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Abstract
Wegive closed form expressions for the numbers ofmulti-rooted plane treeswith spec-
ified degrees of root vertices. This results in an infinite number of integer sequences,
some of which are known to have an alternative interpretation. We also propose recur-
sion relations for numbers of such trees as well as for the corresponding generating
functions. Explicit expressions for the generating functions corresponding to plane
trees having two and three roots are derived. As a by-product, we obtain a new bino-
mial identity and a conjecture relating hypergeometric functions.
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1 Introduction

A plane tree is a particular case of a connected ribbon graph, or a map, that is a
graph embedded into a compact orientable surface in such a way that every face is
homeomorphic to a disc. The genus of the surface is also called genus of the embedded
graph. A tree is embedded in this way into a sphere.

By assigning lengths to edges of a ribbon graph, one obtains a metric ribbon graph.
The spaces ofmetric ribbon graphswith vertices of degree three or higher give away to
describe combinatorially the moduli spaces of Riemann surfaces with marked points,
see [1], the bridge betweenmetric ribbon graphs and Riemann surfaces being obtained
by the theory of Strebel differentials [2]. Initially, ribbon graphs were used to describe
spaces of Riemann surfaces by Penner [3]. In a seminal paper [4], ’t Hooft showed how,
in a certain limit, Feynman diagrams of non-abelian gauge theories can be analyzed
using ribbon graphs. This has also led to connections between point particle quantum
field theories and string theory. Ribbon graphs also arise naturally in the context of
matrix models for quantum field theories; see for example [5].

Bipartite ribbon graphs, in particular plane trees, can be seen [6] as representing
Belyi pairs, that is, pairs of a Riemann surface and a meromorphic function on this
surface with critical values in the set 0, 1,∞. Such graphs are called dessins d’enfant
following Grothendieck. In Refs. [7, 8], it is shown that the generating function of
numbers of dessins d’enfant satisfies the KP (Kadomtsev–Petviashvili) hierarchy and
in Ref. [9] the same function is shown to satisfy Virasoro constraints and the topo-
logical recursion of Chekhov–Eynard–Orantin [10] for an appropriate spectral curve.
Plane trees are included in this generating function as dessins d’enfant representing
Belyi pairs given by a Riemann sphere and a polynomial function. On the other hand,
any ribbon graph can be seen as representing a so-called clean Belyi pair [11] by
introducing an extra vertex of degree two in the middle of every edge. The numbers
of clean Belyi pairs are linked to the topological recursion in Ref. [11]. Enumeration
of ribbon graphs is closely related to computing Hurwitz numbers; see for example
[12, 13], and see [12] for the relationship with the KP hierarchy.

The question of enumeration of maps was first considered by Tutte in Ref. [14].
To simplify the problem of counting, Tutte introduced a root in a graph, which is a
distinguished orientation of one of the edges. Two graphs are identified if they can be
obtained from one another by a homeomorphism of the underlying surface in such a
way that the distinguished edge is mapped to the distinguished edge and the orien-
tations agree. The presence of a root thus ensures that the graph has no symmetries,
that is, no nontrivial automorphisms. The following formula for the number of rooted
maps on the sphere having e edges was derived in Ref. [14]:

2(2e)!3e

e!(e + 2)! . (1)
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Enumeration of Multi-rooted Plane Trees 37

This formula combines all graphs of genus zero having e edges, some of which are
plane trees. Following the seminal paper of Tutte, numerous results on enumeration
of rooted maps appeared. Various techniques were developed for such enumeration,
including recursive construction of maps and deducing differential equation on the
generating functions; see [15] for a partial overview. Here, we give a brief review of
the results most closely related to the approach of our paper.

Tutte’s result (1) was generalized in Ref. [15] to give the number m1(e) of rooted
graphs with e edges, combining maps of all genera, in the form:

m1(e) = 1

2e+1

e∑

i=0

(−1)i
∑

k1+···+ki+1=e+1
k1,...,ki+1>0

i+1∏

j=1

(2k j )!
k j ! . (2)

The following result of [16] can be used to separate the numbers of graphs by
genus. The formula of [16] is given in terms of the numbers Cg,v , which were called
in Ref. [17] the generalized Catalan numbers. They are defined as follows. The integer
Cg,v(d1, . . . , dv) is a number of ribbon graphs of genus g with v ordered vertices such
that the vertex number j is incident to d j half-edges; moreover, at each vertex one
of the incident half-edges is marked. Such graphs are called dicings in Ref. [16]. The
graph with one vertex and no edges is also considered as a degenerate dicing, giving
C0,1(0) = 1. The Catalan numbers Cm = 1

m+1

(2m
m

)
are obtained as a particular case,

namely, Cm = C0,1(2m). In other words, the mth Catalan number is the number of
genus zero maps with one vertex and m edges, where one edge is given an orienta-
tion. As before, two graphs are identified if they can be mapped to each other by a
homeomorphism of the sphere preserving the chosen orientation of the marked edge.
The number m1(e, v; g) of rooted maps of genus g with v vertices and e edges is then
obtained in the form [16]:

m1(e, v; g) = 2e

v!
∑

d1+d2+···+dv=2e

Cg,v(d1, . . . , dv)

d1 . . . dv

. (3)

The generalized Catalan numbersCg,v(d1, . . . , dv) can be obtained using a recurrence
relation from [16] or [17]. Alternatively, they can be computed by the algorithm of
the topological recursion of Chekhov–Eynard–Orantin [10] applied to the algebraic
curve corresponding to the equation y2 = x2 − 2; see [17] and also [18].

As mentioned, introducing one distinguished half-edge, a root, removes the possi-
bility of nontrivial automorphisms of a map and simplifies enumeration. Introducing
further roots is thus unnecessary from the point of view of destroying symmetry. How-
ever, it is also interesting to consider multi-rooted maps. For example, dicings from
[16] are multi-rooted maps, as each vertex is a root vertex that is incident to a root. We
will refer to such maps as maximally rooted. Furthermore, in Refs. [19–22], N -rooted
maps were considered, that is, maps having N ordered root vertices with N smaller
than the number of vertices. Such N -rooted maps turn out to be in bijection with Feyn-
man diagrams for N -point functions of a certain quantum field theory. More precisely,
as shown in Ref. [22], there is a one-to-one correspondence between N -rooted ribbon
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38 A. Al Ghabra et al.

graphs, or maps, with e edges and the N -point Feynman diagrams with (e − N + 1)
loops in the so-called scalar quantum electrodynamics, a quantum field theory which
involves quantum fields of two types: a charged scalar field and a photon field. Let us
emphasize that the connection between Feynman diagrams of this theory and ribbon
graphs is of a different nature than in ’t Hooft’s work [4] and in matrix models.

The established bijection is then used in Ref. [22] to obtain explicit expressions
and relations for the generating functions of N -rooted maps and for the numbers of
N -rooted maps with a given number of edges without regard to genus using the path
integral approach of the quantum field theory. For example, as a generalization of (2),
the number of 2-rooted maps of all genera with e edges is given by

m2(e) =
e∑

k=0

(−1)k
∑

μ1+...+μk+1=e+1
μi �=0

μk+1

k+1∏

j=1

(2μ j − 1)!! − 1

2

e−1∑

k=1

m1(k)m1(e − k).

Similarly to (3), the numberm N (e, v; g) of N -rooted graphs of genus g with v vertices
and e edges is given by [18]:

m N (e, v; g) =
∑

d1+···+dv=2e
di ≥1

d1 · · · dN

(v − N )!
Cg,v(d1, . . . , dv)

d1 · · · dv

. (4)

To obtain the numberm N (e) of N -rootedmaps with e edges, one can sum the numbers
m N (e, v; g) from (4) over v from N to e + 1 and over g from 0 to the integer part of
1+e−v

2 . Note that for a given choice of N , the minimum possible value e may take is
N − 1.

The counting of rooted maps is of interest in the study of other quantum field
theories, some of which having supersymmetry; see for example [23–30].

In this work, we consider N -rooted plane trees and study in detail the various
subsets of N -rooted trees defined by specifying degrees of some of the root vertices.
The numbers of N -rooted plane trees with given degrees of root vertices have relations
to combinatorial objects such as Dyck and lattice paths (see Sect. 5). In addition, our
results provide the first combinatorial interpretations of some sequences listed in the
Online Encyclopedia of Integer Sequences [31] as well as introduce sequences not
listed in the OEIS. For example, the number of two-rooted plane trees with e edges is
the number of valleys in all the Dyck paths of length 2(e + 1). Note that rooted plane
trees (or one-rooted plane trees, that is, the case N = 1) with e edges are dual graphs
of the genus zero rooted maps with one vertex, and thus the number of one-rooted
plane trees with e edges is the Catalan number Ce = C0,1(2e).

