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Abstract
In this paper, we explore the spectral measures of the Laplacian on Schreier graphs
for several self-similar groups (the Grigorchuk, Lamplighter, and Hanoi groups) from
the dynamical and algebro-geometric viewpoints. For these graphs, classical Schur
renormalization transformations act on appropriate spectral parameters as rational
maps in two variables. We show that the spectra in question can be interpreted as
asymptotic distributions of slices by a line of iterated pullbacks of certain algebraic
curves under the corresponding rational maps (leading us to a notion of a spectral
current). We follow up with a dynamical criterion for discreteness of the spectrum. In
case of atomic spectrum, the precise rate of convergence of finite-scale approximands
to the limiting spectral measure is given. For the three groups under consideration, the
corresponding rational maps happen to be fibered over polynomials in one variable.
We reveal the algebro-geometric nature of this integrability phenomenon.
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1 Introduction

Spectral theory of the Laplacian is a classical area of Mathematical Physics, with
deep connections to Geometry, Probability, Dynamics, Geometric Group Theory, and
Number Theory. From the point of view of Quantum Mechanics, it describes the
observable energy spectrum of a free particle moving in the space under consideration.
In this interpretation, the dichotomy between atomic and continuous spectrum roughly
corresponds to the difference between insulating and conducting states of matter (see
[24] and Sect. 2.5 for more about this).

In a series of works byBartholdi, Grigorchuk, Nekrashevich, Sunić, Zuk, and others
[4, 30, 50–53, 59, 60, 62] over the past 20 years, the spectral problem for Cayley, and
more generally Schreier graphs has been explored for discrete self-similar groups.
Homogeneity and self-similarity of the corresponding spaces leads to invariance of
the spectrum under Schur Renormalization transformations, which sometimes happen
to be rational maps in two variables. This allowed the authors to describe the spectrum
of the corresponding Schreier graphs in three remarkable cases: the Grigorchuk G,
Lamplighter L, and Hanoi H group. In particular, the spectrum turned out to be
absolutely continuous in the former case and discrete in the latter two.

In this paper, we bring ideas fromHolomorphic Dynamics andAlgebraic Geometry
to give a new insight into the above spectral phenomena. Namely, we take a close look
at the dynamics of the corresponding renormalization transformations and relate the
spectral results to the equidistribution theory for dynamical pullbacks of holomorphic
curves.Wealso analyze the nature of integrabilityof these transformations (that happen
to be fibered over one-dimensional maps). In particular, we give a general algebro-
geometric criterion for integrability (in the spirit of Diller and Favre [26]) that can be
applied to each of the groups in question. This allows us to put all the previous results
in a general framework.

To set up the renormalization scheme (for the above three self-similar groups), one
needs to introduce an extra spectral parameter and the corresponding two-parameter
pencil of operators. In the nth scale this pencil is reduced to a pencil of matrices of size
dn (where d = 2 for the groups G ,L and d = 3 forH corresponding to the branching
number of the regular tree on which the groups acts). Letting Pn ∈ C[λ,μ] be the
characteristic polynomial of that matrix pencil, one obtains the following spectral
relation between two consecutive scales:

Pn+1 = Qdn · (Pn ◦ R), (1.1)

where Q ∈ C[λ,μ], P0 is linear, and R : C
2 ��� C

2 is the renormalization rational
map. For the groupsG,H andL, the transformation R is given by the following explicit
expressions, respectively:
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RG(λ, μ) :=
(

2λ2

4 − μ2 , μ + μλ2

4 − μ2

)
,

RL(λ, μ) :=
(

−λ2 − μ2 − 2

μ − λ
, − 2

μ − λ

)
,

RH(λ, μ) :=
(

λ + 2μ2(−λ2 + λ + μ2)

(λ − 1 − μ)(λ2 − 1 + μ − μ2)
,

μ2(λ − 1 + μ)

(λ − 1 − μ)(λ2 − 1 + μ − μ2)

)
.

It shows a clear connection between the spectral algebraic curves �n = {Pn = 0} and
iterated pullbacks of the initial line �0 by the rational map R. We obtain the spectral
current T of a pencil of operators as the limit in the sense of currents

T = lim
n→+∞

1

dn
[Pn = 0], (1.2)

when it exists. This current is supported on an algebraic curve lamination related to
the Julia set of R in the Hanoi case and Grigorshuk cases, and to the non-wandering
set in the Lamplighter case.1

The desired spectral measure ω for the Laplacian is the slice of this current by an
appropriate line {λ = const} and is called the density of states, or is referred in [56,
59] as the KNS spectral measure (after Kesten, Von Neumann and Serre).

The density of states for the groups G,H andL (naturally acting on the correspond-
ing regular trees) were described in the papers [4, 51] and [54] respectively. In this
paper, we will interprete these results from the outlined dynamical viewpoint, and, for
the latter two groups, give the rate of convergence ωn → ω, where ωn is the counting
measure for the corresponding eigenvalues in n-th scale.

Theorem A The following properties hold.

(i) The density of states ω associated with G is absolutely continuous with respect
to the Lebesgue measure (with an explicit density) supported on the union of two
intervals. This measure is the pushforward by μ �→ (μ + 1)/4 of the slice of the
Green current of the renormalization map RG by the appropriate line. Its support
is the image by the above affine transformation of the slice of the Julia set of RG
(see Sect. 5.2 and Theorem 5.11).

(ii) The density of states associated with the group L is atomic, and

ωn − ω ∼ n/2n−1 m

where m is the Lebesgue measure on the interval. This interval (equal to the
support of ω) is the slice of the “neutral cylinder” (see Sect. 3.6.2) of the renor-
malization transformation RL.

1 In the Lamplighter case, one refers to the non-wandering set rather than the Julia set because the map has
zero topological entropy since both the topological entropy and the first dynamical degree are one.
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(iii) The density of states associated with the group H is atomic as well, and

ωn − ω ∼ 25

6
· 2

n

3n
m

where m is a Bernoulli measure on a Cantor set K . This Cantor set is the slice
of the Julia set (see Sect. 7.2) of the renormalization transformation RH by the
appropriate line. Moreover, the support of the density of states for H consists of
a countable set of eigenvalues accumulating on K .

Remark 1.1 It turns out that theHanoi group can be realized as the iteratedmonodromy
group of the rational function z2 + 16/27z whose Julia set is homeomorphic to the
Sierpinski gasket [51]. A similar notion of density of states was defined for various
fractal sets in [70, 86]. It has been intensely studied for the Sierpinski gasket [38, 69,
79, 87] and other fractals [17, 83, 84]. It would be interesting to explore if there is a
direct connection between assertion (iii) and these results.

Remark 1.2 The Julia set for the map RG (and for closely related map RD for the
infinite dihedral group) was independently studied by Goldberg and Yang [41] (see
the discussion in Sect. 3.4 for more details).

What makes these results quite easy from the dynamical viewpoint is the “integra-
bility” of the corresponding renormalization transformations. The respective integrals
were explicitly given in [4, 51, 54] and communicated to us privately by Vorobets
[88]. They lead to the following simple dynamical models:

Theorem B (i) There exists two forward invariant domainU1,U2 whose union is the
complement of 4 lines and a conic of C

2 such that the restriction of RG on each
Ui is conjugate via a biholomorphic map to the following direct product:

(λ, μ) �→ (λ, μ2).

In this model, the Julia set of RG is equal to the direct productC×T. The original
Julia set of RG is foliated by complex conics parametrized by an interval.

(ii) [54] The Lamplighter map RL : C
2 ��� C

2 is conjugate via an invertible rational
map on C

2 to the following (rational) skew product:

(λ, μ) ∈ C
2 �→

(
λ,

λμ − 4

μ

)
∈ C

2.

In this model, the recurrent part of the dynamics is supported by the fixed points
locus and the elliptic cylinder.

(iii) The Hanoi map RH : C
2 ��� C

2 is conjugate via an invertible rational map on
C
2 to the following (rational) skew product:

(λ, μ) ∈ C
2 �→

(
λ2 − λ − 3,

(λ − 1)(λ + 2)

λ + 3
μ

)
∈ C

2.
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In thismodel, the Julia set of RH is equal to the product of the Julia set ofλ2−λ−3
(which is a hyperbolic Cantor set) times C.

Remark 1.3 In [55], the authors asked whether the spectrum is also atomic in the case
of the Basilica group, which is the iterated monodromy group for the Julia set of z2−1
[78, §3.9.2]. Though the corresponding renormalization is not integrable, our criterion
for atomicity (formulated in Theorem D below) is still applicable due to the fact that
the dynamical degree (calculated by Eric Bedford) turns out to be non-integer in this
case. We will discuss it in a forthcoming paper ([9] this problem was independently
studied in [17]).

Our main focus in this paper is to analyze the nature of this integrability phe-
nomenon, i.e., to identify from general principles invariant fibrations for the maps
under consideration. Note with this respect, that though meromorphic surface maps
preserving fibrations are classified (see [21, 26, 34]) and certain criteria are known to
rule out the existence of an invariant fibration [11, 67], there is no general method of
identifying an invariant fibration for a given non-invertible rational surface map.

We provide two ways to identify the above fibrations:

• Either by considering some explicit invariant pencils of conics passing through
special points of the maps R = RG, RL, RH, namely certain points of indetermi-
nacy and certain fixed/prefixed points;

• Or else, by means of a systematic algebro-geometric approach.

In the latter approach, inspired by [18, 26, 40], we develop an algebraic criterion
to detect presence of an invariant (rational) fibration and give a method to calculate
an explicit semi-conjugacy. Let us explain briefly the ideas behind our criterion. To
construct an explicit semi-conjugacy, one has to find a rational map π : C

2 → C

which semi-conjugates R to a one dimensional map. To this end we apply some ideas
from the Minimal Model Program which provides a setting in which one can contract
a rational curve to a point. A natural condition, due to Mori (see e.g [71]), is to ask
that those curves intersect negatively the first Chern class of the canonical bundle
in our space. When this happens, we obtain a map π : C

2 → C
k where k is either

0, 1 or 2. We then add an additional condition on the contracted curves so that the
Riemann–Roch–Hirzebruch formula rules out the cases k = 0, 2.

To state our next result, we interpret the contracted curves as the [zero and polar
loci] of particular holomorphic sections of a holomorphic line bundle whose first
Chern class is cohomologically equivalent to the integration along these sections and
compute the intersection of classes as a cup-product in the deRham cohomology of
P
2.

Theorem C Let R : P
2 ��� P

2 be a dominant rational map.2 Suppose that there exists
a surface X obtained from P

2 by a finite sequence of blow-ups of P2, an integer k � 1,
and a line bundle L on X whose first Chern class c1(L) ∈ H2(X , Z) satisfies the
following conditions.

(i) c1(L) · c1(L) = 0 in H4(X , Z) � Z.

2 i.e whose image is not contained in a curve.
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(ii) For any curve C on X, the intersection [C] · c1(L) ∈ H4(X , Z) is non-negative
where [C] denotes the cohomology class in H2(X , Z) induced by C.

(iii) c1(L) · KX < 0 in H4(X , Z) where KX is the first Chern class of the canonical
bundle on X.

(iv) The pullback of the line bundle R∗L by R is isomorphic to the line bundle L⊗k .
Then the rational map R is rationally semi-conjugate to a degree k rational map
on a curve.

Now let us outline some ideas of the proofs.
Theorem C produces a particular semi-conjugacy whose fibers are rational curves.

Our proof follows closely the (non-dynamical) construction of a contractionmorphism
on a ruled surface [71, Theorem 1.28 (2)]. We then show that our criterion applies to
the three maps, RG, RL, RH, under consideration.

Once Theorem B is proved, then one proves successively the two assertions of
Theorem A.

For the first assertion, we let R = RG , d = 2, P0 = 2 − λ − μ, and we interpret
the density of states ωG in Theorem A associated with the group G as the limiting
measure given by:

ωG = lim
n→+∞

1

2n
R−n
G {P0 = 0} ∩ {λ = −1},

where the intersection R−n
G {P0 = 0} ∩ {λ = −1} is the counting measure on the line

λ = −1. The above formula shows that the convergence to the density of states is
related to the behavior of the iterated preimage of the curve {P0 = 0} by Rn

G which
is a classical equidistribution problem in the two-dimensional holomorphic dynamics
[7, 15, 28, 33, 82].

A typical result of this theory asserts that iterated pullbacks of a generic algebraic
curve converge to a canonical equivariant current called theGreen current (seeSect. 3.3
for a more detailed discussion). Our goal is to justify this assertion in our three special
cases. Since in each case the pullback R−n

G {P0 = 0} coincides with the spectrum of
the spectral operator pencil on level n, we come up with the interpretation of the Green
current as the spectral current for our pencil (and thus, for the corresponding group
action).

Let us now dwell on each of our groups, one by one. As RG is conjugate to a simple
model id×z2 on two domains whose union is a Zariski open set of C

2, it is easy to
show directly that the sequence of curves

1

2n
R−n
G {P0 = 0}

converges towards the Green current of RG , while their slices converge to the corre-
sponding transverse measure. (For more general results of this kind see [19, 32].) We
recover directly the so-called “joint spectrum” of a particular pencil [41] by looking at
the support of the Green current and our approach using currents gives a quantitative
way to measure this set. In this case, one finds that the spectral current TG is a current

123



Self-Similar Groups and Holomorphic Dynamics. . . 511

representable by integration or the geometric current in Sullivan’s terminology (see
e.g [77, §4.3B]) supported on the union of hyperbolas:

TG :=
∫ 1

−1
[4 − μ2 + λ2 − 4θ λ = 0] dθ

2π
√
1 − θ2

, (1.3)

where [4−μ2+λ2−4θ λ = 0] denotes the current of integration on the corresponding
hyperbola.

For the Lamplighter and Hanoi group, their spectral currents TL and TH are both
supported on a countable union of curves (instead of a continuum) and one obtains an
asymptotic expansion:

TL = Tn,L − n

2n−1

∫ 2

−2
[λ + μ = η] 2dη√

4 − η2
+ o

( n

2n

)
,

TH = Tn,H − 25 · 2n−1

6 · 3n
∫
J (p)

[λ2 − 1 − λμ − 2μ2 = ημ] dmp(η) + o

(
2n

3n

)
,

where Tn,L, Tn,H are some currents supported on 2n and 3n curves respectively and
mp is the measure of maximal entropy associated to the polynomial p = z2 − z − 3.

The proof of the second and third statement of Theorem A is also of dynamical
nature. The fact that the spectrum is atomic follows from a discrepancy between the
branching degree d of the regular tree T under consideration and the first dynamical
degree of the renormalization transformation RL, RH, RB, respectively.

The first dynamical degree λ1(R) is defined formally as:

λ1(R) := lim sup
n→+∞

(deg Rn)1/n,

(where deg Rn denotes the algebraic degree of Rn) and measures the growth of the
degree of the iterated preimages of generic algebraic curves.

For the Lamplighter group, λ1(RL) = 1 whereas d = 2, and for the Hanoi group,
λ1(RH) = 2 whereas d = 3. To understand the spectral measure, we expand the
inductive formula (1.1) into:

Pn =
(

n∏
i=0

Qdn−1−i ◦ Ri

)
P0 ◦ Rn .

Observe that there are two different contributions for the growth of the degree of
Pn , one from the power of d and the other from the iteration of R. We then show that
when λ1(R) < d, then the function 1/dn log |Pn| converges to a non-constant function
which is equal to −∞ on countably many curves making the density of states atomic.

Theorem D Take a dominant rational transformation R : C
2 ��� C

2 and take some
polynomials Pn ∈ C[λ,μ] of degree dn in the variable μ satisfying:

Pn+1 = Qdn−k · (Pn ◦ R),
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512 N.-B. Dang et al.

for all integer n, where Q is a fixed polynomial and where k = 0, 1, 2. If λ1(R) < d,
then for any λ0 ∈ C for which the line {λ = λ0} is not contained in any of the curves
{Q ◦ Rn = 0}, {P0 ◦ Rn = 0} for all n, any weak *-limit point of the sequence of
probability measures 1/dn[Pn(λ0, ·) = 0] is atomic.

This second statement and its proof are reminiscent of the Dichotomy Theorem by
Sabot [83, Theorem 4.1], who observed a similar phenomenon for different rational
maps arising from the study of the spectrum of the Laplacian for a class of self-similar
sets. In our setting, Theorem D applies to the Lamplighter and Hanoi group and shows
that the density of states associated to these two groups is atomic.

Remark 1.4 This project originated at a conference in Saas-Fee in March 2016 as a
discussion (nicknamed “Saas-Fee nightmares”) of the dynamical interpretation of the
density of states for G. It was obtained shortly afterwards and was announced at a
conference in the Fields Institute in May 2019. The Lamplighter and Hanoi groups
were studied later; the corresponding results were announced at a Luminy meeting in
January 2020.

2 Background on Spectra of Graphs and Groups

2.1 General Spectral Theory

The study of spectral properties of operators on groups and graphs is very interesting
and important. There are hundreds (if not thousand) of articles on spectra of finite
graphs (including such topics as expanders and Ramanujan graphs) and many books
on that subject.

By spectrum of a graph � = (V , E), one means the spectrum of the Laplace
operator L . In the casewhere� is a d-regular graph, then L = I−M whereM = A/d
and where A is the adjacency operator (or matrix) on the vertices of�. The operator M
is called theMarkov operator and corresponds to a simple randomwalkwith uniform
transition probability 1/d along each edge of �. One can also consider a more general
concept of weighted Markov or Laplace operators when a weight w : E → R

+ is
given. The weighted Laplacians are also used in various situations.

By spectrumof a groupG with a systemof generators S, onemeans the spectrum
of the Cayley graph �(G, S).

If G is finite then one may try to use the information about irreducible unitary
representations of G to understand the spectrum (although this approach is often not
easy to implement). In the case of Cayley graphs or their generalization, Schreier
graphs, one chooses the weight w : S ∪ S−1 → R

+ so that it is symmetric w(s) =
w(s−1) ∀s ∈ S. The symmetry of the weight is needed to keep the weighted Laplacian
Lw self-adjoint.

The case of infinite graphs or groups is much harder and little is known about their
spectral properties. However, a big progress was achieved for self-similar groups and
their associated Schreier graphs. We give here some background in this setting.

Let M be a Markov operator on d-regular connected infinite graph � = (V , E).
It is a self-adjoint operator of norm bounded by 1, so its spectrum is contained in
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the interval [−1, 1]. By the spectral theorem for bounded self-adjoint operators, there
exists a projection valued measure P defined on Borel subsets of R which plays the
role of the diagonalization basis of M (see for instance [80, Chapter VII]). To each
vertex v ∈ V , one associates the probability measure defined by:

μv(B) = 〈δv, P(B)δv〉,

where δv is the delta function at the vertex v and where B ⊂ R is any Borel subset.
The moments of this measure,

∫
R

λndμv(λ) =< Mnδv, δv >

coincide with the probabilities of returns to v for the random walk induced by M .
It was proved by Kesten [68, Lemma 2.1] that the support of μv coincides with the
spectrum of M when � is a Cayley Graph.

These spectral measures are often hard to determine, so they were computed in the
rare cases: finitely generated free abelian and non-abelian groups are among those
[68]. For example, the spectral measure associated to the free abelian group Z

n is
absolutely continuous with analytic density and has support in the interval [−1, 1].
Its density is the pushforward of the Haar measure on the torus R

n/Z
n by the map

(θ1, . . . , θn) �→ (1/n)
∑n

i=1 cos(θi ). Kesten showed that the free group generated by
h elements admits a spectral measure which is absolutely continuous, has analytic
density and is supported in [−√

2h − 1/h,
√
2h − 1/h]. Moreover, the density of this

spectral measure is given by:

√
2h − 1 − x2h2

1 − x2
dx .

2.2 Self-Similar Groups

The idea of self-similarity came to group theory at the beginning of 1980s in the relation
to the Burnside problem on periodic group and Milnor’s question on existence of
groups of intermediate growth [44–46]. The first examples of self-similar groups were
presented in dynamical terms, namely as groups acting on the interval [0, 1] or on the
square [0, 1]×[0, 1] by Lebesguemeasure preserving transformations. Later on, along
with the development of the algebraic background of the theory of self-similar groups,
stimulating relations to various themes in dynamical systems, statistical mechanics,
and mathematical physics (including symbolic and holomorphic dynamics, random
Schrödinger operator, invariant random subgroups, etc.) were revealed [5, 31, 47, 48,
57, 61, 62].

Initially used for resolving various difficult problems in Algebra and Functional
Analysis (e.g., non-elementary amenability), they were found later to be naturally
connected to some well-known and popular games like the Chinese puzzle or Hanoi
Towers game. Moreover, they can be seen from the analysis of Gray code, automati-
cally generated sequences (like for instance Thue–Morse sequence), Julia sets of one
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Fig. 1 Picture of a 2 regular rooted tree

dimensional polynomials (like the Basilica Julia set [55]), higher dimensional holo-
morphic dynamics, etc. As we have already mentioned above, the latter connection
comes from the non-cyclic renormalization relating various scales of the group.

A self-similar group naturally acts on a regular rooted d-regular tree and this action
respects the self-similar structure of the tree. Namely, for each element g ∈ G and a
vertex v ∈ V (T ), the restriction gv of g on the subtree Tv rooted at v can be identified
with an element of G (using the canonical identification of Tv with T ). There are
modifications of this definition that lead to the classes of self-replicating (or recurrent)
groups, branch groups, etc. An account of the theory of self-similar group can be found
in the surveys [5, 59, 81] and in Nekrashevych’s book [78].

There are two main ways to describe the action of self-similar groups on such tree:
either via wreath recursion or via Mealy automata.

Fix d � 2 an integer and let T = Td be the d-regular rooted tree whose vertices
are in bijection with finite words (strings) over an alphabet of cardinality d (a standard
choice for A is {1, . . . , d}). The ordering on each level is given by the lexicographic
order (see Fig. 1 below).

The boundary of the tree, denoted ∂T consists of geodesic paths joining the root
with infinity. It can naturally be identified with the set {1, . . . , d}N, endowed with the
product topology and the resulting topological space is homeomorphic to a Cantor set.

The group of automorphism Aut(T ) of the (rooted) tree T consists of bijection
of the set of vertices of T which fix the root and preserve adjacency relations. For any
vertex v of T , let Tv be the d-regular subtree of T whose root is v. There is a canonical
isomorphism between Tv and T which is induced by a power of the left shift τ on the
symbolic space �+

d = {1, . . . , d}N.
Every automorphism g ∈ Aut(T ) can be described by the following data: an ele-

ment of the symmetric group σ ∈ Sym(d) which corresponds to the restriction of g
on the first level of the tree, and a d-tuple (g1, . . . , gd) of elements of Aut(T ) called
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sections at the vertices of the first level which encodes how g acts on each rooted
subtree T1, . . . , Td with a root at level 1 using the canonical identification of T1, . . . , Td
with T . More precisely, for any word w ∈ �+

d , gi (w) = τ ◦ g(iw), where iw is the
concatenation of the number i with the word w.

