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Abstract
A new important relation between fluid mechanics and differential geometry is estab-
lished. We study smooth steady solutions to the Euler equations with the additional
property: the velocity vector is orthogonal to the gradient of the pressure at any point.
Such solutions are called Gavrilov flows. We describe the local structure of Gavrilov
flows in terms of the geometry of isobaric hypersurfaces. In the 3D case, we obtain
a system of PDEs for axisymmetric Gavrilov flows and find consistency conditions
for the system. Two numerical examples of axisymmetric Gavrilov flows are pre-
sented:with pressure function periodic in the axial direction, andwith isobaric surfaces
diffeomorphic to the torus.
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1 Introduction

In dimensions 2 and 3, the Euler equations

u · ∇u + grad p = 0, (1)
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∇ · u = 0 (2)

describe steady-state flows of ideal incompressible fluid. The equations are also of

somemathematical interest in an arbitrary dimension. Here, u =
(
u1(x), . . . , un(x)

)

is a vector field on an open set U ⊂ R
n (the fluid velocity) and p is a scalar function

on U (the pressure). We consider only smooth real solutions to the Euler equations,
i.e., ui ∈ C∞(U ) (i = 1, . . . , n) and p ∈ C∞(U ) are assumed to be real functions
(the term “smooth" is used as the synonym of “C∞"). We say that a solution (u, p) to
(1)–(2) is a Gavrilov flow if it satisfies

u · grad p = 0, (3)

i.e., the velocity is orthogonal to the pressure gradient at all points ofU .We use also the
abbreviation GF for “Gavrilov flow". Equations (1)–(3) constitute the overdetermined
system of first order differential equations: n+2 equations in n+1 unknown function.
Therefore, every GF is an exception in a certain sense. Nevertheless, such flows exist
and deserve study. Such flows satisfy the following important property: a pair of
functions (ũ, p̃) given by

ũ = ϕ(p)u, grad p̃ = ϕ2(p)grad p, (4)

where ϕ(p) is an arbitrary smooth function, is again a GF. This property underlies the
following construction that will be called the Gavrilov localization. Given a GF in a
domain U , let p0 ∈ U be a regular value of the function p such that Mp0 = {x ∈
U | p(x) = p0} is a compact hypersurface in U . Then, we can construct a compactly
supported smooth solution to the Euler equations on the whole of Rn by choosing
ϕ(p) as a cutoff function with support in a small neighborhood of p0. Indeed, the
new velocity vector field ũ and the gradient grad p̃ are supported in some compact
neighborhood Ũ ⊂ U of the surface Mp0 , as is seen from (4), and we define ũ as zero
in R

n \ U . Thus, the new pressure p̃ is constant on every connected component of
U \ Ũ . Since only the gradient grad p participates in (1)–(3), we can assume without
lost of generality that p̃ = 0 on the “exterior component" ofU\Ũ . It is now clear that
p̃ can be extended to a compactly supported function p̃ ∈ C∞(Rn).

For some neighborhood O(C) of the circle C = {(x1, x2, 0) ∈ R
3 | x21 + x22 =

R2}, Gavrilov [6] proved the existence of a solution u ∈ C∞
(
O(C)\C;R3

)
, p ∈

C∞
(
O(C)\C

)
of the Euler equations satisfying (3), and such that for some regular

value p0 of the function p, the surface Mp0 ⊂ O(C)\C is diffeomorphic to the torus.
Gavrilov’s formulas involve an arbitrary positive constant R, without lost of generality
we set R = 1. Using the localization procedure described above, Gavrilov proved
the existence of a solution ũ ∈ C∞(R3;R3), p̃ ∈ C∞(R3) of the Euler equations
supported in a small neighborhood of Mp0 . Thus, Gavrilov gave a positive answer
to the long standing question: Is there a smooth compactly supported solution to the
Euler equations onR3 that is not identically equal to zero? Unfortunately, [6] is written
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in terse language and many technical details are omitted. Actually, the same idea is
implemented in the subsequent article [3] by Constantin–La–Vicol. The latter paper
starts with the so-called Grad–Shafranov ansatz that has appeared in plasma physics.
Unlike [6], the article [3] involves a thorough analysis of nonlinear ODEs that arise
while constructing a solution.

We emphasize that in both papers [3, 6] the existence of a Gavrilov axisymmet-
ric smooth compactly supported flow on R

3 is proved only. Indeed, [6] starts with
the Euler equations in cylindrical coordinates for axisymmetric solutions. To authors’
knowledge, The Grad–Shafranov ansatz is adapted to the study of axisymmetric solu-
tions. Existence (or non existence) of compactly supported steady flows of another
kind (i.e., not GFs) is discussed in [2, 8, 10, 11]. In 1986, Dombre, Frisch, Greene,
Hénon, Mehr and Soward [4] discussed Chaotic streamlines in the A (Arnold) - B
(Beltrami) - C (Childress) flows. After this discussion, one can also ask many open
questions about Gavrilov flows and, in a sense, flows close to them. What is their
Lagrangian structure? Do they have a positive Lyapunov exponent? Can they be used
to amplify magnetic fields, etc.?

In the present article, GFs are considered up to the equivalence. We say that two
GFs (u, p) and (ũ, p̃), defined on the same open set U ⊂ R

n , are equivalent if (4)
holds with a smooth non-vanishing function ϕ(p). For example, (u, p) and (−u, p)
are equivalent GFs. We mostly study the structure of such a flow in a neighborhood
of the hypersurface Mp0 ⊂ U for a regular value p0 of the pressure. The article is
organized as follows.

In Sect. 2, we present a complete description of a GF in terms of first and second
quadratic forms of isobaric hypersurfaces Mp. After the description is obtained, the
Euler equations can be forgotten. Gavrilov was so kind as told his results to the
second author and some other colleagues before the article [6] was published. While
discussing Gavrilov’s results, Bazaykin suggested an explicit example of a GF in
any even dimension (private communication, 2018). The example was independently
reproduced in the recent paper by Enciso, Peralta-Salas, and Torres de Lizaur [5,
Proposition 2.1]. The example is discussed at the end of Sect. 2.

The following observation is widely used in [11]. If a solution (u, p) to the Euler
equations is defined on the whole of R3 and sufficiently fast decays at infinity, then
the quadratic form (ν · u)(ξ · u) integrates to zero over every 2D affine plane P ⊂ R

3,
where ν is the normal vector to P and ξ is an arbitrary vector parallel to P . For a
GF, the two-dimensional integral over P can be reduced to a one-dimensional integral
over the curve P ∩ Mp. The reduction is presented in Sect. 3. This property of GFs
is interesting by itself, but so far, we do not know any application of the property.
Therefore, Sect. 3 can be skipped on first reading.

In Sect. 4, we obtain a system of PDEs for GFs in three dimensions. It is an
overdetermined system: 4 equations in 3 unknown functions. The problem of deriving
consistency conditions for the system is the main problem in the study of GFs. The
problem remains open in the general case.

Sections 5–8 are devoted to axisymmetricGFs in the 3Dcase.Unlike [3, 6], our anal-
ysis of suchflows is based on thewell-knowngeometric fact: the equation for geodesics
admits a first integral for surfaces of revolution, the Clairaut integral. In Sect. 5, we
reduce the system of Sect. 4 to a simpler system of PDEs for axisymmetric GFs: two
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equations in one unknown function of two variables, including also two functions of
one variable p. Consistency conditions for the latter system are derived in Sect. 6.

In Sect. 7, we discuss a numerical method of constructing axisymmetric GFs. In
the general case, our method gives only a local GF in a neighborhood of a given
point. Nevertheless, global axisymmetric GFs can be found due to periodicity in the
z-direction.

The existence of an axisymmetric GF in the open set O(C)\C is proved in [6]
such that the pressure function p(r , z) is smooth in a neighborhood of the point
(r , z) = (1, 0) that is a nondegenerate minimum point of p. We study such flows in
Sect. 8. The corresponding system of PDEs can be solved in series.

We emphasize that [3, 6] only prove the existence of axisymmetric GFs but do not
give numerical examples. In our opinion, numerical and geometric examples are of a
great importance since they can lead to new hypotheses. In Sects. 7, 8, we present two
geometric illustrations for better understanding axisymmetric GFs: one with isobaric
surfaces diffeomorphic to a torus and second one periodic in the z-direction.

Some open questions on GFs are posed in Sect. 9.

2 Geometry of a Gavrilov flow

Let (u, p) be a GF on an open set U ⊂ R
n . Integral curves of the vector field u are

also called particle trajectories. The following statement immediately follows from
(3).

Proposition 1 The pressure p is constant on every integral curve of the vector field u.

By Proposition 1, the Bernoulli law

|u|2/2 + p = const along a particle trajectory

splits, for a GF, into two conservation laws:

p = c = const, |u| = C = const along a particle trajectory. (5)

We say that x ∈ U is a regular point if grad p(x) �= 0. The vector field u does not
vanish at regular points as is seen from (1). The sets Mp0 = {x ∈ U | p(x) = p0 =
const} will be called isobaric hypersurfaces. A particle trajectory starting at a point
of an isobaric hypersurface Mp does not leave Mp “for ever". In the general case, an
arbitrary closed subset of U can be an isobaric hypersurface Mp. But Mp is indeed a
smooth hypersurface of Rn in a neighborhood of a regular point x ∈ Mp. We say that
Mp is a regular isobaric hypersurface if it consists of regular points.

Recall that a vector field u on a manifold M with a Riemannian metric g is called
a geodesic vector field if

∇u u = 0, (6)
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where∇ stands for the covariant derivative with respect to the Levi-Civita connection
of (M, g). Integral curves of a geodesic vector field are geodesics. In the case of a GF,
regular isobaric hypersurfaces Mp ⊂ R

n are considered with the Riemannian metric
induced by the Euclidean metric of Rn .

Proposition 2 Given a Gavrilov flow (u, p), the restriction of u to every regular
isobaric hypersurface Mp is a non-vanishing geodesic vector field.

Proof It consists of one line

∇u u = P(u · ∇u) = −P(grad p) = 0 (7)

where P is the orthogonal projection onto the tangent hyperplane of Mp. On the
left-hand side of (7), ∇ stands for the covariant derivative with respect to the Levi-
Civita connection on Mp. But the second ∇ stands for the Euclidean gradient, the
same operator as in the Euler equations (1)–(2). The first equality in (7) is the main
relationship between intrinsic geometry of a hypersurface and geometry of the ambient
space; it goes back to Gauss and is valid in a more general setting [9, Chapter VII,
Proposition 3.1]. The second equality in (7) holds by (1), and the last equality holds
by (3). �	

Since the vector field u does not vanish at regular points, no integral curve of u
living on a regular hypersurface Mp degenerates to a point. Thus, integral curves of u
constitute a geodesic foliation of a regular part of any isobaric hypersurface.