The maximally rooted plane trees, the tree dicings, correspond, under the bijection
from [22], to tree level Feynman diagrams of the scalar quantum electrodynamics
which determine the dominant approximation of the theory.

We achieve the enumeration of plane multi-rooted trees by deriving a recursion
relation on the numbers of such trees, which allows us to reduce the enumeration
to the “smaller” cases, that is, trees having fewer roots and smaller degrees of root
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Enumeration of Multi-rooted Plane Trees 39

vertices. This technique is both standard and powerful, going back to Tutte [32] and
Walsh and Lehman [16, 33]. The same technique is also used in Refs. [11, 17] and
leads to the proof in Refs. [8, 9] of the fact that the generating function of the numbers
of dessins d’enfant satisfies Virasoro constraints and the KP hierarchy.

The paper is organized as follows. In Sect. 2, we define plane rooted and multi-
rooted trees and introduce notation for the families of trees that we enumerate. In
Sect. 3, in Theorems 1 and 2, we derive two recursion relations on the numbers of
N -rooted trees. The simpler recursion, the one from Theorem 2, is used in Sect. 4
to establish the closed-form expression for the numbers of plane N -rooted trees with
specified degrees of the root vertices. In Sect. 5, we give a non-exhaustive list of known
integer sequences that coincide with the sequences formed by numbers of rooted and
multi-rooted trees in various families. In Sect. 6, we study generating functions of the
numbers of N -rooted trees with specified degrees of root vertices. In Proposition 2,
we derive equations allowing us to express such generating functions recursively in
terms of those for smaller values of N . We give explicit expressions for the cases N =
1, 2, 3. Finally, in Sect. 7, we explore implications of the recursion from Theorem 1
deriving a new binomial identity in Proposition 3 and conjecturing what we believe
to be an original relation between two sums involving binomial coefficients and a
corresponding identity for certain hypergeometric functions.

2 N-Rooted Plane Trees

A plane tree, that is, a tree embedded into a plane, is a special case of a ribbon graph.
A ribbon graph, or a fat graph, or a map, is a connected graph with a fixed cyclic
ordering on the set of edges incident to each vertex. More precisely, we have the
following definition.

Definition 1 A plane tree is the data � = (H , α, σ ) consisting of a set of half-edges
H = {h1, . . . , h2e} with e a positive integer and two permutations α, σ ∈ S2e on the
set of half-edges such that

• α is a fixed point free involution,
• the subgroup of S2e generated by α and σ acts transitively on H ,
• the number of cycles of σ is equal to 1+ e, that is, one plus the number of cycles
of α.

The cycles of α are transpositions pairing two half-edges to form an edge. Cycles of
the permutation σ are in bijection with vertices of �, each cycle giving the ordering of
half-edges at the corresponding vertex; see Fig. 1. The transitivity of the group 〈σ, α〉
on the set of half-edges implies the connectedness of the graph �. The third condition
in Definition 1 ensures that the graph is a tree.

The length of a cycle of σ , that is, the number of half-edges incident to the corre-
sponding vertex, is called the degree of the vertex.

The ordering of the half-edges at every vertex given by σ gives the unique way to
embed the tree � into the plane or the sphere. This is done by choosing that each cycle
of σ corresponds to a vertex such that if one goes around it counterclockwise, then
the half-edges attached to this vertex are met in the order given by the cycle of σ .
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40 A. Al Ghabra et al.

Fig. 1 The plane tree corresponding to α = (1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16) and σ =
(1)(2 3)(4 11 9 7 5)(6)(8)(10)(12 15 13)(14)(16)

Fig. 2 Two three-rooted trees

Definition 1 without the third condition on the number of cycles of σ becomes
a definition of a ribbon graph, or a map. In this case, some sequence of edges may
form a loop and the graph may not necessarily be embedded into a plane without
self-intersections. The cycles of the permutation σ−1 ◦ α correspond to faces of the
graph. By gluing a topological disc to each face, we obtain a compact oriented surface
into which the graph is embedded. The genus of this surface is called the genus of the
ribbon graph. Thus, the genus of a tree is zero.

In graph enumeration, to avoid double counting, we need to specify which graphs
are considered identical. We say that two plane trees are isomorphic if one can be
obtained from the other by renumbering the half-edges, and we identify isomorphic
trees. We thus obtain trees which may have nontrivial automorphisms, or symmetries.
As already mentioned in the introduction, the presence of a distinguished half-edge,
called root, rules out all nontrivial symmetries, thus simplifying the task of counting
all possible trees.

Remark 1 As an exceptional case, a graph consisting of a single vertex and no edges
is also considered a plane rooted, or one-rooted, tree.

Here, we are interested in enumerating N -rooted plane trees. Let us start by giving
a precise definition.

Definition 2 An N -rooted tree is a plane tree, � = (H , α, σ ), with the choice of N
distinct elements of H , called root half-edges, or roots, belonging to N distinct cycles
of σ that is incident to N distinct vertices, called root vertices. The root vertices are
labeled by N distinct labels v1, . . . , vN . The root vertex v1 is distinguished and is
called the first root vertex; the root at v1 is called the first root of �.

In other words, an N -rooted tree is plane tree inwhich N distinct vertices are chosen
and assigned tags v1, . . . , vN . Moreover, at each of the chosen vertices, an arrow is
placed on one of the half-edges incident to the vertex; see Fig. 2.

Two N -rooted trees isomorphic in the senseof the followingdefinition are identified.
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Enumeration of Multi-rooted Plane Trees 41

Definition 3 Two plane trees � = (H , α, σ ) and �′ = (H ′, α′, σ ′) are isomorphic
if there is a bijection ϕ between the sets of half-edges, ϕ : H → H ′, such that
α = ϕ−1α′ϕ and σ = ϕ−1σ ′ϕ. The map φ is an isomorphism between � and �′. If
both trees are N -rooted, then φ is an isomorphism of N -rooted trees if it maps the kth
root of � to the kth root of �′, that is if φ(rk) = φ(r ′

k).

In other words, an isomorphism between two N -rooted trees is an isomorphism
of plane trees that preserves the labeling of the N root vertices and maps roots to
roots. The only automorphism of an N -rooted tree is the identity. For example, the
three-rooted trees from Fig. 2 are different rooted trees.

We denote the number of N -rooted plane trees with e edges by TN (e). In our
notation, the Catalan numbers are T1(e) = Ce. Let us also denote by SN (e) the set of
all N -rooted plane trees with e edges so that TN (e) is the number of elements in the
set SN (e). Note that due to Remark 1, we have T1(0) = 1.

In the case of one-rooted trees, one can consider the subset, S1(e; d), of S1(e),
where the root vertex is specified to be of degree d, and the corresponding number
of such trees T1(e; d). By definition, the numbers T1(e; d) sum up to the eth Catalan
number T1(e):

e∑

d=1

T1(e; d) = T1(e) (5)

and thus we get a well-known natural partition of each Catalan number forming the
Catalan triangle; see Example 2 in Sect. 4. Moreover, for the parts T1(e; d) of such
partitions, we have

T1(e; d) =
e−1∑

b=d−1

T1(e − 1; b) (6)

and

T1(e; d) = d

e

(
2e − d − 1

e − 1

)
(7)

for all positive integers e and d with e ≥ d and with the convention T1(0; 0) = 1.
These equations follow from our Theorems 2 and 3, respectively. It is also possible to
verify relations (5) and (6) from the closed form expressions (7) using the following
identities from Section 5.2 of [34]:

n∑

k=1

k

(
m − k − 1

m − n − 1

)
=

(
m

n − 1

)
and

n∑

k=0

(
m − k

n − k

)
=

(
m + 1

n

)
.

The sequences of numbers T1(e; d) for a given d coincide with various other com-
binatorially interesting sequences; see Sect. 4.
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42 A. Al Ghabra et al.

More generally, one can analogously consider the numbers TN (e; d1, . . . , dk) of N -
rooted plane treeswith e edges forwhich the degrees of k of the N root vertices are fixed
to be d1, . . . , dk, respectively, for 0 ≤ k ≤ N , as well as the corresponding set of trees
SN (e; d1, . . . , dk). Here, we assume that dk stands for the degree of the vertex labeled
vk . Note that the number TN (e; d1, . . . , dk) does not change if the degrees d1, . . . , dk

are permuted, for example, T9(10; 1, 2, 3) = T9(10; 3, 1, 2). The corresponding sets
of trees are obtained from one another by relabeling the root vertices. For example,
the tree on the left in the Fig. 2 belongs to the set S3(6; 3, 1, 4) and the tree on the right
in the same figure is from the set S3(6; 1, 4, 3).

In the following lemma, we list relations between degrees di and the numbers of
edges and roots in a tree. We define the number TN (e; d1, . . . , dk) to be zero if the
conditions given in this lemma are not satisfied.