Using this description, we obtain an isomorphism:

ψ : Aut(T ) → Aut(T )d � Sym(d),

where the sign � stands for the semi-direct product of groups and where Sym(d) acts
on the direct product Aut(T )d by permuting the factors.

Now, let G be a subgroup acting faithfully on T by automorphisms. We can view
G as a subgroup of Aut(T ) and consider the restriction of ψ to G. When Im(ψ|G) <

Gd
� Sym(d), we say that the group G is a self-similar group.
Another way to express this is as follows: A subgroup G � Aut(T ) is self-similar

if its sections g1, . . . , gd belong to G.
The relation ψ(g) = (g1, . . . , gd) σ is called the wreath recursion and is usually

denoted:

g = (g1, . . . , gd) σ.

Example 2.1 Take A = {1, . . . , d} and the wreath recursion given by:

a = (1, . . . , 1, a) σ,

where σ is a cyclic permutation of A. The subgroup generated by a is an infinite cyclic
group which is an algebraic realization of the odometer group (called also the adding
machine).

For the next examples, we take A = {0, 1} and denote by e, σ the identity and the
standard involution in Sym(2) respectively.

Example 2.2 Consider the wreath recursion,

a = (1, 1) σ, b = (a, b) e.

The subgroup 〈a, b〉 is isomorphic to D∞, the infinite dihedral group (see [57]).

We now present successively the three self-similar groups of interest in this paper.

Definition 2.3 Consider the wreath recursions

a = (1, 1) σ, b = (a, c) e, c = (a, d) e, d = (1, b) e.

The subgroup G = 〈a, b, c, d〉 is the first Grigorchuk group [4, Section 4.1].

Definition 2.4 Consider the wreath recursions

a = (b, a) σ, b = (b, a) e.
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The subgroup 〈a, b〉 is theLamplighter group [54, Section 5], it is the wreath product
Z2 � Z and is isomorphic to the semidirect product

(
⊕
Z

Z2

)
� Z,

where a generator a of Z acts on ⊕
Z

Z2 as the shift map.

Definition 2.5 Consider A = {0, 1, 2} and the wreath recursions

a = (1, 1, a) α, b = (1, b, 1) β, c = (c, 1, 1) γ,

where α = (01), β = (02), γ = (12) are the three involutions in Sym(3). The
subgroup H = 〈a, b, c〉 is called the Hanoi tower group and is associated to the
Hanoi towers game on 3 pegs [51].

The groups in the above examples are not only self-similar groups but they are
groups with finite self-similar set of generators [59].

2.3 Spectra of Self-Similar Groups and Density of States

We have explained in the previous section how a self-similar group acts on a d-regular
rooted tree T . Moreover, given a groupG � Aut(T )with a finite generating set S, one
associates a sequence of finite graph �n = (Vn, En) where n = 1, 2, . . ., |Vn| = dn ,
and an uncountable family of graphs {�ξ = (Vξ , Eξ )}ξ∈∂T where Vξ is the G-orbit of
the point ξ .

The vertices of the graphs �n and �ξ are level n vertices of T and points in the
G-orbit of ξ , respectively, and the edges are pairs of vertices of the form (v, s · v)

where s ∈ S. Usually, all graphs �ξ are infinite (for instance when the G action on T
is transitive on each level) and they are natural limits of the graphs �n . Namely,

(�ξ , ξ) = lim
n

(�n, vn),

where vn is the vertex of level n on the geodesic path representing ξ , and (�ξ , ξ),
(�n, vn) are the corresponding pointed graphs . The convergence above is taken in the
usual way: for all R > 0, the balls BVn (R) of radius R in (�n, vn) converge to Bξ (R).
This leads to the idea of approximating sp(�ξ ) with sp(�n).

For the groups G and H, certain Schreier graphs are shown below.
The first observation is made in [53]: let us take a point ξ on the boundary of the

tree, vn a vertex of level n which belongs to the geodesic ξ , and fix a Markov operator
M on l2(Gξ) which induces a Markov operator on l2(Gvn) = l2(�n). If μn is the
spectral measure associated with the operator Mn and with the delta function on the
vertex vn , then

lim
n→+∞ μn = μξ ,
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Fig. 2 Above picture of the binary tree with the action of G on the level 1, 2, 3 vertices, below the first three
Schreier graphs associated to G

where μξ is a spectral measure of a Markov operator on �ξ determined by the delta
function δξ ∈ l2(Gξ).

Since each graph �n+1 covers �n and is covered by �ξ , the spectrum set increases
sp(�n) ⊂ sp(�n+1), and an easy argument [4] shows that

sp(�ξ ) ⊂
∞⋃
n=1

sp(�n).
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Fig. 3 Third Schreier graph associated to the Hanoi group

Moreover, [4, Theorem 3.6] states that if the graph �ξ is amenable then

sp(�ξ ) =
∞⋃
n=1

sp(�n). (2.1)

Recall that a graph�ξ is amenable if its Cheeger constant is 0, or equivalently ||M || =
1 (see [23]). If a group G is amenable then �ξ is amenable for all ξ ∈ ∂T .

The three groups studied in this paper, the Grigorchuk group, the Lamplighter, and
the Hanoi group, are all amenable, so (2.1) applies to their Scheier graphs.

To a finite graph �, one can associate the counting measure η given by:

η := 1

|V |
∑

λi∈sp(M)

δλi ,

where λi are the eigenvalues of the matrix M counted with multiplicities.
If ηn is the counting measure associated to �n , we define η as the weak limit of

measures η = limn ηn . This measure is called the density of states (or KNS spectral
measurewhere the initials stand for Kesten, Von-Neumann, Serre). If ρ is the uniform
Bernoullimeasure on ∂T ∼ {0, 1, . . . , d−1}N andμξ as before is the spectralmeasure
associated to �ξ with respect to the vertex ξ ∈ ∂T , then by [49], one has

η =
∫

∂T
μξdρ(ξ),

i.e the density of states is an average of the spectral measures μξ .
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To obtain the spectrum associated to the Cayley graph of a group G, an additional
property is needed. Recall that the action of G is essentially free with respect to the
Bernoulli measure ρ on ∂T if ∀g ∈ G\{1}, ρ(Fix(g)) = 0 where Fix(g) denotes
the set of fixed points of ∂T . Equivalently, when G is countable, this condition is
equivalent to the property that the G−stabilizer of almost any point ξ ∈ ∂T is trivial.

Under this assumption, η coincides with the spectral measure associated with δ1 ∈
l2(G). Thus, the computation of the density of states leads to the spectrum of the
Cayley graph of a group.

2.4 Schur Renormalization Transformations

In this section, we will define some operators on finite matrices called Schur comple-
ments. These operators will allow us to deduce inductively the spectrum of theMarkov
operator on the Schreier graphs as one passes from one scale to another.

Take a finite dimensional vector space H which can be decomposed as the sum of
two non-zero subspaces H = H1 ⊕ H2. If M is an endomorphism of H , then M can
be expressed as a block-matrix according to this decomposition:

M :=
(
A B
C D

)
, (2.2)

where A, D are endomorphisms of H1 and H2 respectively, C, D are linear transfor-
mations from H1 → H2 and H2 → H1 respectively.

Definition 2.6 (i) Assume that D is invertible, then the first Schur complement,
denoted S1(M), is the endomorphism:

S1(M) := A − BD−1C .

(ii) Assume that A is invertible, then the second Schur complement, denoted S2(M),
is the endomorphism

D − CA−1B.

The Schur complements are useful in our setting because they relate the invertibility
of the Markov matrices in various scales, via the following classical result.

Theorem 2.7 (see e.g [50, Theorem 5.1]) Suppose that D is invertible. Then M is
invertible if and only if S1(M) is invertible. Similarly, if A is invertible then M is
invertible if and only if S2(M) is invertible.

In particular, we will exploit the relation between the determinant of M and the
Schur complement.

Proposition 2.8 Suppose that D is invertible, then

det(M) = det(D) det(S1(M)).
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Let us explain how the Schur complement arises in our study. We start with a
sequence of vector spaces Hn of dimension dn together with an identification:

Hn+1 = Hn ⊕ · · · ⊕ Hn,

for all n, where the direct sum is taken d times. More precisely, Hn will be the
(Hilbert) space l2(Vn) where Vn are the vertices of level n of the rooted tree Td and
each component in the decomposition of Hn+1 corresponds to the space of functions
on the leaves of the subtree.

For all the self-similar groupG treated in this paper, wewill choose some generators
s1, . . . , sk , which are identified as operators on Hn and we will consider a pencil of
operators (on Hn):

Mn(z1, . . . , zk) := z1(s1 + s−1
1 ) + · · · + zk(sk + s−1

k )

where z = (z1, . . . , zk) ∈ C
k and where si denotes the restriction of si to Hn .

The self-similarity of the action on the tree and Proposition 2.8will lead to a relation
of the form:

det Mn+1(z) = Q(z)d
n−p

det(Mn(F(z))),

where p = 0, 1, 2, F : C
k → C

k is a rational map and Q is a polynomial function
on C

k . The map F is called the renormalization map associated with the spectral
problem under consideration.

Under these conditions, we can now introduce the main notion of our paper. When
it exists, we say that the limit of currents:

lim
n→+∞

1

dn
[det Mn = 0],

is the spectral current associated to the groupG, where [Mn = 0] denotes the current
of integration on the zeros of the polynomial det(Mn) (see Appendix 9.1).

Although we do not work directly in the case where the dimension of H is infinite
but let us yet explain how the renormalization map can be defined in this situation
as well. Assume again that we have a pencil M(z) where z ∈ C

k of bounded linear
operators on an infinite dimensional Hilbert space H . We define the joint spectrum,
denoted jsp(M(z)), as the subset:

jsp(M(z)) = {z ∈ C
k |M(z) is not invertible}.

Let us consider ϕ : H → H ⊕ · · · ⊕ H (called d-similarity) where the direct sum is
taken d-times, a map F : C

k → C
k and a rational function A : z ∈ C

k �→ B(H) with
values in the space of bounded operators on H such that for some i � d, one has:

Si (M(z)) = A(z)M(F(z)),
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on a Zariski-open set of values of z. In this case, the map F is a renormalization map
associated with the problem of finding the joint spectrum jsp(M(z)). If we understand
jsp(A(z)) then the spectral problem for jsp(M(z)) gets reduced to a dynamical problem
for F .

Observe that the support of the spectral current measures the locus of points in
C
k where the restriction of the operator M(z) on finite dimensional subspaces is not

invertible. We thus expect the support of the spectral current, when it exists, to be
equal to the joint spectrum of M(z) when the group G is amenable.

2.4.1 Schur Transformations for the Grigorchuk Group

The self-similarity of the group G determines a morphism of algebra ϕ : C[G] →
M2(C[G]), where M2(C[G]) denotes the space of matrices with coefficient in the
non-commutative group algebra C[G].

We consider the pencil M(λ, μ) = −λa + b + c + d − 1 − μ ∈ C[λ,μ][G] .
Denote by t the element (b + c + d − 1)/2. Then t and a are involutions and the

recursion matrix associated to M is precisely the matrix ϕ(M(λ, μ)) given by:

ϕ ◦ M(λ, μ) :=
(
2a − μ −λ

−λ 2t − μ

)
.

Since a and t are involutions, one sees directly that the element 2a − μ and 2t − μ

are invertible in C[G]. The two Schur complements are given by :

S1ϕ ◦ M(λ, μ) = M(F(λ, μ)),

S2ϕ ◦ M(λ, μ) = M(G(λ, μ)),

where F,G are the rational maps given by the formulas:

F(λ, μ) =
(

2λ2

4 − μ2 , μ + μλ2

4 − μ2

)
.

G : (λ, μ) �→
(
2
4 − μ2

λ2
, −μ

(
1 + 4 − μ2

λ2

))
.

2.4.2 Schur Transformations for the Lamplighter Group

The recursion for the Lamplighter groupL, induces an algebra morphism ϕ : C[L] →
M2(C[L]) as well.

Consider the following pencil of operators:

M(λ, μ) := a + a−1 + b + b−1 − λ id−μσ,
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where σ = b−1a is the involution which exchanges the two subtrees T1 and T2
introduced in Sect. 2.2. The recursion matrix associated to M takes the form:

ϕ ◦ M(λ, μ) :=
(
a + a−1 − λ a + b−1 − μ

b + a−1 − μ b + b−1 − λ

)
. (2.3)

Consider the rational map F given by:

F(λ, μ) =
(

λ2 − μ2 − 2

μ − λ
,

2

λ − μ

)
. (2.4)

The two Schur complements turn out to be the same, and are related to F as follows:

Proposition 2.9 We have:

S1(ϕ ◦ M(λ, μ)) = S2(ϕ ◦ M(λ, μ)) = M ◦ F(λ, μ). (2.5)

Proof The first Schur complement yields:

S1(ϕ ◦ M)(λ, μ) = a + a−1 − λ id− 1

2(μ − λ)
(b−1 − a−1 + λ − μ)(b − a + λ − μ).

Using the fact that b−1a = σ , we obtain that S1(ϕ ◦ M(λ, μ)) = M(F(λ, μ)).
Similarly, the second Schur complements gives:

S2(ϕ ◦ M)(λ, μ) = b + b−1 − λ id− 1

2(μ − λ)
(a−1 − b−1 + λ − μ)(a − b + λ − μ).

We then conclude that S2ϕ ◦ M(λ, μ) = S1ϕ ◦ M(λ, μ), as required. ��

2.4.3 Schur Transformations for the Hanoi Group

Consider the Hanoi group H and we consider the pencil of operator

M(λ, μ) := a + b + c − λ + (μ − 1)A ∈ C[H],

where A is the operator given by the matrix:

A :=
⎛
⎝ 0 1 1
1 0 1
1 1 0

⎞
⎠ .
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The recursion matrix associated to M on two levels takes the form:

ϕ(M(λ, μ)) :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c − λ 0 0 μ 0 0 μ 0 0
0 −λ 1 0 μ 0 0 μ 0
0 1 −λ 0 0 μ 0 0 μ

μ 0 0 −λ 0 1 μ 0 0
0 μ 0 0 b − λ 0 0 μ 0
0 0 μ 1 0 −λ 0 0 μ

μ 0 0 μ 0 0 −λ 1 0
0 μ 0 0 μ 0 1 −λ 0
0 0 μ 0 0 μ 0 0 a − λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The computation of the Schur complement with respect to an appropriate corner
was carried out by Grigorchuk and Sunić.

Proposition 2.10 [51, Proposition 3.1] One has the following recursive formula:

det Mn(λ, μ) = (λ2 − (1 + μ)2)3
n−2

(λ2 − 1 + μ − μ2)2·3n−2
det Mn−1(F(λ, μ)),

where F is the rational transformation

F : (λ, μ) �→
(

λ + 2μ2(−λ2 + λ + μ2)

(λ − 1 − μ)(λ2 − 1 + μ − μ2)
,

μ2(λ − 1 + μ)

(λ − 1 − μ)(λ2 − 1 + μ − μ2)

)

2.5 More Comments

As we have already mentioned in the Introduction, spectral theory of Laplacian has
a profound physical meaning, with atomic vs continuous dichotomy corresponding
to isolating vs conducting states of the matter (see e.g Rage theorem in [20, p.97]).
A thorough mathematical theory of this dichotomy has been recently developed in
the context of discrete one-dimensional Schrödinger operators with almost periodic
coefficients (see [2]). And recently an intimate connection was revealed between the
spectral theory of self-similar groups and the spectral theory of random Schrödinger
operators (see [42, 62]).

We have also indicated relation to many other areas of mathematics. As an illus-
tration, let us mention that the spectral theory of the Lamplighter group led to
counterexamples to Atiyah’s conjectures [1] on rationality of L2-Betti numbers of
compact manifolds. Namely, the atom 1/3 of the spectral measure at 0 calculated in
[54] was translated in [58] into the value 7/3 for the third L2-Betti number of a certain
7-dimensional manifold.

However, we are not aware of a direct characterization of the spectral dichotomy in
the group-theoretic terms. Let us emphasize with this respect that in fact, we study the
spectrum of the action of G on a Schreier graph. Only in the case of the Lamplighter
group (out of the three examples we consider) it coincides with the spectrum of the
regular action on the Cayley graph. Moreover, it does depend on the choice of gener-
ators of the group. In fact, with another natural choice of generators, the spectrum of
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the Lamplighter group becomes singular continuous [42]. Still, there is some property
of the spectral measure, related to the asymptotical behavior of the resolvent at the
origin, which does not depend on generators, and thus produces an invariant of the
group or its action, called the Novikov–Shubin invariant [12].

As the Schur renormalization is concerned, it can be considered for arbitrary self-
similar groups as a transformation of a C∗-operator algebra. However, it is rarely a
rational function as the inversion involved in the definition of the Schur complement
is generally expressed as an infinite power series. So, the three examples we deal in
this paper are quite special (not to mention that they turn out to be integrable).

Note with this respect that there is a different viewpoint on the Schur complement
as a renormalization of random walks. It was introduced by Bartholdi and Virag [6],
and Kaimanovich [66] (as a tool to prove amenability of the Basilica groups), and
was related to the Schur complement in [50]. This viewpoint can give a more efficient
approach to spectral problems for general self-similar groups.

3 Background in Holomorphic Dynamics

3.1 Equidistribution of Preimages in Dimension One

3.1.1 General Result

Let f be a polynomial, it extends to a holomorphic map on the Riemann sphere Ĉ.
The filled Julia setK( f ) of f is the set of non-escaping points inC, the Julia setJ ( f )
is the boundary of that domain and the Fatou set F( f ) is the normality locus of f .

Theorem 3.1 [16, 37, 74, 75] Let f : Ĉ → Ĉ be a rational function of degree d ≥ 2.
Then for all z ∈ Ĉ except at most two points, we have:

1

dn
∑

ζ∈ f −n z

δζ → ω,

where ω is the measure of maximal entropy for f . In the polynomial case, ω coincides
with the harmonic measure on the Julia set J ( f ).

3.1.2 Squaring Map

The doubling or squaring map is the map f0 : z �→ z2. It has two superattracting fixed
points on P

1 corresponding to the origin and the point at infinity and its Julia set is the
unit circle T in C. The measure of maximal entropy is the Lebesgue measure on the
circle.
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3.1.3 Chebyshev Map

The Chebyshev (or Ulam-Neumann) quadratic map t appears in several normaliza-
tions:

t : z �→ 2z2 − 1, or z �→ z2 − 2, or z �→ 4z(1 − z), (3.1)

all of which are conjugate by appropriate affine changes of variable. Its special place in
dynamics becomes clear from the first expression, as it satisfies the functional equation

cos 2θ = t(cos θ),

telling us that cos semi-conjugates the doubling map θ �→ 2θ to t . In the coordinate
ζ = e(θ) ≡ e2π iθ , it can be written as

Zh(ζ 2) = t(Zh(ζ )), where Zh(z) = 1

2

(
z + 1

z

)

is the Zhukovsky function. Thus, Zh semi-conjugates the quadratic map f0 : z �→ z2

to the Chebyshev map t . The Julia set J ( f0) is the unit circle T, while the Julia set
J (t) is the interval I = [−1, 1]. Naturally, they are related by the Zhukovsky function:
Zh(T) = I.

Let

dm = 1

2π
dθ

be the normalized Lebesgue measure on T. It is the measure of maximal entropy for
f0, which gives the asymptotic distribution for the iterated preimages of all points
z ∈ C

∗ ≡ C � {0}. (All these are well-known elementary statements.) Let us push
this measure forward to I:

dω := Zh∗(dm) = 1

π

dx√
1 − x2

. (3.2)

We see that ω is the measure of maximal entropy for t , which gives the asymptotic
distribution for the iterated preimages of all points ζ ∈ C.

3.1.4 Cantor Case

Consider the polynomial map p : z �→ z2 − z − 3. This map is called hyperbolic
(see [76, Section 14]) since it is conjugate to u �→ u2 − 15/4 where u = z − 1/2
and the critical point escapes to the attracting fixed point at infinity. The Julia set
of this map in the u coordinates is a Cantor set contained in the union of intervals
[−5/2, −√

5/2] ∪ [√5/2, 5/2]. Translating back to the z coordinates, the Julia set of
p is a Cantor set contained in the union [−2, (−√

5 + 1)/2] ∪ [(√5 + 1)/2, 2]. The
measure of maximal entropy is the Haar measure on this Cantor set.
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So, Theorem 3.1 is straightforward in the three particular cases singled out above.
Incidentally, these are the only cases relevant for this paper.

3.2 Algebraic, Topological and Dynamical Degrees, and Algebraic Stability

Take a rational map F : P
2 ��� P

2 (see Appendix 9.4 for the definition of a rational
map on any surface). The map F is determined by three homogeneous polynomials
P0, P1, P2 ∈ C[x, y, z] with no common factors and with the same degree d, which
we denote by deg(F). The integer d = deg(F) is called the (algebraic) degree of the
rational map F . whereas its topological degree is the number of preimages counted
with multiplicity of a generic point.

A rationalmap F : P
2(C) → P

2(C) is called dominant if its image is not contained
in any algebraic curve.

More generally, consider a surface X obtained from P
2 by finitely many blow-ups,

it is called a rational variety. A given rational map F : P
2 ��� P

2 lifts to a rational
map FX on X (see Appendix 9.4) and FX is said to be algebraically stable on X if
there is no algebraic curve C whose proper transform under some iterate Fn

X is a point
of indeterminacy. When F is algebraically stable on P

2, the sequence of degrees is
multiplicative (see [36]):

deg Fn = (deg F)n for all n = 1, 2, . . . ,

and if FX is algebraically stable, then its induced action on the Dolbeaut cohomology
H1,1(X) (see Appendix 9.5) satisfies the relation (Fn

X )∗ = (F∗
X )n for all integer n.

Note that the sequence deg(Fn) is submultiplicative:

deg(Fn+m) � deg(Fn) deg(Fm).

By Fekete’s lemma [35], the first dynamical degree of F , denoted λ1(F) and
defined by the formula:

λ1(F) = lim
n→+∞ deg(Fn)1/n,

is a well defined real number satisfying λ1(F) � d. When the map FX becomes
algebraically stable on a surface X , one can compute the dynamical degree using the
following statement.

Proposition 3.2 Let F : P
2 ��� P

2 and suppose that there exists a rational surface X
on which the lift FX of F is algebraically stable. Then one has:

λ1(F) = ρ(F∗
X ),

where ρ(F∗
X ) denotes the spectral radius of the pullback action F∗

X on H1,1(X).

The rational surface X satisfying the conditions of the above Proposition is called an
algebraically stable model for the map F . For arbitrary maps, the dynamical degree
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can be difficult to compute, however there aremethods to determine this degree inmore
rigid situations. To do so, we state the general properties satisfied by these numbers.

