
Arnold Mathematical Journal (2024) 10:1–22
https://doi.org/10.1007/s40598-023-00225-6

RESEARCH CONTRIBUT ION

Solvability of Some Systems of Integro-differential
Equations in Population Dynamics Depending on the
Natality and Mortality Rates

Vitali Vougalter1 · Vitaly Volpert2,3

Received: 7 October 2022 / Revised: 15 December 2022 / Accepted: 15 January 2023 /
Published online: 27 January 2023
© Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2023

Abstract
We establish the existence of stationary solutions for certain systems of reaction–
diffusion-type equations in the corresponding H2 spaces. Our method relies on the
fixed point theorem when the elliptic problem contains second-order differential oper-
ators with and without the Fredholm property, which may depend on the outcome of
the competition between the natality and the mortality rates involved in the equations
of the systems.

Keywords Solvability conditions · Non-Fredholm operators · Systems of
integro-differential equations · Stationary solutions

Mathematics Subject Classification 35R09 · 35A01 · 35J91 · 35K91

1 Introduction

Let us recall that a linear operator L acting from aBanach space E into another Banach
space F has the Fredholm property if its image is closed, the dimension of its kernel
and the codimension of its image are finite. As a consequence, the problem Lu = f
is solvable if and only if φk( f ) = 0 for a finite number of functionals φk from the
dual space F∗. These properties of the Fredholm operators are widely used in various
methods of the linear and nonlinear analysis.
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2 V. Vougalter , V. Volpert

Elliptic equations considered in bounded domains with a sufficiently smooth boundary
satisfy the Fredholm property when the ellipticity condition, proper ellipticity and
Lopatinskii conditions are fulfilled (see, e.g., [1, 19, 21]), which is the main result
of the theory of linear elliptic problems. When dealing with unbounded domains,
these conditions may not be sufficient and the Fredholm property may not be satisfied.
For example, for the Laplace operator, Lu = �u considered in R

d the Fredholm
property does not hold when the problem is studied either in Hölder spaces, such that
L : C

2+α(Rd) → C
α(Rd) or in Sobolev spaces, L : H2(Rd) → L2(Rd).

For linear elliptic equations studied in unbounded domains the Fredholm property is
satisfied if and only if, in addition to the conditions stated above, the limiting operators
are invertible (see [22]). In some simple cases, the limiting operators can be constructed
explicitly. For example, when

Lu = a(x)u′′ + b(x)u′ + c(x)u, x ∈ R,

with the coefficients of the operator having limits at infinity,

a± = limx→±∞a(x), b± = limx→±∞b(x), c± = limx→±∞c(x),

the limiting operators are given by

L±u = a±u′′ + b±u′ + c±u.

Since the coefficients here are constants, the essential spectrum of the operator, which
is the set of complex numbers λ for which the operator L − λ does not possess the
Fredholm property, can be found explicitly via the standard Fourier transform, such
that

λ±(ξ) = −a±ξ2 + b±iξ + c±, ξ ∈ R.

The limiting operators are invertible if and only if the origin does not belong to the
essential spectrum.
For the general elliptic equations the analogous assertions are valid. The Fredholm
property is satisfied if the essential spectrum does not contain the origin or when the
limiting operators are invertible. Such conditions may not be written explicitly.
For the non-Fredholm operators, we may not apply the standard solvability conditions
and in a general case the solvability relations are not known. However, the solvability
conditionswere obtained recently for some classes of operators. For example, consider
the following problem

Lu ≡ �u + au = f (1.1)

inR
d , d ∈ Nwith a positive constant a. Here, the operator L and its limiting operators

coincide. The corresponding homogeneous problem has a nontrivial bounded solution,
such that the Fredholmproperty is not satisfied. Since the differential operator involved
in (1.1) has constant coefficients, we are able to find the solution explicitly by applying
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Solvability of Some Systems of Integro-differential Equations… 3

the standard Fourier transform. In Lemmas 5 and 6 of [31], we derived the following
solvability relations. Let f (x) ∈ L2(Rd) and x f (x) ∈ L1(Rd). Then, equation (1.1)
has a unique solution in H2(Rd) if and only if

(
f (x),

eipx

(2π)
d
2

)
L2(Rd )

= 0, p ∈ Sd√a a.e.

Here and below, Sdr denotes the sphere in R
d of radius r centered at the origin. Thus,

although theFredholmproperty is not satisfied for the operator,we are able to formulate
the solvability relations similarly. Note that this similarity is only formal because the
range of the operator is not closed. In the case when the operator involves a scalar
potential, such that

Hu ≡ �u + b(x)u = f ,

we cannot apply the standard Fourier transform directly. However, the solvability
relations in three dimensions can be obtained by virtue of the spectral and the scattering
theory of Schrödinger type operators (see [27]). As in the constant coefficient case, the
solvability conditions are expressed in terms of orthogonality to the solutions of the
adjoint homogeneous equation. The solvability relations for several other examples
of non-Fredholm linear elliptic operators were derived (see [11, 13, 22–24, 26, 27,
29–31]).
Solvability conditions are crucial in the analysis of the nonlinear elliptic problems.
When then non-Fredholm operators are involved, in spite of some progress in the stud-
ies of the linear equations, the nonlinear non-Fredholmoperatorswere analyzed only in
few examples (see [6–8, 10, 12–14, 28, 31]). Evidently, this situation can be explained
by the fact that the majority of the methods of linear and nonlinear analysis rely on the
Fredholm property. Fredholm structures, topological invariants and applications were
covered in [9]. In the present article, we study certain systems of nonlinear integro-
differential reaction–diffusion-type equations, for which the Fredholm property may
not be satisfied:

∂uk
∂t

= �uk +
∫

	

Gk(x − y)Fk(u1(y, t), u2(y, t), . . . , uN2(y, t), y)dy + akuk

(1.2)

for 1 ≤ k ≤ N1 and

∂uk
∂t

= �uk +
∫

	

Gk(x − y)Fk(u1(y, t), u2(y, t), . . . , uN2(y, t), y)dy − akuk

(1.3)

for N1+1 ≤ k ≤ N2. Here, {ak}N2
k=1 are nonnegative if 1 ≤ k ≤ N1 and they are strictly

positive when N1 + 1 ≤ k ≤ N2. Our domain 	 ⊆ R
d , d = 1, 2, 3 which are the

more physically relevant dimensions. Note that equations (1.2) describe the situation

123



4 V. Vougalter , V. Volpert

in the Population Dynamics in the Mathematical Biology when the natality rates are
higher than the mortality ones for ak > 0 and the cases when the mortality and natality
rates balance each other for ak = 0. On the other hand, equations (1.3) are important
for understanding the situation when the mortality rates are higher than the natality
ones. In the PopulationDynamics the integro-differential problems are used to describe
biological systemswith the intra-specific competition and the nonlocal consumption of
resources (see, e.g., [2, 4, 15, 25]). The stability issues for traveling fronts of reaction–
diffusion-type equationswith the essential spectrumof the linearized operator crossing
the imaginary axis were also addressed in [3, 16]. Note that the single equation of (1.2)
type has been studied in [28]. The reaction–diffusion-type problems in which in the
diffusion term the Laplacian is replaced by the nonlocal operator with an integral
kernel were discussed in [20]. Let us introduce

F(u, x) := (F1(u, x), F2(u, x), . . . , FN2(u, x))T .