Proposition 3 Given a Gavrilov flow (u, p) on an open set U ⊂ R
n, let us restrict the

vector field u onto a regular isobaric hypersurface Mp, and let div u be the (n − 1)-
dimensional divergence of the restriction which is understood in the sense of intrinsic
geometry of Mp. Then

div u = u(log |grad p |). (8)

On the right-hand side of (8), the vector field u is considered as a differentiation of
the algebra C∞(Mp) of smooth functions on Mp.

Proof We will show that Eq. (8) is equivalent to the incompressibility Eq. (2). To this
end, we will rewrite the Eq. (2) in local curvilinear coordinates adapted to the foliation
of U into isobaric hypersurfaces. Fix a regular point x0 ∈ U and set p0 = p(x0). For
p ∈ R sufficiently close to p0, the isobar Mp is a regular hypersurface near x0. Choose
local curvilinear coordinates (z1, . . . , zn−1) on the hypersurface Mp0 . Let

R
n−1 ⊃ �

r−→ R
n, r = r(z1 . . . , zn−1)

be the parametrization of Mp0 in these coordinates. Assume that 0 ∈ � and r(0) = x0.
In some neighborhood of x0, we introduce local curvilinear coordinates (z1, . . . , zn)
in Rn as follows. Define the vector field

ξ = grad p

|grad p |2 . (9)
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For (z1, . . . , zn−1) ∈ R
n−1 sufficiently close to 0, let

R(z1, . . . , zn−1; zn), (p0 − ε < zn < p0 + ε)

be the integral curve of the vector field ξ starting at the point r(z1, . . . , zn−1) at the
initial moment zn = p0. Thus R(z) ∈ R

n is the solution to the Cauchy problem

∂R

∂zn
(z) = ξ

(
R(z)

)
, R(z1, . . . , zn−1; p0) = r(z1, . . . , zn−1). (10)

Obviously, R is a diffeomorphism between some neighborhood of the point
(0, . . . , 0, p0) and a neighborhood of x0; therefore (z1, . . . , zn) constitute a local
coordinate system in R

n near the point x0. By our construction, R satisfies the

identity p

(
R(z)

)
= zn , which means that the coordinate zn coincides with the

pressure p. Nevertheless, we use the different notation for the coordinate since zn

is considered as an independent variable while p is a function onU . For every zn suf-
ficiently close to p0, (z1, . . . , zn−1) are local coordinates on the isobaric hypersurface
Mzn = {x ∈ U | p(x) = zn}. Let

ds2zn = gαβdz
αdzβ, gαβ = ∂R

∂zα
· ∂R

∂zα

be the first quadratic form of Mzn . We use the following convention: Greek indices
vary from 1 to n − 1 and the summation from 1 to n − 1 is assumed over a repeating
Greek index; while Roman indices vary from 1 to n with the corresponding summation
rule. We also write the Euclidean metric of Rn in coordinates (z1, . . . , zn) as ds2 =
hi j dzi dz j , where hi j = ∂R

∂zi
· ∂R

∂z j
. Obviously, hαβ = gαβ, and

hαn(z) = ∂R

∂zα
(z) · ∂R

∂zn
(z) = ∂R

∂zα
(z) · grad p

|grad p |2
(
R(z)

)
= 0.

The last equality holds since the vector ∂R
∂zα (z) is tangent to the hypersurface Mzn at

the point R(z) while the vector grad p(R(z)) is orthogonal to Mzn at the same point.

Similarly, we get hnn(z) =
∣∣∣∣ ∂R
∂zn (z)

∣∣∣∣
2

=
∣∣∣∣grad p

(
R(z)

)∣∣∣∣
−2

. Thus,

(hi j ) =
(
gαβ 0
0 |grad p |−2

)
, (hi j ) = (hi j )

−1 =
(
gαβ 0
0 |grad p |2

)
.

Let 
α
βγ = 1

2g
αδ

(
∂gβδ

∂zγ + ∂gγ δ

∂zβ
− ∂gβγ

∂zδ

)
be the Christoffel symbols of Mzn in coordi-

nates (z1, . . . , zn−1) and Gi
jk be the Christoffel symbols of the Euclidean metric in

coordinates (z1, . . . , zn). As follows from the above relations, the Christoffel symbols
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satisfy

Gα
nn = −1

2
gαδ ∂|grad p |−2

∂zδ
, Gn

βn = 1

2
|grad p |2 ∂|grad p |−2

∂zβ
,

Gn
nn = 1

2
|grad p |2 ∂|grad p |−2

∂zn
,

Gα
βγ = 
α

βγ , Gn
βγ = −1

2
|grad p |2 ∂gβγ

∂zn
, Gα

βn = 1

2
gαδ ∂gβδ

∂zn
.

(11)

The velocity u can be represented in the chosen coordinates as u(z) = uα(z) ∂R(z)
∂zα ,

since it is tangent to Mzn . The velocity u can be thought as a smooth vector field either
on the n-dimensional open set U or on each isobaric hypersurface Mzn smoothly
depending on the parameter zn . We remain the notation ∇ · u for the n-dimensional
divergence of u while the (n−1)-dimensional divergence of u on Mzn will be denoted
by div u. Thus,

div u = ∇αu
α = ∂uα

∂zα
+ 
α

αβu
β. (12)

By the same formula, ∇ · u = ∂ui

∂zi
+ Gi

i j u
j , since un = 0, this becomes

∇ · u = ∂uα

∂zα
+ Gi

iβu
β.

In particular, the incompressibility Eq. (2) is written in the chosen coordinates as
∂uα

∂zα + Gi
iβu

β = 0. Using this equation, (12) becomes div u = −(Gi
iβ − 
α

αβ)uβ .

By the formulas for Christoffel symbols, Gi
iβ − 
α

αβ = − ∂(log |grad p |)
∂zβ

. Using this

expression in the previous formula for div u, we get div u = ∂(log |grad p |)
∂zβ

uβ. This is
equivalent to (8). �	

Remark. Proposition 3 is not completely new, compare with [1, Theorem 3.4.12].
Let II be the second quadratic form of a regular isobaric hypersurface Mp. Recall

that the second quadratic form depends on the choice of the unit normal vector to a
hypersurface (the second quadratic form changes its sign if the unit normal vector N
is replaced with −N ). We choose the unit normal vector for a regular isobaric surface
to be a positive multiple of grad p.

Proposition 4 Given a Gavrilov flow (u, p), the restriction of the vector field u onto
a regular isobaric hypersurface Mp satisfies

II(u, u) = −|grad p |. (13)

Proof We use the same local coordinates (z1, . . . , zn) as in the previous proof. To
prove (13), we write down the Eq. (1) as (u · ∇u)i + (grad p)i = 0. Setting i = α
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here, we obtain nothing new;more precisely, we obtain the same result: integral curves
of u are geodesics of Mp. Thus, we set i = n in the latter formula

(u · ∇u)n + (grad p)n = 0.

By (9)–(10), (grad p)n = |grad p |2 and our equation becomes

(u · ∇u)n = −|grad p |2. (14)

By a well-known formula for covariant derivatives, (u · ∇u)n = ui
(

∂un

∂zi
+ Gn

i j u
j
)

.

Since un = 0, this becomes (u·∇u)n = Gn
αβu

αuβ. Using Gn
αβ = − 1

2 |grad p |2 ∂gαβ

∂zn

from (11), we get

(u · ∇u)n = −1

2
|grad p |2 ∂gαβ

∂zn
uαuβ. (15)

Differentiating the equality gαβ = ∂R
∂zα · ∂R

∂zβ
with respect to zn , we obtain

∂gαβ

∂zn
= ∂2R

∂zα∂zn
· ∂R

∂zβ
+ ∂2R

∂zβ∂zn
· ∂R

∂zα
.

This can be written as

∂gαβ

∂zn
= ∂

∂zα

(
∂R

∂zn
· ∂R

∂zβ

)
+ ∂

∂zβ

(
∂R

∂zn
· ∂R

∂zα

)
− 2

∂2R

∂zα∂zβ
· ∂R

∂zn
.

Both expressions in parentheses are equal to zero, and we obtain

∂gαβ

∂zn
= −2

∂2R

∂zα∂zβ
· ∂R

∂zn
. (16)

Let N = grad p
|grad p | = |grad p | ∂R

∂zn be the unit normal vector of the hypersurface Mzn .
By classic formulas of differential geometry (so called derived formulas [12]),

∂2R

∂zα∂zβ
= 


γ
αβ

∂R

∂zγ
+ bαβN ,

where bαβ are coefficients of the second quadratic form for Mzn in coordinates
(z1, . . . , zn−1). Taking the scalar product of this equality with N and using the
orthogonality of N to ∂R

∂zγ , we obtain ∂2R
∂zα∂zβ

· N = bαβ . Since N = |grad p | ∂R
∂zn ,

we get ∂2R
∂zα∂zβ

· ∂R
∂zn = |grad p |−1bαβ . Using this equality, formula (16) becomes

∂gαβ

∂zn = −2|grad p |−1bαβ . Substituting this value into (15), we get

(u · ∇u)n = |grad p | bαβu
αuβ = |grad p | II(u, u).
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Inserting this expression into (14), we arrive to (13). �	
Although some special coordinates have been used in the proof, the resulting Eqs.

(8) and (13) are of an invariant nature, i.e., independent of a coordinates choice.
All our arguments in this section are invertible, i.e., the following statement is valid.

Proposition 5 The Euler–Gavrilov system (1)–(3) is equivalent to the system (6), (8),
(13). More precisely, let a smooth vector field u and smooth real function p be defined
on an open setU ⊂ R

n. Choose a point x0 ∈ U such that grad p(x0) �= 0. Assume that
integral curves of u are tangent to level hypersurfaces Mp and Eqs. (6), (8), (13) hold
in some neighborhood of x0. Then (u, p) is a Gavrilov flow in some neighborhood of
x0.

Now, we discuss an easy example of GF which exists in any even dimension. Let
(x1, . . . , x2n) be Cartesian coordinates in R2n . Set

u2 j−1(x) = −x2 j , u2 j (x) = x2 j−1 ( j = 1, . . . , n), p(x) = 1

2
|x |2. (17)

It is easy to check that the Eqs. (1)–(3) hold in R
2n . Observe that |u|2 = 2p. Every

x �= 0 is a regular point. Isobaric hypersurfaces are spheres Mp = {x ∈ R
2n : |x |2 =

2p}. Integral curves of u (particle trajectories) are circles centered at the origin. Every
sphere Mp is foliated by particle trajectories. This foliation coincides with the well-
known Hopf fiber bundle S

2n−1 → CPn−1 of an odd-dimensional sphere over the
complex projective space.