Lemma 1 For N-rooted trees from the set SN (e; d1, . . . , dk) with k ≤ N, the integer
quantities e, N , di satisfy

e ≥ N − 1, N ≥ 1;
0 < di ≤ e except for the case N = 1, e = d1 = 0 where T1(0; 0) = 1;

k∑

i=1

di ≤ e + k − 1 where k = N = e + 1 if and only if
N∑

i=1

di = 2e;

if e ≥ 2 then
∣∣∣{i | di = 1, 1 ≤ i ≤ k}

∣∣∣ ≤ e; if e = 1 then
∣∣∣{i | di = 1, 1 ≤ i ≤ 2}

∣∣∣ ≤ 2.

Here, the vertical bars denote the number of elements in the set. If degrees of k − 1 of
the N root vertices are fixed to be d1, . . . , dk−1, then the highest possible value Dk of
the degree dk of the kth root vertex is

Dk = e + k − 1 −
k−1∑

i=1

di . (8)

Proof The condition e ≥ N − 1 holds because the number of vertices in a tree with e
edges is e + 1, so we cannot have more than e + 1 roots. We set N ≥ 1 as we do not
consider non-rooted trees in this paper. The condition 0 < di ≤ e follows again from
the fact that our graphs are trees and the rest of the conditions of the second line is the
convention stated in Remark 1.

If the number of roots is e + 1, then the tree is maximally rooted, or is a dicing
from [16]. In this case, summing the degrees of all the vertices, we count every edge
twice and thus obtain twice the number of edges. If the degrees of only k ≤ N root
vertices are given, then in the sum of the k given degrees, only the edges connecting
two of the k root vertices are counted twice. As there is at most k − 1 of such edges,
we obtain the condition in the third line.

The condition in the fourth line follows from the fact that a tree with e ≥ 2 edges
has at most e leaves, that is, vertices of degree one.

Now, suppose degrees of k − 1 of the root vertices are fixed to be d1, . . . , dk−1 and
we want to obtain a tree with these degrees and such that the kth root vertex be of the
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Enumeration of Multi-rooted Plane Trees 43

maximal possible degree Dk . Due to the condition in the third line,
∑k−1

i=1 di + Dk ≤
e+k −1 and thus wewant to show that there is a tree for which the equality is attained,
that is, a tree of e edges for which the degrees d1, . . . , dk of k root vertices satisfy∑k−1

i=1 di +dk = e+k −1. To construct such a tree, let us start with k −1 disconnected
star trees, each having a vertex of one of the degrees d1, . . . , dk−1 at its center and all
other vertices being of degree one. We then attach all these trees together by gluing
together k −1 vertices of degree one, one vertex per star tree, thus forming a connected
tree and a new vertex of degree k − 1. This new connected tree has

∑k−1
i=1 di edges.

Attaching e − ∑k−1
i=1 di new edges to the vertex of degree k − 1, we obtain a desired

tree containing a vertex of degree k − 1 + e − ∑k−1
i=1 di . �

Similarly to the N = 1 case, one also has the possibility of obtaining
TN (e; d1, . . . , ds) from TN (e; d1, . . . , dk) for s < k ≤ N , by summing over the
appropriate degrees. For example, for d1, . . . , dN−1 > 0, and e > 0, as a direct
consequence of definition of TN (e; d1, . . . , dk), we have

TN (e; d1, . . . , dN−1) =
DN∑

dN =1

TN (e; d1, . . . , dN ),

where DN is the highest possible value of dN given by (8) with k = N . Similarly,
summing over more than one di to obtain TN (e; d1, . . . , ds) for 0 ≤ s < N , we have

TN (e; d1, . . . , ds) =
Ds+1∑

ds+1=1

Ds+2∑

ds+2=1

· · ·
DN∑

dN =1

TN (e; d1, . . . , dN ), (9)

where Dk is the highest possible value of dk given by (8).
In the following sections,wefind closed form expressions for the TN (e; d1, . . . , ds).

We also derive recursion relations satisfied by the TN (e; d1, . . . , ds) and show that our
closed form expressions satisfy these relations.

3 Recursion Relations for N-Rooted Trees

The number of N -rooted plane trees with a given number of edges can be obtained as
recursive combinations of the numbers of rooted trees with fewer edges. For example,
in the case of one rooted maps, the numbers T1(e; d) can be obtained recursively from
the relation:

T1(e; d) =
∑

k1+k2=e−1

T1(k1; d − 1) T1(k2) =
e−1∑

k=0

T1(k; d − 1) T1(e − k − 1),

(10)

where T1(n) are the Catalan numbers. More generally, for the numbers TN (e; d1, . . . ,
dN ), we prove the following theorem.
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44 A. Al Ghabra et al.

Theorem 1 For a finite set of non-negative integers I = {a1, . . . , al}, let TN (e; n1, . . . ,

nk, I ) denote the number TN (e; n1, . . . , nk, a1, . . . , al) with k and l non-negative
integers such that k + l ≤ N . Then, the numbers TN (e; d1, . . . , dN ) of N-rooted plane
trees defined in Sect.2 satisfy the recursion

TN (e; d1, . . . , dN ) =
∑

e1+e2=e−1

( ∑

I∪J={d2,...,dN }
I∩J=∅

T|I |+1(e1; d1 − 1, I ) T|J |+1(e2; J )

+
N∑

r=2

∑

I∪J={d2,...,d̂r ,...,dN }
I∩J=∅

dr T|I |+1(e1; d1 − 1, I ) T|J |+1(e2; dr − 1, J )

)
. (11)

Here, |S| stands for the number of elements in the set S, a hat put over an element of a set
signifies that the element is omitted, and the parameters in each TM (e; n1, . . . , nk, S)

need to satisfy conditions of Lemma 1 for the TN to be non-zero. When summing over
all partitions of the set of degrees into two disjoint sets I and J , the degrees d2, . . . , dN

are considered as labels of the root vertices and not as integers, so that even if di = d j ,
a partition for which di ∈ I and d j ∈ J is different from a partition for which d j ∈ I
and di ∈ J .

Proof Weprove this recursionbyestablishing abijectionbetween the set SN (e; d1, . . . ,
dN ) of N -rooted trees counted by the number TN (e; d1, . . . , dN ) and the set of trees
counted by the right hand side of (11). To this end, consider a tree from the set
SN (e; d1, . . . , dN ) and denote its root vertices by v1, . . . , vN so that v j is of degree
d j . We put this tree in correspondence with a set of trees with one fewer edges by
removing the edge containing the root half-edge at v1. This separates the tree into two
trees disconnected from each other. A similar strategy was used to prove analogous
recursions, for example, in Refs. [16, 17]. There are two essentially different cases:
when the edge in question connects v1 to another root vertex and when it connects v1
to a non-root vertex. These two cases correspond to the two terms in the right hand
side of recursion (11).

Case 1. Let � be a tree from the set SN (e; d1, . . . , dN ) such that its edge containing
the root edge at v1 connects v1 to a non-root vertex. Denote this edge by l. We remove
l from � and put an arrow on the half-edge following l at v1 in the counterclockwise
order (if such a half-edge exists), thus creating a new root at v1. At the same time, we
put an arrow on the half-edge following l in the counterclockwise order at the other
vertex incident to l, thus creating a new root vertex denoted by v. Thus, two rooted trees
are created,�1 with e1 edges containing the root vertex v1 of degree d1−1 and�2 with
e2 edges containing the root vertex v of unknown degree that can take any possible
value: here, e1+e2 = e−1. For a given split of the set of degrees {d2, . . . , dN } into two
disjoint sets I and J according to the vertices included in �1 and those included in �2,

the number of such pairs of trees (�1, �2) is thus T|I |+1(e1; d1 − 1, I ) T|J |+1(e2; J ).
Note that the set S|J |+1(e2; J ) contains all (|J | + 1)-rooted trees with degrees given
by the set J , while the degree of the (|J | + 1)th vertex is not prescribed. This latter
vertex is our vertex v. Summing over all possible splits of the set of root vertices into
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two parts, we obtain all possible pairs of trees (�1, �2) that can be created in this case,
as well as the first line in (11).

Case 2. Let � be a tree from the set SN (e; d1, . . . , dN ) such that its edge containing
the root at v1 connects v1 to another root vertex vr . In this case, we first remove the
arrow at vr and then apply the procedure from Case 1 with v = vr . We thus create
two trees �1 with e1 edges containing the root vertex v1 of degree d1 − 1 and �2 with
e2 edges containing the root vertex vr of degree dr − 1 , with e1 + e2 = e − 1. For a
fixed splitting of the set {d2, . . . , dN } \ {dr } into two disjoint sets I and J , the number
of created pairs of trees is dr T|I |+1(e1; d1 − 1, I ) T|J |+1(e2; dr − 1, J ). The factor of
dr is due to the fact that we started by removing the arrow at vr and thus the resulting
trees are the same no mater which of the dr half-edges at vr carried an arrow in �.
Again, summing over all possible disjoint sets I and J and then over all values of r
between 2 and N , we obtain the second line of (11).