The nonlinear terms of our system (1.2), (1.3) will satisfy the following regularity
requirements.

Assumption 1.1 Let 1 ≤ k ≤ N2. Functions Fk(u, x) : R
N2 × 	 → R are satisfying

the Caratheodory condition (see [18]), so that

|F(u, x)|
R
N2 ≤ K |u|

R
N2 + h(x) f or u ∈ R

N2 , x ∈ 	, (1.4)

with a constant K > 0 and h(x) : 	 → R
+, h(x) ∈ L2(	). Furthermore, they are

Lipschitz continuous functions, so that for any u(1),(2) ∈ R
N2 , x ∈ 	 :

|F(u(1), x) − F(u(2), x)|
R
N2 ≤ L|u(1) − u(2)|

R
N2 , (1.5)

with a constant L > 0.

Here and below, we use the notations for a vector u := (u1, u2, . . . , uN2)
T ∈ R

N2

and its norm |u|
R
N2 :=

√∑N2
k=1 u

2
k . The solvability of a local elliptic equation in a

bounded domain in R
N was studied in [5]. The nonlinear function there was allowed

to have a sublinear growth. Clearly, the stationary solutions of system (1.2), (1.3), if
any exist, will satisfy the system of nonlocal elliptic equations

�uk +
∫

	

Gk(x − y)Fk(u1(y), u2(y), . . . , uN2(y), y)dy + akuk = 0, ak ≥ 0,

for 1 ≤ k ≤ N1,

�uk +
∫

	

Gk(x − y)Fk(u1(y), u2(y), . . . , uN2(y), y)dy − akuk = 0, ak > 0
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Solvability of Some Systems of Integro-differential Equations… 5

for N1 + 1 ≤ k ≤ N2. For the technical purposes, we introduce the auxiliary semi-
linear problem

− �uk − akuk =
∫

	

Gk(x − y)Fk(v1(y), v2(y), . . . , vN2(y), y)dy, ak ≥ 0

(1.6)

if 1 ≤ k ≤ N1,

− �uk + akuk =
∫

	

Gk(x − y)Fk(v1(y), v2(y), . . . , vN2(y), y)dy, ak > 0

(1.7)

if N1 + 1 ≤ k ≤ N2. We designate

( f1(x), f2(x))L2(	) :=
∫

	

f1(x) f̄2(x)dx, (1.8)

with a slight abuse of notations in the case when these functions are not square inte-
grable in	, like for example those used in the orthogonality relations of the assumption
below. Indeed, if f1(x) ∈ L1(	) and f2(x) ∈ L∞(	), then the integral in the right
side of (1.8) is well defined. Let us begin the article with the studies of the whole space
case, such that 	 = R

d and the corresponding Sobolev space is equipped with the
norm

‖u‖2
H2(Rd , RN2 )

:=
N2∑
k=1

‖uk‖2H2(Rd )
=

N2∑
k=1

{‖uk‖2L2(Rd )
+ ‖�uk‖2L2(Rd )

},

where u(x) : R
d → R

N2 . The primary obstacle in solving system (1.6), (1.7) is that
operators −� − ak : H2(Rd) → L2(Rd), ak ≥ 0 involved in its first part fail to
satisfy the Fredholm property. The analogous situations in linear equations, which
can be self-adjoint or non self-adjoint containing the non-Fredholm second-, fourth-
and sixth-order differential operators or even systems of equations including the non-
Fredholm operators have been studied actively in recent years (see [11, 24, 26, 27,
29, 30]). We manage to establish that system of equations (1.6), (1.7) defines a map
Ta : H2(Rd , R

N2) → H2(Rd , R
N2), which is a strict contraction under the stated

technical conditions. It gives a solution of the considered problem. The fact that this
map is well defined is established in the proof of Theorem 1.3 below. We make the
following assumption on the integral kernels involved in the nonlocal parts of system
(1.6), (1.7).

Assumption 1.2 Let Gk(x) : R
d → R, Gk(x) ∈ L1(Rd), 1 ≤ k ≤ N2, 1 ≤ d ≤ 3

and 1 ≤ m ≤ N1 − 1, m ∈ N with N1 ≥ 2, N2 > N1.

123



6 V. Vougalter , V. Volpert

I) Let ak > 0, 1 ≤ k ≤ m, assume that xGk(x) ∈ L1(Rd) and

(
Gk(x),

e±i
√
ak x

√
2π

)
L2(R)

= 0 i f d = 1, (1.9)

(
Gk(x),

eipx

(2π)
d
2

)
L2(Rd )

= 0 f or p ∈ Sd√ak
i f d = 2, 3. (1.10)

II) Let ak = 0, m + 1 ≤ k ≤ N1, assume that x2Gk(x) ∈ L1(Rd) and

(Gk(x), 1)L2(Rd ) = 0 and (Gk(x), xs)L2(Rd ) = 0, 1 ≤ s ≤ d. (1.11)

III) Let ak > 0, N1 + 1 ≤ k ≤ N2.
Let us use the hat symbol here and below to denote the standard Fourier transform, so
that

Ĝk(p) := 1

(2π)
d
2

∫
Rd

Gk(x)e
−i pxdx, p ∈ R

d . (1.12)

Thus,

‖Ĝk(p)‖L∞(Rd ) ≤ 1

(2π)
d
2

‖Gk‖L1(Rd ). (1.13)

We introduce the following auxiliary quantities

Mk := max

{∥∥∥∥ Ĝk(p)

p2 − ak

∥∥∥∥
L∞(Rd )

,

∥∥∥∥ p2Ĝk(p)

p2 − ak

∥∥∥∥
L∞(Rd )

}
, 1 ≤ k ≤ m, (1.14)

Mk := max

{∥∥∥∥ Ĝk(p)

p2

∥∥∥∥
L∞(Rd )

,

∥∥∥∥Ĝk(p)

∥∥∥∥
L∞(Rd )

}
, m + 1 ≤ k ≤ N1, (1.15)

Mk := max

{∥∥∥∥ Ĝk(p)

p2 + ak

∥∥∥∥
L∞(Rd )

,

∥∥∥∥ p2Ĝk(p)

p2 + ak

∥∥∥∥
L∞(Rd )

}
, N1 + 1 ≤ k ≤ N2.