A GF on R2n+1 can be obtained as a direct product of the flow (17) with a constant
velocity flow. Namely,

u2 j−1(x) = −x2 j , u2 j (x) = x2 j−1 ( j = 1, . . . , n), u2n+1(x) = a = const

(18)

and p(x) = 1
2 (x

2
1 + · · · + x2n ). Isobaric hypersurfaces are cylinders S

2n−1 × R, and
particle trajectories are either circles (if a = 0) or helices (if a �= 0).

In order to apply the Gavrilov localization to the flow (17), choose a compactly
supported smooth function α : [0,∞) → R such that α(r) = 0 for r ≤ ε with some
ε > 0 and define the function β : [0,∞) → R by β(r) = − ∫ ∞

r s α2(s) ds. Then

ũ(x) = α(|x |)u(x), p̃(x) = β(|x |)

is a smooth compactly supported GF on the whole of R2n satisfying |ũ|2 = ψ( p̃)
with a function ψ uniquely determined by α. In particular, if α is supported in (r0 −
δ, r0 + δ) for some r0 > δ > 0, then the velocity ũ is supported in the spherical
layer {x ∈ R

2n : r0 − δ < |x | < r0 + δ}, and the pressure p̃ is supported in the ball
{x ∈ R

2n : |x | < r0 + δ} with p̃ = const in the smaller ball {x ∈ R
2n : |x | ≤ r0 − δ}.

Then we can take a linear combination of several such localized flows with disjoints
supports. In particular, a periodic GF can be constructed in this way.

123



232 V. Y. Rovenski et al.

3 Plane sections of a Gavrilov flow

Let a sufficiently smooth solution (u, p) of the Euler equations (1)–(2) be defined on
the whole of Rn . Assume the solution to decay sufficiently fast at infinity together
with first order derivatives (e.g., it can be a smooth compactly supported solution).
Then, [11] the equality

∫
P

(
ξ · u(x)

)(
ν · u(x)

)
dx = 0 (19)

holds for every affine hyperplane P ⊂ R
n and every vector ξ ∈ R

n parallel to P ,
where ν is the normal vector to the hyperplane P and dx stands for the (n − 1)-
dimensional Lebesgue measure on P . Actually there are n − 1 independent equations
in (19) since the vector ξ can take n − 1 linearly independent values from the space
ν⊥ = {ξ ∈ R

n | ν · ξ = 0}.
For aGF, theEq. (19), combinedwith theGavrilov localization, yields an interesting

statement. The following theorem can be easily generalized to an arbitrary dimension.

Theorem 6 Let (u, p) be a smooth GF defined on the whole of R3 and sufficiently
fast decaying at infinity together with first order derivatives. Let Mp0 be a regular
isobaric surface and let an affine plane P0 transversally intersect Mp0 . Then, for any
p sufficiently close to p0 and for any affine plane P sufficiently close to P0,

∫
Mp∩P

1

|grad q(x)|
(

ξ · u(x)

)(
ν · u(x)

)
ds = 0, (20)

where q ∈ C∞(P) is the restriction of the function p to the plane P, ν is the unit
normal vector to P, and ξ is an arbitrary vector parallel to P. The integration in (20)
is performed with respect to the arc length ds of the curve Mp ∩ P.

Proof Since Mp0 and P0 intersect transversally, the same is true for Mp and P for any
p close to p0 and for any plane P close to P0. We fix such p and P , set q = p |P and
γ = Mp ∩ P . Observe that γ is a regular curve on the plane P and the gradient grad q
does not vanish in some neighborhood of γ . Therefore, the integral on the left-hand
side of (20) is well defined.

We parameterize the curve γ by the arc length, γ = γ (s). Then, we choose local
coordinates (s, τ ) in a neighborhood U ⊂ P of γ in the same way as in the proof
of Proposition 3. Namely, the coordinates are chosen so that x(s, 0) = γ (s) and
q(x(s, τ )) = p + τ . For every s0, the coordinate line δ(τ ) = x(s0, τ ) starts at γ (s0)
orthogonally to γ with the initial speed |δ̇(0)| = 1

|grad q(γ (s0))| . Therefore, the area

form dx of the plane P is written in the chosen coordinates as dx =
(

1
|grad q(γ (s))| +

o(τ )

)
ds dτ .

Fix a smooth function μ : R → R such that μ(r) = 0 for |r | ≥ 1, μ(r) > 0 for
|r | < 1, and

∫ 1
−1 μ(r) dr = 1. For ε > 0, set αε(r) = √

μ((r − c)/ε). Using the latter
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function, we define the localized GF (ũ, p̃) by ũ = αε(p) u, grad p̃ = α2
ε (p) grad p.

Applying (19) to (ũ, p̃), we obtain
∫
P αε(q(x))

(
ξ · u(x)

)(
ν · u(x)

)
dx = 0. In the

chosen coordinates, this is written as

∫
γ

ε∫
−ε

μ(τ/ε)

(
1

|grad q(γ (s))| + o(τ )

)(
ξ · u(x(s, τ ))

)(
ν · u(x(s, τ ))

)
dτ ds = 0.

(21)

The integrand can be represented as

μ(τ/ε)

(
1

|grad q(γ (s))| + o(τ )

)(
ξ · u(x(s, τ ))

)(
ν · u(x(s, τ ))

)

= μ(τ/ε)
1

|grad q(γ (s))|
(

ξ · u(γ (s))

)(
ν · u(γ (s))

)
+ o(1).

The variables s and τ are separated up to o(τ ) on the right-hand side of the latter
formula. Using this representation and

∫ ε

−ε
μ(τ/ε) dτ = ε, we obtain from (21)

ε

∫
γ

1

|grad q(γ (s))|
(

ξ · u(γ (s))

)(
ν · u(γ (s))

)
ds + o(ε) = 0.

In the limit as ε → 0, this gives (20). �	

4 Differential equations for a Gavrilov flow

We consider the 3D case in this section. Let a GF (u, p) be defined on an open set of
R
3. Let (x, y, z) be Cartesian coordinates. We assume that, for p ∈ (−p0, p0), the

regular isobar surface Mp coincides with the graph of a smooth function

z = f (p; x, y)
(

(x, y) ∈ U

)
(22)

for some open domain U ⊂ R
2. The first and the second quadratic forms of Mp are

I = (1 + f ′
x
2)dx2 + 2 f ′

x f
′
y dxdy + (1 + f ′

y
2)dy2,

I I = ± 1√
1 + f ′

x
2 + f ′

y
2

(
f ′′
xx dx

2 + 2 f ′′
xy dxdy + f ′′

yy dy
2
)

, (23)

where the sign depends on the choice of the unit vector normal to Mp. Christoffel
symbols of this metric are
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x
xx = f ′

x f
′′
xx

1 + f ′
x
2 + f ′

y
2 , 
x

xy = f ′
x f

′′
xy

1 + f ′
x
2 + f ′

y
2 , 
x

yy = f ′
x f

′′
yy

1 + f ′
x
2 + f ′

y
2 ,



y
xx = f ′

y f
′′
xx

1 + f ′
x
2 + f ′

y
2 , 


y
xy = f ′

y f
′′
xy

1 + f ′
x
2 + f ′

y
2 , 


y
yy = f ′

y f
′′
yy

1 + f ′
x
2 + f ′

y
2 .

(24)

Let (ux , uy) be geometric coordinates of the vector field u, i.e., u = ux (p; x, y) ∂
∂x +

uy(p; x, y) ∂
∂ y , where

∂
∂x and ∂

∂ y are considered as coordinate vector fields tangent to
the surface Mp. Using (24), we compute covariant derivatives

∇xu
x = ∂ux

∂x
+ f ′

x ( f
′′
xxu

x + f ′′
xyu

y)

1 + f ′
x
2+ f ′

y
2 , ∇yu

x = ∂ux

∂ y
+ f ′

x ( f
′′
xyu

x + f ′′
yyu

y)

1 + f ′
x
2+ f ′

y
2 ,

∇xu
y = ∂uy

∂ y
+ f ′

y( f
′′
xxu

x + f ′′
xyu

y)

1 + f ′
x
2+ f ′

y
2 , ∇yu

y = ∂uy

∂ y
+ f ′

y( f
′′
xyu

x + f ′′
yyu

y)

1 + f ′
x
2+ f ′

y
2 .

(25)

In particular,

div u = ∇xu
x+∇yu

y = ∂ux

∂x
+∂uy

∂ y
+ ( f ′

x f
′′
xx+ f ′

y f
′′
xy)u

x+( f ′
x f

′′
xy+ f ′

y f
′′
yy)u

y

1+ f ′
x
2+ f ′

y
2 .

(26)

Substituting expressions (25) into the formula

∇uu = (ux∇xu
x + uy∇yu

x )
∂

∂x
+ (ux∇xu

y + uy∇yu
y)

∂

∂ y
,

we get

∇uu =
(
ux

∂ux

∂x
+ uy ∂ux

∂ y
+ f ′

x

1+ f ′
x
2+ f ′

y
2

(
f ′′
xx (u

x )2+2 f ′′
xyu

xuy+ f ′′
yy(u

y)2
))

∂

∂x

+
(
ux

∂uy

∂x
+ uy ∂uy

∂ y
+ f ′

y

1+ f ′
x
2+ f ′

y
2

(
f ′′
xx (u

x )2+2 f ′′
xyu

xuy+ f ′′
yy(u

y)2
))

∂

∂ y
.

Being a geodesic vector field, u solves the equation ∇uu = 0. We thus arrive to the
system

ux
∂ux

∂x
+ uy ∂ux

∂ y
+ f ′

x

1+ f ′
x
2+ f ′

y
2

(
f ′′
xx (u

x )2 + 2 f ′′
xyu

xuy + f ′′
yy(u

y)2
)

= 0,

ux
∂uy

∂x
+ uy ∂uy

∂ y
+ f ′

y

1+ f ′
x
2+ f ′

y
2

(
f ′′
xx (u

x )2 + 2 f ′′
xyu

xuy + f ′′
yy(u

y)2
)

= 0.

(27)
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Let us express |grad p | in terms of the function f . Let p(x, y, z) be the pressure in
Cartesian coordinates.We have the identity p(x, y, f (p; x, y)) = p. Differentiate the
identity to get

p′
x (x, y, f (p; x, y)) + p′

z(x, y, f (p; x, y)) f ′
x (p; x, y) = 0,

p′
y(x, y, f (p; x, y)) + p′

z(x, y, f (p; x, y)) f ′
y(p; x, y) = 0,

p′
z(x, y, f (p; x, y)) f ′

p(p; x, y) = 1.