Theorem 3.3 ([27], [22, Theorem 1], [29, Theorem 1.1]) The following properties are
satisfied:

(i) The dynamical degree is a birational invariant, i.e for any birational map
ϕ : P

2 ��� P
2, one has λ1(ϕ

−1 ◦ F ◦ ϕ) = λ1(F).
(ii) If F is a skew-product F = (x, y) �→ (P(x), Qx (y)) where P is a rational map

of degree p on P
1 and Qx is a rational family of rational maps3 of P

1 of degree
q, then the dynamical degree of F is given by the formula:

λ1(F) = max(p, q).

Moreover, the topological degree of F is equal to the product pq.

3.3 Existence of the Green Currents

Let now F : P
2(C) ��� P

2(C) be a rational map of the projective space (with points of
indeterminacy allowed). Then instead of taking iterated preimages of points as we did
in the one-dimensional case, one should consider iterated pullback of holomorphic
curves. Let [C] stand for the current of integration over a holomorphic curve C .
Then the desirable result would assert that for a typical C , the normalized currents
[(Fn)∗(C)] converge to some current � called Green. There is an extensive literature
on this subject [7, 14, 28, 33, 82]. Below we will quote a few sample results of this
kind.

Theorem 3.4 [63, Theorem 2.2] Let F : P
2(C) ��� P

2(C) be a dominant rational
map and let X be a rational surface satisfying the following properties:

(i) The lift FX of F to X is algebraically stable.
(ii) One has λ1(F) > 1.
(iii) There exists a constant C > 0 such that deg(Fn) � Cλ1(F)n for all n.
(iv) There exits a λ1(F) invariant class α ∈ H1,1(X) by F∗

X which is represented by
a closed smooth semi-positive form.

Then there exists a unique (up to scaling) closed positive (1, 1)-current � on X
representing α such that

F∗
X (�) = λ1(F)�.

The current is called the Green current of the rational map F .
This theorem was proved by Fornaess–Sibony [36, 85] in the particular case where

X = P
k(C) (in which case conditions (iii) and (iv) are satisfied automatically). How-

ever, our maps F (albeit, elementary) do not fit into this framework as they are not
algebraically stable on P

k(C).

3 Formally Q ∈ C(x)(y).
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However, below we will show that each of them admits an algebraically stable
model (condition (i)), and two of them (Grigorchuk and Hanoi) satisfy condition (ii).
For these two maps we will provide an explicit geometric description of the Green
current (without appealing to Theorem 3.4).

In fact, these two maps do fit into the framework of Guedj’s Theorem. Indeed,
conditions (iii) and (iv) of the theorem follow easily from the integrability of F . For
instance, if a map F is semi-conjugate to a degree λ1 one-dimensional map via a
projection ϕ : X → C to a smooth projective curve, the invariant cohomology class
for F can be represented by the ϕ-pullback of a Kähler form on C (providing us with
(iv)).

Let us note that though the Lamplighter map does not fit into the above frame
(as λ1 = 1), it still admits an analogue of the Green current that will be explicitly
described.

In conclusion, let us summarize properties of our three maps:

Group Grigorchuk group Lamplighter group Hanoi group

Branching number for the tree 2 2 3
Algebraic degree 3 2 4
Dynamical degree λ1(RG ) = 2 λ1(RL) = 1 λ1(RH) = 2
Topological degree dt (RG ) = 2 dt (RL) = 1 dt (RH) = 2
Algebraic stability on P

2(C) No No No
Algebraically stable model Yes (Sect. 5.1) Yes (Sect. 6.1) Yes (Sect. 7.1)
Integrability Yes Yes Yes

3.4 Fatou, Julia Sets of Rational Maps in Higher Dimension

Given a rational map F : P
2(C) ��� P

2(C), the Fatou set F(F) is defined as in
the one-dimensional situation: z ∈ F(F) if there is a neighborhood U � z such that
the iterates (Fn)∞

n=0 are well defined (i.e., they do not hit the indeterminacy points)
and form an equicontinuous family on U (so, the orbits near z are Lyapunov stable).4

There are two version of the big Julia set:

A As the support of the Green current J (F) = supp�.
B As the complement of the Fatou set, J̃ (F) = P

2\F(F).

For holomorphic map of P
2, J̃ (F) = J (F) but for rational maps, there could be

a difference between these two sets (see [85, Corollary 1.6.7]).
When F is the renormalization map associated to the Grigorchuk group (see

Sect. 2.4.1), the discrepancy between Julia sets J̃ (F)\J (F) can bemade very explicit.
From the explicit expression of � in (1.3), the set J (F) is the union:

J (F) =
⋃

−1≤θ≤1

{[λ,μ,w] | 4w2 − μ2 + λ2 − 4θλw = 0} ⊂ P
2(C)

4 Locally equicontinuous families of maps are also called normal in Complex Analysis.
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whereas the precise description of J̃ (F) was obtained by Goldberg–Yang [41]:

J̃ (F) =
⋃
n�0

I (Fn) ∪ J (F),

where I (Fn) are the indeterminacy points of Fn on P
2(C). For general maps, the

extended indeterminacy set
⋃

n�0 I (F
n) can be very large, but in our situation, we

will see that F is integrable and preserves a fibration by conics (given by the map φ

in (5.5) where φ ◦ F = φ). Since the indeterminacy set I (F) is contained in finitely
many fibers of this fibration, this set is contained in a union of finitely many conics in
P
2.

Remark 3.5 In many cases, one can also define a “small” Julia set inside the big one
as the support of the measure of maximal entropy (see e.g [7, 10, 85]). However, it is
not canonically defined in the cases of interest for us since λ1(F) = dt (F).

3.5 General Equidistribution Results

As we have mentioned above, we are interested in a result of the following type:

DESIRED EQUIDISTRIBUTION STATEMENT LetR be a certain class of dominant
maps of degree d ≥ 2. Then for any F ∈ R and a typical algebraic curve C ⊂ P

2(C),
we have:

(i)

[(Fn)∗C]
dn · degC → �.

(ii) For any holomorphic curve S, the restriction� | S ≡ ωS is a well definedmeasure
ωS.

(iii) Letting νn be the probability measure uniformly distributed over (Fn)∗C ∩ S, we
have νn → ωS.

Assertion (i) was obtained in the following situations:

• R is the space of non-elementary polynomial automorphisms of C
2, C is an arbi-

trary affine algebraic curve (Bedford and Smillie [7];
• R is the space of proper polynomial maps5 of C

2, C is a typical (in a capacity
sense) affine algebraic curve (Russakovskii and Shiffman [82]);

• R is the space of holomorphic endomorphisms of P
2(C), C is an algebraic curve

which is not contained in the “exceptional subvariety” (Favre and Jonsson [33]);
• R is a space of dominant rational endomorphisms of P

2(C) (subject of certain
technical assumptions);C is an algebraic curvewhich does not pass through “max-
imally degenerate” periodic points (Bleher, Lyubich and Roeder [15]).

5 We assume without saying that deg F ≥ 2.
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The validity of assertion (ii) is a consequence of Bedford-Taylor’s intersection
theory of (1, 1) currents when the current � has bounded potential or when certain
transversality conditions are met (see Appendix 9.1).

Assertion (iii) does not follow immediately from (i). The reason is that the inter-
section of currents is not continuous with respect to the weak topology. However, this
fact is known in particular situations listed below.

• In the study of bifurcation of a holomorphic family of rational maps, Dujardin [32,
Theorem 2.11.] obtained these assertions when C is a horizontal curve and when
S is the graph of a marked family of critical points.

• The sliced equidistribution was obtained by Chio–Roeder [19, Theorem C] when
F = (λ, z) �→ (λ, fλ(z))where fλ is a family of rational maps of the same degree
whose coefficients depend algebraically on λ.

• In [13], Berteloot and Dinh showed that the so-called bifurcation measure associ-
ated to the quadratic family z2 + c can be realized as the slice of the Julia set of a
particular tangent map.

3.5.1 Transport of the Equidistribution by Conjugation

Fix two open subsets U , V of P
2 and two dominant rational maps F,G on on P

2

which preserve U and V respectively and take a biholomorphism ϕ : U → V such
that ϕ ◦ F = G ◦ ϕ.

The following assertions show that the equidistribution property is invariant under
analytic conjugacies.

Lemma 3.6 Take an irreducible algebraic curve C in V . Suppose that the following
assertions holds:

(i) G is algebraically stable on P
2.

(ii) The sequence of currents

1

λ1(G)n
(Gn)∗[C]

converges to the Green current �G of G.

Then the limit

1

λ1(F)n
(Fn)∗ϕ∗[C ∩ V ]

also exists and is equal to the restriction of ϕ∗�G to U.

Lemma 3.7 Fix C1,C2 two irreducible algebraic curves on P
2. Suppose that the fol-

lowing properties hold.

(i) The map G is algebraically stable on P
2.

(ii) The curve ϕ(C1 ∩ U ) satisfies the condition of Lemma 3.6.
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(iii) The sequence of measures given by the intersection of currents

1

λ1(G)n
[ϕ(C2 ∩ U )] ∧ (Gn)∗[ϕ(C1 ∩ U )]

converges to a multiple of the measure [ϕ(C2 ∩U )]∧�G, where�G is the Green
current of G.

Then the sequence of measures:

1

λ1(F)n
[C2 ∩ U ] ∧ (Fn)∗[C1 ∩ U ]

converges to a multiple of the measure [C2 ∩ U ] ∧ ϕ∗�G.

3.6 Three Particular Direct Products

Although the existence of the Green current associated to two of our maps follows
fromgeneral results, the equidistribution of the preimages of curves toward this current
and the precise description of the Green current will hold because our maps have a
very specific form.

3.6.1 Direct Product id×f Related to the Grigorchuk Group

Let us consider a map

F : C
2 → C

2, F = (id× f ), (η, θ) �→ (η, f (θ))

where f is a polynomial in one variable of degree d ≥ 2. It extends to P
1 × P

1 as a
holomorphic map. Its filled Julia set K(F) (i.e the set of non-escaping points) in C

2

is equal to the product C × K( f ).
The Green function GF for F depends only on the second coordinate and is equal

to the one-dimensional Green function G f (θ) for the polynomial f . Indeed, on the
basin of infinity, C

2
� K(F), we have

GF (η, θ) = lim
1

dn
log ‖Fn(η, θ)‖ = lim

1

dn
log | f n(θ)| = G f (θ),

while on K(F) both functions vanish.
The Julia set J (F) = C × J ( f ) is naturally laminated by the horizontal complex

lines Lθ = C × {θ}, θ ∈ J ( f ). The Green current

� = i

2
∂∂̄G = �G f dθ ∧ dθ̄ = ω dθ ∧ dθ̄ ,

=
∫
T

[Lθ ]dω(θ)
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is a horizontal laminar current whose transverse measure is equal to the harmonic
measureω for f . Thus, for a non-horizontal holomorphic curve S ⊂ C

2, the restriction
� | S is identified with the measure ωS : = (p2 | S)∗(ω), where p2 : C

2 → C is the
projection to the θ -axis.

Given two holomorphic curves, C and S, which do not have common irreducible
components, we let [C ∩ S] be the counting measure on C ∩ S, it is equal to the
intersection of currents [C] ∧ [S].

Recall that the points 0, ∞ are fixed points of the squaring map z �→ z2. We thus
say that the lines P

1 × {0}, P
1 × {∞} are the exceptional lines for the map id× f0

where f0 is the squaring map.

Lemma 3.8 Suppose that F = id× f0 where f0 is the squaring map z �→ z2. Let C
and S be two irreducible algebraic curves such that C is neither a vertical line nor a
horizontal exceptional line while S is not horizontal and such that the points of C ∩ S
are not on the exceptional lines. Then

1

2n
[(Fn)∗C ∩ S] → (degC) · (deg S) · ωS . (3.3)

Remark 3.9 Observe that the equidistribution of the preimages of C by F does not
directly imply the convergence of their intersection with S to the above measure. The
main issue is that the product of currents is not continuous with respect to the weak
topology on currents. However, here we exploit the basic dynamical properties of the
squaring map.

Proof Denote by p1, p2 the projection of C × C ≡ C1 × C2 onto the first and second
factor,C1 ≡ C×{0} andC2 ≡ {0}×C, respectively. For η ∈ C1, we let Lη := p−1

1 (η)

be the fiber line over η, and let Tη ⊂ Lη be the unit circle inside.
Let B ⊂ C1 be the set of projections of the branch points of π1 : C → C1. Let

C∗ := C � (p−1
1 (B) ∪ p−1

2 (0)).

Note that the points of intersection of the horizontal line C1 × {0} with the curve C
are fixed points of F , we choose a base point η◦ ∈ C1 � (B ∪ (C ∩ C1)) so that the
corresponding vertical line Lη◦ avoids C ∩ C1 and the branch points of p1|C .

LetC∩Lη◦ = {η◦}×Q◦; it consists of δ := degC points of transverse intersections.
Then let

Qn◦ := F−n(Q) = F−n(C) ∩ Lη◦ = {η◦} × f −n
0 (Q◦);

it consists of δdn transverse intersection points. The uniform measures μn◦ on these
sets converge to the Lebesgue measure ω◦ on T◦ ≡ Tη◦ .

Let T := S∩p−1
2 (T), and let T ∗ be obtained from T by puncturing out branch point

of p1| S and p2| S, and points of T ∩ p−1
1 (B). Take a point s ∈ T ∗, and select a simply

connected neighborhood U ⊃ {η0, p1(s)} in the horizontal axis C1 whose closure
does not contain points of B and C . Then C is decomposed over U in δ univalent
branches Ci ⊂ C

2 (i.e., graphs of holomorphic functions ψi : U → C). Taking
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preimages of these branches by Fn , we obtain δ 2n univalent branches Cn
i j ⊂ C

2 over
U parametrized by holomorphic functions ψn

i, j : U → C such that:

(i) They are pairwise disjoint, so they induce a holomorphic motion hη of the set
X◦ := ⋃

Qn◦ over U (see e.g., [73, §17]).
(ii) Their slopes go to 0 exponentially fast (since the fibered map F is vertically

expanding away from the exceptional lines).

By the λ-Lemma (see e.g., [73, §17.2]), hη extends to a holomorphic motion of the
closure X◦ = X◦ ∪T◦ (for which we will keep the same notation). By (ii), the limiting
functions for ψn

i j are constants, so hη| T◦ = id.
Take now a relative neighborhood W ⊂ S of s that projects univalently to C2

by p2, and let W◦ := (p2| Lη◦)
−1(p2(W )). Then our holomorphic motion induces a

homeomorphic holonomy map γ : W0 → W .
Let ω := γ∗(ω◦), μn := γ∗μn◦ . Take a continuous test function u on S supported

on W , and let u◦ be its pullback to W0. Since the measures μn◦ converge to ω◦,
∫

u◦ dμn◦ →
∫

u◦ dω◦.

Pushing this forward by γ to W , we obtain:

∫
u dμn →

∫
u dω.

It follows that any limiting measure ν on S for the sequence (μn), being restricted
to T ∗, coincides with ω. In particular, ν| T ∗ is a probability measure, implying that
ν(T \ T ∗) = 0. Hence ν = ω, and the conclusion follows. ��

3.6.2 Twist Map on the Elliptic Cylinder Related to the Lamplighter Group

Consider a product map F : C
2 → C

2 given by:

(η, z) �→ (η, Mη(z)),

where Mη ∈ GL2(C) defines a Möbius transformation with polynomial coefficients
in R[η] such that the trace tr(Mη) is a non-constant polynomial in η of some degree
d. Denote by E ⊂ C the locus of parameter η such that the transformation Mη is
neutral (i.e parabolic or elliptic). Observe that E = {η | tr(Mη) ∈ [−2, 2]} is a
finite union of at most d intervals. For each η ∈ E , Mη is conjugate to a rotation
by ρ(η) and the corresponding conjugation maps the real line to the unit circle. As
a result, the set of non-wandering points for F is the union E × C with the conic
of fixed points. Consider the parabolic locus P for the family (Mη). To describe the
spectral current whose support is on this set, we need to consider the conjugation
ϕ : (C �P) × C → (C �P) × C

∗ such that the restriction to the non-parabolic locus
is of the form

ϕ ◦ F ◦ ϕ−1 : (η, u) �→ (η, eiρ(η)u).
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Note that ρ is a well-defined function determined by the equation 2 cos(ρ(η)) =
tr(Mη), it is thus a non constant analytic function. Letting F̃ = ϕ ◦ F ◦ ϕ−1 be the
conjugate of F by ϕ, we obtain the following.

Proposition 3.10 Take two real lines L and C which are neither on a vertical nor
horizontal in R

2, consider their complexifications CC, LC in C
2, let C̃C, L̃C be their

image by ϕ, and let l : C → C be a rational function whose graph in C
2 is equal to

L̃C. Then the following properties hold.

(i) The sequence of currents

1

n
(F̃n)∗[C̃C]

converges to a current supported on E × C
∗, laminated by vertical punctured

complex lines with transverse measure ρ∗dθ where dθ is the Lebesgue measure
on the circle.

(ii) The sequence of counting measures

1

n
F̃−n(C̃C) ∩ L̃C

converges to the measure l∗ρ∗dθ on L̃C.6

Remark 3.11 In the case of the Lamplighter group, the associated map F is:

(η, z) �→
(

η,
ηz − 4

z

)
,

and the line LC we consider is of equation η = z.

Proof Let us prove assertion (i). Observe that on the loxodromic locus, the restriction
of the above current converges exponentially fast to zero. Indeed, on the loxodromic
locus, we can suppose that Im ρ(η) > 0 and the forms (F̃n)∗du, (F̃n)∗dū are given
by:

(F̃n)∗du = ein Re ρ(η)−n Im ρ(η) (du + inudρ) ,

(F̃n)∗dū = e−in Re ρ(η)−n Im ρ(η) (dū − indρ̄) .

Since these forms converge exponentially fast to zero in the loxodromic locus and since
C is not a horizontal line, we obtain that the current (F̃n)∗[C̃C] converge exponentially
fast to zero on that locus.

Let us now consider the current on the elliptic locus. When η ∈ E , ρ(η) is real and
the restriction of ρ to E is a real analytic function. Observe also that the lines C, L are
real lines, hence the images ϕ(C ∩ E × R), ϕ(L ∩ E × R) are contained in E × T.

6 Note that ρ∗dθ is well-defined as dθ can be pulled back naturally to the interval of monotonicity of ρ.
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Suppose that the curve ϕ(C) is parametrized by η �→ g(η) ∈ T. By restricting ρ to
a smaller subset, we can suppose that ρ is injective on E and let us consider the map
ρ−1. The pullback of the line C is then parametrized by:

η �→ g(η) − nρ(η) ∈ R/2πZ.

Reparametrizing by ω = ρ(η), we obtain:

ω ∈ T �→ g(ρ−1(ω)) − nω ∈ T.

Geometrically, the above map is the graph of ω �→ −nω ∈ T which is transported
vertically by g(ρ−1). The graphs ω �→ −nω equidistribute towards the real laminar
current

∫
T

[{ω} × T] dθ(ω),

so we deduce that the real currents (1/n)[F−n(ϕ(C))] converge to the current
∫
E

[{η} × T] ρ∗dθ

In particular, the currents associated (1/n)(Fn)∗[C̃C] converge to the laminar current

∫
E

[{η} × C] ρ∗dθ,

as required.
Let us prove assertion (ii). Let us also observe that the map ρ : E → T � R/2πZ

is surjective. By restricting to a smaller subset, we can suppose furthermore that
ρ : E → T is bijective. Let us show that F−n(C) ∩ L contains n points counted
with multiplicity. Let us consider the real curves L̃ = ϕ(L), C̃ = ϕ(C). These two
curves L̃, C̃ are the graphs in E × T of two analytic functions l, g : E → T. Using an
appropriate parametrization, one can always suppose that l is locally constant function
equal to 0 ∈ R/2πZ. Now the intersection L̃ ∩ F̃−n(C̃) is locally given by:

L̃ ∩ F̃−n(C̃) := {(η, 0) ∈ E × R/2πZ | g(η) − nρ(η) = 0 ∈ R/2πZ}.

Reparametrizing by ω = ρ(η), we consider the set

{g(ρ−1(ω)) − nω = 0}.

Let us chop the circle T into n subintervals [ω1, ω2], . . . , [ωn, ωn+1] so that nωi =
0 ∈ R/2πZ and such that the restriction of ω �→ nω on each of these subintervals is
injective. Now the graph of g ◦ ρ−1 intersects the graph of ω �→ nω exactly once in
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each of these subintervals. As a result, the intersection L̃ ∩ F̃−n(C̃) contains n points
and we have

1

n
L̃ ∩ F̃−n(C̃) = 1

n
L̃C ∩ F̃−n(C̃C),

since the measures L̃C ∩ F̃−n(C̃C) have mass n. Moreover, going back to the η

coordinates, we obtain that the sequence of measures:

1

n
(L̃ ∩ F̃−n(C̃))

converges to the measure l∗ρ∗dθ . ��

3.6.3 Skew Product Over the Cantor Dynamics Related to the Hanoi Group

Let us consider a map F : C
2 → C

2 of the form

F = (η, θ) �→ (p(η), λ(η)θ),

where p(η) = η2 − η − 3 is a hyperbolic polynomial of degree 2 and

λ(η) = (η − 1)(η + 2)/(η + 3),

is a rational function on η.
Recall from Sect. 3.1.4 that p is conjugate to the map u �→ u2−15/4 with a Cantor

Julia set lying on the real line. The Julia set of F is laminated by a Cantor set of vertical
complex lines {η} × C where η ∈ J (p).

The Green current of F

� = �Gpdη ∧ dη̄ = ωdη ∧ dη̄

is a vertical laminar current whose transverse measure is equal to the measure of
maximal entropy ω for the polynomial p.

Proposition 3.12 Fix η0 ∈ R. Let L a real line which is neither vertical nor horizontal
and let LC be its complexification. Then the following properties hold.

(i) The sequence of currents

1

2n
F−n({η0} × C)

converges to the Green current of F.
(ii) The sequence of counting measures

1

2n
F−n({η0} × C) ∩ LC = 1

2n
(Fn)∗[{η0} × C] ∧ LC
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converges to the measure � ∧ LC which is the transport under holonomy of the
measure of maximal entropy on J (p) to the line L.