(1.16)

Evidently, expressions (1.14) and (1.15) are finite by virtue of Lemma A1 in one
dimension and Lemma A2 for d = 2, 3 of [28] under Assumption 1.2 above. It can
be easily verified that (1.16) are finite as well. Indeed, for N1 + 1 ≤ k ≤ N2 using
(1.13), we have

∣∣∣∣ Ĝk(p)

p2 + ak

∣∣∣∣ ≤ |Ĝk(p)|
ak

≤ 1

(2π)
d
2 ak

‖Gk‖L1(Rd ) < ∞
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Solvability of Some Systems of Integro-differential Equations… 7

as assumed. Similarly, via (1.13)

∣∣∣∣ p
2Ĝk(p)

p2 + ak

∣∣∣∣ ≤ |Ĝk(p)| ≤ 1

(2π)
d
2

‖Gk‖L1(Rd ) < ∞,

such that Mk < ∞ for N1 + 1 ≤ k ≤ N2 as well. This enables us to define

M := maxMk, 1 ≤ k ≤ N2, (1.17)

with Mk given by (1.14), (1.15) and (1.16). We have the following statement.

Theorem 1.3 Let 	 = R
d , d = 1, 2, 3, Assumptions 1.1 and 1.2 hold and√

2(2π)
d
2 ML < 1.

Then, the map Tav = u on H2(Rd , R
N2) defined by the system of equations (1.6),

(1.7) has a unique fixed point va(x) : R
d → R

N2 , which is the only stationary solution
of problem (1.2), (1.3) in H2(Rd , R

N2).
This fixed point va(x) is nontrivial provided the intersection of supports of the Fourier
transforms of functions suppF̂k(0, x)(p) ∩ suppĜk(p) is a set of nonzero Lebesgue
measure in R

d for a certain 1 ≤ k ≤ N2.

Let us turn our attention to the studies of the analogous system of equations on the
interval 	 = I := [0, 2π ] with periodic boundary conditions for the solution vector
function and its first derivative. We assume the following about the integral kernels
involved in the nonlocal parts of problem (1.6), (1.7) in this case.

Assumption 1.4 Let Gk(x) : I → R, Gk(x) ∈ C(I ) with Gk(0) = Gk(2π), 1 ≤
k ≤ N2, where N1 ≥ 3, 1 ≤ m < q ≤ N1 − 1, m, q ∈ N and N2 > N1.
I) Let ak > 0 and ak �= n2, n ∈ Z if 1 ≤ k ≤ m.
II) Let ak = n2k, nk ∈ N and

(
Gk(x),

e±ink x

√
2π

)
L2(I )

= 0 i f m + 1 ≤ k ≤ q. (1.18)

III) Let ak = 0 and

(Gk(x), 1)L2(I ) = 0 f or q + 1 ≤ k ≤ N1. (1.19)

IV) Let ak > 0, N1 + 1 ≤ k ≤ N2.
Let Fk(u, 0) = Fk(u, 2π) for u ∈ R

N2 and 1 ≤ k ≤ N2.
For the function on our [0, 2π ] interval, Gk(x) : I → R, Gk(0) = Gk(2π), we
introduce the Fourier transform as

Gk, n :=
∫ 2π

0
Gk(x)

e−inx

√
2π

dx, n ∈ Z, (1.20)
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8 V. Vougalter , V. Volpert

such that

Gk(x) =
∞∑

n=−∞
Gk, n

einx√
2π

.

Clearly, the estimate

‖Gk, n‖l∞ ≤ 1√
2π

‖Gk‖L1(I ) (1.21)

is valid. Let us define the following technical expressions

Pk := max

{∥∥∥∥ Gk, n

n2 − ak

∥∥∥∥
l∞

,

∥∥∥∥n
2Gk, n

n2 − ak

∥∥∥∥
l∞

}
, 1 ≤ k ≤ m, (1.22)

Pk := max

{∥∥∥∥ Gk, n

n2 − n2k

∥∥∥∥
l∞

,

∥∥∥∥n
2Gk, n

n2 − n2k

∥∥∥∥
l∞

}
, m + 1 ≤ k ≤ q, (1.23)

Pk := max

{∥∥∥∥Gk, n

n2

∥∥∥∥
l∞

,

∥∥∥∥Gk, n

∥∥∥∥
l∞

}
, q + 1 ≤ k ≤ N1, (1.24)

Pk := max

{∥∥∥∥ Gk, n

n2 + ak

∥∥∥∥
l∞

,

∥∥∥∥n
2Gk, n

n2 + ak

∥∥∥∥
l∞

}
, N1 + 1 ≤ k ≤ N2. (1.25)

By virtue of Lemma A3 of [28] under our Assumption 1.4, the quantities given by
(1.22), (1.23) and (1.24) are finite. It can be trivially checked that (1.25) are finite as
well. Evidently, for N1 + 1 ≤ k ≤ N2 by means of (1.21), we obtain

∣∣∣∣ Gk, n

n2 + ak

∣∣∣∣ ≤ |Gk, n|
ak

≤ 1

ak
√
2π

‖Gk‖L1(I ) < ∞

via one of our assumptions. Using (1.21), we derive

∣∣∣∣n
2Gk, n

n2 + ak

∣∣∣∣ ≤ |Gk, n| ≤ 1√
2π

‖Gk‖L1(I ) < ∞.

Thus, Pk < ∞ if N1 + 1 ≤ k ≤ N2 as well. This allows us to define

P := maxPk, 1 ≤ k ≤ N2 (1.26)

with Pk given by formulas (1.22), (1.23), (1.24) and (1.25). For the purpose of the
studies of the existence of stationary solutions of our system, we use the corresponding
function space

H2(I ) = {v(x) : I → R | v(x), v′′(x) ∈ L2(I ), v(0) = v(2π), v′(0) = v′(2π)},
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Solvability of Some Systems of Integro-differential Equations… 9

aiming at uk(x) ∈ H2(I ), 1 ≤ k ≤ m and N1 + 1 ≤ k ≤ N2 as well. Let us use the
following auxiliary constrained subspaces

H2
k (I ) :=

{
v ∈ H2(I ) |

(
v(x),

e±ink x

√
2π

)
L2(I )

= 0

}
, nk ∈ N, m + 1 ≤ k ≤ q,

with the goal of having uk(x) ∈ H2
k (I ), m + 1 ≤ k ≤ q. Also,

H2
0 (I ) := {v ∈ H2(I ) | (v(x), 1)L2(I ) = 0}.

Our goal is to have uk(x) ∈ H2
0 (I ), q + 1 ≤ k ≤ N1. The constrained subspaces

introduced above are Hilbert spaces as well (see, e.g., Chapter 2.1 of [17]). The result-
ing space used for establishing the existence of solutions u(x) : I → R

N2 of system
(1.6), (1.7) will be the direct sum of the spaces given above, so that

H2
c (I , R

N2) := ⊕m
k=1H

2(I ) ⊕q
k=m+1 H2

k (I ) ⊕N1
k=q+1 H2

0 (I ) ⊕N2
k=N1+1 H2(I ).