Reciprocally, let N1, N2 be two positive integers such that N1 + N2 = N + 1 or
N1 + N2 = N and let e1, e2 be two non-negative integers such that e1 + e2 + 1 = e.
Starting with an N1-rooted tree �1 with e1 edges and with a N2-rooted tree �2 with
e2 edges, we can join them by a new edge between their respective first root vertices
and create a tree from the set SN (e; d1, . . . , dN ). In this case, the new edge must be
inserted so that it follows the two roots in the clockwise order at the respective root
vertices and the first root of �1 must be moved to the new half-edge at the same vertex.
As for the first root of �2, it must be removed if N1 + N2 = N + 1. If N1 + N2 = N ,
the first root vertex of �2 must be renamed, its root removed and then placed at each
half edge at the same vertex, including the new half-edge, thus creating a set of d + 1
distinct graphs, where d is the degree of the first root vertex of �2. In the case with
N1 + N2 = N + 1, we create a tree from the set TN (e; d1, . . . , dN ) whose first root
belongs to an edge connecting a root vertex to a non-root vertex, whereas in the case
N1 + N2 = N , the first root belongs to an edge which connects two root vertices of
the created tree. �

Recursion (11) has a structure similar to that of the recursion for the generalized
Catalan numbers Cg,v(d1, . . . , dv) obtained in Ref. [16] and rederived in Ref. [17].
Since in Ref. [17] the recursion for Cg,v(d1, . . . , dv)was also linked to the topological
recursion of Chekhov–Eynard–Orantin from [10], a natural question to ask is whether
our recursion (11) can also be obtained by the topological recursion applied to some
algebraic curve.

However, it is difficult to derive closed form expressions for the number of N -rooted
trees from the recursion of Theorem 1. Another, simpler, recursion given in the next
theorem turns out to be more useful in this respect.

Theorem 2 The numbers TN (e, d1; . . . , ds) (9) of N-rooted plane trees with e edges,
where s of the N ordered root vertices are specified to be of degrees d1, . . . , ds,
respectively, with di ≥ 0, satisfy the following recursion:

TN (e; d1, . . . , dN−1, dN )

=
N−1∑

i=1

di TN−1(e − 1; d1, . . . , di−1, di + dN − 2, di+1, . . . , dN−1)
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+TN (e − 1; d1, . . . , dN−1) −
dN −2∑

d=1

TN (e − 1; d1, . . . , dN−1, d). (12)

Here, we assume that TM (n; n1, . . . , nk) is zero if the conditions of Lemma 1 are not
satisfied.

Proof This recursion is obtained in a way similar to the proof of Theorem 1. This
time, a bijection between the set SN (e; d1, . . . , dN ) of N -rooted trees counted by the
number TN (e; d1, . . . , dN ) and the set of trees counted by the right hand side of (12) is
established by contracting an edge instead of removing it. Let � be a tree from the set
SN (e; d1, . . . , dN ) and denote its root vertices by v1, . . . , vN . The edge we contract
is the one containing the root half-edge at the N th root vertex vN of �. Let us denote
this edge by l. There are again two cases.
Case 1. The edge l connects vN to a non-root vertex v. Let us move the arrow of the
root half-edge at vN to the half-edge following l in counterclockwise order at vN if
dN �= 1 and at v if dN = 1 and then contract the edge l. We thus create a new root
vertex by merging vN and v. Its degree depends on the degree of v and thus can be
any number between dN − 1 and the maximal degree possible given the constraint of
the other degrees d1, . . . , dN−1 and the total number of edges e − 1 of the new tree.
Performing this procedure for every tree of the set SN (e; d1, . . . , dN ), we thus obtain
all trees of the set SN (e − 1; d1, . . . , dN−1) where the degree of the N th root vertex is
not specified except for the trees where this degree is smaller than dN − 1. Thus, we
get in total the number of trees given by the second line in (12).
Case 2. The edge l connects vN to another root vertex vi . We first remove the arrow
from the root half-edge at vi and then apply the procedure of Case 1. Let us call the
vertex obtained by merging vN and vi again by vi . Its degree is di + dN − 2. Thus,
this procedure applied to all trees of the set SN (e; d1, . . . , dN ) satisfying assumption
of Case 2, yields the number of trees counted by the first sum in the right hand side
of (12). The factor of di takes care of the fact that we started by removing the arrow
at vi , and thus there are di different trees that produce identical resulting tree.

Note that the arrows help us to keep track of where the contracted edge used to be
so that we can reverse the procedure similarly to the proof of Theorem 1. �

4 CountingN-Rooted Trees

In this section, we give the closed form expressions for the numbers TN (e; d1, . . . , dN )

and show that they satisfy the recursion relation in Theorem 1.

Theorem 3 Under the conditions of Lemma 1, the numbers TN (e; d1, . . . , dN ) of N-
rooted plane trees with e edges and degrees d1, . . . , dN of the N ordered root vertices
are given by

TN (e; d1, . . . , dN ) = (e − 1)!
(e + 1 − N )!

(
2e − 1 − ∑N

i=1 di

e − N

) N∏

j=1

d j if e �= 0 (13)
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and the only non-zero case with e = 0 being

T1(0; 0) = 1.

For the case of N = 1, these formulas reduce to the numbers given by (7). On the
other hand, in Ref. [16], the following result was obtained for the number of genus g
maximally rooted maps (dicings) having one face and degree d j of the vertex v j :

Fg(d1, . . . , dv) = (v + 2g − 2)!
22g

⎛

⎝
v∏

j=1

d j

⎞

⎠
∑

k1+···+kv=g
k1,...,kv≥0

v∏

j=1

1

2k j + 1

(
d j − 1

2k j

)
.

In the case of genus zero, these numbers count maximally rooted trees and give

F0(d1, . . . , dv) = (v − 2)!
⎛

⎝
v∏

j=1

d j

⎞

⎠
(−1

0

)v

.

Binomial coefficients with a negative upper entry are calculated using the identity

(−α

β

)
= (−1)β

(
α + β − 1

β

)
,

which is valid whenever α and β are non-negative integers. This leads to
(−1
0

) =(0
0

) = 1. Therefore, the result for F0(d1, . . . , dv) coincides with (13) after identifying

v = N = e + 1 and d1 + · · · + dN = 2(N − 1), and using the convention
(−1
−1

) = 1.

Proof of Theorem 3. To prove that the numbers TN are given by (13), we prove that
expressions (13) satisfy the recursion from Theorem 2. This recursion allows to con-
struct all the numbers TN starting from the base case of one-rooted tree with one edge
and degree 1 of the root vertex, that is, the number T1(1; 1). For this base case, formula
(13) is valid as it gives T1(1; 1) = 1, note that

(0
0

) = 1. Thus, it remains to prove that
expressions in the right hand side of (13) satisfy (12), which we rewrite using (9) in
the form

TN (e; d1, . . . , dN ) =
N−1∑

i=1

di TN−1(e − 1; d1, . . . , di−1, di + dN − 2, di+1, . . . , dN−1)

+
DN∑

d=dN −1

TN (e − 1; d1, . . . , dN−1, d).

Here, DN = e + N − 2 − ∑N−1
j=1 d j is the maximal possible value of d as given in

(9) with e replaced by e − 1. Plugging in (13) in the right hand side of this equality,
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we obtain

TN (e; d1, . . . , dN ) = (e − 2)!
(e − N + 1)!

(
2e − 1 − ∑N

j=1 d j

e − N

) N−1∑

i=1

(di + dN − 2)
N−1∏

j=1

d j

+ (e − 2)!
(e − N )!

DN∑

d=dN −1

d

(
2e − 3 − d − ∑N−1

j=1 d j

e − N − 1

) N−1∏

j=1

d j . (14)

Our objective now is to show that the right hand side coincides with the right hand
side of (13). Rewriting the last sum using the following constant

m = 2e − 2 −
N−1∑

j=1

d j , (15)

we obtain

DN∑

d=dN −1

d

(
2e − 3 − d − ∑N−1

j=1 d j

e − N − 1

)
=

DN∑

d=dN −1

d

(
m − d − 1

m − DN − 1

)
.