From this, we get p′
x = − f ′

x
f ′
p
, p′

y = − f ′
y
f ′
p
, p′

z = 1
f ′
p
. The derivative f ′

p does not

vanish on a regular isobaric surface (22). Thus,

|grad p |2 = p′
x
2 + p′

y
2 + p′

z
2 = 1 + f ′

x
2 + f ′

y
2

f ′
p
2 . (28)

Substituting expressions (26) and (28) into (8), we arrive to the equation

∂ux

∂x
+ ∂uy

∂ y
+ ( f ′

x f
′′
xx + f ′

y f
′′
xy)u

x + ( f ′
x f

′′
xy + f ′

y f
′′
yy)u

y

1+ f ′
x
2+ f ′

y
2

= 1

2
· f ′

p
2

1 + f ′
x
2 + f ′

y
2

[
ux

∂

∂x

(
1 + f ′

x
2 + f ′

y
2

f ′
p
2

)
+ uy ∂

∂ y

(
1 + f ′

x
2 + f ′

y
2

f ′
p
2

)]
.

After the obvious simplification, it becomes

∂ux

∂x
+ ∂uy

∂ y
+ 1

f ′
p
(ux f ′′

px + uy f ′′
py) = 0.

Substituting expressions (23) and (28) into (13), we arrive to the equation f ′′
xx (u

x )2 +
2 f ′′

xyu
xuy + f ′′

yy(u
y)2 = 1+ f ′

x
2+ f ′

y
2

| f ′
p | . Using this, Eq. (27) can be written as

ux
∂ux

∂x
+ uy ∂ux

∂ y
+ f ′

x

| f ′
p|

= 0, ux
∂uy

∂x
+ uy ∂uy

∂ y
+ f ′

y

| f ′
p|

= 0.

We have proved the following

Proposition 7 Let a Gavrilov flow (u, p) be defined on an open set ofR3. Assume that
for p ∈ (−p0, p0) the isobaric surface Mp is regular and coincides with the graph

of a smooth function z = f (p; x, y)
(

(x, y) ∈ U ⊂ R
2
)
. Write the restriction of

the vector field u to the surface Mp in the form u = ux (p; x, y) ∂
∂x + uy(p; x, y) ∂

∂ y .

Then the derivative f ′
p does not vanish and the functions f (p; x, y), ux (p; x, y) and
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uy(p; x, y) satisfy the equations

∂( f ′
pu

x )

∂x
+ ∂( f ′

pu
y)

∂ y
= 0, (29)

ux
∂ux

∂x
+ uy ∂ux

∂ y
+ f ′

x

| f ′
p|

= 0, (30)

ux
∂uy

∂x
+ uy ∂uy

∂ y
+ f ′

y

| f ′
p|

= 0, (31)

f ′′
xx (u

x )2 + 2 f ′′
xyu

xuy + f ′′
yy(u

y)2 = 1 + f ′
x
2 + f ′

y
2

| f ′
p|

. (32)

It is easy to check that the system (29)–(32) has the following solution:

f (x, y, p) = f (x, p) = −
√
r2(p) − x2

(
− r(p) < x < r(p)

)
, (33)

ux (x, y, p) = ux (x, p) =
√
r2(p) − x2√
r(p)|r ′(p)| , uy(x, y, p) = uy(p) = b(p), (34)

where r(p) is a smooth positive function with non-vanishing derivative, and b(p) is an
arbitrary smooth function. For every p, the graphMp of the function (x, y) �→ f (x, p)
is the half of the cylinder M̃p = {(x, y, z) | x2 + z2 = r2(p)}. Observe that M̃p is a
surface of revolution around the y-axis. Thus, (33)–(34) is an axisymmetric GF. We
will study axisymmetric Gavrilov flows in the next section. The solution (33)–(34)
can be slightly modified by a change of Cartesian coordinates in R3. We do not know
any solution to the system (30)–(33) different of the (modified) solution (33)–(34).

5 Axisymmetric Gavrilov flows

Let (r , z, θ) be cylindrical coordinates in R
3 related to Cartesian coordinates

(x1, x2, x3) by x1 = r cos θ, x2 = r sin θ, x3 = z. We study a GF (u, p) invariant
under rotations around the z-axis. The flow is defined in an open set Ũ ⊂ {(r , z, θ) :
r > 0} invariant under rotations around the z-axis. Such a rotationally invariant set Ũ is
uniquely determined by the two-dimensional setU = Ũ ∩{θ = 0} ⊂ {(r , z) : r > 0}.
For brevity we say that an axisymmetric GF is defined in U .

A regular isobaric surfaceMp is a surface of revolution determined by its generatrix

p = Mp∩ U . We parameterize the curve 
p by the arc length r = R(p, t) > 0, z =
Z(p, t),

R′
t
2 + Z ′

t
2 = 1. (35)

The variables (t, θ) serve as coordinates on the isobaric surface Mp. Since the vector
field u is tangent to Mp, it is uniquely represented as u = ut (p, t) ∂

∂t + uθ (p, t) ∂
∂θ
,
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where

(
ut (p, t), uθ (p, t)

)
are geometric coordinates of u. Physical coordinates of

u are defined by

u = ur (r , z)er + uz(r , z)ez + uθ (r , z)eθ , (36)

where er , ez, eθ are unit coordinate vectors. Physical and geometric coordinates are
related by

ur = R′
t u

t , uz = Z ′
t u

t , uθ = Ruθ . (37)

We are going to write down differential equations for a GF in terms of the functions
(R, Z , ut , uθ ). First of all, the first quadratic form of Mp in coordinates (t, θ) is

I = dt2 + R2dθ2. (38)

Christoffel symbols of the metric are 
t
θθ = −RR′

t , 
θ
tθ = R′

t
R , 
t

t t = 
t
tθ = 
θ

t t =

θ

θθ = 0. Using these formulas, we calculate

∇t u
t = ∂ut

∂t
, ∇θu

t = −RR′
t u

θ , ∇t u
θ = ∂uθ

∂t
+ R′

t

R
uθ , ∇θu

θ = R′
t

R
ut .

In particular,

div u = ∇t u
t + ∇θu

θ = ∂ut

∂t
+ R′

t

R
ut . (39)

The restriction of u to Mp is a geodesic vector field, i.e., ∇uu = 0. This gives the
system

ut
∂ut

∂t
− RR′

t (u
θ )2 = 0, ut

∂uθ

∂t
+ 2R′

t

R
utuθ = 0. (40)

Let us express |grad p | in terms of the functions R(p, t) and Z(p, t). Let p = p(r , z)
be the pressure in cylindric coordinates (it is independent of θ ). We have the iden-

tity p

(
R(p, t), Z(p, t)

)
= p. Differentiating the identity with respect to p and t ,

we arrive to the linear algebraic system with unknowns p′
r

(
R(p, t), Z(p, t)

)
and

p′
z

(
R(p, t), Z(p, t)

)

R′
p(p, t)p

′
r

(
R(p, t), Z(p, t)

)
+ Z ′

p(p, t)p
′
z

(
R(p, t), Z(p, t)

)
= 1,

R′
t (p, t)p

′
r

(
R(p, t), Z(p, t)

)
+ Z ′

t (p, t)p
′
z

(
R(p, t), Z(p, t)

)
= 0.
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Solving the system, we have

p′
r

(
R(p, t), Z(p, t)

)
= J−1(p, t)Z ′

t (p, t),

p′
z

(
R(p, t), Z(p, t)

)
= −J−1(p, t)R′

t (p, t),

where

J =
∣∣∣∣ R

′
p R′

t
Z ′
p Z ′

t

∣∣∣∣ (41)

is the Jacobian of the transformation r = R(p, t), z = Z(p, t). The Jacobian does
not vanish. This implies with the help of (35)

|grad p | = |J |−1. (42)

Substituting expressions (39) and (42) into (8), we arrive to the equation

∂ut

∂t
+

(
R′
t

R
+ J ′

t

J

)
ut = 0. (43)

The second quadratic form of the surface Mp is expressed in coordinates (t, θ) by

I I = −((R′
t Z

′′
t t − Z ′

t R
′′
t t ) dt

2 + RZ ′
t dθ

2).

The sign on the right-hand side is chosen taking our agreement into account: the unit
normal vector to the surface Mp must coincide with grad p

|grad p | . Recall that the curvature
κ = κ(p, t) of the plane curve r = R(p, t), z = Z(p, t) is expressed, under the
condition (35), by

κ = R′
t Z

′′
t t − Z ′

t R
′′
t t . (44)

Using the latter equality, the previous formula takes the form

I I = −(κ dt2 + RZ ′
t dθ

2). (45)

By (42) and (45), the Eq. (13) takes the form

κ(ut )2 + RZ ′
t (u

θ )2 = |J |−1. (46)

We have thus obtained the system of five Eqs. (35), (40a,b), (43), (46) in four
unknown functions (R, Z , ut , uθ ). The functions J and κ participating in the sys-
tem are expressed through (R, Z) by (41) and (44), respectively. We proceed to the
analysis of the system.
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All isobaric surfaces Mp under consideration are assumed to be regular and con-
nected. TheEq. (43) implies the following alternative for every p0: either ut (p0, t) �= 0
for all t or ut (p0, t) ≡ 0. The second case of the alternative is realized in the example
(18) with a = 0. The converse statement is true at least partially: If ut (p0, t) ≡ 0, then
Mp0 coincides with the cylinder {r = const > 0} and particle trajectories living on
Mp0 are horizontal circles. Indeed, if u

t (p0, t) ≡ 0 then, as is seen from (35) and (40b),
R′
t (p0, t) ≡ 0 and Z ′

t (p0, t) ≡ ±1. Nevertheless, it is possible that ut (p0, t) ≡ 0 but
ut (p, t) �= 0 for p close to p0; the corresponding example can be constructed by a
slight modification of (18).

To avoid degenerate cases of the previous paragraph, we additionally assume
ut (p, t) �= 0 for all (p, t). Recall that we study flows up to the equivalence (4).
In particular, GFs (u, p) and (−u, p) are equivalent. Therefore, the latter assumption
can be written without lost of generality in the form

ut (p, t) > 0 for all (p, t). (47)

Equation (40a) simplifies under the assumption (47) to the following one:

∂uθ

∂t
+ 2R′

t

R
uθ = 0. (48)

If uθ (p, t0) = 0 for some t0, then (48) implies that uθ (p, t) = 0 for all t . On the other
hand, assuming that uθ (p, t) �= 0 for all t and for a fixed p, we can rewrite (48) in the

form ∂(log uθ )
∂t + ∂(log R2)

∂t = 0. From this we get

uθ (p, t) = b(p)

R2(p, t)
(49)

with some function b(p). This equality is also true for such p0 that uθ (p0, t) = 0 for
all t , just by setting b(p0) = 0. The equality (49) implies smoothness of the function
b.

