2∗

ε2

⌉
,

and ξi ∈ {−1, 1} such that ∥∥p1 − 1
m

∑m
i=1 ξi pvi

∥∥ ≤ ε
‖p‖∗ ,which completes the proof.

��
Proof of Theorem 4.2 Using the proof of Lemma 4.3, it follows that E ‖p − qk‖ ≤ ε

4 .
Moreover, we also observe that by Markov’s inequality P{‖p − qk‖ > ε} ≤ 1

4 . Thus,
the “if” statement at step 5 returns True at the �-th trialwith probability at least 1−2−2�.

��
Remark 4.4 (1) Aiming for better guarantees, i.e., a higher probability estimate of the

desired event, one may work with higher moments and apply Kahane–Khintchine
inequality.

(2) We should emphasize that the key parameter in the empirical approximation is
the “Radamacher type-2 constant T2(S) of the set S” rather than the Rademacher
type of the ambient space X . This simple but crucial observation will permit us
to provide tighter bounds in our context (see Theorem 4.7).

4.2 Type-2 Constant Estimates for Norms on Symmetric Tensors

The results of this section hold for any norm, however, in practice, we use the norms
that we can efficiently compute. As mentioned earlier, currently our collection of
“efficient norms” includes the Lr norms thanks to efficient quadrature rules [14]. Our
estimates for the type-2 constants of Lr -norms on Pn,d for 2 ≤ r ≤ ∞ is as follows:

Theorem 4.5 Let (Pn,d , Lr ) be the space of symmetric d-tensors on R
n equipped with

Lr -norm as defined in Sect.2.2. Then, for r ∈ [2,∞], we have

T2(Pn,d , Lr ) �
√
min{r , n log(ed)}.

Proof of Theorem 4.5 Although the fact that T2(Lr (�,μ)) � √
r is well known, see

[2], we provide here a sketch of proof for reader’s convenience. The proof makes use
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of Khintchine’s inequality which reads as follows: let ξ j be independent Rademacher
random variables and α j be arbitrary real numbers, for j ∈ N. Then, we have

⎛

⎝E

∣∣∣∣∣∣

∑

j

α jξ j

∣∣∣∣∣∣

r⎞

⎠
1/r

≤ Br

⎛

⎝
∑

j

|α j |2
⎞

⎠
1/2

,

for some scalar Br with Br = O(
√

r). Let h1, . . . , hN ∈ Lr , then we may write

E

∥∥∥∥∥∥

N∑

j=1

ξ j h j

∥∥∥∥∥∥

r

Lr

=
∫

E

∣∣∣∣∣∣

N∑

j=1

ξ j h j (ω)

∣∣∣∣∣∣

r

dμ(ω) ≤ Br
r

∫ ⎛

⎝
N∑

j=1

|h j (ω)|2
⎞

⎠
r/2

dμ(ω),

wherewe have appliedKhintchine’s inequality for each fixedω. Now,we recall the fol-
lowingvariational argument: for 0 < p < 1 and for non-negative numbersu1, . . . , uN ,
one has

⎛

⎝
n∑

j=1

u p
j

⎞

⎠
1/p

= inf

⎧
⎨

⎩

N∑

j=1

u jθ j :
N∑

j=1

θ
q
j ≤ 1, θ j > 0

⎫
⎬

⎭ , q := p

p − 1
< 0.

Note that, for “p = 2/r” and for “u j = |h j (ω)|r”, after integration, we have

∫ ⎛

⎝
N∑

j=1

|h j (ω)|2
⎞

⎠
r/2

dμ(ω) ≤
∫ N∑

j=1

u j (ω)θ j dμ(ω) =
N∑

j=1

θ j‖h j‖r
Lr

,

for any choice of positive scalars θ j so that
∑

j θ
q
j ≤ 1.

For the type-2 constant of (Pn,d , ‖ · ‖∞), we combine the type-2 estimate for Lr

along with the fact, which follows from Lemma 2.1, that c‖ · ‖∞ ≤ ‖ · ‖r ≤ ‖ · ‖∞
for r ≥ n log(ed).