Introducing a new summation variable k = m − d, we have

DN∑

d=dN −1

d

(
2e − 3 − d − ∑N−1

j=1 d j

e − N − 1

)
=

m−dN +1∑

k=m−DN

(m − k)

(
k − 1

m − DN − 1

)

= m
m−dN +1∑

k=m−DN

(
k − 1

m − DN − 1

)
−

m−dN +1∑

k=m−DN

k

(
k − 1

m − DN − 1

)

= m
m−dN∑

k=m−DN −1

(
k

m − DN − 1

)
− (m − DN )

m−dN +1∑

k=m−DN

(
k

m − DN

)
,

where in the last line, in the first sum, we changed the summation variable from k
to k − 1, and in the second sum, we used the property

(a+1
b+1

) = a+1
b+1

(a
b

)
of binomial

coefficients. Applying the following property of Pascal’s triangle,

b∑

k=a

(
k

a

)
=

(
b + 1

a + 1

)
,

which can be found, for example, in Ref. [34], Table 174, we obtain

DN∑

d=dN −1

d

(
2e − 3 − d − ∑N−1

j=1 d j

e − N − 1

)
= m

(
m − dN + 1

m − DN

)
− (m − DN )

(
m − dN + 2

m − DN + 1

)
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= (m − DN )(dN − 1) + DN

m − DN + 1

(
m − dN + 1

m − DN

)
,

where we used again the property
(a+1

b+1

) = a+1
b+1

(a
b

)
in the second term. Going back to

the original notation (15) and using the last result in (14), we see that the binomial
coefficients in both terms of (14) coincide. By pulling out the common factor and a
straightforward calculation, we prove that the right hand side of (14) coincides with
the right hand side of (13), which finishes the proof. �
Corollary 1 The numbers TN (e; d1, . . . , dN ) given by Theorem 3 satisfy the recursion
in Theorem 1.

Proof This follows from the fact that the numbers of trees TN (e; d1, . . . , dN ) satisfy
both recursions of Theorems 1 and 2. �
Remark 2 As can easily be checked from (13), for N ≤ e − 1, the following
numbers of N -rooted trees with degrees of all N root vertices specified coincide:
TN (e; 2, . . . , 2, 1) = TN (e; 2, . . . , 2) . The condition N ≤ e − 1 is necessary to
ensure that both sets of parameters satisfy conditions of Lemma 1.

Proposition 1 Let 0 ≤ s ≤ N and e > 0 be integers and the conditions of Lemma 1
be satisfied. The sums of TN (e; d1, . . . , dN ) over the values of ds+1, . . . , dN defined
in (9) are given by

TN (e; d1, . . . , ds) = (e − 1)!
(e + 1 − N )!

(
2e + N − s − 1 − ∑s

j=1 d j

e + N − 2s

) s∏

j=1

d j . (16)

Proof Weprove this by induction on the number N −s of the degrees d j whichwe sum
over. Note that when this number is zero, that is when s = N , formula (16) coincides
with (13), giving us the base case of the induction. Now, assume that the statement of
the proposition is true for some value r ≤ N taking the place of s in (16). We then
want to prove (13) for s = r − 1. By definition (9),

TN (e; d1, . . . , dr−1) =
Dr∑

dr =1

TN (e; d1, . . . , dr ),

where Dr = e+r −1−∑r−1
i=1 di is the maximal possible value of dr .By the induction

hypothesis, the TN in the sum are given by (16) with s = r and thus

TN (e; d1, . . . , dr−1) = (e − 1)!
(e + 1 − N )!

r−1∏

j=1

d j

Dr∑

dr =1

dr

(
2e + N − r − 1 − ∑r

j=1 d j

e + N − 2r

)
.

It remains to use the following binomial identity, see [34], p. 177:

p∑

k=1

k

(
m − k − 1

m − p − 1

)
=

(
m

p − 1

)
=

(
m

m − p + 1

)
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with m = 2e + N − r − ∑r−1
j=1 d j , k = dr and p = Dr . �

As an immediate corollary of Proposition 1, we obtain the number of N -rooted
trees with a given number of edges.

Corollary 2 Let 0 ≤ N − 1 ≤ e. The number of N-rooted trees with e edges is given
by

TN (e)= (e−1)!
(e+1 − N )!

(
2e+N −1

e+N

)
= (e−1)!

(e+1 − N )!
(
2e + N − 1

e−1

)
, if e > 0

(17)

with the only non-zero case for e = 0 being

T1(0) = 1.

Proof Summing the numbers TN (e; d1, . . . , dN ) given by (13) over all the degrees
d1, . . . , dN , that is setting s = 0 in Proposition 1, we obtain expression (17) for
TN (e). �

Setting N = 1 in (17), we get

T1(e) = 1

e

(
2e

e − 1

)
= 1

e + 1

(
2e

e

)
= Ce, (18)

which is just the expression for Catalan numbers.

5 Some Explicit Examples of Our Sequences and Relations to Known
Sequences

In this section, we give a few samples of our sequences and mention alternative com-
binatorial interpretations for some of them.

Example 1 The following sequences of numbers of N -rooted trees can be obtained
from (17).

e
N 0 1 2 3 4 5 6 7 8 9

1 1 1 2 5 14 42 132 429 1430 4862
2 1 5 21 84 330 1287 5005 19,448 75,582
3 – – 6 56 360 1980 10,010 48,048 222,768 1,007,760
4 – – – 72 990 8 580 60,060 371,280 2,116,296 11,395,440
5 – – – – 1320 24,024 262,080 2,227,680 16,279,200 107,442,720
6 – – – – – 32,760 742,560 9,767,520 97,675,200 823,727,520
7 – – – – – – 1,028,160 27,907,200 429,770,880 4 942,365,120
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Fig. 3 Five valleys in Dyck paths of length 6

The sequence T2(e) in the second line coincides with the OEIS [31] sequence
(A002054), which has several combinatorial descriptions, one of which is the total
number of valleys in all Dyck paths of length 2(e + 1). For example, as shown in
Fig. 3, there is a total of five valleys in all Dyck paths of length 6, which corresponds
to T2(2) = 5.

If we divide the sequence T3(e) by 3, we obtain the OEIS sequence (A074922).
The sequences for N > 3 are not recorded in OEIS. The first non-zero entries in
each line of the above table, in other words the values TN (N − 1), form the sequence
(A001763). In our interpretation, this is a sequence of numbers of maximally rooted
trees, or the numbers of trees among dicings.

For a given N , by fixing values of degrees d j in the numbers TN (e; d1, . . . , ds),
we obtain various sequences indexed by e ∈ N. Most of these sequences are new, but
some are known in other contexts. For example, the numbers T1(e; 1) and T1(e; 2)
give the Catalan numbers Ce−1. The numbers T1(e; 3) for varying e give the OEIS
sequence (A000245), T1(e; 4) is the OEIS sequence (A002057), T1(e; 5) is the OEIS
sequence (A00344), and T1(e; 6) is the OEIS sequence (A003517).

Example 2 Given that several sequences T1(e; d) for fixed values of d coincide with
various known sequences, we list here some of them. One recognizes the Catalan
triangle, which is therefore now given a new interpretation in terms of one-rooted tree
graphs. Once the first two rows (corresponding to d = 0 and d = 1) are given, all other
entries can be determined recursively using T1(e, d) = T1(e, d −1)−T1(e−1, d −2).

e
d 0 1 2 3 4 5 6 7 8 9 10 11

0 1 0 0 0 0 0 0 0 0 0 0 0
1 – 1 1 2 5 14 42 132 429 1430 4862 16,796
2 – – 1 2 5 14 42 132 429 1430 4862 16,796
3 – – – 1 3 9 28 90 297 1001 3432 11,934
4 – – – – 1 4 14 48 165 572 2002 7072
5 – – – – – 1 5 20 75 275 1001 3640
6 – – – – – – 1 6 27 110 429 1638
7 – – – – – – – 1 7 35 154 637

Our sequences T1(e; d) for d ≥ 3 have interesting connections with certain classes
of north-east lattice paths (i.e., paths with steps (0, 1) or (1, 0)) going from (0, 0) to
(n, n). For example T1(e; 3) is given by the number of such paths with n = e − 1
which bounce off the diagonal to the right (i.e., touch the diagonal after going up and
then go to the right) only once, but never cross the diagonal vertically [35].
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T1(e; 4) is given by the number of paths in a square with sides of length e−1,which
bounce exactly twice to the right off the diagonal but never cross it vertically, and so
on. So for d ≥ 3, T1(e; d) is given by the number of paths in a square with sides of
length e − 1, which bounce exactly d − 2 to the right off the diagonal but never cross
the diagonal vertically. In the last section, we will show how the generating function
of these paths given in Ref. [35] can be used to construct the generating function for
the T1(e; d), including those with d = 1 and d = 2.

Many other interpretations can be given to the values T1(e; d) in terms of lattice
paths. As a last example, the numbers T1(e; 4) are also equal to the number of such
paths in squares of sides e−2 that have exactly one horizontal crossing of the diagonal
and no vertical crossings [35].