Substituting the expression (49) into (40a), we get ∂(ut )2

∂t = 2 R′
t

R3 b
2(p), that can be

written in the form ∂(ut )2

∂t = − ∂
∂t

(
b2(p)
R2

)
. From this, we obtain

ut (p, t) =
√
d(p)R2(p, t) − b2(p)

R(p, t)
, (50)

where d(p) is a smooth function satisfying

d(p)R2(p, t) − b2(p) > 0. (51)

By (38), |u|2 = (ut )2 + R2(uθ )2. Substituting values (49)–(50), we get

|u(p, t)|2 = d(p). (52)
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We have thus discovered the important phenomenon: for an axisymmetric GF, all
particles living on an isobaric surface Mp move with the same speed. In other words,
constants c and C in the Bernoulli law (5) can be expressed through each other. The
phenomenon is actually expected since it holds for the Grad — Shafranov ansatz [3].
Most likely, the phenomenon is absent for a general (not axisymmetric) GF, at least
we cannot derive a relation like (52) from (29)–(32).

StudyingGFs up to equivalence,we canmultiply u(p, t) by a non-vanishing smooth
function ϕ(p). This opportunity was already used to fix the sign of ut in (47). We
still have the freedom of multiplying u(p, t) by a positive smooth function ϕ(p)
together with the corresponding change of the pressure. Choosing ϕ(p) = d(p)−1/2

and denoting the new GF by (u, p) again, we simplify (52) to the following one:

|u(p, t)|2 = 1. (53)

The inequality (51) becomes now |b(p)| < R(p, t), and formula (50) takes the form

ut (p, t) =
√
R2(p, t) − b2(p)

R(p, t)
. (54)

We continue our analysis under assumptions (47) and (53). In virtue of (47), the

Eq. (43) can be written in the form ∂(log ut )
∂t + ∂(log(|J |R))

∂t = 0. This implies

ut (p, t) = α2(p)

|J (p, t)|R(p, t)
(55)

with some positive smooth function α(p). Comparing (54) and (55), we arrive to the
equation

√
R2(p, t) − b2(p) |J (p, t)| = α2(p).

Finally, we simplify the Eq. (46). Substituting expressions (49) and (54) for uθ

and ut into (46), we obtain κR(R2 − b2) + b2Z ′
t = R3|J |−1. Expressing |J | from

(55) and substituting the expression into the latter formula, we arrive to the equation

κR(R2 − b2) + b2Z ′
t = R3

√
R2−b2

α2 . We have thus proved the following

Theorem 8 Let an axisymmetric Gavrilov flow (u, p) be defined on an open set U ⊂
{(r , z) | r > 0}. Assume that every isobaric surface Mp is regular and connected.
For the surface of revolution Mp, let r = R(p, t) > 0, z = Z(p, t) be the arc length
parametrization of the generatrix 
p of Mp. Assume also that in the representation
u = ut (p, t) ∂

∂t + uθ (p, t) ∂
∂θ

the function ut (p, t) does not vanish. Then
(i) there exists a smooth positive function d(p) such that |u|2 = d(p). Replacing

(u, p) with an equivalent Gavrilov flow and denoting the new flow by (u, p) again,
we can assume without lost of generality that ut (p, t) > 0 and

|u|2 = 1. (56)
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(ii) under the assumption (56), the functions R(p, t) and Z(p, t) satisfy the
equations

R′
t
2 + Z ′

t
2 = 1, (57)√

R2 − b2(p)

∣∣∣∣R′
p Z

′
t − R′

t Z
′
p

∣∣∣∣ = α2(p), (58)

κR

(
R2 − b2(p)

)
+ b2(p)Z ′

t = R3
√
R2 − b2(p)

α2(p)
(59)

with some smooth functions α(p) > 0 and b(p), where κ = κ(p, t) is the curvature
of the plane curve r = R(p, t), z = Z(p, t). The functions ut (p, t) and uθ (p, t) are

expressed through

(
R(p, t), b(p)

)
by

ut =
√
R2 − b2(p)

R
, uθ = b(p)

R2 . (60)

Let us make some remarks on Theorem 8.
1. First, we attract reader’s attention to the hypothesis: Mp are connected sur-

faces. Otherwise functions α(p) and b(p) can be different on different connected
components.

2. Equations (57)–(60) are invariant under some transformations. First, the param-
eter t is defined up to a shift, i.e., nothing changes after the replacement R(p, t) =
R̃

(
p, t + t0(p)

)
, Z(p, t) = Z̃

(
p, t + t0(p)

)
. Second, the equations are invariant

under the changes Z(p, t) = Z̃(p, t) + z0 and Z(p, t) = −Z̃(p, t), κ = −κ̃ , which
mean a vertical shift of the origin in R

3 and the change of the direction of the z-axis,
respectively.

3. Compared with Proposition 7, Theorem 8 has an important advantage. The
unknown functions ( f , ux , uy) are not separated in the system (29)–(32) and, proba-
bly, cannot be separated. On the other hand, Eqs. (57)–(59) involve only the functions
(R, Z) that determine isobaric surfaces Mp (the equations involve also α(p) and b(p)
that appear as integration constants). If the system (57)–(59) was solved, the velocity
vector field u would be determined by explicit formulas (60). Of course, the sim-
plification is possible due to the Clairaut integral for the equation of geodesics on a
surface of revolution. Although the Clairaut integral is not mentioned in our proof of
Theorem 8, formulas (60) are actually equivalent to the Clairaut integral.

Recall that physical coordinates (ur , uz, uθ ) of the velocity vector field u are defined
by (36). The function uθ is called the swirl. As follows from (37) and (60),

(u2r + u2z )(r , z) = 1 − β(p)

r2
, uθ (r , z) =

√
β(p)

r
. (61)

Theorem 8 has two other useful forms.
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Case A.Assume, under hypotheses of Theorem 8, that the curve 
p is the graph of
a function r = f (p, z). Then, f ′

p �= 0 and Eqs. (57)–(59) are equivalent to the system

f ′
p
2 = α(p)(1 + f ′

z
2
)

f 2 − b2(p)
, (62)

α(p) f f ′′
zz = b2(p) f ′

p
2 − f 3 f ′

p(1 + f ′
z
2
) (63)

with the same functions α(p) > 0 and b(p). The function f must satisfy f (z, p) >

|b(p)|. The velocity vectoru is now represented asu = uz(z, p) ∂
∂z+uθ (z, p) ∂

∂θ
,where

the functions uz and uθ are expressed through ( f , α, b) by uz = sgn(uz)
√

α(p)
f | f ′

p | , uθ =
b(p)
f 2

and sgn(uz) = ±1 is the sign of uz that is assumed do not vanish.
Case B. Assume, under hypotheses of Theorem 8, that the curve 
p is the graph

of a function z = g(p, r). Then, Eqs. (57)–(59) are equivalent to the system

(
r2 − b2(p)

)
g′
p
2 − α(p)(1 + g′

r
2) = 0, (64)

rα(p)g′′
rr + b2(p)g′

r g
′
p
2 + r3g′

p(1 + g′
r
2) = 0 (65)

with the same functions α(p) > 0 and b(p). The function g(p, r) is considered for

r ∈
(
r1(p), r2(p)

)
with |b(p)| < r1(p). The velocity vector u is now represented as

u = ur (p, r) ∂
∂r + uθ (p, r) ∂

∂θ
, where the functions ur and uθ are expressed through

(g, α, b) by ur = sgn(ur )
√

α(p)
r |g′

p | , uθ = b(p)
r2

and sgn(ur ) = ±1 is the sign of ur that

does not vanish.

6 Consistency conditions

We will first recall some basic facts from theory of first order PDEs following [14,
Part I, Section 14]. Let us consider the system of two first order PDEs

F(x, y, z, p, q) = 0, G(x, y, z, p, q) = 0, (66)

where z = z(x, y) is an unknown function and p = z′x , q = z′y . We assume F and G

to be sufficiently smooth functions defined for (x, y, z) ∈ U and for all (p, q) ∈ R
2,

where U ⊂ R
3 is an open set. The system (66) is supplied with the initial condition

z(x0, y0) = z0 (67)

for a point (x0, y0, z0) ∈ U . The Jacobi brackets (sometimes also called Mayer
brackets) of functions F(x, y, z, p, q) and G(x, y, z, p, q) are defined by

[F,G] = (F ′
x + pF ′

z)G
′
p − (G ′

x + p G ′
z)F

′
p + (F ′

y + qF ′
z)G

′
q − (G ′

y + qG ′
z)F

′
q .
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(68)

The system (66) is said to be an involutory system if [F,G] ≡ 0 for (x, y; z, p, q) ∈
U × R

2. The system (66) is said to be a complete system on the open set U × R
2 if

the equation

[F,G] = 0 (69)

is an algebraic corollary of the system (66), i.e., if (69) holds for (x, y; z, p, q) ∈
U×R

2 satisfying (66). TheEq. (69) is called the consistency condition (or integrability
condition) for the system (66). In the case of a complete system, for an arbitrary point
(x0, y0, z0) ∈ U , the initial value problem (66)–(67) has a unique solution at least in
some neighborhood of the point (x0, y0). Several methods are known for the numerical
solution of the IVP (66)–(67), the Mayer method is the most popular one [14].

We return to axisymmetric GFs. Under certain additional conditions, systems (62)–
(63) and (64)–(65) are equivalent. We study the system (62)–(63) as the simplest one.
Recall that the system is considered in a neighborhood of a regular point, where the
transform (p, z) �→ (

f (p, z), z
)
is one-to-one. Therefore the derivative f ′

p does not
vanish. Note that only b2 is involved in (62)–(63), not the function b itself. To simplify
our formulas a little bit, we introduce the function β(p) = b2(p) ≥ 0 and rewrite the
system (62)–(63) as

( f 2 − β) f ′
p
2 − α(1 + f ′

z
2
) = 0, (70)

α f f ′′
zz − β f ′

p
2 + f 3 f ′

p(1 + f ′
z
2
) = 0. (71)

The function f is assumed to satisfy the inequality

f (p, z) >
√

β(p). (72)

Given functions α(p) > 0 and β(p) ≥ 0, (70)–(71) is an overdetermined system of
two PDEs in one unknown function f (p, z). The overdeterminess is caused by the
circumstancementioned in Introduction: aGF is defined by the overdetermined system
(1)–(3). We pose the question: What conditions should be imposed on

(
α(p), β(p)

)
for solvability of the system (70)–(71) at least locally, i.e., in a neighborhood of a given
point (p0, z0)? For a fixed p, (71) can be considered as a second order ODE with an
unknown function f p(z) = f (p, z). Observe that the variable z does not explicitly
participate in (71). Aswell known [13, Ssection 15.3], such an equation can be reduced
to a first order ODE. The observation is realized by the following statement.