��

4.3 An Improvement of the Sparsification Estimate

The definition of the type-2 constant considers all vectors fi ∈ Pn,d and asks for

a constant that satisfies Eξ1,...,ξm

∥∥∑m
i=1 ξi fi

∥∥2 ≤ T 2∑m
i=1 ‖ fi‖2. However, for our

sparsification purposes, we only work with vectors of the type fi = v⊗v⊗· · ·⊗v for
some v ∈ Sn−1. Instead of using type-2 constant definition, which considers the entire
space Pn,d , if we can re-do our proofs only focusing on the vectors fi = v⊗v⊗· · ·⊗v,
we can improve the estimates; see Remark 4.4. We obtain such an improvement for
the case of L∞-norm using the following Khintchine type inequality.
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Theorem 4.6 (Khintchine inequality for symmetric tensors) Let x1, . . . , xm be vectors
in R

n, let d ∈ N and d ≥ 2, then for any subset S ⊂ Sn−1, we have

Eε sup
z∈S

∣∣∣∣∣

m∑

i=1

εi 〈xi , z〉d

∣∣∣∣∣ ≤ 2d

(
m∑

i=1

‖xi‖2d
2

)1/2

.

where εi are independent Rademacher random variables.

As a consequence of Theorem 4.6, we have

Theorem 4.7 (Improved sparsification for L∞-norm) For f ∈ Pn,d and ε > 0, we
have

srank‖.‖∞,ε( f ) ≤ 8d2 ‖ f ‖2∗
ε2

.

Observe that if τ = v ⊗ v ⊗ · · · ⊗ v for some v ∈ R
n , then we have ‖v‖d

2 =
‖τ‖∞. Also note that for the set S = Sn−1, we have supz∈S

∣∣∣
∑m

j=1 ε j 〈x j , z〉d
∣∣∣ =

∥∥∥
∑m

j=1 ε j f j

∥∥∥∞, where fi := xi ⊗ xi ⊗ · · · ⊗ xi for i = 1, 2, . . . , m. Hence, by

Theorem 4.6, we have

E

∥∥∥∥∥

m∑

i=1

εi fi

∥∥∥∥∥
∞

≤ 2d

(
m∑

i=1

‖ fi‖2∞
)1/2

. (6)

Following the proof of Theorem 4.1 line by line, but replacing the type-2 estimate
from Theorem 4.5 in the proof with the estimate (6), we obtain Theorem 4.7, provided
that ‖ fi‖∞ = 1.

Remark 4.8 Theorem 4.7 improves Theorem 4.1 if d2 < n, which is the common
situation when one works with tensors. Theorem 4.1 also immediately improves Step

(3) in Algorithm 2: one can use k � d2 ‖ f ‖2∗
ε2

when working with the L∞-norm.

Proof of Theorem 4.6 To ease the exposition, we present the argument in two steps:
Step 1: Comparison Principle. Let T ⊂ R

m and ϕ j : R → R be functions that satisfy
the Lipschitz condition |ϕ j (t) − ϕ j (s)| ≤ L j |t − s| for all t, s ∈ R and ϕ j (0) = 0 for
j = 1, 2, . . . , m. If ε1, . . . , εm are independent Rademacher variables, then

E sup
t∈T

∣∣∣∣∣∣

m∑

j=1

ε jϕ j (t j )

∣∣∣∣∣∣
≤ 2E sup

t∈T

∣∣∣∣∣∣

m∑

j=1

ε j L j t j

∣∣∣∣∣∣
.

This is consequence of a comparison principle due to Talagrand [31, Theorem 4.12]).
Indeed, let S := {(L j t j ) j≤m | t ∈ T } and let h j (s) := ϕ j (s/L j ). Note that h j are
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contractions with h j (0) = 0 and

E sup
t∈T

∣∣∣∣∣∣

m∑

j=1

ε jϕ j (t j )

∣∣∣∣∣∣
= E sup

s∈S

∣∣∣∣∣∣

∑

j=1

ε j h j (s j )

∣∣∣∣∣∣
.

Hence, a direct application of [31, Theorem 4.12] yields

E sup
s∈S

∣∣∣∣∣∣

∑

j=1

ε j h j (s j )

∣∣∣∣∣∣
≤ 2E sup

s∈S

∣∣∣∣∣∣

m∑

j=1

ε j s j

∣∣∣∣∣∣
= 2E sup

t∈T

∣∣∣∣∣∣

m∑

j=1

ε j L j t j

∣∣∣∣∣∣
,

as desired.
Step 2: Defining Lipschitz maps. In view of the previous fact it suffices to define appro-
priate Lipschitz contractions which will permit us to further bound the Rademacher
average from above by a more computationally tractable average. To this end, we
consider the function ϕ : R → R which, for t ≥ 0, it is defined by

ϕ(t) :=
{

td , 0 ≤ t ≤ 1

d(t − 1) + 1, t ≥ 1
,

and we extend toR via ϕ(−t) = (−1)dϕ(t) for all t . Note that f satisfies ‖ϕ‖Lip = d.
Now, we define ϕ j : R → R by ϕ j (t) := ‖x j‖d