The corresponding Sobolev norm is given by

‖u‖2
H2
c (I , RN2 )

:=
N2∑
k=1

{‖uk‖2L2(I ) + ‖u′′
k‖2L2(I )}

with u(x) : I → R
N2 . We establish that the system of equations (1.6), (1.7) in such

case defines a map on the space given above, which will be a strict contraction under
the stated conditions.

Theorem 1.5 Let 	 = I , Assumptions 1.1 and 1.4 hold and 2
√

π PL < 1.
Then, the map τav = u on H2

c (I , R
N2) defined by the system of equations (1.6), (1.7)

has a unique fixed point va(x) : I → R
N2 , the only stationary solution of problem

(1.2), (1.3) in H2
c (I , R

N2).
This fixed point va(x) is nonzero provided the Fourier coefficients Gk, n Fk(0, x)n �= 0
for a certain 1 ≤ k ≤ N2 and some n ∈ Z.

Note that the constrained subspaces H2
k (I ) and H2

0 (I ) involved in the direct sum of
spaces H2

c (I , R
N2) are such that the Fredholm operators

− d2

dx2
− n2k : H2

k (I ) → L2(I ) and − d2

dx2
: H2

0 (I ) → L2(I )

possess the trivial kernels.
We conclude the article with the studies of our system of equations in the layer domain,
which is the product of the two sets, such that one is the I interval with periodic
boundary conditions as in the previous part of the work and another is the whole space
of dimension either one or two, namely 	 = I × R

d = [0, 2π ] × R
d , d = 1, 2 and

x = (x1, x⊥), with x1 ∈ I and x⊥ ∈ R
d . The cumulative Laplacian in this context
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10 V. Vougalter , V. Volpert

will be � := ∂2

∂x21
+ ∑d

s=1
∂2

∂x2⊥, s
. The corresponding Sobolev space for our problem

will be H2(	, R
N2) of vector functions u(x) : 	 → R

N2 , so that for 1 ≤ k ≤ N2

uk(x), �uk(x) ∈ L2(	), uk(0, x⊥) = uk(2π, x⊥),
∂uk
∂x1

(0, x⊥) = ∂uk
∂x1

(2π, x⊥),

with x⊥ ∈ R
d . It is equipped with the norm

‖u‖2
H2(	, RN2 )

=
N2∑
k=1

{‖uk‖2L2(	)
+ ‖�uk‖2L2(	)

}.

Analogously to thewhole space case discussed inTheorem1.3, the operators−�−ak :
H2(	) → L2(	) for ak ≥ 0, 1 ≤ k ≤ N1 do not possess the Fredholm property. Let
us establish that problem (1.6), (1.7) in such case defines a map ta : H2(	, R

N2) →
H2(	, R

N2), which is a strict contraction under the appropriate technical conditions
stated below.

Assumption 1.6 Let Gk(x) : 	 → R, Gk(x) ∈ C(	) ∩ L1(	), Gk(0, x⊥) =
Gk(2π, x⊥) and Fk(u, 0, x⊥) = Fk(u, 2π, x⊥) for x⊥ ∈ R

d , u ∈ R
N2 , d = 1, 2 and

1 ≤ k ≤ N2. Let N1 ≥ 3, 1 ≤ m < q ≤ N1 − 1 with m, q ∈ N and N2 > N1.
I) Assume for 1 ≤ k ≤ m, we have n2k < ak < (nk + 1)2, nk ∈ Z

+ = N ∪
{0}, x⊥Gk(x) ∈ L1(	) and

(
Gk(x1, x⊥),

einx1√
2π

e±i
√

ak−n2x⊥
√
2π

)
L2(	)

= 0, |n| ≤ nk f or d = 1,

(1.27)(
Gk(x1, x⊥),

einx1√
2π

eipx⊥

2π

)
L2(	)

= 0, p ∈ S2√
ak−n2

, |n| ≤ nk f or d = 2.

(1.28)

II) Assume for m + 1 ≤ k ≤ q we have ak = n2k, nk ∈ N, x2⊥Gk(x) ∈ L1(	) and

(
Gk(x1, x⊥),

einx1√
2π

e
±i

√
n2k−n2x⊥

√
2π

)
L2(	)

= 0, |n| ≤ nk − 1 f or d = 1, (1.29)

(
Gk(x1, x⊥),

einx1√
2π

eipx⊥

2π

)
L2(	)

= 0, p ∈ S2√
n2k−n2

, |n| ≤ nk − 1 f or d = 2,

(1.30)(
Gk(x1, x⊥),

e±ink x1
√
2π

)
L2(	)

= 0,

(
Gk(x1, x⊥),

e±ink x1
√
2π

x⊥, s

)
L2(	)

= 0, (1.31)

with 1 ≤ s ≤ d.
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Solvability of Some Systems of Integro-differential Equations… 11

III) Assume for q + 1 ≤ k ≤ N1 we have ak = 0, x2⊥Gk(x) ∈ L1(	) and

(Gk(x), 1)L2(	) = 0, (Gk(x), x⊥, s)L2(	) = 0, 1 ≤ s ≤ d. (1.32)

IV) Let ak > 0, N1 + 1 ≤ k ≤ N2.

Let us use the Fourier transform for the functions on such a product of sets, namely

Ĝk, n(p) := 1

(2π)
d+1
2

∫
Rd

dx⊥e−i px⊥
∫ 2π

0
Gk(x1, x⊥)e−inx1dx1 (1.33)

with p ∈ R
d , n ∈ Z, 1 ≤ k ≤ N2. Clearly,

‖Ĝk, n(p)‖L∞
n,p

:= sup{p∈Rd , n∈Z}|Ĝk, n(p)| ≤ 1

(2π)
d+1
2

‖Gk‖L1(	). (1.34)

We introduce the following auxiliary expressions

Rk :=max

{∥∥∥∥ Ĝk, n(p)

p2 + n2 − ak

∥∥∥∥
L∞
n,p

,

∥∥∥∥ (p2 + n2)Ĝk, n(p)

p2 + n2 − ak

∥∥∥∥
L∞
n,p

}
, 1 ≤ k ≤ m, (1.35)

Rk := max

{∥∥∥∥ Ĝk, n(p)

p2 + n2 − n2k

∥∥∥∥
L∞
n,p

,

∥∥∥∥ (p2 + n2)Ĝk, n(p)

p2 + n2 − n2k

∥∥∥∥
L∞
n,p

}
, m + 1 ≤ k ≤ q,

(1.36)

Rk := max

{∥∥∥∥ Ĝk, n(p)

p2 + n2

∥∥∥∥
L∞
n,p

,

∥∥∥∥Ĝk, n(p)

∥∥∥∥
L∞
n,p

}
, q + 1 ≤ k ≤ N1, (1.37)

Rk := max

{∥∥∥∥ Ĝk, n(p)

p2 + n2 + ak

∥∥∥∥
L∞
n,p

,

∥∥∥∥ (p2 + n2)Ĝk, n(p)

p2 + n2 + ak

∥∥∥∥
L∞
n,p

}
, N1 + 1 ≤ k ≤ N2.