Lemma 9 LetC1-functionsα(p) > 0 andβ(p) ≥ 0 be defined on an interval (p1, p2),
where −∞ ≤ p1 < p2 ≤ ∞. Then the following statements are valid.

1. Let f (p, z) be a solution to the system (70)–(71) on a rectangle

(p, z) ∈ (p1, p2) × (z1, z2), (73)
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and let the inequality (72) be valid on the rectangle. Then there exists a C1-function
γ (p) on the interval (p1, p2) satisfying the equation

f 2(ε f 2 + γ )2(1 + f ′
z
2) − 4α( f 2 − β) = 0 (74)

and the inequalities

0 < ε f 2 + γ ≤ 2α1/2
√

f 2 − β

f
, (75)

where ε = ±1 is the sign of f ′
p that does not vanish.

2. Conversely, let f (p, z) > 0 and γ (p) satisfy (70) and (74)–(75). Assume addi-
tionally that, for every p ∈ (p1, p2), the derivative f ′

z (p, z) is not identically equal
to zero on any interval (z′1, z′2) ⊂ (z1, z2). Then, f solves (70)–(71) on the rectangle
(73).

Proof First of all we find from (70)

f ′
p = ε

α1/2
√
1 + f ′

z
2

√
f 2 − β

, (76)

where ε = ±1 is the sign of f ′
p, and substitute the expression into (71)

f ′′
zz = β(1 + f ′

z
2
)

f ( f 2 − β)
− ε

f 2(1 + f ′
z
2
)3/2

α1/2
√

f 2 − β
. (77)

Let us show that Eqs. (76) and (77) imply

∂

∂z

( √
f 2 − β

f
√
1 + f ′

z
2

− ε
f 2

2α1/2

)
= 0. (78)

To this end we implement the differentiation in (78). The result can be written as

(
f ′′
zz − β(1 + f ′

z
2
)

f ( f 2 − β)
+ ε

f 2(1 + f ′
z
2
)3/2

α1/2
√

f 2 − β

)
f ′
z = 0. (79)

By (77), the left-hand side of (79) is identically zero. This proves (78). The Eq. (78)

means the existence of a function γ (p) such that
√

f 2−β

f
√
1+ f ′

z
2
− ε

f 2

2α1/2 = γ

2α1/2 . This can

be written in the form

2α1/2
√

f 2 − β = f
√
1 + f ′

z
2(ε f 2 + γ ). (80)
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By (72), f > 0 and f 2−β > 0. Therefore (80) implies the inequalities (75). Squaring
the Eq. (80), we get (74). We have proved the first statement of the lemma.

The second statement of the lemma is proved by reversing presented arguments
with the following additional remark. To pass from (79) to (77), we need to remove
the factor f ′

z on the left-hand side of (79). To do this, it suffices to assume that for
every p ∈ (p1, p2), the derivative f ′

z (p, z) is not identically zero on any interval
(z′1, z′2) ⊂ (z1, z2). �	

By Lemma 9, the system (70)–(71) is equivalent to the following one:

( f 2 − β) f ′
p
2 − α(1 + f ′

z
2
) = 0,

f 2(ε f 2 + γ )2(1 + f ′
z
2) − 4α( f 2 − β) = 0.

(81)

Introducing the notations π = f ′
p, ζ = f ′

z , we write the system as

F(p, z, f , π, ζ ) = 0, G(p, z, f , π, ζ ) = 0, (82)

where

F(p, z, f , π, ζ ) = ( f 2 − β)π2 − α(ζ 2 + 1),

G(p, z, f , π, ζ ) = f 2(ε f 2 + γ )2(ζ 2 + 1) − 4α( f 2 − β).
(83)

Assume that α(p) > 0, β(p) ≥ 0 and γ (p) are defined and smooth on an interval
(p1, p2), where −∞ ≤ p1 < p2 ≤ ∞. Then, F and G are defined and smooth in
U × R

2, where

U =
{
(p, z, f ) ∈ R

3| p1 < p < p2, f >
√

β, 0 < ε f 2 + γ < 2
√

α

√
f 2 − β/ f

}
.

(84)

The functions F and G are actually independent of z and depend on p through the
functions α(p), β(p), γ (p) only. Up to notations, the system (82) is of the form (66).

Theorem 10 Given C1-functions α(p) > 0, β(p) ≥ 0 and γ (p) on an interval
(p1, p2), define F and G by (83) and consider the system of PDEs (82), where
f = f (p, z) is an unknown function and π = f ′

p, ζ = f ′
z . Define an open set

U ⊂ R
3 by (84). Then,

1. The system (82) is complete on U × R
2 if the functions α, β, γ satisfy

α(p) = α0e
3p with some constant α0 > 0, (85)

β ′ + 2εγ ′ + 3β + εγ = 0, (86)

γβ ′ − 2βγ ′ + 3βγ − 4εα + εγ 2 = 0, (87)

where either ε = 1 or ε = −1 and β + εγ �= 0. But (82) is not an involutory system.
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2. Conversely, assume (82) to be a complete system on U ×R
2, where the open set

U ⊂ R
3 is defined by (84). Assume additionally that for every p0 ∈ (p1, p2) there

exists z0 such that (82) has a solution f (p, z) in a neighborhood of (p0, z0) satisfying
f ′
z (p0, z0) �= 0. Then, the functions α, β, γ satisfy (85)–(87) with some ε = ±1.

Proof To agree (66) and (82), we need to change the variables in (66) as follows:
x := p, y := z, z := f , p := π and q := ζ . Then, the formula (68) takes the form

[F,G] = (F ′
p + πF ′

f )G
′
π − (G ′

p + πG ′
f )F

′
π + (F ′

z + ζ F ′
f )G

′
ζ − (G ′

z + ζG ′
f )F

′
ζ .

(88)

We find the derivatives by differentiating (83):

F ′
p = −β ′π2−α′(ζ 2 + 1), G ′

p = 2γ ′ f 2(ε f 2+γ )(ζ 2+1) − 4α′( f 2−β) + 4αβ ′,
F ′
z = 0, G ′

z = 0,
F ′
f = 2 f π2, G ′

f = 2 f (ε f 2+γ )2(ζ 2+1)+4ε f 3(ε f 2+γ )(ζ 2+1)−8α f ,
F ′

π = 2( f 2 − β)π, G ′
π = 0,

F ′
ζ = −2αζ, G ′

ζ = 2 f 2(ε f 2 + γ )2ζ.

(89)

Since G ′
π = F ′

z = G ′
z = 0, the formula (88) simplifies to the following one:

[F,G] = −G ′
pF

′
π − πG ′

f F
′
π + ζ F ′

f G
′
ζ − ζG ′

f F
′
ζ . (90)

Substituting values (89) into (90), we obtain

1

4
[F,G] = −π( f 2 − β)

(
γ ′ f 2(ε f 2 + γ )(ζ 2 + 1) − 2α′( f 2 − β) + 2αβ ′

)

− π2 f ( f 2 − β)

(
(ε f 2 + γ )2(ζ 2 + 1) + 2ε f 2(ε f 2 + γ )(ζ 2 + 1) − 4α

)

+ π2ζ 2 f 3(ε f 2 + γ )2 + ζ 2α f

(
(ε f 2 + γ )2(ζ 2 + 1) + 2ε f 2(ε f 2 + γ )(ζ 2 + 1) − 4α

)
.

(91)

The right-hand side of (91) is a 7th degree polynomial in f and the coefficient at f 7

is−π2(2ζ 2 +3) �= 0. Thus, (82) is not an involutory system. Now, we prove that (82)
is a complete system. To this end we derive from (82)–(83)

ζ 2 = 4α( f 2 − β)

f 2(ε f 2 + γ )2
− 1 (92)

and π = ε
α1/2

√
ζ 2+1√

f 2−β
, where ε = ±1 is the sign of π . We find from two last equalities

π = 2εα

f (ε f 2 + γ )
. (93)
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Substituting expressions (92)–(93) into (91), we obtain

1

16α2 [F,G] = −ε
2( f 2 − β)

f (ε f 2 + γ )

(
γ ′( f 2 − β)

ε f 2 + γ
− α′

2α
( f 2 − β) + β ′

2

)

− 4α( f 2 − β)

f (ε f 2 + γ )2

(
f 2 − β

f 2
+ 2ε

f 2 − β

ε f 2 + γ
− 1

)
+ f

(
4α( f 2 − β)

f 2(ε f 2 + γ )2
− 1

)

+ f

(
4α( f 2 − β)

f 2(ε f 2 + γ )2
− 1

)(
f 2 − β

f 2
+ 2ε

f 2 − β

ε f 2 + γ
− 1

)
. (94)

We are interested in the case when [F,G] = 0. Equating the right-hand side of (94) to
zero and multiplying the resulting equality by f 3(ε f 2+γ )3, we arrive to the equation

− 2ε f 2( f 2 − β)(ε f 2 + γ )

(
γ ′( f 2 − β) − α′

2α
( f 2 − β)(ε f 2 + γ ) + β ′

2
(ε f 2 + γ )

)

− 4α( f 2 − β)

(
( f 2 − β)(ε f 2 + γ ) + 2ε f 2( f 2 − β) − f 2(ε f 2 + γ )

)

+ 4α f 2( f 2 − β)(ε f 2 + γ ) − f 4(ε f 2 + γ )3

+
(
4α( f 2−β) − f 2(ε f 2+γ )2

)

×
(

( f 2−β)(ε f 2+γ ) + 2ε f 2( f 2−β) − f 2(ε f 2+γ )

)
= 0. (95)

The left-hand side of the Eq. (95) is a polynomial of 10th degree in f . It is almost
unbelievable, but the degree of the polynomial can be decreased to 4. Namely, the Eq.
(95) is equivalent to the following one:

− f 2( f 2 − β)(ε f 2 + γ )

[(
3 − α′

α

)
f 4 +

(
2εγ ′ − ε

α′

α
γ + α′

α
β + β ′ + 4εγ

)
f 2

+
(

− 2εβγ ′ + ε
α′

α
βγ + εγβ ′ − 4α + γ 2

)]
= 0. (96)

Indeed, a simple (though rather cumbersome) calculation shows that the polynomials
on the left-hand sides of (95) and (96) are identically equal. By (84), the factor f 2( f 2−
β)(ε f 2+γ ) does not vanish onU . Therefore, theEq. (96) is equivalent to the following
one:

(
3 − α′

α

)
f 4 +

(
2εγ ′ − ε

α′

α
γ + α′

α
β + β ′ + 4εγ

)
f 2

+
(

− 2εβγ ′ + ε
α′

α
βγ + εγβ ′ − 4α + γ 2

)
= 0. (97)
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Equating coefficients of the polynomial on the left-hand side of (97) to zero, we arrive
to the system of ODEs

α′ − 3α = 0,

β ′ + 2εγ ′ + 3β + εγ = 0,

εγβ ′ − 2εβγ ′ + 3εβγ − 4α + γ 2 = 0. (98)

This is equivalent to (85)–(87).
It remains to discuss the passage from (97) to (98). Of course, (98) implies (97).