2ϕ(t) and notice that ‖ϕ j‖Lip =
d‖x j‖d

2 . Hence, by the comparison principle (Step 2) for T = {(〈z, x̄ j 〉) j≤m | z ∈
Sn−1}, where x̄ j = x j/‖x j‖2, we obtain

E sup
z∈Sn−1

∣∣∣∣∣∣

∑

j

ε j 〈z, x j 〉d

∣∣∣∣∣∣
= E sup

z∈Sn−1

∣∣∣∣∣∣

∑

j

ε jϕ j (〈z, x j 〉)
∣∣∣∣∣∣
≤ 2dE sup

z∈Sn−1

∣∣∣∣∣∣

∑

j

ε j‖x j‖d
2 〈z, x j 〉

∣∣∣∣∣∣
.

Lastly, we have

E sup
z∈Sn−1

∣∣∣∣∣∣

∑

j

ε j‖x j‖d
2〈z, x j 〉

∣∣∣∣∣∣
= E

∥∥∥∥∥∥

∑

j

ε j‖x j‖d−1
2 x j

∥∥∥∥∥∥
2

,

and the result follows by applying the Cauchy–Schwarz inequality and taking into
account the fact that (ε j ) j≤m are orthonormal in L2. ��

Remark 4.9 Let us point out that if d ≥ 2 is even, then we may slightly improve
the quantity of the datum (xi )i≤m on the right hand-side at the cost of a logarithmic
term in dimension. Indeed; let d = 2k, k ∈ N, k ≥ 1. We apply Step 2 for T =
{(〈x j , θ〉2) j≤m | θ ∈ Sn−1} and the even contractions ϕ j : R → R which, for s ≥ 0,
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are defined by ϕi (s) = min{ sk

k‖xi ‖2k−2
2

,
‖xi ‖22

k }. Thus, we obtain

E

∥∥∥∥∥

m∑

i=1

εi fi

∥∥∥∥∥
∞

≤ dE

∥∥∥∥∥

m∑

i=1

εi‖xi‖d−2
2 xi ⊗ xi

∥∥∥∥∥
op

.

One may proceed in various ways to bound the latter Rademacher average. For exam-
ple, we may employ the matrix Khintchine inequality [47, Exercise 5.4.13.] to get

E

∥∥∥∥∥

m∑

i=1

εi‖xi‖d−2
2 xi ⊗ xi

∥∥∥∥∥
op

�
√
log n

∥∥∥∥∥

m∑

i=1

‖xi‖2d−2
2 xi ⊗ xi

∥∥∥∥∥

1/2

op

.

Clearly,
∥∥∥
∑m

i=1 ‖xi‖2d−2
2 xi ⊗ xi

∥∥∥
1/2

op
≤ (∑m

i=1 ‖xi‖2d
2

)1/2
.

4.4 Comparison with Earlier Results and Open Problems

The quality of approximation provided by Algorithm 2 depends on the constant c with
the property that c ≥ ‖q‖∗. It is known that computing the best such c, i.e., the nuclear
norm (or the nuclear decomposition), is NP-Hard [22]. As mentioned in Sect. 2.3, one
can use sum of squares hierarchy to obtain an increasing sequence of lower bounds
for symmetric tensor nuclear norm [36]. Practically, one would like to have a quick
decreasing sequence of upper bounds to compare against the increasing sequence of
lower bounds coming from sum of squares hierarchy.

Open Problem 4.10 Design an efficient randomized approximation scheme (approx-
imating from above) for the symmetric tensor nuclear norm.

Our search for similar results to Theorem 4.1 in the literature yielded the following:
Theorem 5 of [17] used for symmetric tensors would roughly correspond to the special
case of Theorem 4.1 for Schatten-p norms. The focus of [17] is to demonstrate that
separation between different notions of tensor ranks is not robust under perturbation.
We work only with srank and impose no restrictions on the employed norm. We show
that the type-2 constant and the nuclear norm universally govern the quality of the
empirical approximation in Algorithm 2 for any norm.

5 Approximate Rank Estimates via Frank–Wolfe

This section presents a supplementary result for the specific case of using a
Euclidean norm in Theorem 4.1. The theoretical result of this section, Corollary 5.2,
is not stronger than what one could obtain using Theorem 4.1. The main difference
is that the corresponding algorithm does not require any decomposition of the input
tensor, but just needs a guess on the nuclear norm. Another important difference is
that the algorithm of this section is the only algorithm in this paper that actually finds
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Algorithm 3 Approximate Rank via Frank–Wolfe

Require: ε > 0, a starting point q ∈ Vn,d , and stepsize strategy γk = 2
k+1 .