(1.38)

Assumption 1.6 along with Lemmas A4, A5 and A6 of [28] yield that the quantities
given by (1.35), (1.36) and (1.37) are finite. It can be trivially checked that (1.38) are
finite as well. Obviously, for N1 + 1 ≤ k ≤ N2 by virtue of (1.34) we have

∣∣∣ Ĝk, n(p)

p2 + n2 + ak

∣∣∣ ≤ |Ĝk, n(p)|
ak

≤ 1

(2π)
d+1
2 ak

‖Gk‖L1(	) < ∞

due to one of our assumptions. Using (1.34), we arrive at

∣∣∣ (p2 + n2)Ĝk, n(p)

p2 + n2 + ak

∣∣∣ ≤ |Ĝk, n(p)| ≤ 1

(2π)
d+1
2

‖Gk‖L1(	) < ∞,
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12 V. Vougalter , V. Volpert

so that Rk < ∞ for N1 + 1 ≤ k ≤ N2 as well. Thus, we can define

R := maxRk, 1 ≤ k ≤ N2, (1.39)

with Rk given in (1.35), (1.36), (1.37) and (1.38). Our final proposition is as follows.

Theorem 1.7 Let 	 = I × R
d , d = 1, 2, Assumptions 1.1 and 1.6 hold and√

2(2π)
d+1
2 RL < 1. Then the map tav = u on H2(	, R

N2) defined by system
(1.6), (1.7) has a unique fixed point va(x) : 	 → R

N2 , which is the only stationary
solution of the system of equations (1.2), (1.3) in H2(	, R

N2). This fixed point va(x)
is nontrivial provided that the intersection of supports of the Fourier transforms of the
functions suppF̂k(0, x)n(p) ∩ suppĜk, n(p) is a set of nonzero Lebesgue measure in
R
d for a certain 1 ≤ k ≤ N2 and some n ∈ Z.

Let us note that themaps considered in the theorems above are applied to the real valued
vector functions by virtue of the conditions on Fk(u, x) and Gk(x), 1 ≤ k ≤ N2
involved in the nonlocal terms of (1.6), (1.7). The map ta is an analog of the map Ta .

2 The Problem in theWhole Space

Proof of Theorem 1.3. Let us first suppose that in the case of 	 = R
d , d = 1, 2, 3

there exists v(x) ∈ H2(Rd , R
N2) such that system (1.6), (1.7) admits two solutions

u(1),(2)(x) ∈ H2(Rd , R
N2). The the difference vector function w(x) := u(1)(x) −

u(2)(x) ∈ H2(Rd , R
N2) satisfies the homogeneous system of equations

−�wk = akwk, ak ≥ 0, 1 ≤ k ≤ N1,

−�wk = −akwk, ak > 0, N1 + 1 ≤ k ≤ N2.

Since the operator −� : H2(Rd) → L2(Rd) does not have any nontrivial eigenfunc-
tions, we have that wk(x) vanishes in R

d for all k = 1, . . . , N2.
We consider an arbitrary vector function v(x) ∈ H2(Rd , R

N2) and apply the standard
Fourier transform (1.12) to both sides of system (1.6), (1.7). This gives us

ûk(p) = (2π)
d
2
Ĝk(p) f̂k(p)

p2 − ak
, ak ≥ 0, 1 ≤ k ≤ N1, (2.1)

ûk(p) = (2π)
d
2
Ĝk(p) f̂k(p)

p2 + ak
, ak > 0, N1 + 1 ≤ k ≤ N2. (2.2)

Here, f̂k(p) denotes the Fourier image of Fk(v(x), x). We have the trivial estimates
using expressions (1.14), (1.15) (1.16) and (1.17), namely

|ûk(p)| ≤ (2π)
d
2 M | f̂k(p)| and |p2ûk(p)| ≤ (2π)

d
2 M | f̂k(p)|, 1 ≤ k ≤ N2.
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Solvability of Some Systems of Integro-differential Equations… 13

This gives us the upper bound for the norm as

‖u‖2
H2(Rd , RN2 )

=
N2∑
k=1

{‖ûk(p)‖2L2(Rd )
+ ‖p2ûk(p)‖2L2(Rd )

} ≤

≤ 2(2π)dM2
N2∑
k=1

‖Fk(v(x), x)‖2L2(Rd )
. (2.3)

Clearly, the right side of (2.3) is finite via inequality (1.4) of Assumption 1.1 above.
Thus, for any v(x) ∈ H2(Rd , R

N2) there exists a unique vector function u(x) ∈
H2(Rd , R

N2), which satisfies system (1.6), (1.7) and its Fourier image is given by
(2.1), (2.2). Hence, the map Ta : H2(Rd , R

N2) → H2(Rd , R
N2) is well defined.

This enables us to choose arbitrarily v(1),(2)(x) ∈ H2(Rd , R
N2) and obtain their

images under this map u(1),(2) := Tav(1),(2) ∈ H2(Rd , R
N2), such that by means of

(1.6), (1.7)

− �u(1)
k − aku

(1)
k =

∫
Rd

Gk(x − y)Fk(v
(1)
1 (y), v(1)

2 (y), . . . , v(1)
N2

(y), y)dy, ak ≥ 0

(2.4)

for 1 ≤ k ≤ N1,

− �u(1)
k + aku

(1)
k =

∫
Rd

Gk(x − y)Fk(v
(1)
1 (y), v(1)

2 (y), . . . , v(1)
N2

(y), y)dy, ak > 0

(2.5)

for N1 + 1 ≤ k ≤ N2. Similarly,

− �u(2)
k − aku

(2)
k =

∫
Rd

Gk(x − y)Fk(v
(2)
1 (y), v(2)

2 (y), . . . , v(2)
N2

(y), y)dy, ak ≥ 0

(2.6)

if 1 ≤ k ≤ N1,

− �u(2)
k + aku

(2)
k =

∫
Rd

Gk(x − y)Fk(v
(2)
1 (y), v(2)

2 (y), . . . , v(2)
N2

(y), y)dy, ak > 0,

(2.7)

if N1 + 1 ≤ k ≤ N2. Let us apply the standard Fourier transform (1.12) to both sides
of systems (2.4), (2.5) and (2.6), (2.7). This yields

û(1)
k (p) = (2π)

d
2
Ĝk(p)

̂
f (1)
k (p)

p2 − ak
, ak ≥ 0, 1 ≤ k ≤ N1, (2.8)