This proves the first statement of Theorem 10. To prove that (97) implies (98), we
need for each p0 ∈ (p1, p2) to have at least three distinct z1, z2, z3 such that the
values f 2(p0, z1), f 2(p0, z2), f 2(p0, z3) are pairwise different and (97) holds at
(p0, z1), (p0, z2) and (p0, z3). The existence of such z1, z2, z3 is guaranteed by the
hypothesis of the second assertion of Theorem 10: For each p0 ∈ (p1, p2), there
exists z0 such that the system (82) has a solution f (p, z) in a neighborhood of (p0, z0)
satisfying f ′

z (p0, z0) �= 0. �	
Remark Roughly speaking, Theorem 10 means that the relations (85)–(87) constitute
the consistency condition for the system (82). Nevertheless, we emphasize that two
statements of Theorem 10 are not exactly converse to each other. For example, the
axisymmetric GF (18) (isobaric surfaces are cylinders and particle trajectories are
either circles or spiral lines) corresponds to the solution f (p, z) = 2p1/2 to the
system (81) with (p1, p2) = (0,∞) and

α(p) = 4a0, β(p) = 4(1 − a0)p, γ (p) = 4(a0 − p) (a0 = const, 0 < a0 ≤ 1).

(99)

The functions (99) do not satisfy the consistency conditions (85)–(87). For this
solution, f ′

z ≡ 0 and the second statement of Theorem 10 does not apply.
An analog of Lemma 9 is valid for the system (64)–(65) with minor changes (the

variables (p, z) are replaced by (p, r), the function f is replaced by g, etc.). The cor-
responding system of two first order PDEs looks as follows:

(r2 − β)g′
p
2 − α(1 + g′

r
2) = 0,

r2(γ − τr2)2(1 + g′
r
2) − 4α(r2 − β)g′

r
2 = 0, (100)

where α(p) > 0, β(p) ≥ 0 and γ (p) are the same functions as in (81) and τ = ±1 is
the sign of g′

p that does not vanish. An analog of Theorem 10 is valid for the system
(100) with the same consistency conditions (85)–(87).

7 Local and z-periodic axisymmetric Gavrilov flows

Here, we discuss the numerical method for constructing axisymmetric GFs on the base
of the system (81). For the initial condition f (p0, z0) = f0, we can assume without
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lost of generality that p0 = z0 = 0 since the system (81) is invariant under the change
p → p + const and z → z + const. Thus, the initial condition for f is

f (0, 0) = f0. (101)

First, we will find the functions α(p), β(p), γ (p). The function α is given explicitly
by (85) with an arbitrary constant α0 = α(0) > 0. The functions β(p) ≥ 0 and γ (p)
solve the system (86)–(87) supplied with the initial conditions

β(0) = β0, γ (0) = γ0. (102)

In particular, β0 ≥ 0. For the possibility to write the system (86)–(87) in the form
β ′ = B(β, γ ), γ ′ = 
(β, γ ), we have to impose the restrictions

β ≥ 0, β + εγ �= 0. (103)

In particular, β0 and γ0 must satisfy these inequalities. Let (p1, p2) be the maxi-
mal interval such that the solution to the Cauchy problem (86)–(87), (102) exists on
(p1, p2) and satisfies (103). Here, p1 = p1(α0, β0, γ0) < 0 < p2 = p2(α0, β0, γ0).
By Theorem 10, the system (81) is complete on U × R

2, where U ⊂ R
3 is defined

by (84). General theory [13, Chapter 1, Section 14] guarantees the existence and
uniqueness of a solution to the IVP (81), (101) for any (0, 0, f0) ∈ U at least in
some neighborhood of (p0, z0) = (0, 0). Thus, a solution f (p, z) to the IVP (81),
(101) exists in some neighborhood of (0, 0) and is uniquely determined by 5 constants
(α0, β0, γ0, f0, ε) chosen so that

α0 > 0, β0 ≥ 0, β0 + εγ0 �= 0, f0 > 0, ε = ±1,

f0 > β
1/2
0 , 0 < ε f 20 + γ0 < 2α1/2

0 f −1
0

√
f 20 − β0. (104)

The inequalities on the second line of (104) come from (84). Let us denote this unique
solution by f (p, z;α0, β0, γ0, f0, ε).

In the general case, f (p, z;α0, β0, γ0, f0, ε) is a local solution, i.e., is defined in
some neighborhood U (α0, β0, γ0, f0, ε) ⊂ R

2 of the point (0, 0). Nevertheless, for
some values of the parameters, it can happen that (p′

1, p
′
2)×R ⊂ U (α0, β0, γ0, f0, ε)

for some −∞ ≤ p′
1 < 0 < p′

2 ≤ ∞, in such a case we speak on a global
solution defined on (p′

1, p
′
2) × R. Global solutions are of particular interest. Unfor-

tunately, so far we have neither necessary nor sufficient conditions on the parameters
(α0, β0, γ0, f0, ε) for the existence of a global solution.

Everything said above in this section is valid for the numerical method based on
the system (100).

Global solutions most often appear due to periodicity with the help of the following

Lemma 11 Let a solution f (p, z) of the system (81) be defined on a rectangle
(p1, p2) × (z1, z2) and satisfy (72). Assume the existence of (p0, z0) ∈ (p1, p2) ×
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(z1, z2) such that f ′
z (p0, z0) = 0 and f ′′

zz(p0, z0) �= 0. Then, at least in some
neighborhood of p0, the solution is symmetric with respect to z0, i.e.,

f (p, z) = f (p,−z + 2z0) for p ∈ (p0 − δ, p0 + δ) with some δ > 0. (105)

Hence, f can be extended to a solution defined in (p0 − δ, p0 + δ)× (z0 −�, z0 +�)

such that (z1, z2) ⊂ (z0 − �, z0 + �).

Proof By the implicit function theorem, there exists a smooth function z = ζ(p)
defined for p ∈ (p0 − δ, p0 + δ) with some δ > 0 such that ζ(p0) = z0 and

f ′
z (p, ζ(p)) = 0. (106)

We are going to prove that ζ(p) is actually a constant function. To this end we dif-
ferentiate (106): f ′′

pz(p, ζ(p)) + f ′′
zz(p, ζ(p)) ζ ′(p) = 0. By choosing a smaller δ,

we can assume that f ′′
zz(p, ζ(p)) �= 0. Thus, to prove the equality ζ ′ = 0, we have

to demonstrate that f ′′
pz(p, ζ(p)) = 0. To this end we differentiate the first equa-

tion of the system (81) with respect to z (recall that α and β are independent of z)
( f 2 − β) f ′

p f
′′
pz + f ( f ′

p)
2 f ′

z − α f ′
z f

′′
zz = 0. Setting z = ζ(p) here and using (106),

we obtain ( f 2 − β) f ′
p f

′′
pz |z=ζ(p) = 0. Since f ′

p �= 0 and f 2 − β > 0, this implies
f ′′
pz(p, ζ(p)) = 0. We have thus proved

f ′
z (p, z0) = 0 for p ∈ (p0 − δ, p0 + δ). (107)

The system (81) is invariant under the change z → 2z0 − z. Therefore (107)
implies (105). �	

Now, under hypotheses of Lemma 11, assume the existence of a second point
(p′

0, z
′
0) ∈ (p1, p2)×(z1, z2) (z0 �= z′0) such that f ′

z (p
′
0, z

′
0) = 0 and f ′′

zz(p
′
0, z

′
0) �= 0.

An analog of (105) holds for z′0 with some δ′ > 0. Assume additionally that

( p̃1, p̃2) = (p0 − δ, p0 + δ) ∩ (p′
0 − δ′, p′

0 + δ′) �= ∅.

Using symmetries with respect to z0 and z′0, we extend f (p, z) to a global z-periodic
solution defined on ( p̃1, p̃2)×R. The period is equal to |z0−z′0| if p0 = p′

0, otherwise
the period is equal to 2|z0 − z′0|.

An example of z-periodicGF is presented on Fig. 1. The solution f (p, z) = f (p, z;
α0, β0, γ0, f0, ε) to the IVP (81), (101) was computed for α0 = 1, β0 = 0.01, γ0 =
0.5, f0 = 0.97, ε = 1. The solution to the Cauchy problem (86)–(87), (102) exists
for −0.07 < p < 7.48. For 0 < p < pc ≈ 0.25, the flow turns out to be z-periodic
with the period approximately equal to 2.8. Graphs 
i of functions r = f (pi , z) for
pi = 0.02 i and i = 0, . . . , 8 are drawn on the left-hand side of Fig. 1. Each curve 
i

is the generatrix of the isobaric surface Mpi . The velocity vector field u is drawn on
the right picture for 
0 and 
8. We used (61) for computing physical coordinates of u.
The two-dimensional vector field ur er + uzez is tangent to 
0 and 
8, and the vector
field uθeθ (the swirl) is orthogonal to the plane of the picture. The latter vector field

123



Steady-State Flows of Ideal Incompressible. . . 251

Fig. 1 Periodic axisymmetric
GF

is drawn by vectors orthogonal to 
0 and 
8 in order to avoid 3D pictures. In order
to make a nice picture, both fields ur er + uzez and uθeθ are drawn in the scale 1 : 4,
i.e., |u| = 0.25 on the picture. But we remember that actually |u| = 1.

As we have mentioned in the remark written after the proof of Theorem 10, the
axisymmetric GF (18) is an exception in a certain sense: it cannot be obtained in
the scope of Theorem 10. We can state now the important phenomenon: the simplest
axisymmetric GF (18) constitutes the main obstacle for our numerical method. As is
seen from the Fig. 1, for p close to the critical value pc, the flow is close to the z-
independent solution (18): isobaric surfaces are close to circular cylinders and particle
trajectories are close to spiral lines intersecting parallels approximately at the angle
of π/4. The hypothesis f ′′

zz(p0, z0) �= 0 of Lemma 11 is violated at p0 = pc. All
our numerics become very unstable when p approaches pc. The flow shown on Fig. 1
exists for p > pc as well, but it does not need to be periodic with the same period
≈ 2.8 for p > pc.