Proof Assertion (i) follows directly from the equidistribution of the preimages of η0
towards the equilibrium measure ω on the Julia set of p. The second assertion then
follows from the fact that LC is transverse to all the fibers {η} × C. Indeed, let us
denote by μn the counting measure

μn := 1

2n
F−n({η0} × C) ∩ LC. (3.4)

Observe that the restriction of F on the horizontal axis is given by (η, 0) �→ (p(η), 0).
The preimage F−n({η0}×C) is a union of 2n vertical fibers counted with multiplic-

ity and each of the 2n point in the intersection of F−n({η0} × C) with the horizontal
axis can moved to a point on F−n({η0}×C)∩ LC via the holonomy along the vertical
foliation. Since the sequence of counting measures

1

2n
F−n({η0} × C) ∩ (C × {0})

converge to the measure of maximal entropy of p on the horizontal axis, we deduce
that μn converges to the transport of this measure to LC along the vertical foliation. ��

In conclusion, let us relate this current to the Green current of the map RH. We
will see (e.g in §7.1) that the map RH becomes algebraically stable on a blow-up X
of P

2 at 4 points. Using Guedj’s theorem, the lift R̃H to X admits a Green current on
X that we denote TR . Moreover, the map R̃H is birationally conjugate to F via a map
ϕ : X → P

2. We claim that ϕ∗� = TR .
The cohomology class of any fiber {η = c} in P

2 is invariant by F∗ and multiplied
by 2. Let us consider the projection π : P

2 → P
1 induced by the first projection

(η, θ) �→ η. In general the map π ◦ ϕ is rational and dominant but in our case, it is
holomorphic. Indeed, the map π ◦ ϕ can be described geometrically as follows. To
any point x on X , we find the unique conic Cx of P

2 passing through the four points
[±1 : 0 : 1], [−1 : 1 : 0], [2 : 1 : 0] and going through x . The value of η = π ◦ ϕ(x)
can be determined geometrically as the slope of the tangent line to Cx at the point
[1 : 0 : 1]. As the coefficients of the equation of the conic Cx are holomorphic
functions in x and since taking the slope at a certain point is also holomorphic, we
conclude that π ◦ ϕ is holomorphic. Let us consider the Fubini-Study form ω on P

1

and let α be the pullback (π ◦ϕ)∗ω. The form α is a smooth closed and positive current
on X , and its class is in the same class as the Green current TR :

{TR} = {α}.

Moreover, using the semi-conjugation, we have:

R∗
Hϕ∗� = 2ϕ∗�. (3.5)
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Using Guedj’s result, the current TR has minimal singularities among all the invariant
current whose class is equal to {TR}. By definition, this means that if S is any closed
positive invariant current in the same cohomology class as TR , then

GS � GR + C,

where C is a constant and GR,GS are the local potential TR = α + ddcGR, S =
α + ddcGS . We then say that S is more singular than TR , and we say that TR and S
have the same singularity type if S is more singular than TR and TR is more singular
than S.

In our situation, if � = α + ddcG�, there exists a constant C such that:

G� � GR + C .

Moreover, the potential G� is continuous as it is the pullback of the Green current of
a polynomial endomorphism by π ◦ ϕ. Since GR is bounded above, we get:

GR � G� + C .

We conclude that GR and G� have the same singularity type. Let us consider the
difference u = GR − ϕ∗GF , it is a bounded function and the invariance gives:

TR = 1

2n
(R̃n

H)∗TR

= 1

2n
(R̃n

H)∗(ϕ∗� + ddcu)

= ϕ∗� + 1

2n
ddcu ◦ R̃n

H.

Taking the limit as n → +∞, we deduce that (1/2n)u ◦ R̃n
H converges to zero in

L∞(X), hence in L1(X). Overall, this shows that TR = ϕ∗�.

4 Atomic Density of States

In some cases, the density of states (defined in Sect. 2.3) is atomic. We explain this
phenomenon by a discrepancy between the dynamical degree of the renormalization
map and the growth of the number of vertices of the sequence of Schreier graphs
that appear in the renormalization. This phenomenon already appeared in the work of
Sabot (see [84, Theorem 4.14]) who used it to study the spectrum of the Laplacian
arising from fractal sets. In our situation, the renormalization transformation is related
to the spectrum in a slightly different way but the resulting statement is similar. We
thus state our result.

Theorem 4.1 Consider a sequence of polynomial Pn ∈ C[x, y] of degree dn where
d > 1 is an integer and a rational map F : C

2 → C
2 whose dynamical degree λ1(F)
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satisfies the condition λ1(F) < d and such that:

Pn(x, y) = Qdn−p · Pn−1(F(x, y)),

where p = 0, 1, 2, Q is a polynomial in C[x, y]. Then the sequence of currents:

1

dn
[Pn = 0]

converges to a limiting current supportedon countablymany curves and its intersection
with a generic curve yields an atomic measure. More precisely, generic means we
require that this curve does not coincidewith any of the curves {P◦Fn = 0}, {Q◦Fn =
0} for all n ≥ 0)

Proof Taking the logarithm in the formula defining Pn , we have:

1

dn
log |Pn| = d−p log |Q| + 1

dn
log |Pn−1(F(x, y))|.

Applying the above formula inductively, we obtain:

1

dn
log |Pn| =

n−1∑
j=0

1

d j+p
log |Q(F j (x, y))| + 1

dn
log |P0(Fn(x, y))|.

Consider the current:

n∑
j=0

1

d j+p
[Q ◦ F j = 0] + 1

dn
[P0 ◦ Fn = 0]. (4.1)

Since the dynamical degree of F satisfies the condition λ1(F) < d, so the currents
[Qi◦F j = 0]/d j havemass bounded byCε(λ1(F)+ε) j/d j for any ε > 0. This shows
that the above currents converge to a current supported on countably many curves, so
the current [Pn = 0]/dn converges to a current satisfying the same properties. The
slice of the series by the generic curveC amounts to a series of atomicmeasures whose
partial sums have bounded weight equal to deg(C) times the mass of the current (4.1)
. It follows that this sliced series converges to an atomic measure. ��

5 Two Rational Maps Associated with the Grigorchuk Group

We recall from Sect. 2.4.1 that the two maps are:

F(λ, μ) =
(

2λ2

4 − μ2 , μ + μλ2

4 − μ2

)
.

G : (λ, μ) �→
(
2
4 − μ2

λ2
, −μ

(
1 + 4 − μ2

λ2

))
. (5.1)
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In homogeneous coordinates, these maps have the form:

F = [λ : μ : w] �→ [2λ2w : μ(4w2 − μ2) + μλ2 : w(4w2 − μ2)], (5.2)

G : [λ : μ : w] �→ [2(4w2 − μ2)w : −μ(λ2 + 4w2 − μ2) : λ2w]. (5.3)

We shall set in this section P0, P1, P2 the three polynomials defining F :

P0 = 2λ2w,

P1 = μ(4w2 − μ2) + μλ2,

P2 = w(4w2 − μ2).

In fact G = H ◦ F where H is the particular involution:

[λ : μ : w] �→ [4w : −2μ : λ]. (5.4)

We list the elementary properties satisfied by F,G.

• F and G have topological degree 2.
• F and G have algebraic degree 3.
• Both F and G have five indeterminacy points in total, the points [0 : ±2 : 1] in

C
2, and three more at infinity, the horizontal pole [1 : 0 : 0] and two diagonal

points [±1 : 1 : 0].

5.1 Integrability of the Two RenormalizationMaps

We first investigate the properties of the map on P
2 and describe our method to recover

two invariant fibrations for F through the analysis of the dynamics of its indeterminacy
points and curves.

Consider π : C
2 ��� C

2 the rational map given by:

π : (λ, μ) �→ (η := φ(λ,μ), θ := ψ(λ,μ)) ,

where

φ(λ,μ) = 4 − λ2 + μ2

4μ
, (5.5)

and

ψ(λ,μ) = 4 − μ2 + λ2

4λ
. (5.6)

For generic values of η, the level set {φ = η} defines a smooth conic in P
2, but at

η = ±1, these conics degenerate to a union of two lines. We denote these degenerate
lines by

{φ = ±1} = D±,1 ∪ D±,2,
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where D±,i are given by the equations:

D+,1 = {2 + λ − μ = 0}, D+,2 = {2 + λ + μ = 0}
D−,1 = {−2 + λ − μ = 0}, D−,2 = {2 + λ + μ = 0}.

Let us also consider the smooth conic D0 of equation {φ = 0}.

Theorem 5.1 The following properties are satisfied.

(i) The rational map F is semi-conjugate via π to id×t where t is the Chebyshev
map (i.e (id×t) ◦ π = π ◦ F).

(ii) There exists two F-invariant domain U1,U2 ⊂ C
2 such that U1 ∪ U2 =

C
2\(D0 ∪ (∪i D±,i )) and the restriction of F on each of these domain is ana-

lytically conjugate to the map (η, z) �→ (η, z2). Moreover, we can choose the
analytic conjugation ϕ on Ui so that:

ψ ◦ ϕ−1(η, z) = 1

2

(
z + 1

z

)
,

where ψ : C
2 → C is the function defined above.

Assertion (ii) in the above statement can be summarized in the diagram below.

(η, z) ∈ ϕ(Ui )

ϕ−1

(η, z2) ∈ ϕ(Ui )

Ui
F

ψ

Ui

ϕ

ψ

1

2

(
z + 1

z

)
∈ C

1

2

(
z2 + 1

z2

)
∈ C.

Remark 5.2 The secondmapG was studied in detail byM. and Y. Vorobets and amore
complicated conjugation has been determined [88].

The above theorem, for example the first assertion can be checked via a direct
calculation however we provide a proof to explain where the formulas come from.
To that end, we first study the dynamical properties of the map F in Lemma 5.3,
Proposition 5.4, Proposition 5.5. Using these, we then obtain in Proposition 5.6 the
existence of two invariant pencils for F . Finally we study in more detail these two
pencils by rational curves to determine in Lemma 5.8 an explicit conjugation for the
map F .

Let us study the orbit of contracted curves for both maps (i.e curves whose image
by F and G is collapsed to a point). Observe that since F = H ◦ G, the contracted
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curves for F and G are the same. As a result, one finds that the jacobian of F is of the
form:

J (F) = −12λ(μ − 2w)w(μ + 2w)(λ2 − μ2 + 4w2).

Observe that the vertical line {λ = 0} is a curve of fixed point for F and is mapped by
G to the line at infinity.

Denote by C1 the curve {λ2 − μ2 + 4w2 = 0}. We obtain:

Lemma 5.3 The curve C1 is collapsed by F to [−2 : 0 : 1] which is then mapped by
F to the fixed point [2 : 0 : 1] for F.
Proof Recall that we have denoted by P0 = 2λ2w, P1 = μ(4w2 −μ2 +λ2) and P2 =
w(4w2 −μ2) the homogeneous polynomials defining F . Observe that λ2 −μ2 +4w2

divides the polynomial P1, we have also

P0(λ, ±
√
4w2 + λ2, w) = 2λ2w,

P2(λ, ±
√
4w2 + λ2, w) = −wλ2.

In particular, this proves that the curve C1 is contracted to the point [−2 : 0 : 1]. Now
F maps [−2 : 0 : 1]) to the point [2 : 0 : 1], which is then fixed by F , as required. ��

We summarize the dynamics of all the contracted curves.

Proposition 5.4 The following properties hold.

(i) The map F collapses the curves {μ = ±2w} to the indeterminacy points [±1 :
1 : 0] respectively.

(ii) The map G collapses the curves {μ = ±2w} to the indeterminacy points [0 :
±2 : 1] respectively.

(iii) The orbit of C1 for both F and G is finite and does not contain any indeterminacy
points.

(iv) The line {λ = 0} is a curve a fixed points for F and is mapped by G the the line
at infinity.

(v) The line at infinity (with the indeterminacy points removed) is collapsed by F and
G to the vertical pole qv = [0 : 1 : 0] which is a fixed point for both maps.

Proof Assertions (i),(ii) , (iv) and (v) follow from the expression (5.2), (5.3) of F
and G. Assertion (iii) follows from the previous lemma together with the fact that
G = H ◦ F and that the points [−2 : 0 : 1], [2 : 0 : 1] are both fixed by H . ��

We now look at the dynamical behavior of F near indeterminate points. Denote by
X the blow-up of P

2 at the four points [±1 : 1 : 0] and [0 : ±2 : 1] and by π : X →
P
2 the associated (regular) map (see Appendix 9.7). Denote by E1, E2, E3, E4 the

exceptional divisors over the points [−1 : 1 : 0], [1 : 1 : 0], [0 : −2 : 1] and [0 : 2 : 1]
respectively. We consider the lifts F̃, G̃ of F and G to X .

In the proposition below, we refer to Appendix 9.7 for the notion of strict transform.
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Fig. 4 Blow-up of P
2 at the four

points [±1 : 1 : 0], [0 : ±2 : 1]

[0:-2:1]

[1:0:0]

[0:1:0]

[0:0:1]

[-1:1:0]

[1:1:0]
[0:2:1]

E1

E2

E3

E4

π

X

P
2

Proposition 5.5 The following assertions hold.

(i) The involution H induces an automorphism of X, it exchanges E1 with E4 and
E2 with E3.

(ii) F̃ has one indeterminacy point on E3 and E4, the two exceptional divisors E3
and E4 are fixed by F̃ and the restriction to these divisors has topological degree
2.

(iii) The image of the indeterminacy points of F̃ on E3 and E4 are the strict transform
of the lines {λ + μ + 2w = 0} and {λ − μ − 2w = 0}, respectively.

(iv) F̃ is regular on E1, E2 and maps these two divisors to the strict transform of the
line {λ = −2w} (each with multiplicity one).

(v) The image of the indeterminacy point [1 : 0 : 0] by F̃ is the strict transform of
the line at infinity.

(vi) Both F̃ and G̃ are algebraically stable on X.

Proof of Proposition 5.5 Recall that we have denoted by P0 = 2λ2w, P1 = μ(4w2 −
μ2 + λ2) and P2 = w(4w2 − μ2) the homogeneous polynomials defining F .

Observe that (i), (ii) and (iv) imply (vi). Observe that assertion (i), (iv) and (v) are
direct computations. We leave assertion (i) and (iv) to the reader and prove assertion
(v).

Let us blow-up the point [1 : 0 : 0], we choose some local coordinates (e =
μ/λ, l = w/μ) such that the the exceptional divisor over [1 : 0 : 0] has local equation
e = 0. In these blow-up coordinates, the map F composed with the blow-down is
given by:

(e, l) �→ [1 : e : le] ∈ P
2 �→ [P0(1, e, le) : P1(1, e, le) : P2(1, e, le)] ∈ P

2,

and we obtain:

(e, l) �→ [2l : 1 − e2 + 4e2l2 : e2l(−1 + 2l)(1 + 2l)].
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In particular, the image of the exceptional divisor e = 0 by this map is parametrized
by l �→ [2l : 1 : 0] and assertion (v) holds.

Let us prove (ii) and (iii) for the exceptional divisor E3, we fix some local coor-
dinates near E3. Take (e = λ/w, l = (μ/w + 2)/(λ/w)) so that E3 = {e = 0}, we
write F ◦ π in these coordinates:

F ◦ π : (e, l) �→ [P0(e, −2 + le, 1) : P1(e, −2 + le, 1) : P2(e, −2 + le, 1)].

We obtain:

F ◦ π : (e, l) �→ [2e : −(−2 + el)(−e − 4l + el2) : −l(−4 + el)].

In particular, the restriction to E3 is of the form:

F ◦ π : (e = 0, l) �→ [0 : −2l : l] = [0 : 2 : 1],

when l �= 0. As a result F ◦ π contracts E3 to the point [0 : −2 : 1]. We can thus
compute the lift F̃ in these coordinates as F̃ maps E3 to E3, which is obtained from
the following expression.

F̃ : (e, l) �→
(
e′ = P0(e, −2 + le, 1)

P2(e, −2 + le, 1)
, l ′ = 2 + P1(e, −2 + le, 1)/P2(e, −2 + le, 1)

P0(e, −2 + le, 1)/P2(e, −2 + le, 1)

)
.

We thus obtain:

F̃ : (e, l) �→
(
e′ = − 2e

l(−4 + el)
, l ′ = −2 + el + 4l2 − el3

2

)
.

The above formula proves that l = e = 0 is an indeterminacy point of F̃ . Blowing-up
this point (e.g writing e = e1, l = l1e1 in F ◦ π ) gives the image of the indeterminacy
point by F̃ , and the computation is direct. The restriction to E3 also yields:

F̃ : (e = 0, l) �→
(
0, −1 + 2l2

)
.

This proves that E3 is mapped to itself with multiplicity 2 by F̃ (i.e the restriction of
F̃ to E3 has topological degree 2), we have thus proven assertion (ii) and (iii) for the
exceptional divisor E3. Similar computation holds for the determination of the image
of E4. ��

We now use the dynamical features of F above to find two invariant fibrations.
Let D1 be the pencil of conic in P

2(C) passing through all four points
[±1 : 1 : 0], [0 : ±2 : 1], and let D2 be the pencil of conics in P

2(C) passing through
all four points [±1 : 1 : 0], [±2 : 0 : 1]. We will now show that both pencils are
invariant under F . A general algebraic-geometric view of this phenomenon will be
given in Sect. 8.2.
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Proposition 5.6 The two pencils D1, D2 are invariant under F.

Proof Observe that the vertical line {λ = 0} is a line of fixed points, which is trans-
versely super-attracting. So the image of any conic passing through [0, ±2, 1] also
passes through those points (see Proposition 5.5 (iii)). Take a conic C in the pencil
D1. Since the horizontal lines {μ = ±2w} do not belong to the pencil D1, Bezout’s
theorem proves that C intersects each of those lines at 2 points. Since these lines are
collapsed to [±1 : 1 : 0] by assertion (i) of Proposition 5.4, this proves that the image of
C by F passes through the two points [±1 : 1 : 0]. We have shown that for any conic in
the pencil D1, its image by F passes through all four points [±1 : 1 : 0], [0 : ±2 : 1].
Let us now argue that the image of any conic in the pencil D1 by F is also a conic, i.e is
also a curve of degree 2. Since the curve C passes through all four points [±1 : 1 : 0]
and [0 : ±2 : 1], we can calculate (using Proposition 9.12 (v)) the class of C in
H1,1(X):

C = 2L̃∞ + E1 + E2 − E3 − E4 ∈ H1,1(X),

where L̃∞ is the strict transform of the line at infinity by the blow-up at the four points
[±1 : 1 : 0], [0 : ±2 : 1]. By Proposition 5.5.(iv), the divisors E1 and E2 are mapped
by F̃ to a line in X , the exceptional divisors E3, E4 are fixed by F̃ , their indeterminacy
point are mapped to a line and the image of the indeterminacy point [1 : 0 : 0] is the
line at infinity. This implies that the image of C by F , denoted F∗C is given by:

F∗C = 2F∗ L̃∞ + F∗E1 + F∗E2 − F∗E3 − F∗E4

= (2 + 1 + 1 − 1 − 1)L∞ ∈ H1,1(P2).

In conclusion, F maps a conic in D1 to a conic passing through the same four points,
so the pencil D1 is preserved by F .

Let us now prove that the pencil D2 is also invariant. The same argument proves that
any conic in D2 has an image of degree 2 which passes through the points [±1, 1, 0].
Take a conic C in the pencil D2. Since the conic C1 := {λ2 − μ2 + 4w2 = 0} does
not belong to the pencil D2, Bezout’s theorem proves that C intersects C1 at four
points. By Lemma 5.3, the curve C1 is collapsed by F to [−2 : 0 : 1], so the image
F(C) passes through that point. Moreover, the point [2 : 0 : 1] is a fixed point for
F , so the image F(C) also passes through that point. Overall, we have shown that
any conic in the pencil D2 is mapped by F to a conic passing through all four points
[±1 : 1 : 0], [±2 : 0 : 1], hence F preserves the pencil D2, as required. ��

We obtain an explicit characterization of the two pencils D1 and D2.

Corollary 5.7 The pencil D1 and D2 are parametrized respectively by two rational
maps φ : P

2 ��� P
1 and ψ : P

2 ��� P
1 defined by the formulas (5.6) and (5.5).

Moreover, φ ◦ F = φ,ψ ◦ F = t ◦ ψ where t is the Chebyshev map,

To go further, we need to parametrize holomorphically the fibers of the map φ to
find an appropriate conjugate for F . Recall that the point [2 : 0 : 1] is fixed by F and
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that the point [−2 : 0 : 1] is mapped by F to that point. These two points correspond
to the repelling fixed point and its preimage for the Chebyshev map 2z2 − 1.

Choose two simply connected domains V1, V2 of C\{±1, 0} such that V1 ∪ V2 =
C\{−1, 0}. Let us take the preimageUi ⊂ C

2 of Vi by themap (λ, μ) �→ φ2(λ, μ)−1.
By definition, each domain Ui is contained to C

2\(D0 ∪ ∪i D±,i ) and we have the
equalityU1 ∪U2 = C

2\(D0 ∪ ∪i D±,i ). On each of these domainsUi , the square root√
η2 − 1 = √

φ2 − 1 is well-defined.
For each i = 1, 2 and any point p ∈ Ui ∩ φ−1(η), we take ϕη(p) ∈ P

1 to be the
slope of the line joining p and the point (2, 0) ∈ C

2. We normalize in such a way
that the tangent line to the hyperbola φ−1(η) at [2 : 0 : 1] is mapped to [1 : 1] ∈ P

1,
such that the point [0 : 2η + 2

√
η2 − 1 : 1] is mapped to [0 : 1] ∈ P

1 and the point
[0 : 2η − 2

√
η2 − 1 : 1] is mapped to the point at infinity [1 : 0] ∈ P

1.

Lemma 5.8 The following properties hold.

(i) For each i = 1, 2 and for any η ∈ C\{±1, 0}, the map ϕη : Ui ∩ φ−1(η) → C is
an analytic function of the form:

ϕη : (λ, μ) ∈ C
2 ∩ φ−1(η) �→ 2 − λ − ημ − μ

√
η2 − 1

−2 + λ + ημ − μ
√

η2 − 1
.

(ii) For each i = 1, 2 and for any η ∈ C\{±1, 0}, the inverse ϕ−1
η : C → Ui ∩φ−1(η)

of ϕη is given by:

z �→
(

λ = − 4(−1 + η2)z

1 + z2 + η
√−1 + η2(−1 + z2) − η2(1 + z2))

,

μ = 2
√−1 + η2(−1 + z)(1 + z)

1 + z2 + η
√−1 + η2(−1 + z2) − η2(1 + z2)

)
.

(iii) For generic z ∈ C and for all η ∈ C\{±1, 0}, one has:

ϕη ◦ F ◦ ϕ−1
η (z) = z2.

(iv) For generic z ∈ C and for all η ∈ C\{±1, 0}, one has:

ψ ◦ ϕ−1
η (z) = 1

2

(
z + 1

z

)
.