û(1)
k (p) = (2π)

d
2
Ĝk(p)

̂
f (1)
k (p)

p2 + ak
, ak > 0, N1 + 1 ≤ k ≤ N2 (2.9)
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14 V. Vougalter , V. Volpert

and

û(2)
k (p) = (2π)

d
2
Ĝk(p)

̂
f (2)
k (p)

p2 − ak
, ak ≥ 0, 1 ≤ k ≤ N1, (2.10)

û(2)
k (p) = (2π)

d
2
Ĝk(p)

̂
f (2)
k (p)

p2 + ak
, ak > 0, N1 + 1 ≤ k ≤ N2. (2.11)

Here
̂
f (1),(2)
k (p) stand for the Fourier images of Fk(v(1),(2)(x), x). From formulas

(2.8), (2.9), (2.10), (2.11) via (1.14), (1.15) (1.16) and (1.17) we deduce easily the
upper bounds for 1 ≤ k ≤ N2 as

∣∣∣∣û(1)
k (p) − û(2)

k (p)

∣∣∣∣ ≤ (2π)
d
2 M

∣∣∣∣̂f (1)
k (p) −̂

f (2)
k (p)

∣∣∣∣,∣∣∣∣p2û(1)
k (p) − p2û(2)

k (p)

∣∣∣∣ ≤ (2π)
d
2 M

∣∣∣∣̂f (1)
k (p) −̂

f (2)
k (p)

∣∣∣∣.
This enables us to derive the estimate from above on the corresponding norm of the
difference of vector functions

‖u(1) − u(2)‖2
H2(Rd , RN2 )

=
N2∑
k=1

{∥∥∥̂u(1)
k (p) −̂

u(2)
k (p)

∥∥∥2
L2(Rd )

+
∥∥∥p2[̂u(1)

k (p) −̂
u(2)
k (p)

]∥∥∥2
L2(Rd )

}

≤ 2(2π)dM2
N2∑
k=1

‖Fk(v(1)(x), x) − Fk(v
(2)(x), x)‖2L2(Rd )

. (2.12)

By means of the Sobolev embedding theorem for 1 ≤ k ≤ N2 we have v
(1),(2)
k (x) ∈

H2(Rd) ⊂ L∞(Rd), 1 ≤ d ≤ 3. Inequality (1.5) of Assumption 1.1 above trivially
implies

‖Tav(1) − Tav
(2)‖H2(Rd , RN2 ) ≤ √

2(2π)
d
2 ML‖v(1) − v(2)‖H2(Rd , RN2 ). (2.13)

The constant in the right side of (2.13) is less than one as assumed.Thus, the FixedPoint
Theorem implies the existence of a unique vector function va(x) ∈ H2(Rd , R

N2),
so that Tava = va . This is the only stationary solution of system (1.2), (1.3) in
H2(Rd , R

N2). Finally, we suppose that va(x) is trivial in R
d . This will give us the

contradiction to our assumption that for a certain 1 ≤ k ≤ N2 the Fourier transforms
of Gk(x) and Fk(0, x) do not vanish simultaneously on some set of nonzero Lebesgue
measure in R

d . ��

3 The Problem on the [0, 2�] Interval
Proof of Theorem 1.5. First we suppose that for some v(x) ∈ H2

c (I , R
N2) there exist

two solutions u(1),(2)(x) ∈ H2
c (I , R

N2) of system (1.6), (1.7) with 	 = I . Then, the

123



Solvability of Some Systems of Integro-differential Equations… 15

difference vector function w(x) := u(1)(x) − u(2)(x) ∈ H2
c (I , R

N2) will solve the
homogeneous system of equations

− w′′
k = akwk, ak ≥ 0, 1 ≤ k ≤ N1, (3.1)

−w′′
k = −akwk, ak > 0, N1 + 1 ≤ k ≤ N2. (3.2)

By means of Assumption 1.4, we have ak > 0, ak �= n2, n ∈ Z for 1 ≤ k ≤ m.
Hence, they are not the eigenvalues of our operator

− d2

dx2
: H2(I ) → L2(I ). (3.3)

Thus, wk(x) are trivial in I if 1 ≤ k ≤ m. When m + 1 ≤ k ≤ q the values of ak
coincide with the eigenvalues of (3.3) as assumed. But wk belong to the constrained
subspaces H2

k (I ). Therefore, wk vanish identically in I if m + 1 ≤ k ≤ q due to their

orthogonality to the eigenfunctions
e±ink x

√
2π

of (3.3). By virtue of Assumption 1.4, the

constants ak = 0 for q + 1 ≤ k ≤ N1. But wk ∈ H2
0 (I ), so that they are orthogonal

to the zero mode of our operator (3.3). Therefore, wk(x) are trivial in I as well if
q + 1 ≤ k ≤ N1. Finally, let us consider the situation when N1 + 1 ≤ k ≤ N2. But
operator (3.3) cannot have any negative eigenvalues. Therefore, by means of (3.2) we
have that wk(x) vanish identically in I for N1 + 1 ≤ k ≤ N2.
We choose arbitrarily v(x) ∈ H2

c (I , R
N2). Let us apply the Fourier transform (1.20)

to both sides of the system of equations (1.6), (1.7) considered on the interval [0, 2π ].
This yields

uk, n = √
2π

Gk, n fk, n
n2 − ak

, ak ≥ 0, 1 ≤ k ≤ N1, n ∈ Z, (3.4)

uk, n = √
2π

Gk, n fk, n
n2 + ak

, ak > 0, N1 + 1 ≤ k ≤ N2, n ∈ Z, (3.5)

with fk, n := Fk(v(x), x)n . Clearly, the Fourier coefficients of the second derivatives
are equal to

(−u′′
k )n = √

2π
n2Gk, n fk, n
n2 − ak

, ak ≥ 0, 1 ≤ k ≤ N1, n ∈ Z,

(−u′′
k )n = √

2π
n2Gk, n fk, n
n2 + ak

, ak > 0, N1 + 1 ≤ k ≤ N2, n ∈ Z.