8 Structure of an axisymmetric Gavrilov flow in a neighborhood of
aminimum point of the pressure

In [6], the existence of a pair (ũ, p̃) is proved such that (a) (1, 0) is a non-degenerate
minimum point of the function p̃ = ψ(r , z) ∈ C∞(U ) and ψ(1, 0) = 0, where
U ⊂ {(r , z) | r > 0} is a neighborhood of (1, 0); (b) (ũ, p̃) is an axisymmetric GF in
U \ {(1, 0)}; (c) the split Bernoulli law for the flow is of the simplest form

|ũ|2 = 3 p̃. (108)

The flow (ũ, p̃) does not satisfy the normalization condition (56). To apply our equa-
tions, we must replace (ũ, p̃) with an equivalent GF (u, p) such that |u|2 = 1. By
the definition (4) of equivalent GFs, u = ϕ( p̃)ũ, grad p = ϕ2( p̃)grad p̃ with some
non-vanishing function ϕ( p̃). As is seen from (108), ϕ2( p̃) = 1/|ũ|2 = 1/3 p̃. Thus,

p(r , z) = 1

3
lnψ(r , z) + C (C = const), (109)
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Hence, the pressure function gets a logarithmic singularity at the point (1, 0) after
normalization. Comparing (85) and (109), we conclude that

α = cψ (c = const > 0). (110)

Since p → −∞ as (r , z) → (1, 0), it is natural to choose initial conditions for the
system (86)–(87) at p = −∞. The conditions are

β(−∞) = lim
p→−∞ β(p) = 1/3, γ (−∞) = lim

p→−∞ γ (p) = −1. (111)

Indeed, for p “close" to −∞, 
p is a “small" closed curve around (1, 0). The tangent

line to
p is vertical at some point (r1, z1) =
(
r1(p), z1(p)

)
∈ 
p. In a neighborhood

of (r1, z1), the curve 
p is the graph of a function r = f (p, z) solving the system
(81) and satisfying f ′

z (p, z1) = 0. Setting z = z1 in the second equation of (81), we
get

f 2(p, z1)

(
ε f 2(p, z1) + γ (p)

)2

− 4α(p)

(
f 2(p, z1) − β(p)

)
= 0. (112)

In view of our assumption f 2(p, z) − β(p) > 0, see (72), the factor

(
f 2(p, z1) −

β(p)

)
remains bounded when p → −∞. Also α(p) = α0e3p → 0 as p → −∞.

Thus, the second term on the left-hand side of (112) runs to 0 as p → −∞. The same
is true for the first term. Taking into account that f 2(p, z1) → 1 as p → −∞, we
obtain γ (−∞) = −ε.

Since ε = ±1 is the sign of f ′
p in (112), by a similar analysis of the system (100),

we demonstrate that ε = 1 in our setting. This proves the second equality in (111).
The first equality in (111) is proved similarly.

The “Cauchy problem" (86)–(87), (111) (with ε = 1) is easily solved in series
β = 1

3 + ∑∞
k=1 βkα

k and γ = 1
3 + ∑∞

k=1 γkα
k . Equations (86)–(87) imply some

recurrent relations that allow us to compute all coefficients. In particular,

β = 1

3
− 7

6
α+13

72
α2− 133

1728
α3+ 575

13824
α4− 2077

82944
α5+ 37

2304
α6 + . . . , (113)

γ = −1 + α − 1

8
α2 + 7

144
α3 − 115

4608
α4 + 67

4608
α5 − 7

768
α6 + . . . . (114)

The series converge for all real α. We omit the proof of the convergence which is not
easy.

The system (81) can be equivalently written in terms of the function ψ(r , z).
Indeed, as is seen from (109), a solution f (p, z) to the system (81) is related to
ψ by 1

3 lnψ( f (p, z), z) + C = p. Starting with this equation, we derive from (81)
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the system

2cψ ′
r − 3r(r2 + γ ) = 0,

c2ψ ′
z
2 − 9c(r2 − β)ψ + 9

4
r2(r2 + γ )2 = 0, (115)

where c is the constant from (110). By the change ψ = 1
c ψ̃ of the unknown function,

(115) is transformed to the same system with c = 1. Therefore we can assume c = 1
without lost of generality, i.e.,

2ψ ′
r − 3r(r2 + γ ) = 0,

ψ ′
z
2 − 9(r2 − β)ψ + 9

4
r2(r2 + γ )2 = 0. (116)

The equality (110) becomes α = ψ . The function ψ(r , z) is defined and smooth
in a neighborhood of the point (1, 0) and satisfies ψ(1, 0) = 0. Let us show that
ψ(r , z) is an even function of z. Indeed, the second equation of the system (116) gives
ψ ′
z
2(1, 0) + 9

4r
2(1 + γ (−∞))2 = 0. Since γ (−∞) = −1 by (111), we obtain

ψ ′
z(1, 0) = 0. (117)

Then, we differentiate the first equation of the system (116) with respect to z

2ψ ′′
r z − 3rγ ′

z = 0. (118)

Since γ depends on p only, γ ′
z = γ ′ p′

z, where γ ′ = dγ /dp. Together with (109), this

gives γ ′
z = γ ′ψ ′

z
3ψ . Substituting this expression into (118) and setting z = 0, we arrive

to the linear first-order ODE for the function ψ ′
z(r , 0):

2
dψ ′

z(r , 0)

dr
− 3

rγ ′(p(r , 0))
3ψ(r , 0)

ψ ′
z(r , 0) = 0. (119)

The coefficient rγ ′(p(r ,0))
3ψ(r ,0) of the equation is a bounded smooth function in a neigh-

borhood of r = 1 as is seen from (114). Together with the initial condition (117), the
equation (119) implies ψ ′

z(r , 0) = 0. The system (116) is invariant under the change
z → −z. Therefore, the equalityψ ′

z(r , 0) = 0 implies thatψ(r , z) is an even function
of z.

The system (116) allows us to compute term-by-term all Taylor coefficients of the
function ψ(r , z) at the point (1, 0). In particular,

ψ(r , z) = 3

2
(r − 1)2 + 3

2
z2 + 9

4
(r − 1)3 + 9

4
(r − 1)z2 + 57

32
(r − 1)4

+ 45

16
(r − 1)2z2 + 33

32
z4 + 9

8
(r − 1)5 + 9

4
(r − 1)3z2 + 9

4
(r − 1)z4 + · · ·

(120)
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Fig. 2 Structure of GF in a neighborhood of a minimum point of the pressure

Second- and third-order terms on the right-hand side of (120) are easily derived from
(116), and we used Maple for computing 4th and 5th order terms.

This GF is shown on Fig. 2. In our calculations we used the 5th order segment of
the Taylor series of the function ψ , i.e., we ignored the remainder denoted by dots on
the right-hand side of (120). Six isolines 
i = {(r , z) : ψ(r , z) = ψi = 0.04 i} (i =
1, . . . , 6) are drawn on the left-hand side of Fig. 2. Each of the curves 
1, . . . , 
5
consists of two connected components while 
6 has one component. The same curves

i are isolines of the pressure function, see (109). We set C = − 1

3 lnψ1, thus the

formula (109) becomes p(r , z) = 1
3 ln

ψ(r ,z)
ψ1

. Each curve 
i is the generatrix of the

isobaric surface Mpi , where pi = 1
3 ln

ψi
ψ1

. In our case, pi = 1
3 ln i . The velocity

vector field u is drawn on the right picture for 
3 and 
5. Observe the interesting
phenomenon on Fig. 2: besides the minimum point (1, 0), the function ψ(r , z) has the
saddle point at (r , z) = (1/3, 0). The saddle point disappears when the 5th degree
polynomial (120) is replaced with the corresponding 6th degree polynomial, and again
appears at the same point for the 7th degree polynomial. We have no idea whether the
phenomenon is essential for this type GFs, or it is just an artefact of ignoring higher
degree terms in (120).

9 Some open questions

In our opinion, the main open question is: are there GFs on R
3 which are not

axisymmetric? From an analytical point of view, this is a question on the consis-
tency conditions for the system (29)–(32). The most expected answer to the question
is “yes”. However, the question is not easy because of the following. For an axisym-
metric GF, the constants c and C in the Bernoulli law (5) can be expressed through
each other. In other words, all particles living on an isobaric surface Mp move with the
same speed in the case of an axisymmetric GF. Most likely, this statement is not true
for a general (not axisymmetric) GF, at least we cannot prove it by local reasoning.
But maybe simple global arguments will help answer the question. For instance, if
there exists a particle trajectory dense in Mp, then |u| = const on Mp.
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We mostly studied GFs locally in a neighborhood of a regular point. The most
interesting questions relate to GFs with regular compact isobaric hypersurfaces Mp ⊂
R
n . As mentioned in Introduction, application of the Gavrilov localization to such a

flow gives a compactly supported GF on the whole of Rn . Since a compact regular
isobaric hypersurface Mp is endowed with a non-vanishing tangent vector field u, the
Euler characteristic of Mp is equal to zero. In the most important 3D-case this means
thatMp is diffeomorphic to the two-dimensional torusT2. The restriction of u ontoMp

is a non-vanishing geodesic vector field. There areRiemannianmetrics onT2 admitting
a non-vanishing geodesic vector field, the corresponding example can be found in the
class of so called double-twisted products [7]. But we are interested in metrics on T2

induced from the Euclidean metric of R3 by an embedding i : T2 ⊂ R
3. Apart from

surfaces of revolution, we do not know any example related to the following problem.

Problem 1 Classify triples (i, u, λ), where i : T2 ⊂ R
3 is an embedding of the torus,

u is a non-vanishing geodesic vector field on T2 endowed with the Riemannian metric
induced from the Euclidean metric of R3 by the embedding i , and λ > 0 is a smooth
function on T

2 satisfying the equations

div u = u(log λ), I I (u, u) = −λ, (121)

where I I is the second quadratic form of T2.

Equations (121) are obtained from (8) and (13) by setting λ = |grad p |.
In this paper, we did not discuss the behavior of a GF near a critical point of the

pressure. Such a discussion could be of great interest. For instance, it makes sense
to study a GF (u, p) with the Morse function p, i.e., all critical points of p are non-
degenerate. For such a flow, Mp is still a regular hypersurface for a regular value of
the pressure; but Mp undergoes a Morse surgery when p changes near a critical value
of the pressure. Which Morse surgeries are compatible with the Euler equations?

Data availability: Not applicable.
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