Proof Let us describe how one can obtain assertion (i). Let us denote by l the slope
l := (λ − 2)/μ. At the two point [0 : 2η + 2

√
η2 − 1 : 1], [0 : 2η − 2

√
η2 − 1 : 1],

the slopes l+, l− are given by:

l+ := −η +
√

η2 − 1 ; l− := −η −
√

η2 − 1.
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One checks that the slope l of the hyperbola at the point [2 : 0 : 1] is −η. Since the
Mobius transformation z �→ (z − l−)/(−z + l+) which maps the triplet (l+, l−, −η)

to the triplet (0, ∞, 1) on P
1, we obtain ϕη by applying this Mobius transformation to

l = (λ − 2)/μ:

ϕη(λ, μ) :=

(
λ − 2

μ

)
+ η + √

η2 − 1

−
(

λ − 2

μ

)
− η + √

η2 − 1
.

For assertion (ii), one determines the inverse is obtained by first solving the system of
equation

{
4 − λ2 + μ2 = 4μη,

λ − 2 = lμ.

This determines λ,μ as a function of l and then one precompose by the Mobius
transformation z �→ (l+z+l−)/(z+1)whichmaps the triplet (0, ∞, 1) to (l+, l−, −η).
The last two assertions (iii) and (iv) also follows from direct computations. ��

Recall that the map F leaves each fiber φ−1(η) invariant, so that one has the fol-
lowing commutative diagram for each i = 1, 2:

C

ϕ−1
η

ϕη◦F◦ϕ−1
η

C

Ui ∩ φ−1(η)
F

Ui ∩ φ−1(η).

ϕη

Proof of Theorem 5.1 Consider the analytic map ϕ given by

ϕ(λ, μ) := (
η := φ(λ,μ), z := ϕφ(λ,μ)(λ, μ)

)
.

Using assertion (iii), (iv) of the previous lemma,we deduce that F and (η, z) �→ (η, z2)
are conjugate on each Ui via ϕ and that ψ ◦ ϕ−1

η (z) = 1/2(z + 1/z), as required. ��

5.2 Structure of theMap F

Recall from the last section that we have found amap π : C
2 ��� C

2 such that π ◦F =
t ◦ π , where t is the Chebyshev map (3.1) where π is defined by π(λ,μ) = (η, θ)

with

η = φ(λ,μ) = 4 − λ2 + μ2

4μ
, θ = ψ(λ,μ) = 4 − μ2 + λ2

4λ
.

This is a rational map of algebraic degree 3, of topological degree 2 with the following
features:
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• It is equivariant with respect to the reflections (λ, μ) �→ (μ, λ) and (η, θ) �→
(θ, η).

• It has the following indeterminacy points: two vertices [0 : 2 : 1] and [0 : −2 : 1]
on the line {λ = 0}, [1 : 0 : 0] and two “diagonal” points at the line A∞ at infinity:
d± = [1 : ±1 : 0];

• The vertical axis Aver = {λ = 0} is collapsed (after puncturing out the indetermi-
nacy points) to the vertical pole qv = [0 : 1 : 0]. Symmetrically, the horizontal
axis Ahor is collapsed to the horizontal pole qh = [1 : 0 : 0].

• The pullback of a vertical line Lver
η through (η, 0) is a rational algebraic curves (a

“vertical hyperbola” )

L̂ver
η = {4 − λ2 + μ2 − 4η μ = 0}

union the vertical axis Aver. Symmetrically, the pullback of a horizontal line Lhor
θ

through (0, θ) is a horizontal hyperbola

L̂hor
θ = {4 − μ2 + λ2 − 4θ λ = 0}

union the horizontal axis Ahor. The projection π is a degree two branched covering
of each of the hyperbolas onto its image.

• The vertical hyperbolas L̂ver
η form a pencil through the points a± = (±2, 0), i.e.,

all of them pass through these points, and form a holomorphic foliation of C
2

�

{0, a±, b±}. [From the projective point of view, they form a pencil through four
points (one should add the diagonal points d± = [1 : ±1 : 0] at infinity) forming
a foliation of the same space, C

2
� {0, a±, b±}.] The description of the pencil of

horizontal hyperbolas is symmetric (with respect to the reflection (η, θ) �→ (θ, η)).
• Each real vertical hyperbola L̂ver,R

η with |η| < 1 projects under π to the interval
{η} × I whose endpoints correspond to the points a±. For |η| > 1, the hyperbola
L̂ver,R

η projects to the complement of this interval, {η} × (R̂ � int I). The picture
for the real horizontal hyperbolas is symmetric.

It follows that π(RP
2) is the union of the square {|η| ≤ 1, |θ | ≤ 1} and four

quadrants attached to its vertices.
Now the dynamics of F can be readily understood as the lift by π of the Chebyshev

dynamics:

• The vertical foliation L̂ver := ⋃
η∈C L̂ver

η is leafwise invariant, and F restricts to a

degree two rational endomorphism on each leaf L̂ver
η . This endomorphism has two

superattracting fixed points, the intersections of L̂ver
η with the vertical axis Aver.

Hence it is conformally conjugate to the squaring map f0 : z �→ z2 of Ĉ. In this
coordinate, the projection π : L̂η → Lη becomes the canonical semi-conjugacy
between f0 and t .

• The horizontal foliation L̂hor := ⋃
θ∈C L̂θ

hor
is F-invariant, with the leaves trans-

formed by the Chebyshev map:

F(L̂θ )) = L̂ t(θ).
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Fig. 5 Vertical hyperbolas L̂verη for −1 � η � 1

Fig. 6 Vertical hyperbolas L̂verη for |η| � 1
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• Let Ws
η± be the superattracting basins of F | L̂ver

η (with “+” corresponding to,
say, the fixed point with |μ| > 2). Since the orbits in the disks Ws

η± converge to
the corresponding fixed points on Aver, these disks get interpreted as the global
superattracting manifolds of these fixed points.

• The action of F on the real hyperbolas L̂ver,R
η with |η| > 1 is real conjugate

to the map f0 : x → x2 on R. For |η| < 1 it is real conjugate to the map

f0 : x → 1

2

(
x − 1

x

)
on R (which is in turn conjugate to f0 on the unit circle

T).7

• The Julia set of F is equal to

J (F) = π−1(J (T )) = π−1(C × I).

This is a real-symmetric 3D variety M that can be described as follows. Let Î

be the union of four semi-strips in R
2. It is projected by ψ to the interval I, and

the fibers of this projection are real horizontal hyperbolas. Complexifying these
hyperbolas, we obtain Î. In this way, M gets interpreted as the complexification
of Î along the horizontal foliation.

• Thus,M is foliated by (complex) horizontal hyperbolas. This foliation has a global
transversal, e.g., an interval Tλ, λ > 2, which is the slice of one of the half-strips
of Î by the real vertical line through (λ, 0).

• The transverse measure onC×I to the horizontal foliationLhor lifts to a transverse
measure on M to the horizontal foliation L̂hor. It is induced by the the 1-form

ω̂ = π∗(ω) = dψ

π
√
1 − ψ2

restricted to M.
Explicitly, the Green current is then given by the formula

� =
∫ 1

−1
[4 − μ2 + λ2 − 4θ λ = 0] dθ

2π
√
1 − θ2

.

Remark 5.9 Note that we normalize by dividing by a factor 2 which corresponds to
the degree of the semi-conjugacy, so that � has mass 1.

5.3 The Density of States Via an Equidistribution Result for F

Recall from Sect. 2.4.1 that the sequence of polynomials associated to the density of
states follows from the inductive formula:

Pn(λ, μ) = (4 − μ2)2
n−2

Pn−1(F(λ, μ)), (5.7)

where P0 = −λ + 2 − μ, P1 = (−λ + 2 − μ)(λ + 2 − μ) and n � 2.

7 Incidentally, this map describes the Newton method for finding ±i , the roots of z2 + 1.
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The density of states is then deduced from the zeros of the polynomials:

ω = lim
n→+∞

1

2n
∑

Pn(−1,μ)=0

δ(μ+1)/4.

Note that one had to apply the transformation μ �→ (μ + 1)/4 to get the density of
states associated to the Grigorchuk group.

Theorem 5.10 Let C and S be two irreducible algebraic curves in C
2 such that C is

not a vertical hyperbola while S is not a horizontal hyperbola and the intersection of
S with C and the vertical line of fixed points is empty. Then

1

2n
[(Fn)∗C ∩ S] → (degC) · (deg S) · ω̂S, (5.8)

where ω̂S is the probability measure obtained by restricting the 1-form

dψ

π
√
1 − ψ2

to S.

Proof By Lemma 3.8 applied to the map id× f where f is the squaring map, we get
the convergence of (id× f n)−1(C) ∩ S for any two generic curves C, S. Now since F
is locally analytically conjugate to id× f by assertion (ii) of Theorem 5.1, we conclude
that the same property holds for F using Lemma 3.7. ��

Consider the affine map A : μ �→ (μ + 1)/4. In case of C = Lhor
θ , S = Tλ we

obtain the desired equidistribution result.

Theorem 5.11 We have:

1. The sequence of currents

1

2n
[Pn = 0]

converges as n → +∞ to the Green current of F.
2. The density of states associated with the Grigorchuk group is a multiple of A∗ω̂S

where the measure ω̂S corresponds to the slice of the Green current of F by the line
S := {λ = 1}. Moreover, the support of this measure is a union of two intervals.

Proof Observe that P1 = 4μ(φ−1) and that [P1 = 0] = [φ−1 = 0]. Since F∗φ = φ

and since F∗μ = 4λμψ/(4 − μ2), F∗λ = 2λ2/(4 − μ2), we obtain using (5.7):

P2 = (4 − μ2)F∗P1 = 4λμψ(φ − 1),

hence

div(P2) = div(4λμψ(φ − 1)).
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Since the term (4 − μ2) gets simplified in the previous calculation, we also deduce
that:

[P2 = 0] = F∗[P1 = 0].

By induction, using the fact that F∗ψ = T ◦ ψ , we get:

Pn = Cnμ(φ − 1)λ2
n−1−1

n−1∏
k=1

T k ◦ ψ,

where Cn ∈ C
∗ is a constant. The presence of the term μλ2

n−1−1 gives that:

[Pn = 0] = F∗[Pn−1 = 0].

Finally we get:

[Pn = 0] = (Fn)∗[P0 = 0].

Applying the previous result, we deduce that the sequence of currents [Pn =
0] converges to a multiple of the Green current and the sequence of measures
1/2n[Pn(−1, ·) = 0] converges to the slice of the Green current by the line {λ = −1}.
We finally obtain the density of states by applying the appropriate affine transforma-
tion. ��

6 The Rational Map Associated with the Lamplighter Group

The map associated to the lamplighter map F : C
2 → C

2 is defined as:

F : (λ, μ) �→
(

−λ2 − μ2 − 2

μ − λ
, − 2

μ − λ

)
.

In homogeneous coordinates, F is of the form:

F := [λ,μ,w] �→ [−λ2 + μ2 + 2w2, −2w2, (μ − λ)w],

and it has topological degree 1 and algebraic degree 2.

6.1 Integrability of theMap Associated with the Lamplighter Group

Although the classical identity λ2 − μ2 = (λ + μ)(λ − μ) implies directly that F
preserves a fibration, we also follow our systematic method in this case. The main
result of this section is the following proposition.
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Fig. 7 Blow-up of P
2 at the two

points [±1 : 1 : 0]

[1:0:0]

[0:1:0]

[0:0:1]

[-1:1:0]

[1:1:0]

E1

E2

π

X

P
2

Proposition 6.1 Take ϕ : (λ, μ) �→ (λ + μ, λ − μ), then the map F is conjugate via
ϕ to the map:

(α, β) �→
(

α,
αβ − 4

β

)
.

The method of the proof is the same as in the previous section, Sect. 5.1, and allows
one to recover the formula for the conjugation ϕ.

We consider the blow-up X of P
2 at the two points [±1 : 1 : 0], the lift F̃ of F

to X , denote by π : X → P
2 the blow-down map onto P

2 and by E1, E2 the two
exceptional divisors such that E1 is the exceptional divisor above [−1 : 1 : 0], E2 is
above [1 : 1 : 0] and L̃∞ is the strict transform of the line at infinity.

Proposition 6.2 The following properties are satisfied.

(i) F is a birational map, i.e its topological degree is one.
(ii) F has two indeterminacy points on P

2 consisting of the two points [±1, 1, 0] at
infinity.

(iii) The only contracted curves for F are the lines {λ = μ} and the line at infinity.
(iv) The strict transform of the line at infinity is contracted by F to the fixed point

[1, 0, 0], the line {λ = μ} is collapsed by F to the indeterminacy point [−1, 1, 0].
(v) F̃ is regular near the strict transform of the line at infinity and the image of the

line {λ = μ} by F̃ is the exceptional divisor E1.
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(vi) F̃ is regular on E1 and maps E1 to the line π−1({μ = 0}).
(vii) F̃ has one indeterminacy point on E2 and collapses E2 to the point

π−1([1 : 0 : 0]).
(viii) F̃ maps the indeterminacy point on E2 to the strict transform of the line at infinity.
(ix) F̃ is algebraically stable on X.

Proof Let us denote by P0 = −λ2 + μ2 + 2w2, P1 = −2w2, P2 = (μ − λ)w the
three homogeneous polynomials defining F .

Assertions (i), (ii), (iv), (v) are direct computations. Observe also that (iv), (v), (vi),
(vii) imply that assertion (ix) since no curve is contracted by any iterate of F̃ to an
indeterminacy point. Assertion (iii) follows from the fact that the jacobian of the lift
of F to C

3 is of the form:

Jac(F) = −8(λ − μ)w2.

Let us prove assertion (vi).
In the coordinate chart (e = λ/μ + 1, l = (w/μ)/(λ/μ + 1)), the map F ◦ π is

given by the expression:

F ◦ π : (e, l) �→ [P0(e − 1, 1, le) : P1(e − 1, 1, le) : P2(e − 1, 1, le)].

We obtain:

F ◦ π : (e, l) �→ [−2 + e − 2el2 : −2el2 : −(−2 + e)l],

and in the chart (e = w/μ, l = (λ/μ + 1)/(w/μ)), the map F ◦ π is given by the
expression:

F ◦ π : (e, l) �→ [P0(−1 + le, 1, e) : P1(−1 + le, 1, e) : P2(−1 + le, 1, e)],

which simplifies as follows:

F ◦ π : (e, l) �→ [−2e − 2l + el2 : −2e : 2 − el].

In both charts, F ◦ π is well-defined and F ◦ π maps regularly E1 to the line {μ = 0}.
Since this line is disjoint from the indeterminacy points [±1, 1, 0], we deduce that
F̃ is regular on E1 and maps E1 to the preimage of the line {μ = 0}. We have thus
proved (vi).

Let us prove assertion (vii).
Take a first chart (e = λ/μ − 1, l = (w/μ)/(λ/μ − 1)), then F ◦ π is given by:

F ◦ π : (e, l) �→ [P0(1 + e, 1, le) : P1(1 + e, 1, le) : P2(1 + e, 1, le)].

We obtain:

F ◦ π : (e, l) �→ [2 + e − 2el2 : −2el2 : −el], (6.1)
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and F ◦ π is regular for near e = 0 for all l ∈ C. In the other chart (e = w/μ, l =
(λ/μ − 1)/(w/μ)), we have:

F ◦ π : (e, l) �→ [P0(1 + le, 1, e) : P1(1 + le, 1, e) : P2(1 + le, 1, e)],

which simplifies as follows:

F ◦ π : (e, l) �→ [−2e + 2l + el2 : −2e : −el], (6.2)

and the latter expression has a unique indeterminacy at (e = 0, l = 0). One checks
from the last expression that E2 is mapped to [1, 0, 0] by F ◦π . This finishes the proof
of (vii).

Let us prove assertion (viii). We blow up the indeterminacy point (e = 0, l = 0)
on E2 where (e = w/μ, l = (λ/μ − 1)/(w/μ)). Denote by π ′ the blow-up of this
point. Take e = e1, l = l1e1 where e1 = 0 is the equation for the exceptional divisor,
the map F ◦ π ◦ π ′ is given in those coordinates by:

F ◦ π ◦ π ′ : (e1, l1) �→ [P0(1 + l1e
2
1, 1, e1) : P1(1 + l1e

2
1, 1, e1) : P2(1 + l1e

2
1, 1, e1)].

We simplify the above formula and get:

F ◦ π ◦ π ′ : (e1, l1) �→ [−2 + 2l1 + e21l
2
1 : −2 : −e1l1].

The above expression is regular near e1 = 0. Let us look near l1 = ∞, take e =
l2e2, l = e2, so the map F ◦ π ◦ π ′ is given in those coordinates by:

F ◦ π ◦ π ′ : (e2, l2) �→ [P0(1 + l2e
2
2, 1, e2l2) : P1(1 + l2e

2
2, 1, e2l2)

: P2(1 + l2e
2
2, 1, e2l2)].

We obtain:

F ◦ π ◦ π ′ : (e2, l2) �→ [2 − 2l2 + e22l2 : −2l2 : −e2l2], (6.3)

which is also regular near e2 = 0, l2 = 0. In particular, this proves that the map
F ◦ π ◦ π ′ is regular on the exceptional divisor above the indeterminacy point of F̃
on E2. The above expression also shows

F ◦ π ◦ π ′ : (e1 = 0, l1) �→ [−2 + 2l1 : −2 : 0],

so the indeterminacy point of F̃ is mapped to the line at infinity. We have thus proved
assertion (viii). ��

Consider the pencil D of lines passing through the point at infinity [−1 : 1 : 0].
Proposition 6.3 The pencil of lines D is preserved by F.
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Proof Take a line C belonging to the pencil D. We show that the image of C by F is a
curve passing through the point [−1 : 1 : 0]. Observe that the line {λ = μ} intersects
the line C , and since {λ = μ} is collapsed by F to the point [−1 : 1 : 0] by assertion
(iv) of Proposition 6.2, we deduce that the image of C by F is a curve passing through
the point [−1 : 1 : 0].

Let us show that the image of C by F is a line or equivalently that the curve
F(C \ I (F)) is of degree 1. Since C is a line passing through the point [−1 : 1 : 0],
assertion (v) of Proposition 9.12 shows that its strict transform C̃ in X satisfies:

C̃ = L̃∞ + E2 ∈ H1,1(X).

We have thus:

F̃∗C̃ = F̃∗ L̃∞ + F̃∗E2.

By assertion (iv) and (v) of Proposition 6.2, the line at infinity is collapsed regularly
by F̃ to a point, so we have

F̃∗ L̃∞ = 0 ∈ H1,1(X).

By assertion (vii) and (viii) of Proposition 6.2, the divisor E2 is collapsed and its
indeterminacy point is mapped to L∞, so we have:

F̃∗E2 = L̃∞ ∈ H1,1(X).

This shows that F̃∗C̃ = L̃∞, hence the line C is mapped to a line by F . ��

Observe that the member of the pencil D are lines passing through [−1 : 1 : 0], so
each of those line is given by an equation of the form:

φ(λ,μ) := λ + μ = α,

where α ∈ C. One checks that φ ◦ F = φ so φ semi-conjugates F to the identity.
We now choose a transverse coordinate on each fiber of φ, let ψ : C

2 → C be the
map:

ψ(λ,μ) = λ − μ,

then the map F is conjugate via φ × ψ to the rational map:

(α, β) �→
(

α,
αβ − 4

β

)
.
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6.2 The Density of States for the Lamplighter Group

Recall from Sect. 2.4.2 that the spectrum of the Schreier graph associated to the
lamplighter group is related to a sequence of polynomials Pn defined inductively as
follows:

Pn(λ, μ) = (μ − λ)2
n−1

Pn−1(F(λ, μ)),

where P0 = 4 − λ − μ. The spectrum associated to the lamplighter group is the limit
of 1/2n[Pn = 0] with the line {μ = 0}. We thus recover the fact that the density of
states is atomic, which was first proved by Grigorchuk–Zuk [54, Theorem 3]. Denote
by ωn the counting measure 1/2n[Pn = 0] ∧ [μ = 0] and denote by ω the limiting
measure. Recall that we have defined in Proposition 3.10.(i) a laminar current TF on
the elliptic cylinder.

Theorem 6.4 The following properties are satisfied.

(i) The sequence of currents 1/2n[Pn = 0] converges as n tends to ∞ to a current
supported on countably many curves.

(ii) The sequence of measures 1/2n[Pn = 0] ∧ [μ = 0] converges to an atomic
measure.

(iii) The sequence of measures

2n

n
(ω − ωn)

converges to the measure −2TF ∧ {μ = 0}.
In particular, assertions (ii) shows that the density of states of the Lamplighter group
is atomic.

Proof By Proposition 6.2, the map F is conjugate to the map:

G : (α, β) �→
(

α,
αβ − 4

β

)
.

By assertion (ii) of Theorem 3.3, we have that λ1(F) = max(1, 1) = 1 = λ2(F)

and F is a birational map. Using the change of coordinates, we see that the lines of
equations μ = 0, P0 = 0, μ − λ = 0 are given by the equations α − β = 0, α = 4
and β = 0 respectively. Note that the preimage of the fiber {α = 4} by G is itself,
thus it is always distinct from the diagonal α = β. Let us show that G−n{β = 0} is
always distinct from the diagonal for all n � 0. Let us observe that the diagonal and
{β = 0} intersect at only α = β = 0. Moreover, when α belongs to the elliptic locus,
the map β �→ (αβ −4)/β is a rotation, and the point β = 0 is never a fixed point of the
rotation. In particular, the line {β = 0} restricted to the elliptic locus can be viewed as
the graph� of a non constant section over the circleT. Its winding number is exactly 1.
Since the restriction of G on each fiber α = cte over the elliptic locus is a rotation, the
restriction of curve G−n{β = 0} to the elliptic locus is a curve whose winding number
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is exactly n. In particular, it intersects the diagonal at exactly n distinct points. This
shows that G−n{β = 0} and {α = β} are distinct, and we conclude that F−n{μ = λ}
and {μ = 0} have no common components. We have thus shown that the line {μ = 0}
is generic, hence Theorem 4.1 can be applied and we obtain assertion (i) and (ii).

Let us now prove assertion (iii). Set � = {P0 = 0} and � = {μ−λ = 0}. Observe
that P0 = 4 − λ − μ so its poles and zeros satisfy the relation:

div(P0 ◦ π) = πo� + E1 − L̃∞,

where πo� denotes the strict transform of the line �. Using the inductive relation,
the fact that

div((μ − λ) ◦ π) = πo� + E2 − L̃∞

and the equality F̃∗ L̃∞ = L̃∞ + E2, we obtain:

div(P1 ◦ π) = πo� + E2 − L̃∞ + F̃∗(πo� + E1 − L̃∞)

= πo� − 2L̃∞ + F̃∗(πo� + E1).