We easily obtain the estimate from above

‖u‖2
H2
c (I , RN2 )

=
N2∑
k=1

{ ∞∑
n=−∞

|uk, n|2 +
∞∑

n=−∞
|n2uk, n|2

}
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16 V. Vougalter , V. Volpert

≤ 4π
N2∑
k=1

P2
k ‖Fk(v(x), x)‖2L2(I ). (3.6)

Let us recall inequality (1.4) of Assumption 1.1. Hence, the right side of (3.6) is
finite. Thus, for an arbitrarily chosen vector function v(x) ∈ H2

c (I , R
N2) there exists

a unique u(x) ∈ H2
c (I , R

N2), which satisfies the system of equations (1.6), (1.7)
and its Fourier coefficients are given by formulas (3.4), (3.5), so that the map τa :
H2
c (I , R

N2) → H2
c (I , R

N2) is well defined. Clearly, orthogonality relations (1.18)
and (1.19) along with (3.4) yield that for m + 1 ≤ k ≤ q the components uk(x)

are orthogonal to the Fourier harmonics
e±ink x

√
2π

in L2(I ) and for q + 1 ≤ k ≤ N1

the functions uk(x) are orthogonal to 1 in L2(I ), because the corresponding Fourier
coefficients are equal to zero.
Let us consider arbitrary vector functions v(1),(2)(x) ∈ H2

c (I , R
N2), so that their

images under the map discussed above are u(1),(2) = τav
(1),(2) ∈ H2

c (I , R
N2). By

virtue of (1.6), (1.7), we have

− d2

dx2
u(1)
k − aku

(1)
k =

∫ 2π

0
Gk(x − y)Fk(v

(1)
1 (y), v(1)

2 (y), . . . , v(1)
N2

(y), y)dy, ak ≥ 0

(3.7)

if 1 ≤ k ≤ N1,

− d2

dx2
u(1)
k + aku

(1)
k =

∫ 2π

0
Gk(x − y)Fk(v

(1)
1 (y), v(1)

2 (y), . . . , v(1)
N2

(y), y)dy, ak > 0

(3.8)

if N1 + 1 ≤ k ≤ N2. Analogously,

− d2

dx2
u(2)
k − aku

(2)
k =

∫ 2π

0
Gk(x − y)Fk(v

(2)
1 (y), v(2)

2 (y), . . . , v(2)
N2

(y), y)dy, ak ≥ 0

(3.9)

for 1 ≤ k ≤ N1,

− d2

dx2
u(2)
k + aku

(2)
k =

∫ 2π

0
Gk(x − y)Fk(v

(2)
1 (y), v(2)

2 (y), . . . , v(2)
N2

(y), y)dy, ak > 0

(3.10)

for N1 + 1 ≤ k ≤ N2. We apply the Fourier transform (1.20) to both sides of systems
(3.7), (3.8) and (3.9), (3.10). This gives us

u(1)
k, n = √

2π
Gk, n f

(1)
k, n

n2 − ak
, ak ≥ 0, 1 ≤ k ≤ N1, n ∈ Z, (3.11)

123



Solvability of Some Systems of Integro-differential Equations… 17

u(1)
k, n = √

2π
Gk, n f

(1)
k, n

n2 + ak
, ak > 0, N1 + 1 ≤ k ≤ N2, n ∈ Z (3.12)

and

u(2)
k, n = √

2π
Gk, n f

(2)
k, n

n2 − ak
, ak ≥ 0, 1 ≤ k ≤ N1, n ∈ Z, (3.13)

u(2)
k, n = √

2π
Gk, n f

(2)
k, n

n2 + ak
, ak > 0, N1 + 1 ≤ k ≤ N2, n ∈ Z. (3.14)

Here f (1),(2)
k, n denote the Fourier images of Fk(v(1),(2)(x), x) under transform (1.20).

Let us recall (1.22), (1.23), (1.24), (1.25) and (1.26). By means of formulas (3.11),
(3.12), (3.13) and (3.14), we obtain for 1 ≤ k ≤ N2, n ∈ Z that

|u(1)
k, n − u(2)

k, n| ≤ √
2π P| f (1)

k, n − f (2)
k, n|,

|n2u(1)
k, n − n2u(2)

k, n| ≤ √
2π P| f (1)

k, n − f (2)
k, n|.

Therefore,

‖u(1) − u(2)‖2
H2
c (I , RN2 )

=
N2∑
k=1

{ ∞∑
n=−∞

|u(1)
k, n − u(2)

k, n |2 +
∞∑

n=−∞
|n2(u(1)

k, n − u(2)
k, n)|2

}

≤ 4π P2
N2∑
k=1

‖Fk(v(1)(x), x) − Fk(v
(2)(x), x)‖2L2(I ).

Evidently, due to the Sobolev embedding theorem we have v
(1),(2)
k (x) ∈ H2(I ) ⊂

L∞(I ) with 1 ≤ k ≤ N2. Let us recall inequality (1.5). Hence,

‖τav(1) − τav
(2)‖H2

c (I , RN2 ) ≤ 2
√

π PL‖v(1) − v(2)‖H2
c (I , RN2 ). (3.15)

Note that the constant in the right side of bound (3.15) is less than one as assumed.Thus,
the Fixed Point Theorem implies the existence and uniqueness of a vector function
va(x) ∈ H2

c (I , R
N2) satisfying τava = va . This is the only stationary solution of

the system of equations (1.2), (1.3) in H2
c (I , R

N2). Finally, we suppose that va(x) is
trivial in the interval I . This will contradict to the stated assumption that the Fourier
coefficients Gk, n Fk(0, x)n �= 0 for a certain 1 ≤ k ≤ N2 and some n ∈ Z. ��

4 The Problem in the Layer Domain

Proof of Theorem 1.7. First, we suppose that there exists v(x) ∈ H2(	, R
N2),

which generates u(1),(2)(x) ∈ H2(	, R
N2) satisfying the system of equations (1.6),

(1.7). Then the difference of these vector functions w(x) := u(1)(x) − u(2)(x) ∈

123



18 V. Vougalter , V. Volpert

H2(	, R
N2) will solve the homogeneous system

−�wk = akwk, ak ≥ 0, 1 ≤ k ≤ N1, (4.1)

−�wk = −akwk, ak > 0, N1 + 1 ≤ k ≤ N2. (4.2)

We apply the partial Fourier transform to (4.1) and derive

−�⊥wk, n(x⊥) = (ak − n2)wk, n(x⊥), 1 ≤ k ≤ N1, n ∈ Z.

Here, wk, n(x⊥) := 1√
2π

∫ 2π

0
wk(x1, x⊥)e−inx1dx1 and �⊥ is the Laplace operator

with respect to x⊥. Clearly,

‖wk‖2L2(	)
=

∞∑
n=−∞

‖wk, n‖2L2(Rd )
, 1 ≤ k ≤ N1.

Thus,

wk, n(x⊥) ∈ L2(Rd), 1 ≤ k ≤ N1, n ∈ Z.

But the operator−�⊥ considered in the wholeR
d does not have any nontrivial square

integrable eigenfunctions. Therefore, wk(x) vanish in 	 for 1 ≤ k ≤ N1. The analo-
gous assertion is true for wk(x) with N1 + 1 ≤ k ≤ N2 by virtue of (4.2), since the
operator −� : H2(	) → L2(	) cannot possess any negative eigenvalues.
Let us consider an arbitrary vector function v(x) ∈ H2(	, R

N2) and apply the Fourier
transform (1.33) to both sides of system (1.6), (1.7). This yields

ûk, n(p) = (2π)
d+1
2

Ĝk, n(p) f̂k, n(p)

p2 + n2 − ak
, ak ≥ 0, 1 ≤ k ≤ N1, n ∈ Z, p ∈ R

d , (4.3)

ûk, n(p) = (2π)
d+1
2

Ĝk, n(p) f̂k, n(p)

p2 + n2 + ak
, ak > 0, N1 + 1 ≤ k ≤ N2, n ∈ Z, p ∈ R

d .