1: Initialize p0 = 0.
2: for k = 0 to T − 1 do
3: if ‖pk − q‖HS < ε then
4: Halt, set q̃ := pk , and output q̃.
5: else
6: hk = argmin

h∈Vn,d

〈h, ∇F(pk )〉HS
7: pk+1 = pk + γk (hk − pk )

8: end if
9: end for
10: Post-condition ‖q − q̃‖HS ≤ ε and srank(q̃) ≤ 8ε−2

the “latent” rank-one tensors, and hence is computationally more expensive. Our main
purpose is to obtain an alternative proof of Theorem 4.1 for the case Euclidean norms
with an easier argument, and we do not hope for computational efficiency. On the other
hand, popular tensor decomposition methods, such as [29], report practical efficiency
and at the same time involve similar expensive optimization subroutines as the one
used in Algorithm 3. This suggests there might be room for experimentation to see if
Algorithm 3 is useful for particular benchmark problems, which we have to leave to
the interested readers due to time constraints.

The algorithm is based on optimizing an objective function on the Veronese body
that was defined in Sect. 2.3.More precisely, given q ∈ Vn,d , we consider the objective
function

F(p) := 1

2
‖p − q‖2HS ,

and we minimize the objective function on Vn,d . The algorithm, in return, constructs a
low-rank approximation of q, and the number of steps taken by the algorithm controls
the rank of its output.

Each recursive step in the algorithm is solved directly over the constraint set Vn,d :
therefore, every linear function involved attains the minimum at some extreme point
of Vn,d given by ±v ⊗ · · · ⊗ v for some v ∈ Sn−1. Therefore, the hi ’s produced in
step 5 are always rank-1 symmetric tensors. In the end, the number of steps of the
algorithm controls the srank of the output pk .

Lemma 5.1 Algorithm 3 terminates in at most

⌈
8/ε2

⌉
many steps.

Proof of Lemma 5.1 Recall that F(p) = 1
2 ‖p − q‖2HS, so we have that ∇F(p) =

−q + p for all p. Therefore, for every g1 and g2, we have

F(g2) − F(g1) = 1

2
‖g2 − g1‖2HS + 〈g2 − g1,∇F(g1)〉HS.
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This gives the following:

F(pk+1) − F(pk) = 〈pk+1 − pk,∇F(pk)〉 + 1

2
‖pk+1 − pk‖2HS

= γk〈hk − pk,∇F(pk)〉 + 1

2
γ 2

k ‖hk − pk‖2HS
≤ γk〈hk − pk,∇F(pk)〉 + 2γ 2

k

≤ γk〈q − pk,∇F(pk)〉 + 2γ 2
k

≤ γk(F(q) − F(pk)) + 2γ 2
k .

Setting δk = F(pk) − F(q), the inequality reads

δk+1 − δk ≤ −γkδk + 2γ 2
k

that is

δk+1 ≤ (1 − γk)δk + 2γ 2
k .

Using γk = 2
k+1 , we obtain

F(pk+1) − F(q) ≤ 8

k + 1
.

Hence, given a desired level of accuracy ε > 0 the algorithm terminates in at most⌈
8
ε2

⌉
steps. ��

Note that for any f ∈ Pn,d , we have
f

‖ f ‖∗ ∈ Vn,d . Thus, as a corollary of Lemma 5.1,
using ε

‖ f ‖∗ , we obtain the following rank estimate.

Corollary 5.2 Let f ∈ Pn,d , then we have

srank‖·‖HS,ε( f ) ≤ 8 ‖ f ‖2∗
ε2

.

Lemma 5.1 controls the number of steps in the Frank–Wolfe type algorithm.
Thus, the remaining piece in complexity analysis is to understand the computa-
tional complexity of Step 6. First, we observe that ∇F(pk) = −q + pk and
hk = argmin

h∈Vn,d

〈h, pk−q〉HS. In otherwords, hk = qvk forwhichwehave (q−pk)(vk) =
maxv∈Sn−1(q − pk)(v). Therefore, finding hk is equivalent to optimizing q − pk on the
sphere Sn−1. This optimization step is indeed expensive (NP-Hard for d ≥ 4). Here,
we content ourselves by providing an estimate on the complexity of Step 6.
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Lemma 5.3 Given p ∈ Pn,d , one can find v ∈ Sn−1 with

|p(v)| ≤ max
z∈Sn−1

|p(z)| ≤ 1

1 − η2
|p(v)|

by computing at most O((3d/η)n) many pointwise evaluations of p on Sn−1.