Since the strict transform πo� is mapped by F̃ to E1 using assertion (v) of
Proposition 6.2, we have F̃∗E1 � πo� (in the sense of currents). Note that
F̃∗E1 = L̃∞ + E1 ∈ H1,1(X) by Proposition 8.7 and since the line � intersects the
line at infinity at the point [1 : 1 : 0], its strict transform satisfies πo� = L̃∞ + E1.
In other words, we get the equality of currents F̃∗E1 = πo�.

div(P1 ◦ π) = πo� − 2L̃∞ + F̃∗(πo� + E1)

= 2πo� − 2L̃∞ + F̃∗πo�.

div(P2 ◦ π) = 2πo(�) − 2E2 − 4L̃∞ + 2F̃∗πo(�) + (F̃2)∗πo(�).

We apply the above argument inductively and deduce:

div(Pn ◦ π) =
n−2∑
k=0

2n−1−k(F̃k)∗πo� + 2(F̃n−1)∗πo� − 2n L̃∞

+ (F̃n)∗πo�

Pushing forward by π the previous relation and looking only at the zero locus of
Pn , we thus obtain that

1

2n
[Pn = 0] =

n−2∑
k=0

1

21+k
(Fk)∗� + 1

2n−1 (Fn−1)∗� + 1

2n
(Fn)∗�.
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Setting TL = limn→+∞ Tn where Tn = 1

2n
[Pn = 0], the difference TL − Tn is of

the form:

TL − Tn =
+∞∑
k=n

1

21+k
(Fk)∗� − 1

2n
(Fn)∗� − 1

2n−1 (Fn−1)∗�.

We rescale:

2n

n
(TL − Tn) = 2n

n

(+∞∑
k=n

k

21+k

(Fk)∗�
k

)
− 1

n
(Fn)∗� − 2

n
(Fn−1)∗�.

By Proposition 3.10, the currents (1/n)(Fn)∗�, (1/n)(Fn)∗� converge to TF ,
moreover, we need the following asymptotic expansion:

1

n
(Fn)∗� = TF + o(1),

1

n
(Fn)∗� = TF + o (1) .

We obtain:

2n

n
(TL − Tn) = 2n

n

(+∞∑
k=n

k

21+k (TF + o(1))

)
−

(
1 + 2(n − 1)

n

)
TF + o (1) ,

= 2n

n

(+∞∑
k=n

k

21+k

)
TF −

(
1 + 2(n − 1)

n

)
TF + o (1) ,

=
(
2n

n
· n + 1

2n
−

(
1 + 2(n − 1)

n

))
TF + o (1) .

= −2TF + o (1) .

Slicing by [μ = 0] (since we have shown in the first paragraph that {μ = 0} is a
generic curve), we obtain the convergence:

2n

n
(ω − ωn) = −2TF ∧ [μ = 0] + o(1).

We have thus obtained assertion (iii). ��

7 The Rational Map Associated with the Hanoi Group

Recall that the renormalization transformation F associated with the Hanoi group was
computed given in Proposition 2.10. The map F induces a rational map on P

2 given
by:
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F := [x, y, z] �→ [P0(x, y, z) : P1(x, y, z) : P2(x, y, z)],

where P0, P1, P2 are homogeneous polynomials of degree 4 given by:

P0 := x(x − z − y)(x2 − z2 + yz − y2) + 2y2(−x2 + xz + y2),
P1 := y2z(x − z + y),
P2 := (x − z − y)(x2 − z2 + yz − y2)z.

The map F has algebraic degree 4, and its topological degree is 2. Note that the
computation of the topological degree is not direct and follows from Theorem 7.1.

7.1 Integrability of theMap Associated with the Hanoi Group

The main result of this section is the following theorem.

Theorem 7.1 Take the birational map � : C
2 → C

2 given by the following formula:

(x, y) �→
(
x2 − 1 − xy − 2y2

y
,

(1 + x − 2y)(1 + x + y)

2y

)
.

The map F associated with the Hanoi group is conjugate via � to the rational map:

(x, y) �→
(
x2 − x − 3,

(x − 1)(x + 2)

x + 3
y

)
.

The method of the proof of the above theorem is the same as in the previous
sections Sect. 5.1 for the group G and Sect. 6.1 for the group L, this allows us to
recover the explicit formulas for the conjugation � . To determine the map � in the
above theorem, we need to explain the dynamical properties of the map F , first in P

2

then on an appropriate blow-up of P
2.

Lemma 7.2 The map F has five indeterminacy points in P
2, the points [1 : 0 : 1],

[−1 : 0 : 1], [−1 : 1 : 0], [1 : 1 : 0] and [2 : 1 : 0].
Proof We observe that z divides P1 and P2, and that P0(x, y, 0) factors as:

P0(x, y, 0) = (x + y)2(x2 − 3xy + 2y2),

which vanishes when x = −y = 1 and x = y = 1 and x = 2, y = 1. This
proves that the indeterminacies of F on the line at infinity are the points [1 : 1 : 0],
[2, 1, 0], [−1, 1, 0]. Observe that y divides P1 and that (x − z)(x2 − z2) divides
both P0(x, 0, z) and P2(x, 0, z). This proves that the indeterminacies of F on the line
{y = 0} are [1 : 0 : 1] and [−1 : 0 : 1]. Let us prove by contradiction that there are
no indeterminacy points outside the two lines {y = 0} and {z = 0}. Take a point of
indeterminacy [x, y, z] ∈ P

2 \ ({y = 0} ∪ {z = 0}) of F . Since P2(x, y, z) = 0 and
y, z ∈ C

∗, this proves that the point (x, y, z) lies on the curve

x + y − z = 0.

123



Self-Similar Groups and Holomorphic Dynamics. . . 561

In particular, z = x + y and we compute the polynomial P0(x, y, x + y), P2(x, y, x +
y):

P0(x, y, x + y) = P2(x, y, x + y) = 2y2(x + y)2.

Since y �= 0, this proves that x+ y = 0 but this contradicts the fact that x+ y = z �= 0.
��

Lemma 7.3 The Jacobian of F is given by the homogeneous polynomial:

Jac(F) = 4y(x − y − z)(x + y − z)2z(2x2 − 2xy − 4y2 − yz − 2z2)

(x2 − y2 + yz − z2).

Consider the curves

C1 := {x + y − z = 0},
C2 := {−x + y + z = 0},

and

C3 := {x2 − y2 + yz − z2 = 0}.

Proposition 7.4 The following properties are satisfied.

(i) The only collapsed curves are C1,C2,C3 and the line at infinity.
(ii) The line at infinity is collapsed to the fixed point [1 : 0 : 0].
(iii) The line C1 is collapsed to the indeterminacy point [1 : 0 : 1].
(iv) The line C2 is collapsed to the indeterminacy point [−1 : 1 : 0].
(v) The line C3 is collapsed to the indeterminacy point [2 : 1 : 0].
Proof The above statement follow from direct computations. ��

Consider the blow-up X ofP2 at the four points p1 := [−1 : 1 : 0], p2 := [2 : 1 : 0]
and p3 := [−1 : 0 : 1], p4 := [1 : 0 : 1] and denote by π : X → P

2 the blow-down
morphism. Take the lift F̃ := π−1 ◦ F ◦ π of F to X , we look at the dynamics of the
collapsed curves. We denote by E1, E2, E3, E4 the four exceptional divisors above
p1, p2, p3 and p4 respectively, by L∞ the line at infinity in P

2 and by L̃∞ its strict
transform by π .

To simplify the notation, we shall write by C̃i the strict transform of the curves Ci

by π .

Proposition 7.5 The following properties are satisfied.

(i) The curve C̃1 is collapsed by F̃ to a point on the exceptional divisor E4 whose
orbit by F1 is regular.

(ii) The line C̃2 is mapped by F̃ to the exceptional divisor E1.
(iii) The curve C̃3 is mapped by F̃ to the exceptional divisor E2.
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Fig. 8 Blow-up of P
2 at the four

points [−1 : 1 : 0], [2 : 1 : 0],
[±1 : 0 : 1]
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(iv) The exceptional divisor E1 is mapped regularly by F ◦ π to the conic curve
parametrized by:

l ∈ C �→ [6 − 3l − l2 : −(−1 + l)l : 2(2 − l)l] ∈ P
2,

where l parametrizes the slopes z/(x + y).
(v) The exceptional divisor E2 is mapped regularly by F ◦π to the line {z = y} ⊂ P

2.
(vi) The map F̃ fixes E3, it induces a map on E3 with topological degree 2 and it has

one indeterminacy point on E3. The image of the indeterminacy point on E3 by
F̃ is the line parametrized by:

l �→ [−22 + 2l : −8 : 2(3 − l)].

(vii) The map F̃ fixes E4, it induces a map on E4 with topological degree 2 and has
two indeterminacy points on E4. The image of those indeterminacy points are
two respective lines, parametrized by:

l �→ [−2 − 3l : 2 : −3l],
l �→ [−17 + 3l : −4 : −3(3 − l)].

(viii) The indeterminacy point on L is mapped to L by F1.
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We postpone the proof of this proposition to the end of the section.
Consider the pencil D of conics passing through the four points [±1 : 0 : 1],

[−1 : 1 : 0] , [2 : 1 : 0].
Proposition 7.6 The pencil D is invariant by F.

Proof Take a curveC in the pencil D. We first prove that F(C) passes through all four
points [±1 : 0 : 1], [−1 : 1 : 0], [2 : 1 : 0].

Since the line {y = 0} is a line of fixed point for F , we deduce that the image
F(C) passes through [±1 : 0 : 1]. Since the curves C2 and C3 do not pass through the
point [2 : 1 : 0], then neither C2 nor C3 belong to the pencil D, hence they intersect
C at 2 and 4 points respectively. Since C2 and C3 are mapped by F to the points
[−1 : 1 : 0] and [2 : 1 : 0], we deduce that the image F(C) also passes through these
two points. We have thus proved that F(C) is a curve passing through all four points
[±1 : 0 : 1], [−1 : 1 : 0], [2 : 1 : 0].

We now show that F(C) is a curve of degree 2. Since C is a member of the pencil
passing through four points, assertion (v) of Proposition 9.12 shows that its strict
transform C̃ by π satisfies:

C̃ = 2L̃∞ + E1 + E2 − E3 − E4 ∈ H1,1(X).

Let us compute (F ◦ π)∗C̃ . By Proposition 7.5.(viii) and by Proposition 7.4, the line
L is collapsed to a point by F ◦ π and its indeterminacy point is mapped to L , as a
result, we have:

(F ◦ π)∗ L̃∞ = L∞ ∈ H1,1(P2).

By Proposition 7.5.(iv), the exceptional divisor E1 is mapped regularly by F ◦ π to
the conic curve parametrized by:

l �→ [6 − 3l − l2 : −(−1 + l)l : 2(2 − l)l].

Since the above curves is of degree 2, we have:

(F ◦ π)∗E1 = 2L∞ ∈ H1,1(P2).

Using assertion (v), (vi), (viii) of Proposition 7.5, we obtain:

(F ◦ π)∗E2 = L∞ ∈ H1,1(P2),

since E2 is mapped to a line,

(F ◦ π)∗E3 = L∞ ∈ H1,1(P2),

since E3 is collapsed to a point but its indeterminacy point is mapped to a line,

(F ◦ π)∗E4 = 2L∞ ∈ H1,1(P2),
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since E4 is collapsed to a point but it has two indeterminacy points which are mapped
to lines. Overall, we have:

(F ◦ π)∗C̃ = (2 + 2 + 1 − 1 − 2)L∞ = 2L∞ ∈ H1,1(P2).

This proves that F maps C to a degree 2 curve, as required. ��
Denote by ψ : P

2 ��� P
1 the map associated with the pencil D.

Corollary 7.7 The map ψ is of the form:

ψ : [x : y : z] ��� [x2 − z2 − xy − 2y2 : yz].

Moreover, one has F ◦ ψ = ψ ◦ g where g : P
1 → P

1 is the rational map given by
the polynomial

g = x2 − x − 3.

We now pursue our study by finding an appropriate parametrization of the fibers of
ψ . To do so, let us first observe that any two distinct curves belonging to the pencil D
or equivalently any two distinct fiber of ψ ◦ π intersect the divisors E3, E4 at distinct
points.

For eachα ∈ P
1, let us denote by s0(α) the intersection of thefiber (ψ◦π)−1(α)with

E3 and by s∞(α) the intersection of the fiber (ψ ◦ π)−1(α) with E4. By construction,
the two functions

s0, s∞ : P
1 ��� X ,

define two marked points on the family of conics ψ−1(α). Recall that the conics
ψ−1(α) of P

2 are rational, we shall consider an explicit rational map from ψ−1(α)

to P
1. In this case, for any point p on a conic ψ−1(α), we associate the line L p

passing through [1 : 0 : 1] and p. Since the set of lines passing through [1 : 0 : 1] is
parametrized by P

1, we obtain a map from ψ−1(α) to P
1.

More explicitly, for each α = [α0 : α1] ∈ P
1, we define the function

ϕα : ψ−1(α) ��� P
1 induced by the following transformation:

ϕα : (x, y) ∈ C
2 ∩ ψ−1(α) �→ x + 1

y
+ α0/α1 − 1

2
∈ C.

In homogeneous coordinates, ϕα is of the form:

[x : y : z] ∈ ψ−1(α) �→ [2α1x + 2α1z + (α0 − α1)y : 2α1y] ∈ P
1.

In fact, the map ϕα is constructed via the above construction and was normalized in
such a way that the marked points s0(α), s∞(α) are identified to the point [0 : 1] and
[1 : 0].
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Lemma 7.8 The following properties hold.

(i) For each α = [α0 : α1] ∈ P
1 \ {[3 : 1], [1 : 0]}, the map ϕα : ψ−1(α) ��� P

1 is
invertible and its inverse is given by the formula:

ϕ−1
α : [z0 : z1] ∈ P

1 �→ [4α2
1z

2
0 + 4α2

1z0z1 − α2
0z

2
1 + 9α2

1z
2
1 :

8α2
1z0z1 : (2α1z0 − α0z1 − 3α1z1)(2α1z0 − α0z1 + 3α1z1)] ∈ ψ−1(α).

(ii) For each α ∈ P
1 \ {[3 : 1], [1 : 0]}, the points s0(α), s∞(α) are mapped by ϕα ◦ π

to the point [0 : 1] and [1 : 0] respectively.
Proof Assertion (i) follows from solving the system of equation:

⎧⎪⎨
⎪⎩

(x2 − 1 − xy − 2y2)/y = α0

α1
,

2α1(x + 1) + (α0 − α1)y

2α1y
= z0/z1,

where [α0 : α1], [z0 : z1] ∈ P
1. Assertion (ii) also follows from the fact that the point

[1 : 0 : 1] is mapped by ϕα to [1 : 0] and that the tangent line to the conic ψ−1(α) at
the point [−1 : 0 : 1] where α = [α0 : α1] is given by the equation:

2(α1x + α1z) + (α0 − α1)y = 0.

��
Recall that the fiber ψ−1(α) is mapped by F to the fiber ψ−1(g(α)) where g is the

polynomial x2 − x − 3 so that the following diagram is commutative.

P
1

ϕg(α)◦F◦ϕ−1
α

P
1

ψ−1(α)

ϕα

F
ψ−1(g(α))

ϕg(α)

.

Proposition 7.9 For any α = [α0 : α1] ∈ P
1 and set β = α2 − α − 3. Then the map

ϕβ ◦ F ◦ ϕ−1
α : P

1 ��� P
1 is given by the formula:

ϕβ ◦ F ◦ ϕ−1
α : z ∈ P

1 �→ (α0 − α1)(α0 + 2α1)

α0 + 3α1
z.

Replacing α = ψ(x, y) by its appropriate rational expression in x, y, we deduce a
formula for ϕψ(x,y) and this yields a map � : C

2 → C
2 given by:

(x, y) �→
(

ψ(x, y) = x2 − 1 − xy − 2y2

y
, ϕψ(x,y) = (1 + x − 2y)(1 + x + y)

2y

)
.
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Proof of Theorem 7.1 This follows directly from the fact that g ◦ ψ = ψ ◦ F and the
previous proposition. ��
Proof of Proposition 7.5 Assertion (ii) follows from the computation of the restriction
to C2 of the function

(
P0/P1 + 1,

P2/P1
P0/P1 + 1

)
.

Similarly, assertion (iii) follows from the computation of the restriction to C3 of
the function

(
P0/P1 − 2,

P2/P1
P0/P1 − 2

)
.

Assertion (iv) follows from the computation of the restriction to e = 0 of the
following expression:

(e, l) �→ [P0(−1 + e, 1, le) : [P1(−1 + e, 1, le) : [P2(−1 + e, 1, le)].

Similarly, assertion (v) follows from the computation of the restriction to e = 0 of
the following expression:

(e, l) �→ [P0(2 + e, 1, le) : P1(2 + e, 1, le) : P2(2 + e, 1, le)].

For assertion (viii), to determine the image of the point [1 : 1 : 0], we restrict to e = 0
the expression

(e, l) �→ [P0(1 + e, 1, le) : P1(1 + e, 1, le) : P2(1 + e, 1, le)].

We now prove successively in detail assertion (vi), (vii), (i).
Let us prove assertion (vi).
In the local coordinates e = x/z + 1, l = y/(x + z), the map F ◦ π is given by the

formula:

F ◦ π : (e, l) �→ [P0(−1 + e, le, 1) : P1(−1 + e, le, 1) : P2(−1 + e, le, 1)],

which simplifies as follows:

F ◦ π : (e, l) �→ [−4 + 8e − 5e2 + e3 + 2l − 5el + 4e2l − e3l − 5el2 + 8e2l2

− 3e3l2 − e2l3 + e3l3 + 2e3l4

: el2(−2 + e + el) : (2 − e + el)(2 − e − l + el2)].

In particular, the exceptional divisor E3 given by the local equation e = 0 is mapped
to p3 by F ◦ π , indeed:

F ◦ π : (e = 0, l) �→ [−4 + 2l : 0 : 2(2 − l)] = [−1 : 0 : 1].
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This shows that F̃ maps E3 to either E3 or a point on E3. In the same local coordinates,
F̃ is obtained by simplifying the expression:

F̃ : (e, l) �→
(
e′ := P0(−1 + e, le, 1)

P2(−1 + e, le, 1)
+ 1,

l ′ := P1(−1 + e, le, 1)

P0(−1 + e, le, 1) + P2(−1 + e, le, 1)

)
,

and we get:

F̃ : (e, l)

�→
(
e′ := e(4 − 4e + e2 − 2l + 3el − e2l − 4l2 + 7el2 − 3e2l2 + e2l3 + 2e2l4)

(2 − e + el)(2 − e − l + el2)
,

l ′ := l2(−2 + e + el)

4 − 4e + e2 − 2l + 3el − e2l − 4l2 + 7el2 − 3e2l2 + e2l3 + 2e2l4

)

One sees that the point (e = 0, l = 2) is the only indeterminate point for F̃ on E3.
The restriction to E3 yields:

F̃ : (e = 0, l) �→
(
e′ = 0, l ′ = − 2l2

4 − 2l − 4l2

)
,

so the restriction of F̃ to E3 is a self-map of topological degree 2 with one indetermi-
nacy point (e = 0, l = 2). Let us now compute the image of the indeterminate point
(e = 0, l = 2). Set e1 = e, l = 2 + l1e1, we express F ◦ π(e1, 2 + l1e1) :

(e1, l1) �→ [−22 + 27e1 + 27e21 + 2l1 − 25e1l1 + 24e21l1 + 63e31l1

− 5e21l
2
1 + 2e31l

2
1 + 51e41l

2
1 − e41l

3
1 + 17e51l

3
1 + 2e61l

4
1 :

(2 + e1l1)
2(−2 + 3e1 + e21l1) : (2 + e1 + e21l1)(3 − l1 + 4e1l1 + e21l

2
1)].

Evaluating at e1 = 0 yields:

F ◦ π(e1, 2 + l1e1) : (e1 = 0, l1) �→ [−22 + 2l1 : −8 : 2(3 − l1)].

In particular, the exceptional divisor e1 = 0 corresponding to the indeterminacy point
on E3 is mapped to the line parametrized by:

l1 �→ [−22 + 2l1 : −8 : 2(3 − l1)].

We have thus proven assertion (vi).
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Let us prove assertion (vii). In the local coordinates e = x/z − 1, l = y/(x − z),
the map F̃ is of the form:

F̃ : (e, l) �→
(
e′ = e(1 + l)(2 + e − 3l − 2el − el2 + 2el3)

(−1 + l)(−2 − e − l + el2)
,

l ′ = l2

2 + e − 3l − 2el − el2 + 2el3

)
.

The above formula proves that F̃ has two indeterminacy points on E4, the points
(e = 0, l = 1) and (e = 0, l = −2). Moreover, the exceptional divisor E4 is fixed
and the induced map on E4 is of the form:

F̃ : (e = 0, l) �→
(
e′ = 0,

l2

2 − 3l

)
,

which is of topological degree 2.We now compute the image of the two indeterminacy
points (e = 0, l = 1) and (e = 0, l = −2). Set e = e′, l = 1 + e′l ′ so that e′ = 0
denotes the local equation for the exceptional divisor of the blow-up of the point
(e = 0, l = 1), we compute F ◦ π(e′, 1 + l ′e′) in these new coordinates:

(e′, l ′) �→ [−2 − 3l ′ − 7e′l ′ + 4e′2l ′ − e′l ′2 − e′2l ′2 + 12e′3l ′2 + e′3l ′3 + 9e′4l ′3 + 2e′5l ′4 :
(1 + e′l ′)2(2 + e′l ′) : l ′(−3 − e′l ′ + 2e′2l ′ + e′3l ′2)] ∈ P

2.

In particular, the exceptional divisor e′ = 0 is mapped to the line parametrized by:

(e′ = 0, l ′) �→ [−2 − 3l ′ : 2 : −3l ′].

We now determine the image by F̃ of the other indeterminacy point (e = 0, l = −2).
Set e = e′, l = −2 + e′l ′, we compute F ◦ π(e′, −2 + e′l ′):

(e′, l ′) �→ [−17 + 15e′ + 3l ′ + 26e′l ′ − 41e′2l ′ − e′l ′2 − 10e′2l ′2 + 39e′3l ′2 + e′3l ′3

− 15e′4l ′3 + 2e′5l ′4 : (−2 + e′l ′)2(−1 + e′l ′)
: (−3 + e′l ′)(3 − l ′ − 4e′l ′ + e′2l ′2)].

In particular, the exceptional divisor e′ = 0 above (e = 0, l = −2) is mapped to the
line parametrized by:

(e′ = 0, l ′) �→ [−17 + 3l ′ : −4 : −3(3 − l ′)].

We have thus proved assertion (vii).
Let us prove assertion (i).
Take some local coordinates e = x/z − 1, l = y/(x − z) near the exceptional

divisor E4, then the map π−1 ◦ F : P
2 ��� X is of the form:

π−1 ◦ F : [x : y : 1] ∈ P
2 �→ (e(x, y), l(x, y)) ∈ X ,
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where e(x, y), l(x, y) are two rational functions given by:

e(x, y) = (−1 + x + y)(1 − x − x2 + x3 + y + xy − 2x2y + y2 − xy2 + 2y3)

(−1 + x − y)(−1 + x2 + y − y2)
,

l(x, y) = y2

1 − x − x2 + x3 + y + xy − 2x2y + y2 − xy2 + 2y3
.