Example 3 A sample of the sequences T2(e; d1, d2) for d1 ≤ d2 (note that T2(e; d1, d2)
are symmetric under the exchange of d1 and d2). Note that the sequences in lines 2
and 3 coincide for e ≥ 3 as in Remark 2.

e
d1, d2 1 2 3 4 5 6 7 8 9 10

1, 1 1 1 3 10 35 126 462 1716 6435 24,310
1, 2 – 2 4 12 40 140 504 1848 6864 25,740
2, 2 – – 4 12 40 140 504 1848 6864 25,740
1, 3 – – 3 9 30 105 378 1386 5148 19,305
2, 3 – – – 6 24 90 336 1260 4752 18,018
3, 3 – – – – 9 45 189 756 2970 11,583
1, 4 – – – 4 16 60 224 840 3168 12,012
2, 4 – – – – 8 40 168 672 2640 10,296

The sequence T2(e; 1, 1) is the OEIS sequence (A088218) (or the closely related
(A001700)), which gives the total number of leaves in all rooted ordered trees with n
edges.

The sequence T2(e; 1, 2) corresponds to the twice central binomial coefficients,
OEIS sequence (A028329), which has several combinatorial interpretations, for exam-
ple as the number of north-east lattice paths from (0, 0) to (n + 1, n + 1) that cross
the diagonal an even number of times [35].

The rows of the table correspond to various sequences that can be found on theOEIS
website, after dividing by the product d1d2 all the terms. For example, the sequence
T2(2, 3) is six times the sequence (A001791).

Example 4 A sample of the sequences TN (e; d1, d2, . . . , dN ) with all degrees equal to
one, d1 = . . . = dN = 1.

The numbers TN (e; d1, . . . , dN ) with all the degrees equal to 1 are of interest.
The sequence T1(e; 1) is of course made of the Catalan numbers and T2(e; 1, 1) has
already been discussed above. After dividing by (N −1)!, the sequence T3(e; 1, 1, 1),
T4(e; 1, 1, 1, 1) and T5(e, 1, . . . , 1) can be found in the OEIS. In the case of T5, our
result provides the first combinatorial interpretation of the sequence.
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e
N 1 2 3 4 5 6 7 8 9 10

1 1 1 2 5 14 42 132 429 1430 4862
2 1 1 3 10 35 126 462 1716 6435 24,310
3 – – 2 12 60 280 1260 5544 24,024 102,960
4 – – – 6 60 420 2520 13,860 72,072 360,360
5 – – – – 24 360 3360 25,200 166,320 1,009,008
6 – – – – – 120 2 520 30,240 277,200 2,162,160
7 – – – – – – 720 20,160 302,400 3,326,400
8 – – – – – – – 5040 181,440 3,326,400

The sequences TN (e; 1, . . . , 1) after division by (N − 1)!, are given given by the
coefficients e(q, m) presented in Ref. [36] (see the columns of their Table 1), which
were introduced through a recursion formula and they also appear in the triangle
(A088617).

For even N , after dividing by (N − 1)!, the sequences TN (e; 1, . . . , 1) also appear
as the columns in the triangle given in the OEIS entry (A281000) and give the first
combinatorial interpretation of these numbers.

The sequences T3(e; d1, d2, d3) have entries in the OEIS only for low values of the
degrees.

Not only do our numbers of rooted trees provide new integer sequences, but they
also unify a large number of sequences found in the OEIS that are given extremely
disparate descriptions.

6 Generating Functions for N-Rooted Plane Trees

Finding an expression for a generating function of a given sequence is sometimes
easier than determining closed form expressions for the terms of the sequence. The
approach to map enumeration through generating functions is used very often; see
for example [15, 16, 21, 22, 33, 37–39] and many other works. The expression for
the generating function of the Catalan numbers was used in Ref. [17] to inform the
choice of the algebraic curve for the Eynard–Orantin topological recursion which can
be used to produce the generalized Catalan numbers Gg,v(d1, . . . , dv) defined in the
introduction.

Let us first consider the generating function of the numbers of one-rooted trees
T1(e), which is the same as the generating function of the Catalan numbers Ce. Let us
denote this function by C(t) and define it as follows

C(t) =
∞∑

e=1

T1(e) te =
∞∑

e=1

Ce te. (19)

This function satisfies

C(t) = 1 + t C2(t), (20)
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as can be seen using the interpretation of the coefficients in (19) as numbers of rooted
trees similarly to the proof of Theorem 1. Namely, the set S1 of all one-rooted trees
can be produced from two copies of itself by taking one tree from each copy of the set,
removing the two roots and creating a new edge between the two former root vertices
such that the new edge precedes the former root edges in the counterclockwise order
at both vertices. In fact, this statement needs a slight correction—the one-rooted tree
with one vertex and no edges cannot be produced in this way. In the new edge, the
half-edge on the side of the graph from the “first” copy of the set S1 becomes the root
of the obtained tree. Translating this process into the terms of the generating function,
we obtain (20), where creating a new edge corresponds to increasing the exponent of
the variable t in the series (19), and thus to multiplying the generating function by t .

Having obtained (20), we can now solve this equation for C(t) and obtain the
well-known form of the generating function of the Catalan numbers:

C(t) = 1 − √
1 − 4t

2t
. (21)

Note that the other solution, the function Ĉ(t) = 1+√
1−4t
2t , contains the same

information as it is related to (21) by C(t)Ĉ(t) = 1/t . Let us now define a generating
function G1(t, x) of the numbers T1(e; d) by

G1(t, x) =
∞∑

d=0

∞∑

e=d

T1(e; d) xd te. (22)

Applying the same logic as in (20), one can see that G1(t, x) satisfies

G1(t, x) = 1 + t x G1(t, x)G1(t, 1). (23)

Namely, the set S1 without the degenerated tree that has no edges can be obtained
from two copies of S1 exactly as in (20). The difference is that now we keep track of
the degree of the first root vertex, and by creating a new edge we also increase the
degree of the root vertex, thus multiplication by x on the right in (23). Moreover, the
root of the tree from the “second” copy of S1 disappears and thus the degree of its root
vertex is unimportant, which corresponds to setting d = 1 for the second factor of G1
on the right in (23).

Note now that G1(t, 1) = C(t) and thus we can solve (23) for G1(t, x) and obtain

G1(t, x) = 1

1 − t x C(t)
= 1 + √

1 − 4t

1 + √
1 − 4t − 2x t

. (24)

In general, for 1 ≤ s ≤ N , we can introduce the following generating functions:

G N (t, x1, . . . , xs) =
∞∑

d1=0

· · ·
∞∑

ds=0

∞∑

e=0

TN (e; d1, . . . , ds) xd1 · · · xds te, (25)
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where TN (e; d1, . . . , ds) vanishes unless the parameters satisfy the conditions of
Lemma (1). Note that G N (t, x1, . . . , xs) and G N (t, x1, . . . , xN ) with 1 ≤ s ≤ N
are related by G N (t, x1, . . . , xs) = G N (t, x1, . . . , xs, 1, . . . , 1), where the variables
xs+1, . . . , xN are set to 1. It thus suffices to know G N (t, x1, . . . , xN ) to know all the
functions in (25). Due to the symmetry of the numbers TN (e; d1, . . . , ds) under per-
mutation of the degrees d1, . . . , ds , the functions G N (t, x1, . . . , xs) are symmetric in
the variables x1, . . . , xs .

A generalization of (23) allows us to find expressions for all generating functions
G N (t, x1, . . . , xN ) recursively from those with smaller values of N . Namely, we have
the following recursion.

Proposition 2 The generating functions G K (t, x1, . . . , xs) defined by (25), satisfy

G N (t, x1, . . . , xN−1) =
(
2t

∂

∂t
−

N−1∑

k=1

xk
∂

∂xk

)
G N−1(t, x1, . . . , xN−1);

G N (t; x1, . . . , xN ) = t x1
∑

I∪J={x2,...,xN }
I∩J=∅

G|I |+1(t; x1, I ) G|J |+1(t; J ) (26)

+t x1

N∑

r=2

∑

I∪J={x2,...,x̂r ,...,xN }
I∩J=∅

xr G|I |+1(t; x1, I )
∂

∂xr

{
xr G|J |+1(t; xr , J )

}
.

(27)

The sum in the second equation is taken over all possible splits of the given sets into
two disjoint sets I and J , and a hat put over an element of a set signifies that the
element is omitted.

Proof Let us start by proving the first equation of the proposition. Recall that
G N (t, x1, . . . , xN−1) = G N (t, x1, . . . , xN−1, 1) is the generating function of the
numbers TN (e; d1, . . . , dN−1), where we keep track only of the degrees of the first
N−1 root vertices of the N -rooted treeswith e edges.We can obtain the trees of the cor-
responding set SN (e; d1, . . . , dN−1) from the trees of the set SN−1(e; d1, . . . , dN−1)

by introducing the N th root in all possible ways. There are 2e half-edges in total
and d1 + · · · ,+dN−1 of the half-edges cannot be chosen to be a new root. Thus,
there are 2e − d1 − . . . − dN−1 ways to choose the N th root in each tree of the set
SN−1(e; d1, . . . , dN−1) and each of these choices produces a distinct tree in the set
SN (e; d1, . . . , dN−1), since the presence of one root eliminates all nontrivial automor-
phisms of the graph. In other words,

TN (e; d1, . . . , dN−1) = (2e − d1 − . . . − dN−1)TN−1(e; d1, . . . , dN−1).