This lemma follows from a standard covering argument, see Proposition 4.5 of [15]
for an exposition. An alternative approach to polynomial optimization is the sum of
squares (SOS) hierarchy: for the case of optimizing a polynomial on the sphere using
SOS, the best current result seems to be [20, Theorem 1]. This result shows that SOS
produces a constant error approximation to ‖p‖∞ of a degree-d symmetric tensor
p with n variables in its (ncn)-th layer, where cn is a constant depending on n. In
terms of algorithmic complexity, this means SOS is proved to produce a constant error
approximation with O(nn) complexity. Therefore, for the cases d < n, the simple
lemma above seems stronger than state of the art theorems for the sum of squares
approach.

Remark 5.4 The Frank–Wolfe algorithm in this section is quite natural. However, we
could not locate any earlier use of this algorithm for symmetric tensor decomposition.
We do not know the earliest appearance of this idea in different settings; as far as we
are able to locate, the beautiful paper [10] deserves the credit.

6 An Application to Optimization

This section concerns the optimization of symmetric d-tensors for even d when ‖p‖∗
is small. Suppose one has p = ∑

i civi ⊗ vi ⊗ · · · ⊗ vi where
∑

i |ci | ≤ c ‖p‖∗
for some constant c. If we are given a decomposition with this property, then we can
approximate ‖p‖∞ in a reasonably fast and accurate way: we first apply Algorithm 2
to p, that is, we compute q ∈ Pn,d such that ‖p − q‖H S ≤ ε and

q = 1

m

m∑

i=1

vi ⊗ vi ⊗ · · · ⊗ vi ,

where srank(q) = m ≤
⌈

c2‖p‖2∗
ε2

⌉
. Also notice that

∣∣‖p‖∞ − ‖q‖∞
∣∣ ≤ ‖p − q‖∞ ≤ ‖p − q‖HS ≤ ε.

The next step is to compute ‖q‖∞ and an approach is offered by Lemma 2.1. First,
observe that

‖q‖2k
2k = 1

m2k

∑

1≤i1,i2,...,ik≤m

∫

Sn−1

k∏

j=1

〈x, vi j 〉d σ(x)
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and note that there are
(m+k−1

k

) = O(km) many summands in the expression of
‖q‖2k

2k . In addition, the values of these summands are given by a Gamma-like function
at the vectors v1, v2, . . . , vm . Second, observe that for k � n

ε
ln(ed/ε), we have

(edk/n)
n
2k < 1 + ε. Therefore, for k > cn

ε
ln( ed

ε
) using Lemma 2.1 and Stirling’s

estimate, one has

‖q‖2k ≤ ‖q‖∞ ≤
(

edk

n

) n
2k ‖q‖2k ≤ (1 + ε) ‖q‖2k .

In return, for k � n
ε
ln( ed

ε
), we can calculate

‖q‖2k − ε ≤ ‖p‖∞ ≤ (1 + ε) ‖q‖2k + ε

by computing O
(
(

n ln(ed)

ε2
)m
)
many summands. In principle, this approach gives an

algorithm that operates in time O

(
(n ln(ed))

c2‖p‖2∗
ε2

)
. However, one must be aware

of potential numerical issues due to integration of high degree terms.
In addition to the above, there is an alternative approach coming from [19] with

advantages in numerical computations. After we compute q = 1
m

∑m
i=1 vi ⊗vi ⊗· · ·⊗

vi , it is possible to exploit the fact that q ∈ W := span{vi ⊗vi ⊗· · ·⊗vi : 1 ≤ i ≤ m}
and dim W ≤

⌈
c2‖p‖2∗

ε2

⌉
. The approach presented in Theorem 1.6 of [19] gives a 1− 1

n

approximation to ‖q‖∞ using O

(
n

c2‖p‖2∗
ε2

)
many pointwise evaluations. Moreover,

this approach has the advantage of being simple and using only degree-d tensors. The
following theorem summarizes the discussion in this section.

Theorem 6.1 Let p = ∑
i civi ⊗ vi ⊗ · · · ⊗ vi where

∑
i |ci | ≤ c ‖p‖∗. Then, using

Algorithm 2 and the results of [19]:

• we compute a q ∈ Pn,d such that srank(q) ≤ c2‖p‖2∗
ε2

and
∣∣‖p‖∞ − ‖q‖∞

∣∣ ≤ ε,

• we compute a 1 − 1
n approximation of ‖q‖∞, with high probability, using

O(n
c2‖p‖2∗

ε2 ) many pointwise evaluations of q on the sphere Sn−1.
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