Since the term x + y−1 divides e(x, y), we conclude that the curveC1 is collapsed by
π−1 ◦ F to a point on E4 or the whole curve E4. We compute explicitly l(x, 1− x) =
1/5, hence C1 is collapsed by π−1 ◦ F to the point (e = 0, l = 1/5) on X . We now
determine the orbit of the point (e = 0, l = 1/5) by F̃ on E4. In the proof of assertion
(viii), we have showed that the induced map on E4 is of the form:

(e = 0, l) �→
(
e = 0,

l2

2 − 3l

)
.

As l = 1/5 is in the basin of attraction of the fixed point (e = 0, l = 0), we deduce
that the orbit of (e = 0, l = 1/5) by F̃ avoids the indeterminacy (e = 0, l = 1), (e =
0, l = −2) and converges to the point (e = 0, l = 0). This proves that the orbit of the
line C̃1 by F̃ is regular and assertion (i) holds. ��

7.2 The Density of States for the Hanoi Group

Recall from Sect. 2.4.3 that the spectrum of the Hanoi group is associated to the
following families of polynomial Pn defined inductively by the relation:

Pn(x, y) =
(
x2 − (1 + y)2

)3n−2 (
x2 − 1 + y − y2

)2·3n−2

Pn−1(F(x, y)),

where P1 is the polynomial:

P1 = −(x − 1 − 2y)(x − 1 + y)2.

The density of states is in this case the limit, denoted ω, of the sequence of measures
ωn := 1/3n[Pn = 0] ∧ [y = 1]. Denote by TF the Green current associated to the
Hanoi map F .

Theorem 7.10 The following properties are satisfied.

(i) The sequence of currents 1/3n[Pn = 0] converges as n tends to +∞ to a current
which is supported on countably many curves.

(ii) The sequence of measures 1/3n[Pn = 0] ∧ [y = 1] converges as n tends to +∞
to an atomic measure.

(iii) The sequence of measures

3n

2n
(ω − ωn)
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converges to the measure −25

6
TF ∧ [y = 1].

In particular, the density of states associated with the Hanoi group is an atomic
measure.

Proof Applying assertion (ii) of Theorem 3.3, we obtain

λ1(F) = max(2, 1) = 2

since F is conjugate to the map (x, y) �→ (
x2 − x − 3, (x − 1)(x + 2)y/(x + 3)

)
by

Theorem 7.1. Since λ1(F) < 3, we have by Theorem 4.1 that the limit of currents:

TH = lim
n→+∞

1

3n
[Pn = 0]

is supported on countably many curves.
Let us prove assertion (iii). Take the blow-up X of P

2 at the four points [−1 :
1 : 0], [2 : 1 : 0] and [±1 : 0 : 1] and we denote by π : X → P

2 the associated
blow-down map. We also denote by E1, E2, E3, E4 the exceptional divisors above
[−1 : 1 : 0], [2 : 1 : 0], [−1 : 0 : 1] and [1 : 0 : 1] respectively and by L̃∞ the strict
transform of the line at infinity by π .

Let us first observe that the following equalities of cycles hold:

div((x − 1 − y) ◦ π) = πo[x − 1 − y = 0] + E4 − L̃∞,

div((x + 1 + y) ◦ π) = πo[x + 1 + y = 0] + E3 + E1 − L̃∞,

div((x − 1 + y − y2) ◦ π) = πo[x − 1 + y − y2 = 0] + E4 − 2L̃∞,

where πo denotes the strict transform by π . Since P1 = −(x − 1 − 2y)(x − 1 + y)2,
we obtain the equality of cycles

div(P1 ◦ π) = πo[x − 1 − 2y = 0] + E2 + E4

+ 2(E1 + πo[x − 1 + y = 0] + E4) − 3L̃∞
= 2E1 + E2 + 3E4 + πo[x − 1 − 2y = 0]

+ 2πo[x − 1 + y = 0] − 3L̃∞.

To simplify the computations, we set:

L1 := πo[x − 1 − y = 0], L2 := πo[x + 1 + y = 0], L3 := πo[x − 1 − 2y = 0],
L4 := πo[x − 1 + y = 0], C := πo[x − 1 + y − y2 = 0].

Using the fact that F̃∗ L̃∞ = L̃∞+L1+C and the inductive relation on the polynomials
Pn , we get the equality of cycles:

div(P2 ◦ π) =L1 + L2 + 2C + E1 + E3 + 3E4 − 6L̃∞
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+ F̃∗(2E1 + E2 + 3E4 + L3 + 2L4 − 3L̃∞)

= − 2L1 + L2 − C + E1 + E3 + 2E4 − 9L̃∞
+ F̃∗(2E1 + E2 + 3E4 + L3 + 2L4).

Using the above argument inductively, we deduce:

div(Pn ◦ π) =
n−1∑
k=0

3n−2−k(F̃k)∗ (−2L1 + L2 − C + E1 + E3 + 2E4)

+ (F̃n−1)∗(2E1 + E2 + 3E4 + L3 + 2L4) − 3n L̃∞.

Taking the current of integration over the zero divisor of Pn and pushing forward by
π , we obtain the equality of currents:

1

3n
[Pn = 0] =

n−1∑
k=0

1

3k+2 (Fk)∗π∗L2 + 1

3n
(Fn−1)∗(π∗L3 + 2π∗L4).

Observe that the lines L2, L3, L4 are degenerates fibers of the associated fibers of the
fibrationmap associated to F (it is a fibration by conics passing through the four points
[−1 : 1 : 0], [2 : 1 : 0] and [±1 : 0 : 1]). Observe also that the line {y = 1} is generic
as it is transverse to all fibers of the fibration associated to F , we thus conclude by
Theorem 4.1 that

ω = lim
n→+∞ ωn = lim

n→+∞
1

3n
[Pn = 0] ∧ [y = 1]

is an atomic measure. Let us express the error term as n → +∞, the mass of the
current (1/3n)(Fn−1)∗(π∗L3 + 2π∗L4) decays exponentially fast with speed (2/3)n ,
we get:

3n−1

2n

(
TH − 1

3n
[Pn = 0]

)

= 3n−1

2n

(+∞∑
k=n

1

3k+2 (Fk)∗π∗L2 − 1

3n−1 (Fn−1)∗(π∗L3 + 2π∗L4)

)

= 3n−1

2n

(+∞∑
k=n

2k

3k+2

(Fk)∗π∗L2

2k
− 1

3n−1 (Fn−1)∗(π∗L3 + 2π∗L4)

)
,

= 3n−1

2n

(+∞∑
k=n

2k

3k+2

(Fk)∗π∗L2

2k

)
− 1

2

(Fn−1)∗ (π∗L3 + 2π∗L4)

2n−1 ,
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ByProposition3.12, the currents 1/2n(Fn)∗π∗L2, 1/2n(Fn)∗π∗L3 , 1/2n(Fn)∗π∗L4
converge to the current TF , so we have:

3n−1

2n

(
TH − 1

3n
[Pn = 0]

)
= 3n−1

2n

(+∞∑
k=n

2k

3k+2 (TF + o(1))

)
− 1

2
(3TF + o(1)),

= 1

9
TF − 3

2
TF + o(1),

= −25

18
TF + o(1),

and their slices by [y = 1] converge to TF ∧ [y = 1], this gives:

3n−1

2n

(
TH − 1

3n
[Pn = 0]

)
∧ [y = 1] = −25

18
TF ∧ [y = 1] + o(1).

And we conclude that:

lim
n→+∞

3n

2n
(ω − ωn) = −25

6
TF ∧ [y = 1].

��
Proof of Theorem B Assertion (i) is the content of Theorem 5.1, assertion (ii) results
from Proposition 6.1, and assertion (iii) from Theorem 7.1. ��
Proof of TheoremA Assertion (i) results from Theorem 5.11, assertion (ii) from The-
orem 6.4 and assertion (iii) from Theorem 7.10. ��

8 Integrability in Algebraic Geometry

8.1 A General Criterion

In this section, we state some criterion to find invariant fibrations for rational sur-
face maps using algebraic methods. Our goal is to present a practical criterion for
integrability using the notions described in the appendix (see Sect. 9).

We shall start with the following observation.

Proposition 8.1 Consider a dominant rational map f : X ��� X on a projective
surface X. If f is semi-conjugate to a degree d map on a projective curve then there
exists a birational modification X̃ of X and a nef line bundle L on X̃ satisfying the
following conditions:

(i) One has (c1(L) · c1(L)) = 0.
(ii) One has f̃ ∗L = L⊗d where f̃ is the lift of f to X̃ .
(iii) The line bundle L has at least two independent sections.
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Proof Let us suppose that f preserves a fibration over a curve C . Denote by ϕ : X ���
C the associated map onto C and denote by g : C → C the map semi-conjugating f
via ϕ. Take the graph X̃ of ϕ in X ×C and denote by π1, π2 the projection from X̃ to
X and C respectively. We consider the restriction f̃ of the map f × g in X ×C to X̃ .
Take the graph � of f̃ on X̃ × X̃ and denote by u, v the projections of � onto the first
and second factor respectively. We obtain the following commutative diagram:

�

u v

X

ϕ

f
X

ϕX̃

π1

π2

X̃

π1

π2

C
g

C

(8.1)

Take a point p in C , we consider the divisor F = π∗
2 [p] in X̃ corresponding to the

fiber of π2 over p. Since any two general fibers of π2 are disjoint, their intersection is
zero. As a result, the self-intersection of F satisfies the relation:

(F · F) = 0.

We now compute the pullback of F by f̃ . By definition, we have:

f̃ ∗F = u∗v∗F = u∗v∗π∗
2 [p].

Using the fact that π2 ◦ v = g ◦ π2 ◦ u, we get:

f̃ ∗F = u∗v∗F = u∗u∗π∗
2 g

∗[p].

Since g is of degree d, the preimage of the general point [p] consists of d points
counted with multiplicities. As a result, we have g∗[p] = d[p] in H1,1(C), hence the
projection formula (Proposition 9.12 (iii)) gives:

f̃ ∗F = du∗u∗π∗
2 [p] = dF,

where we have used the fact that u is birational, so its topological degree is one. This
proves that the class F is multiplied by d by the action of f̃ ∗.

Since (F · F) = 0 and f̃ ∗F = dF , the two relations also hold for nF where n
is an integer. The line bundle L = O(nF) associated to the divisor nF satisfies (i)
and (ii). Since the divisor [p] is ample on C , there exists a multiple n such that n[p]
is very ample so the line bundle OC (n[p]) has at least two sections by Asymptotic
Riemann–Roch’s theorem [72, Example 1.2.19]. Since L = O(nF) is the pullback of
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this line bundle by π2, we deduce that property (iii) holds for a large enough multiple
n, as required. ��

For the converse statement, we shall need to construct fibrations using a result
due to Iitaka (see [72, Theorem 2.1.33]). Precisely, for an integer n, we consider the
following rational mapping φ : X ��� P(H0(X , nL)) defined as follows:

φ(x) = [s0(x) : · · · : sk(x)],

where s0, . . . , sk is a basis of holomorphic sections of nL . The map φ above is the
mapping induced by nL .

Theorem 8.2 Let L be a nef line bundle on a surface X and k > 0 be an integer such
that

1/C � h0(nL)

nk
� C,

for C > 0where h0(nL) = dim H0(X , nL). Then for sufficiently large n, themapping
induced by nL, φ : X ��� P(H0(X , nL)∗) defines a map onto a variety of dimension
k.

The integer k in the above theorem is called the Iitaka dimension of L (see e.g [72,
Definition 2.1.3]).

In our situation, we will apply the result to a nef line bundle which will satisfy the
equation (c1(L)2) = 0. When this happens, the Iitaka map φ associated to L cannot
map to a surface, but will either map to a curve or a to point.

Theorem 8.3 Let f : P
2 ��� P

2 be a dominant rational map. Suppose that there exists
a smooth surface X obtained from P

2 by finitely many blow-ups, a line bundle L on
X and an integer d � 1 satisfying the following conditions:

(i) One has (c1(L) · c1(L)) = 0.
(ii) The line bundle L is nef.
(iii) One has (KX · c1(L)) < 0 where KX is the (first) Chern class of the canonical

bundle of X.
(iv) One has f ∗L = L⊗d .

Then f is semi-conjugate to a degree d map on a curve.

Remark 8.4 Unfortunately, there is no explicit method for choosing the surface X
when the map f is not invertible.

Proof We shall prove successively the following statements.
Claim 1: The sequence h0(X , nL)/n2 converges to zero as n tends to infinity.
By Asymptotic-Riemann-Roch theorem (see [72, Example 1.2.36 (ii)]):

h0(nL) = 1

2
n2(c1(L)2) + O(n).
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Since (c1(L)2) = 0, we obtain that h0(nL) = O(n). As a result, this proves that
h0(nL)/n2 converges to zero and the claim is proved.

Claim 2: One has h0(X , nL) � χ(nL) for all integer n.
By Serre duality [64, Corollary 7.7], we have h2(X , L) = h0(X , L−1⊗O(KX )) =

0 since KX is not effective because X is rational. Indeed, the rationality of X implies
that its Kodaira dimension is −∞ so using [3, Theorem 7.2], dim H0(X , KX ) = 0,
hence it cannot be effective. We obtain that:

χ(nL) = h0(X , nL) − h1(X , nL) + h2(X , nL) = h0(X , nL) − h1(X , nL)

� h0(X , nL),

and the claim is proved.
Claim 3: χ(nL) � αn for some α > 0.
By Riemann–Roch theorem [3, I Theorem 5.5 (6)] and using the fact that (c1(L) ·

c1(L)) = 0, we have:

χ(nL) = χ(OX ) + 1

2
(n2(c1(L) · c1(L)) − n

2
(c1(L) · KX ))

= χ(OX ) − n

2
(c1(L) · KX ).

This proves the result as (c1(L) · KX ) < 0.
We now show that the Proposition holds. We consider for n large the map:

φnL : X ��� P(H0(X , nL)∗).

Claim 1 proves that the dimension of the image of φnL is not 2. Moreover, Claim 2
and 3 imply that h0(X , nL) � αn, thus L satisfies the condition of Theorem 8.2 for
k = 1 and φnL maps X to a curve C . Finally, the fact that f ∗L = L⊗d proves that
φnL semi-conjugates f to a degree d map on C . To see this, we first view the zero of a
generic section s of L as a generic hyperplane of P(H0(X , nL)∗) and the zero locus of
the section f ∗s of f ∗L is interpreted as a degree d hypersurface of P(H0(X , nL)∗).
The hyperplane s = 0 intersect the curve C at deg(C) points whereas the preimage
f ∗s intersectsC at deg(C) ·d points by Bezout’s theorem.We deduce that the induced
map on C has topological degree d. ��

8.2 The Integrability Criterion Applied to the Renormalization of the Grigorchuk
Group

Recall from Sect. 5.1 that we have defined X to be the blow-up of P
2 at the four points

[0 : ±2 : 1] and [±1 : 1 : 0]. We denote by E1, E2, E3, E4 the exceptional divisors
above the points [−1 : 1 : 0], [1 : 1 : 0], [0 : −2 : 1], [0 : 2 : 1] respectively and take
the strict transform L̃∞ of the line at infinity in P

2 by the blow-up (see Fig. 4).
We fix a basis of H1,1(X), namely :

H1,1(X) = CL̃∞ ⊕ CE1 ⊕ CE2 ⊕ CE3 ⊕ CE4. (8.2)
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Recall that we have proved in assertion (v) of Proposition 5.5 that the map F̃ is
algebraically stable on X .

Corollary 8.5 The pushforward and pullback matrices associated to F̃ and G̃ are of
the form:

F̃∗ =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1
0 1 1 0 1
0 1 1 1 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ , F̃∗ =

⎛
⎜⎜⎜⎜⎝

1 1 1 0 0
0 1 1 0 0
0 1 1 0 0
0 −1 0 1 0
0 0 −1 0 1

⎞
⎟⎟⎟⎟⎠ ,

G̃∗ =

⎛
⎜⎜⎜⎜⎝

1 1 1 1 1
1 1 1 1 2
1 1 1 2 1
−1 0 0 0 −1
−1 0 0 −1 0

⎞
⎟⎟⎟⎟⎠ , G̃∗ =

⎛
⎜⎜⎜⎜⎝

3 0 0 1 1
2 0 0 1 1
2 0 0 1 1
−2 0 1 0 −1
−2 1 0 −1 0

⎞
⎟⎟⎟⎟⎠ .

Proof Wefirst compute F̃∗ L̃∞, since L̃∞ is collapsed to a point and the indeterminacy
point [1, 0, 0] is mapped to L by assertion (v) of Proposition 5.5, we deduce that:

F̃∗ L̃∞ = L̃∞. (8.3)

Moreover, since E1 and E2 are both mapped regularly to the line {λ = −2w} by
assertion (iv) and since assertion (v) of Proposition 9.12 yields the equality πo{λ =
−2w} = L̃∞ + E1 + E2 in H1,1(X), we obtain that:

F̃∗E1 = F̃∗E2 = L̃∞ + E1 + E2 ∈ H1,1(X).

We now compute the image of E3, and the computation for E4 is similar. Using
assertion (v) of Proposition 9.12, we obtain the equality πo{λ + μ + 2w} = L̃∞ +
E2 − E3 in H1,1(X), so assertion (iii) and (iv) of Proposition 5.5 implies that:

F̃∗E3 = L̃∞ + E2 − E3 + 2E3 = L̃∞ + E2 + E3 ∈ H1,1(X),

and we thus obtain the pushforward action by F̃ . The pullback action can be deduced
from the matrix of F̃∗ by conjugating the transpose of F̃∗ by the intersection matrix.
We thus obtain:

F̃∗ = I−1 F̃ t∗ I =

⎛
⎜⎜⎜⎜⎝

1 1 1 0 0
0 1 1 0 0
0 1 1 0 0
0 −1 0 1 0
0 0 −1 0 1

⎞
⎟⎟⎟⎟⎠ ,
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where I is the intersection matrix given by:

I :=

⎛
⎜⎜⎜⎜⎝

−1 1 1 0 0
1 −1 0 0 0
1 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎠ .

We finally deduce G from the fact that G = H ◦ F and from the fact that H is an
automorphism on X whose matrix is given by:

H∗ =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
−1 0 1 0 0
−1 1 0 0 0

⎞
⎟⎟⎟⎟⎠ .

We finally compute the matrices of G̃∗ and G̃∗. ��
From the previous result, we see that the line bundle induced by the divisor D =

2L̃∞ + E1 + E2 − E3 − E4 is invariant by both F̃∗ and G̃∗ since D is an eigenvector
for both matrices associated to the eigenvalue 2. To check that D is nef, we observe
that the strict transform C of any irreducible conic in P

2 passing through the four
points [0 : ±2 : 1], [±1 : 1 : 0] has the same cohomology as D. Since X is a
smooth projective surface, any irreducible curve C ′ distinct from C intersects C non-
negatively, we also have D2 = C2 = 0 and this shows that D intersects non-negatively
any irreducible curve, hence D is nef.

Recall that by assertion (iv) of Proposition 9.12, the canonical class of X is given
by −3L̃∞ − 2E1 − 2E2 + E3 + E4.

We have summarized the properties satisfied by D:

1. D2 = 0.
2. (KX · D) < 0.
3. D is nef.
4. F̃∗D = G̃∗D = 2D

By Theorem 8.3, the map induced by the linear system |D| denoted φD : X ��� C,

maps onto an algebraic Riemann surface C . Indeed, we have:

maxn∈N dim φnD(X) = 1,

so in particular the dimension dim φD(X) � 1. Since φD is not a constant map, we
thus conclude that dim φD(X) = 1, hence it is a curve. Take any holomorphic section
s of D and let S be the zero locus {s = 0}. By definition div(s) = [S] is linearly
equivalent to 2L̃∞ + E1 + E2 − E3 − E4. In particular, π(S) is a degree 2 curve in P

2.
Moreover, (S · Ei ) = 1 for i = 1, 2, 3, 4, hence π(S) passes through the four points
[0 : ±2 : 1] and [±1 : 1 : 0]. This shows that fibers of φD are mapped by π to conics
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passing through all four points [0 : ±2 : 1] and [±1 : 1 : 0]. Using Theorem 8.3, we
deduce the following result.

Proposition 8.6 Bothmaps F andG preserve the fibration inducedbyφD andλ1(F) =
λ2(G) = 2 and F is semi-conjugate to α id×T where α id is the scaling by α �= 0
and where T is the Chebyshev map.

Proof Since D is stable by pullback by F̃ and G̃, the map φD defines a semi-
conjugation. Let us prove that F is semi-conjugate to α id×T . Recall that the divisor
E3 is mapped by F̃ to itself and that the restriction of F̃ to E3 (see (5.1)) is of the
form:

(e = 0, l) ∈ E3 �→ (e = 0, 2l2 − 1).

Since the pencil of conic induced by D all pass transversely to E3, we deduce that
the induced map on C is the Chebyshev map on P

1. Recall that the product formula
yields that the relative dynamical degree of F andG is one. Moreover, the fibers of the
fibration are rational curves (they are conic curves onP

2), and since F fixes the divisors
E3, E4 which are transversal to the pencil of conics, we can identify two points on
each fiber of φD , for example identify E3 ∩ φ−1

D (c0) with 0 ∈ P
1 and φ−1

D (c0) ∩ E4
with the point at infinity ∞ ∈ P

1. Since F fixes E3 and E4, we deduce that under this
identification, F acts on the fiber as a degree one map fixing two points 0 and ∞, it is
thus semi-conjugate to α id×T . ��

We now relate in an explicit way and geometrically the fibration φD with the mapψ

given in (5.6). For any pointm on the exceptional divisor E3, there exists a unique conic
in the linear system passing throughm, because our fibers should already pass through
the four points [0, ±2, 1] and [±1, 1, 0]. For any point [λ0, μ0, w0], the unique conic
in the linear system passing through [λ0, μ0, w0] has equation:

λ0w0λ
2 − λ0w0μ

2 + (−λ20 + μ2
0 − 4w2

0)λw + 4λ0w0w
2 = 0. (8.4)

The above conic passes through the point [0, −2, 1] with a slope:

λ/(μ + 2) = −λ20 − μ2
0 + 4w2

0

4λ0w0
.