Thus if in the series defining G N−1(t, x1, . . . , xN−1) we multiply every term
containing texd1

1 · · · xdN−1
N−1 by 2e − d1 − · · · − dN−1, we obtain the series for

G N (t, x1, . . . , xN−1).This is exactlywhat is done by applying the differential operator
in the right hand side of (26) to G N−1(t, x1, . . . , xN−1).
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The second equation of the proposition is nothing but a rewriting of the recursion
of Theorem 1 in terms of the generating functions. To see the validity of (27), it is best
to perform the inverse of the procedure described in the proof of Theorem 1. Namely,
we start with two rooted trees, and call one of them “left” and another one “right” and
join them by a new edge connecting the first root vertices of the two trees. The new
edge is added in such a way that it precedes the root half-edge of both trees in the
counterclockwise order at both vertices. Then the arrows marking the first root half-
edges are removed from both trees and the half-edge of the new edge that is incident to
the vertex of the tree “on the left” is chosen for the new first root. In this way, we create
a new rooted tree. Case 1 of the proof of Theorem 1 gives a new tree with the first root
connecting a root vertex to a non-root vertex, while Case 2 gives a new tree with the
first root connecting two root vertices. These two cases correspond to the two terms in
the right hand side of (27). The factor of t, which increases the exponent of t in every
term in the series defining the generating function by one, corresponds to adding a
new edge. The factor of x1 corresponds to the increasing of d1 due to the added edge.
In Case 2, we also put an arrow at the former first root vertex of the tree “on the right”
in all possible ways. The number of such ways is one plus the degree of the former
first root vertex of the tree “on the right”. Multiplying the terms of the generating
function by such factor is achieved by the operator ∂

∂xr
xr , where xr is the variable

corresponding to the root vertex in question. Summing over all disjoint splittings of
the set {x2, . . . , xN }, we include all possible distributions of the root vertices among
the two trees that we connect by a new edge. �

As an example, here are the equations of Proposition 2 allowing to findG2(t, x1, x2)
from G1(t, x):

G2(t, x) =
(
2t

∂

∂t
− x

∂

∂x

)
G1(t, x);

G2(t, x1, x2) = x1t ( G2(t, x1, x2) G1(t, 1) + G1(t, x1) G2(t, x2)

+x2 G1(t, x1)
∂

∂x2

{
x2 G1(t, x2)

})
.

Starting from expression (24) for the generating function G1(t, x) and using the first of
the above equations, we obtain G2(t, x) = G2(t, x, 1). This gives us all the necessary
ingredients to obtain G2(t, x1, x2) from the second of the above equations. This leads
to

G2(t, x1, x2) = t x1 x2 (y + 1)5

2y (1 + y − 2t x1)2 (1 + y − 2t x2)2
, (28)

where y stands for the square root appearing in the generating function (21) of the
Catalan numbers:

y = √
1 − 4t, 1 − y2 = 4t .

Having found G2, we apply the equations of Proposition 2 with N = 3, to obtain
the following expression for G3 :
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G3(t, x1, x2, x3)

= t2 x1 x2 x3 (y + 1)10

2 y3 (1 + y − 2t x1)3 (1 + y − 2t x2)3 (1 + y − 2t x3)3

×
(
1 − y + (2y − 2t)(x1 + x2 + x3)

+1

2
(y − 1)(1 + 3y − 6t)(x1x2 + x1x3 + x2x3) + 1

4
(y − 1)2(2 + 4y − 10t)x1x2x3

)
.

This leads us to the following conjecture.

Conjecture 1 The generating functions defined by (25) for N ≥ 3 have the form:

G N (t, x1, . . . , xN ) = (N − 1)!
4

t N−1 (1 + y)N2+1 ∏N
j=1 x j

y2N−3
∏N

k=1(1 + y − 2t xk)N
PN (y, x1, . . . xN ),

where PN (y, x1, . . . xN ) is a polynomial in all its variables.

We have noticed that the generating function F2,4(x2, x4, t) introduced in Ref. [35]
with the second argument set to zero contains all the T1(e, d) after somemanipulations.
Interestingly, that function generates the number of north-east lattice paths, according
to the number of times the path bounces to the right off the diagonal (organized in
powers of x2) and the number of times it crosses the diagonal vertically (counted by
the powers of x4). This function is given by

F2,4
(
t, x2, x4

) = (x2 − 2)(−1 + √
1 − 4t) + 2(x2 − 1)t

x4(−1 + √
1 − 4t) + (2 + x2(−1 + √

1 − 4t) + 3x4 − x4
√
1 − 4t)t

.

(29)

Note that this corrects a typo in Ref. [35] (the factor of x2 in the denominator was
misplaced). With x4 = 0, this generating function reproduces all the T1(e, d) for
d ≥ 3, which implies that the one-rooted trees count certain types of lattice paths (see
Sect. 5 for more details). For d = 1 and d = 2, some rearrangement must be made to
obtain our generating function G1(t, x) (22), (24) from F2,4. More precisely, we have
the following relation:

G1(t, x) = x2t
(
F2,4(t, x2 = x, x4 = 0) + 1 − 2C(t)

) + x2t
(
C(t) − 1

) + x t C(t) + 1.

In the table of Example 4, we presented some of the sequences TN (e; d1, . . . , dN )

with all degrees equal to 1. The corresponding generating functions, let us
call them G1...1

N (t), can be obtained by differentiating the generating functions
G N (t, x1, . . . , xN )with respect to all the xi once and then setting xi = 0. For G1...1

1 (t)
we of course have the generating function of the Catalan numbers. For N = 2 and
N = 3, the generating functions are

G1...1
2 (t) = 1

2

(1 + √
1 − 4t)t√

1 − 4t
,
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G1...1
3 (t) = 2t3

(1 − 4t)
3
2

.

7 Binomial and Hypergeometric Identities from TN(e, IN)

In Sect. 4, we obtained the expression for TN (e, d1, . . . , dN ) by solving the recursion
formula of Theorem 2. The recursion formula of Theorem 1 is much more difficult
to work with. Even for a fixed value of N , showing that numbers (13) satisfy the
recursion of Theorem 1 is nontrivial for N > 1. For N = 2, the recursion can be
proven using formulas found in Ref. [34]. Starting with N = 3, new identities for
sums of product of binomial coefficients are needed. These sums can be expressed in
terms of generalized hypergeometric functions with certain arguments, and therefore
the recursion formula can be used to derive new hypergeometric identities. We will
illustrate this for N = 3.

For N = 3, Theorem 1 gives

T3(e; d1, d2, d3) =
∑

e1+e2=e−1

[
T1(e1; d1 − 1) T3(e2; d2, d3) + T3(e1; d1 − 1, d2, d3) T1(e2)

+T2(e1; d1 − 1, d2) T2(e2; d3) + T2(e1; d1 − 1, d3) T2(e2; d2)

+d2 T1(e1; d1 − 1) T2(e2; d2 − 1, d3) + d2 T2(e1; d1 − 1, d3) T1(e2; d2 − 1)

+ d3 T2(e1; d1 − 1, d2) T1(e2; d3 − 1) + d3 T1(e1, d1 − 1) T2(e2, d3 − 1, d2)

]
. (30)

If d1 = 1, the proof of (30) is trivial, the only terms on the right hand side of (30)
being non-zero are the first, fifth (at the condition that d2 > 1) and the last (at the
condition that d3 > 1) ones. These three terms may contribute because T1(0; 0) = 1;
their sum can be checked to be equal to T3(e; 1, d2, d3).

Let us focus on the first sum on the right hand side of (30), which we will denote
	1 (a function of e, d1, d2 and d3). If we choose to sum over e1, it will range from
(e1)min to e − 1− (e2)min. The minimum value of e1 is determined by the conditions
of Lemma 1 applied to the factor T1(e1; d1 − 1) which, taking into account the fact
that we are assuming d1 > 1, gives e1 ≥ d1 − 1.

The minimum value of e2 is determined by the factor T3(e2; d2, d3) and depends on
the values of d2 and d3. If d2 = d3 = 1, the condition is e2 ≥ 2, and if d2 + d3 > 2, it
is e2 ≥ d2 +d3−1. Let us consider first the case d2 +d3 > 2. Setting e2 = e −e1−1,
the first term of (30) becomes, after plugging in expressions (13) for the numbers T1
and T3,

	1 =
e−d2−d3∑

e1=d1−1

(d1 − 1)(e − 2 − e1)d2d3
e1

(
2e1 − d1
e1 − 1

)(
2e − 2e1 − 2 − d2 − d3

e − 2 − e1

)
.