(4.4)

Here f̂k, n(p) designates the Fourier image of Fk(v(x), x) under transform (1.33).
Obviously, we have the estimates from above in terms of the expressions given by
(1.35), (1.36), (1.37) and (1.38), namely

|ûk, n(p)| ≤ (2π)
d+1
2 Rk | f̂k, n(p)|, |(p2 + n2)ûk, n(p)| ≤ (2π)

d+1
2 Rk | f̂k, n(p)|,

with 1 ≤ k ≤ N2, n ∈ Z, p ∈ R
d . We arrive at

‖u‖2
H2(	, RN2 )

=
N2∑
k=1

{ ∞∑
n=−∞

∫
Rd

|ûk, n(p)|2dp +
∞∑

n=−∞

∫
Rd

|(p2 + n2)ûk, n(p)|2dp
}
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≤ 2(2π)d+1
N2∑
k=1

Rk
2‖Fk(v(x), x)‖2L2(	)

. (4.5)

Let us recall inequality (1.4) of Assumption 1.1. Hence, the right side of (4.5) is finite.
Thus, for any vector function v(x) ∈ H2(	, R

N2) there exists a unique u(x) ∈
H2(	, R

N2) satisfying system (1.6), (1.7). Its Fourier transform is given by (4.3),
(4.4). Therefore, the map ta : H2(	, R

N2) → H2(	, R
N2) is well defined.

We choose arbitrarily two vector functions v(1),(2) ∈ H2(	, R
N2), so that their images

under the map discussed above are u(1),(2) := tav(1),(2) ∈ H2(	, R
N2). By means of

(1.6), (1.7), we have precisely

− �u(1)
k − aku

(1)
k =

∫
	

Gk(x − y)Fk(v
(1)
1 (y), v(1)

2 (y), . . . , v(1)
N2

(y), y)dy, ak ≥ 0

(4.6)

with 1 ≤ k ≤ N1,

− �u(1)
k + aku

(1)
k =

∫
	

Gk(x − y)Fk(v
(1)
1 (y), v(1)

2 (y), . . . , v(1)
N2

(y), y)dy, ak > 0

(4.7)

with N1 + 1 ≤ k ≤ N2. Similarly,

− �u(2)
k − aku

(2)
k =

∫
	

Gk(x − y)Fk(v
(2)
1 (y), v(2)

2 (y), . . . , v(2)
N2

(y), y)dy, ak ≥ 0

(4.8)

if 1 ≤ k ≤ N1,

− �u(2)
k + aku

(2)
k =

∫
	

Gk(x − y)Fk(v
(2)
1 (y), v(2)

2 (y), . . . , v(2)
N2

(y), y)dy, ak > 0

(4.9)

if N1+1 ≤ k ≤ N2. Let us apply the Fourier transform (1.33) to both sides of systems
(4.6), (4.7) and (4.8), (4.9). This yields

̂
u(1)
k, n(p) = (2π)

d+1
2

Ĝk, n(p)
̂
f (1)
k, n(p)

p2 + n2 − ak
, ak ≥ 0, 1 ≤ k ≤ N1, n ∈ Z, p ∈ R

d ,

(4.10)

̂
u(1)
k, n(p) = (2π)

d+1
2

Ĝk, n(p)
̂
f (1)
k, n(p)

p2 + n2 + ak
, ak > 0, N1 + 1 ≤ k ≤ N2, n ∈ Z, p ∈ R

d .

(4.11)
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and

̂
u(2)
k, n(p) = (2π)

d+1
2

Ĝk, n(p)
̂
f (2)
k, n(p)

p2 + n2 − ak
, ak ≥ 0, 1 ≤ k ≤ N1, n ∈ Z, p ∈ R

d ,

(4.12)

̂
u(2)
k, n(p) = (2π)

d+1
2

Ĝk, n(p)
̂
f (2)
k, n(p)

p2 + n2 + ak
, ak > 0, N1 + 1 ≤ k ≤ N2, n ∈ Z, p ∈ R

d .

(4.13)

Here,
̂
f (1),(2)
k, n (p) stand for the Fourier images of Fk(v(1),(2)(x), x) under transform

(1.33). We recall (1.35), (1.36), (1.37), (1.38) and (1.39). By virtue of formulas (4.10),
(4.11), (4.12) and (4.13) we derive for 1 ≤ k ≤ N2, n ∈ Z, p ∈ R

d that

∣∣∣∣̂u(1)
k, n(p) − ̂

u(2)
k, n(p)

∣∣∣∣ ≤ (2π)
d+1
2 R

∣∣∣∣̂f (1)
k, n(p) − ̂

f (2)
k, n(p)

∣∣∣∣,∣∣∣∣(p2 + n2)

[
̂
u(1)
k, n(p) − ̂

u(2)
k, n(p)

]∣∣∣∣ ≤ (2π)
d+1
2 R

∣∣∣∣̂f (1)
k, n(p) − ̂

f (2)
k, n(p)

∣∣∣∣.

Hence,

‖u(1) − u(2)‖2
H2(	, RN2 )

=
N2∑
k=1

{ ∞∑
n=−∞

∫
Rd

{
|̂u(1)

k, n(p) −̂u(2)
k, n(p)|2dp

+
∞∑

n=−∞

∫
Rd

|(p2 + n2)(̂u(1)
k, n(p) −̂u(2)

k, n(p))|2dp
}

≤ 2(2π)d+1R2
N2∑
k=1

‖Fk(v(1)(x), x) − Fk(v
(2)(x), x)‖2L2(	)

.

By means of the Sobolev embedding theorem, v
(1),(2)
k (x) ∈ H2(	) ⊂ L∞(	) with

1 ≤ k ≤ N2. Let us recall inequality (1.5). We arrive at

‖tav(1) − tav
(2)‖H2(	, RN2 ) ≤ √

2(2π)
d+1
2 RL‖v(1) − v(2)‖H2(	, RN2 ). (4.14)

The constant in its right side of (4.14) is less than one via one of our assumptions.
The Fixed Point Theorem yields the existence and uniqueness of a vector function
va(x) ∈ H2(	, R

N2), for which tava = va is valid. This is the only stationary
solution of system (1.2), (1.3) in H2(	, R

N2). Let us suppose that va(x) is trivial
in 	. This will give us the contradiction to the imposed condition that there exist
1 ≤ k ≤ N2 and n ∈ Z, so that supp ̂Fk(0, x)n(p) ∩ suppĜk, n(p) is a set of nonzero
Lebesgue measure in R

d . ��
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