(31)
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If d2 = d3 = 1, the upper limit on the sum over e1 in (31) is equal to e − 2. However,
note that the expression evaluated at e1 = e−2 vanishes. Thereforewhen d2 = d3 = 1,
the sum in (31) is effectively up to e − 3. But this coincides with e − 1 − (e2)min as
(e2)min = 2 in this case. Therefore, (31) is also valid for the case d2 = d3 = 1.

After making the appropriate changes of variables, one finds

	1 = (d1 − 1)(e − 2)d2d3 S1(n1, r1, s1) − (d1 − 1)d2d3 S5(n1, r1, s1),

where S1 and S5 refer to the sums listed in the appendix and

n1 = e + 1 −
3∑

i=1

di , r1 = d1 − 2, s1 = d2 + d3 − 2.

Following similar steps, the next seven terms in the right hand side of (30) are found
to be

	2 = (d1 − 1)(e − 2)d2d3S4(n2, r2)

−(d1 − 1)d2d3S5(n2, r2, s2) + T3(e − 1; d1 − 1, d2, d3),

	3 = (d1 − 1)d2d3S5(n3, r3, s3),

	4 = (d1 − 1)d2d3 S5(n4, r4, s4),

	5 = d2d3(d1 − 1)(d2 − 1)S1(n5, r5, s5),

	6 = d2d3(d1 − 1)(d2 − 1)S1(n6, r6, s6),

	7 = d2d3(d1 − 1)(d3 − 1)S1(n7, r7, s7),

	8 = d2d3(d1 − 1)(d3 − 1) S1(n5, r5, s5),

where

n2 = n1, r2 = d1 + d2 + d3 − 6, s2 = 2,

n3 = n1, r3 = d1 + d2 − 4, s3 = d3,

n4 = n1, r4 = d1 + d3 − 4, s4 = d2,

n5 = n1 + 1, r5 = d1 − 2, s5 = d2 + d3 − 4,

n6 = n1 + 1, r6 = d2 − 2, s6 = d1 + d3 − 4,

n7 = n1 + 1, r7 = d3 − 2, s7 = d2 + d1 − 4.

Adding up all eight terms, 	1 to 	8, we rewrite (30) in the following form, valid
under the assumption d1 ≥ 1:

T3(e; d1, d2, d3) = d1d2d3(e − 1)

(
2e − 1 − ∑3

i=1 di

e − 3

)
+ (d1 − 1)d2d3

(
S5(n3, r3, s3)

+S5(n4, r4, s4) − S5(n1, r1, s1) − S5(n2, r2, s2)
)
. (32)
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From(13),weknow that this is equal toT3(e; d1, d2, d3) = d1d2d3(e−1)
(2e−1−∑3

i=1 di
e−3

)

and we have therefore proven the following proposition.

Proposition 3 The quantity S5(n, r , s) = ∑n
k=0

(2n−2k+s
n−k

) (2k+r
k

)
with n, r , s being

arbitrary non-negative integers satisfies

S5(n3, r3, s3) + S5(n4, r4, s4) − S5(n1, r1, s1) − S5(n2, r2, s2) = 0. (33)

From the definition of the S5 as a sum, it is not obvious at first sight that (33)
is satisfied because the various S5 are evaluated with different arguments. We have
therefore obtained a nontrivial combinatorial identity from the recursion formula (30).

We have been unable to find a closed form formula for the sum S5 in the literature
or to derive one. However, we have the following conjecture which expresses S5 as a
different sum and makes (33) automatically satisfied.

Conjecture 2 Let n, r , s be integers and n ≥ 0. Then

n∑

k=0

(
2n − 2k + s

n − k

) (
2k + r

k

)
=

[ n
2 ]∑

k=0

(
2n + 2 + r + s

n − 2k

)
, (34)

where [ n
2 ] denotes the integer part of n

2 .

The usefulness of the representation in the right hand side of (34) is that it depends
on r and s through their sum only, which is not obvious from the expression on the
left. If this conjecture is correct, it automatically ensures that (33) is satisfied, since
the sums r1 + s1, r2 + s2, r3 + s3 and r4 + s4 are all equal to

∑3
i=1 di − 4.

Conjecture 2 can be expressed as a conjecture relating certain generalized hyper-
geometric functions evaluated at z = 1. The left hand side of (34) can be shown to be
equal to

(
2n + s

n

)
4F3

(
1 + r

2
,
1 + r

2
,−n,−n − s; 1 + r ,−n − s

2
,−n + 1 − s

2
; 1

)
,

(35)

when r , s ≥ 0.
For the right hand side of (34), consider first the case of odd n. Defining p = n−2k,

the sum becomes

n∑

p=1

′
(
2n + 2 + r + s

p

)
, (36)

where the prime indicates that the sum is only over the odd values of p from 1 to n.
Using now the identity

(
2n + 2 + r + s

p

)
=

(
2n + 1 + r + s

p

)
+

(
2n + 1 + r + s

p − 1

)
,
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we obtain that the sum (36) can be written as

n∑

l=0

(
2n + 1 + r + s

l

)
,

where now l takes all integer values from 0 to n. One can check that the same result
is valid when n is even. Therefore, we have

[ n
2 ]∑

k=0

(
2n + 2 + r + s

n − 2k

)
=

n∑

l=0

(
2n + 1 + r + s

l

)
. (37)

Theorem 4 For a non-negative integer n and two integers r and s satisfying r +s ≥ 0,

n∑

l=0

(
2n + 1 + r + s

l

)
=

(
2n + 2 + r + s

n

)
3F2

×
(
1,

1 − n

2
,−n

2
; n + 3 + r + s

2
, 2 + n + r + s

2
; 1

)
. (38)

We had conjectured this result and it has been proven by Professor Maier [40]. The
nontrivial proof uses a recursion formula for a certain class of hypergeometric func-
tions, which can be solved in terms of sums, one of which is (37).

Our conjecture 2 can therefore be stated as the equality of the two hypergeometric
functions of (35) and (38). Note again that this would imply that (35) depends on r
and s through their sum only, which is not obvious from the expression.

To summarize this section, the recursion of Theorem 1 applied to expressions (13)
for T3 implies (33), which is a nontrivial condition on the sum S5. We have been led to
conjecture a different form for the sum S5 (the right hand side of (34)), which satisfies
(33). Our conjecture can also be expressed as an equality between two hypergeometric
functions. We believe that using Theorem 1 applied to expressions (13) for TN with
N > 3 will lead to ever more complex identities on various sums of products of
binomial coefficients, some of which should be new results.
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Appendix A

Consider the following sums:

S1(n, r , s) :=
n∑

k=0

1

k + r + 1

(
2n − 2k + s

n − k

) (
2k + r

k

)
,

S2(n, r , s) :=
n+s∑

k=0

1

k + r + 1

(
2n − 2k + s

n − k

) (
2k + r

k

)
,

S3(n, r) :=
n∑

k=0

1

n − k + 1

(
2n − 2k

n − k

)(
2k + r

k

)
,

S4(n, r) :=
n∑

k=0

1

n − k + 1

(
2n − 2k + 2

n − k

) (
2k + r

k

)
,

S5(n, r , s) :=
n∑

k=0

(
2n − 2k + s

n − k

) (
2k + r

k

)
,

S6(n, r , s, t) :=
n∑

k=0

r

tk + r

(
tk + r

k

) (
tn − tk + s

n − k

)
.

Not all these sums appear in Sect. 7, but all are closely related to sums we needed and
we include them for completeness.

The sum S6 is given in Equation (5.62) in Ref. [34]. It is understood that if the
parameters considered are such that the factor tk +r is equal to zero for some value of
k, then in that term the binomial factor

(tk+r
k

)
is taken to cancel the factor 1

tk+r . With
this convention, S6 is well defined for n ≥ 0 and r , s, t ∈ Z and is equal to

S6(n, r , s, t) =
(

tn + r + s

n

)
.

The sums S1 to S4 can be obtained from S6 after appropriate changes of variables,
with the following results:

S1(n, r , s) = 1

r + 1

(
2n + r + s + 1

n

)
,

S2(n, r , s) = 1

r + 1

(
2n + r + s + 1

n + s

)
,

S3(n, r) =
(
2n + r + 1

n

)
,

S4(n, r) =
(
2n + r + 2

n

)
,
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where, in S1 and S2, n and r are integers satisfying n, r ≥ 0 and s ∈ Z (the results are
actually valid for a wider range of values, but the general results are not needed for
this work). The conditions for S3 and S4 are n ≥ 0 and r ∈ Z.

We could not find the sum S5 in closed form in the literature, as mentioned in the
main text, see (34).
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