The map φD is then realized geometrically by the map:

[λ : μ : w] �→ −λ2 − μ2 + 4w2

4λw
= −ψ(λ,μ,w) ∈ E3, (8.5)

where ψ is the map defined in (5.6).
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8.3 The Integrability Criterion Applied to the Renormalization of the Lamplighter
Group

Recall from Sect. 6.1 that we have defined X to be the blow-up of P
2 at the two points

[±1 : 1 : 0]. We denote by F̃ the lift of F to X and by E1, E2 the exceptional divisors
above [−1 : 1 : 0] and [1 : 1 : 0] respectively (see figure 7).

We identify H1,1(X) with CL̃∞ ⊕ CE1 ⊕ CE2 where L̃∞ denotes the strict trans-
form of the line at infinity. Recall that we have proven in assertion (ix) of Proposition
6.2 that F̃ is algebraically stable in X . We thus compute the pullback and pushforward
action of F̃ on H1,1(X)

Proposition 8.7 The matrices of F̃∗ and F̃∗ are of the form:

F̃∗ :=
⎛
⎝0 1 1
0 1 0
0 0 1

⎞
⎠ , F̃∗ :=

⎛
⎝1 1 0
0 1 0
1 0 0

⎞
⎠ .

Proof We first compute the matrix of F̃∗.
Let us first observe that F̃ is regular on the line π−1({μ = 0}) and that this line is

mapped to the curve C1 parametrized as follows:

(λ,w) �→ [−λ2 + 2w2 : −2w2 : −wλ].

Since [π−1(μ = 0)] = L̃∞ + E1 + E2 and since the curve C1 is a degree 2 curve
passing through the point [−1 : 1 : 0], assertion (v) of Proposition 9.12 shows that
πoC1 = 2L̃∞ + E1 + 2E2 in H1,1(X), and we get:

F̃∗(L̃∞ + E1 + E2) = 2L̃∞ + E1 + 2E2. (8.6)

Next, we consider the line πo({λ = −μ}), since F̃ is regular on E1 by Proposition
6.2 (vi), the image C of this line is parametrized by:

λ ∈ C
∗ �→ π−1([1 : −1 : −λ]),

Since assertion (v) of Proposition 9.12 gives πo({λ = −μ}) = L̃∞ + E2 and πoC =
L̃∞ + E2 in H1,1(X), we deduce:

F̃∗(L̃∞ + E2) = L̃∞ + E2. (8.7)

Finally, we consider the conic curve Q := πo{λ2 − 2λμ + μ2 − w2 = 0} which
does not intersect E2 at the indeterminacy point of F̃ . The image of Q by F̃ is the
conic curve C2 parametrized by:

(λ,w) �→ [2 − 2λ + w2 : −2w2 : −(λ − 1)w]. (8.8)
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Assertion (v) of Proposition 9.12 shows that πoC2 = 2L̃∞ + 2E1 + 2E2 and Q =
2L̃∞ + 2E1 in H1,1(X), we obtain:

F̃∗(2L̃∞ + 2E1) = 2L̃∞ + 2E1 + 2E2. (8.9)

Using (8.6), (8.7) and (8.9), we deduce the matrix of F̃∗. We then deduce the pullback
matrix F̃∗ using the fact that F̃∗ = I−1 · F̃ t∗ · I where I is the intersection matrix
given by:

I :=
⎛
⎝−1 1 1
1 −1 0
1 0 −1

⎞
⎠ .

��
Recall that by assertion (iv) of Proposition 9.12, the canonical class of X is the

divisor KX satisfying

KX = −3L̃∞ − 2E1 − 2E2 ∈ H1,1(X).

From the above proposition, we see that the matrix of F̃∗ admits a Jordan block for
the eigenvalue 1. Denote by D1 = L̃∞ + E2, we have:

(1) F̃∗D1 = D1.
(2) D1 is nef.
(3) One has (D1 · D1) = 0.
(4) One has (KX · D1) = −2 < 0.

To see that D1 is nef, we take any irreducible algebraic curve C in X , we have
D1 = π∗L∞ − E1, so C · D1 = (C · π∗L∞) − (C · E1) = (L∞ · π∗(C)) − (C · E1).
Two cases appear, either C = L̃∞, then (L̃∞ · D1) = 0 � 0, or π(C) is a curve which
is not contained in L∞ and it intersects L∞ with multiplicity (C · E1) at the point
[−1 : 1 : 0] and multiplicity m(C) at other points of the line L∞. In other words we
have m(C) + (C · E1) = (L∞ · π(C)), and this shows that m(C) = (C · D1) � 0. We
have shown that (C · D1) � 0 for any irreducible curve C , hence D1 is nef.

Geometrically, the two divisors D1 defines a pencil, D1 is the pencil of lines in P
2

passing through [−1 : 1 : 0]. Using Theorem 8.3, we deduce that F preserves the
fibration induced by D1.

Corollary 8.8 F is semi-conjugate to a linear map on P
1 and the action of F on the

fiber is also linear.

8.4 The Integrability Criterion Applied to the Renormalization of the Hanoi Group

Recall from Sect. 7.1 that we have defined X to be the blow-up of P
2 at the four points

[−1 : 1 : 0], [2 : 1 : 0], [−1 : 0 : 1], [1 : 0 : 1] and that we have set E1, E2, E3 and
E4 to be the four exceptional divisors on X (see figure 8).
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We identify H1,1(X) with

H1,1(X) � CL̃∞ ⊕ CE1 ⊕ CE2 ⊕ CE3 ⊕ CE4,

where L̃∞ is the strict transform of the line at infinity in P
2. We denote by F̃ the lift

of F to X .

Proposition 8.9 The map F̃ is algebraically stable on X.

Proof Using Proposition 7.5, we control the orbit of every contracted curve and every
exceptional divisor on X , none are contracted to an indeterminacy point of F̃ , so F̃ is
algebraically stable. ��
Corollary 8.10 The pushforward and pullback action of F̃ are given by the matrices:

F̃∗ =

⎛
⎜⎜⎜⎜⎝

1 2 1 1 2
0 2 1 1 1
0 1 1 0 1
0 0 0 1 0
0 −1 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

F̃∗ =

⎛
⎜⎜⎜⎜⎝

1 1 2 0 1
0 1 1 0 0
0 1 2 0 1
0 0 −1 1 0
0 −1 −1 0 0

⎞
⎟⎟⎟⎟⎠ .

Proof We look at the image of L, E1, E2, E3, E4 by F̃ .
Since F̃ contracts L̃∞ to a point and maps the indeterminacy point on L̃∞ to L̃∞

by Proposition 7.5.(viii), we have:

F̃∗ L̃∞ = L̃∞.

By Proposition 7.5.(viii), the divisor E1 is mapped regularly by F ◦ π to the curve
parametrized by:

l �→ [6 − 3l − l2 : −(−1 + l)l : 2(2 − l)l],

and since this curve is of degree 2 and passes through the point [1 : 0 : 0], [2 : 1 :
0], [1 : 0 : 1], we deduce using assertion (v) of Proposition 9.12 that:

F̃∗E1 = 2L̃∞ + 2E1 + 2E2 − E2 − E4 = 2L̃∞ + 2E1 + E2 − E4.

By Proposition 7.5.(v), the exceptional divisor E2 is mapped regularly by F ◦π to the
line {z = y} ⊂ P

2 and since this line does not pass through any indeterminacy point
of F , assertion (v) of Proposition 9.12 gives:

F̃∗E2 = L̃∞ + E1 + E2.
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By Proposition 7.5.(vi), the exceptional divisor E3 is fixed by F̃ , the restriction of
F̃ to E3 has topological degree 2 and F̃ has one indeterminacy point on E3. The image
of the indeterminacy point on E3 by F̃ is the line parametrized by:

l �→ [−22 + 2l : −8 : 2(3 − l)].

Since this line passes through the points [2 : 1 : 0], [−1 : 0 : 1], we deduce using
assertion (v) of Proposition 9.12 that:

F̃∗E3 = 2E3 + (L̃∞ + E1 + E2 − E2 − E3) = L̃∞ + E1 + E3.

By Proposition 7.5.(vii), the exceptional divisor E4 is fixed by F̃ with multiplicity
2 and F̃ has two indeterminacy points on E4. The image of those indeterminacy points
are two respective lines, parametrized by:

l �→ [−2 − 3l : 2 : −3l],
l �→ [−17 + 3l : −4 : −3(3 − l)].

These line pass through the points [−1 : 1 : 0], [1 : 0 : 1] and through the points
[2 : 1 : 0], [1 : 0 : 1] respectively. Thus assertion (v) of Proposition 9.12 gives:

F̃∗E4 = 2E4 + (L̃∞ + E1 + E2 − E1 − E4) + (L̃∞ + E1 + E2 − E2 − E4)

= 2L̃∞ + E1 + E2.

Finally, using the expressions image by F̃ of L̃∞, E1, E2, E3, E4, we deduce that the
matrix of F̃ is given by:

F̃∗ =

⎛
⎜⎜⎜⎜⎝

1 2 1 1 2
0 2 1 1 1
0 1 1 0 1
0 0 0 1 0
0 −1 0 0 0

⎞
⎟⎟⎟⎟⎠ .

We deduce the matrix of the pullback action F̃∗ by conjugating the transpose of the
matrix of F̃∗ by the intersection matrix. We get:

F̃∗ = I−1 F̃ t∗ I =

⎛
⎜⎜⎜⎜⎝

1 1 2 0 1
0 1 1 0 0
0 1 2 0 1
0 0 −1 1 0
0 −1 −1 0 0

⎞
⎟⎟⎟⎟⎠ ,
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where I is the matrix given by:

I =

⎛
⎜⎜⎜⎜⎝

−1 1 1 0 0
1 −1 0 0 0
1 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎠ .

��
Recall also that KX = −3L̃∞ − 2E1 − 2E2 + E3 + E4. Consider D = 2L̃∞ +

E1 + E2 − E3 − E4, the divisor D satisfies the following properties:

(i) One has F̃∗D = 2D.
(ii) One has (D · D) = 0 and the divisor D is nef.
(iii) One has (KX · D) < 0.

The fact that D is nef follows from similar argument as in Sect. 8.2 or from a
Perron-Frobenius theorem, since 2 is the spectral radius of the pullback map F̃∗ and
that the pullback preserves the cone of nef divisors (see [26, Assertion 2 of Proposition
1.11]).

Geometrically, any element of D corresponds to a conic curve passing through the
four points [−1 : 1 : 0], [2 : 1 : 0], [±1 : 0 : 1]. Using Theorem 8.3, we deduce that
F is semi-conjugate to a one dimensional map.

Corollary 8.11 F is semi-conjugate to a degree 2 rational map on a curve.
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9 Appendix: Elements of Complex Geometry

In this appendix, X will be either an irreducible smooth projective surface or an
irreducible smooth projective curve, i.e a smooth complex surface or curve which is
embedded inside a complex projective space P

n for an integer n � 2. In this particular
setting, one can view X as a Kähler manifold, endowed with the topology induced
by the balls of C

n+1, or X can be described as the intersection of the vanishing locus
of finitely many homogeneous polynomials in C

n+1. In the latter viewpoint, X is
endowed with the Zariski topology. We refer to [43, p.23] for the definition of the
Dolbeaut and deRham cohomology on X .

9.1 Currents and Their Intersection Using Bedford–Taylor’s Method

In this section, X is a smooth projective surface.
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A current of bidegree (1, 1) is an element of the dual of smooth (1, 1) forms on
X , a current of bidegree (2, 2) is a distribution on X . There are currents of other
bidegree but we will not use them in this paper. If T is a (1, 1) current and α is a
smooth (1, 1) form on X , we shall denote by 〈T , α〉 ∈ R the natural pairing between
T and α. The deRham differential on smooth forms induces by duality a differential
on currents which we also denote by d. We say a (1, 1) current T is closed if 〈T , dv〉
for any smooth 1-form v on X .

A (1, 1) current T is said to be positive if for any positive function u and for any
(1, 0) smooth form α on X , T ∧ uα ∧ i ᾱ is a positive measure on X . Like measures,
the support of a (1, 1) current T , denoted supp(T ) is the smallest closed subset such
that the current is identically zero on X \ supp(T ).

If T is a closed positive (1, 1) current and ω is a Kähler form on X , then T ∧ ω is
a positive measure on X and the mass of T is the integral of this measure:

∫
X
T ∧ ω = 〈T , ω〉. (9.1)

Themain example of currents are the one induced by smooth forms and by plurisub-
harmonic functions.

Let us describe the first type of currents. Take a smooth (1, 1) form α on X , and
define the functional:

Tα : β �→
∫
X

α ∧ β,

where β is a smooth (1, 1) form on X . Since Tα is linear and continuous, the functional
Tα defines a (1, 1) current.

On the other side of the spectrum, if V is an (complex) analytic curve on X , defined
the functional [V ] by the formula:

[V ] : β �→
∫
V sm

β,

where β is a smooth (1, 1) form on X and where V sm denotes the smooth locus of
V . When V is an algebraic curve, the functional [V ] defines a closed positive (1, 1)
current on X , and is referred as the current of integration on V .

The currents induced by plurisubharmonic are in between these two type of (1, 1)
currents. A function φ : � ⊂ C

2 → R ∪ {−∞} on a domain � of C
2 is plurisubhar-

monic if it is upper-semicontinuous and the restriction of φ on every complex line is
subharmonic. We state the main properties satisfied by these functions.

Theorem 9.1 The following assertions hold.

(i) Plurisubharmonic functions are stable by decreasing limit.
(ii) If F : X → Y is a dominant holomorphic map between two complex surfaces

and φ is a plurisubharmonic function on Y , then the pullback F∗φ = φ ◦ F is a
plurisubharmonic function on X.
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Take a plurisubharmonic function φ on X , then the current T given in local coor-
dinates by

T : = i∂∂̄φ = i
∑
i j

∂2φ

∂zi∂ z̄ j
dzi ∧ dz̄ j

defines a closed positive (1, 1)-current on X .
An important example is when V = { f = 0} is locally the zero locus of a holo-

morphic function f , then the current of integration on V satisfies the equality:

[V ] = i∂∂̄ log | f |.

We now explain how to intersect two (1, 1) currents to obtain a (2, 2) current (a
measure) on X . If α, β are two smooth (1, 1) forms on X , then α ∧ β defines a signed
measure on X , so one can define the intersection Tα with Tβ by the measure given by
α ∧β. If V andW are two distinct irreducible complex analytic curves on X , then one
candefine their intersection as the discretemeasure onV∩W countedwithmultiplicity.
Wewant to intersect two (1, 1) currents induced by plurisubharmonic functions in such
a way that the intersection would coincide with the other ways showed previously. The
method in this case is more subtle, but was devised by Bedford–Taylor, then extended
by Demailly ([8], [25, Section 4]).

Take two plurisubharmonic functions φ,ψ on X . One difficulty arises immediately
if there are points on X where φ or ψ are equal to −∞. We thus define the unbounded
locus of φ, denoted L(φ) to be the set of points p for which φ is unbounded on any
neighborhood of p. To define the product i∂∂̄φ ∧ i∂∂̄ψ , we shall apply the following
result.

Theorem 9.2 [25, Corollary 4.10] Suppose that the intersection L(φ) ∩ supp ∂∂̄ψ

is a countable number of points of X, then the current φi∂∂̄ψ is well-defined and
has locally finite mass. Moreover the measure ∂∂̄(−φ∂∂̄ψ) is a well-defined positive
measure and also has locally finite mass.

Theorem 9.3 [25, Proposition 4.6] Consider a plurisubharmonic function φ on X and
a closed positive (1, 1) current T on X. Suppose that the intersection supp(T )∩ L(φ)

is a countable union of points. Then for any compact set K , D in X such that D ⊂ Ko,
there exists a neighborhood V of K ∩ L(φ) and a constant C = C(K , D, φ) > 0
such that:

||φT ||D � C ||φ||L∞(K\V )||T ||K ,

||i∂∂̄(φT )||D � C ||φ||L∞(K\V )||T ||K ,

where || · ||L denotes the mass of a given current on D.

One key feature of the intersection of currents is the stability by decreasing limit
of plurisubharmonic functions.
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Theorem 9.4 (See [25, Proposition 4.9]) Let X = P
1 × P

1 or X = P
2. Consider φ,ψ

two plurisubharmonic functions such that L(φ)∩ L(ψ) is a countable union of points.
Then the current:

− ∂∂̄φ ∧ ∂∂̄ψ := −∂∂̄(φ∂∂̄ψ) (9.2)

is well defined, and if φn, ψn are plurisubharmonic functions decreasing to φ and ψ

respectively, then

lim
n

−∂∂̄φn ∧ ∂∂̄ψn = −∂∂̄φ ∧ ∂∂̄ψ.

Remark 9.5 There is amore general version of Theorem 9.4, under the assumption that
X is covered by Stein open sets � such that L(φn) ∩ supp(ddcψ) does not intersect
∂�.

As a consequence of the above theorem together with the fact that the pullback of
plurisubharmonic functions by holomorphic maps remains plurisubharmonic, we get
the following consequence.

Corollary 9.6 In the situation of the previous theorem and when F : Y → X is a
dominant holomorphic map which does not contract any curve onto L(φ) ∩ L(ψ),
then the intersection:

−∂∂̄(φ ◦ F) ∧ ∂∂̄(ψ ◦ F),

is a well-defined measure supported in the preimage by F of L(φ) ∩ L(ψ).

Proof We deduce the result from the previous theorem, the relations L(φ ◦ F) =
F−1L(φ), L(ψ ◦F) = F−1L(ψ) and the fact that L(φ ◦F)∩ L(ψ ◦F) is a countable
union of points. ��

9.2 Divisors, Line Bundles, and First Chern Class

We shall restrict our discussion to the case where X a smooth projective variety of
complex dimension 1 or 2 (a curve or a surface). A divisor D on X is a finite linear
combination with integer coefficients ai of irreducible hypersurfaces Di in X . We
shall denote by:

D =
∑

ai [Di ].

If X is a smooth curve, then hypersurfaces are points so a divisor D is a linear com-
bination of points. If X is a complex surface, then a divisor is a linear combination of
algebraic curves.

Any divisor D on X induces a cohomology class in the deRham cohomology
H2(X , C). For each i , the current of integration [Di ] along the smooth locus of
Di yields a d-closed current on X . Since Di is also a complex manifold, one can
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also integrate forms of bidegree (dim X − 1, dim X − 1) so the current [Di ] also
defines an element of the dual of Hdim X−1,dim X−1(X , C). Hence Di induces a class
in H1,1(X , C) ⊂ H2(X , C) by Poincaré duality.

We now explain the connection between line bundles and divisors on curves and
surfaces. Given a divisor D on a curve or a surface X , there exists a line bundle
LD which admits a meromorphic section whose divisor of poles and zeros gives D.
Conversely, if L is a holomorphic line bundle, then the divisors of poles and zeros of
one of its meromorphic section is a divisor on X which by definition represents the
first Chern class of L , denoted c1(L).

9.3 Positivity of Divisors

In this section, we present the various notions of positivity for divisors on a curve
or a surface. These notions from algebraic geometry refer to various cones one can
consider in the cohomology of an algebraic variety.

Fix a divisor D given by:

D =
∑

ai Di ,

where ai are integers and Di are irreducible hypersurfaces on X .
When all the coefficients ai are non-negative, one says that D is effective and it

is one notion of positivity. The other notions we will use are ampleness and nefness
and are related to the intersection product of divisors on surfaces.

Suppose now that X is a surface and take two distinct irreducible curves D1 and
D2 on X . If p belongs to the intersection of these two curves, write f = 0, g = 0 the
local equation of D1 and D2 near p and denote by Op the local ring of holomorphic
functions on X near p, then we define the multiplicity of the intersection at p8 to be:

mp(D1, D2) := dimCOp/〈 f , g〉 � 0,

where 〈 f , g〉 denotes the ideal generated by f and g. The intersection of the two
divisors D1 and D2, denoted D1 · D2 is by definition the linear combination of points
given by:

D1 · D2 =
∑

p∈D1∩D2

mp(D1, D2)[p].

We extend this intersection to linear combination of irreducible curves by linearity and
obtain a pairing on divisors. If we sum the contributions of all the multiplicities, we
obtain a number called the degree of the intersection, which is denoted (D1 · D2):

(D1 · D2) =
∑

p∈D1∩D2

mp(D1, D2) ∈ Z.

8 This is the standard multiplicity as in Bezout’s theorem.
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We define nefness and ampleness in our setting using Kleiman’s criterion [72,
Theorem 1.2.23, Theorem 1.4.9].

A divisor D = ∑
ai [pi ] on a curve X is ample if its degree

∑
ai is positive and

it is nef if
∑

ai is non-negative.
A divisor D on a surface X is very ample if the mapping φD : X ��� P(H0(X ,

O(D))∗) induced by its section is an embedding (see [72, Definition 1.2.1]). A divisor
D is ample if for any curve C on X , the intersection (D · C) is positive and it is nef
if the intersection (D · C) is non-negative.

Similarly, one says that a line bundle is nef (resp. ample) if it has a meromorphic
section whose divisor of poles and zeros is nef (resp. ample).

9.4 Rational Maps

Take two smooth projective surfaces X and Y . Fix two non-empty Zariski open subset
U , V of X and Y respectively and take a map fU : U → V given by polynomials
in some affine coordinate chart of X ,Y . We say that the triple (U , V , fU ) defines a
rational map f , and we denote it by f : X ��� Y . Observe that this definition seems
quite loose since one can always restrict fU to another Zariski open subset contained
inU . In any case, the Zariski (or Hausdorff) closure in X ×Y of the graph of fU does
not depend on the choice of the two Zariski open subsets U , V , we call this set the
graph of the rational map f .

When U = X , the rational map f is said to be regular.
A rational map f : X ��� Y is called birational if the map fU : U → V has an

inverse f −1
V : V → U defined by polynomials in some affine coordinates. This inverse

then induces a rational map f −1 : Y ��� X .
The main advantage of this formulation is that for any rational transformation

f : X ��� X , one can always consider the conjugation ϕ◦ f ◦ϕ−1 where ϕ : X ��� X ′
is a birational map between smooth projective surfaces. Indeed, if fU : U → V is the
map associated to f on two Zariski open subsets U , V of X , we choose also two
Zariski open subset U ′, V ′ of X and a map ϕ : U ′ ⊂ X → V ′ ⊂ X ′ corresponding to
the birational transformation ϕ. We consider the map:

ϕ ◦ fU ◦ ϕ−1 : ϕ(U ∩ f −1
U (U ′)) → V ′,

and this determines a rational map which we denote by ϕ ◦ f ◦ ϕ−1. In particular, one
can lift rational maps on P

2 to rational maps on a blow-up of P
2.

9.5 Pullback and Pushforward of Divisors

We recall general facts on pullback and pushforward of divisors.
Pushforwardby regularmaps: Take a regularmap f : X → Y of smooth surfaces.

If C is an irreducible curve in X , the pushforward of the divisor [C] by f , denoted
f∗[C] is given by the formula:
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f∗[C] =
{
m[ f (C)] if f (C) is a curve,
0 if f (C) is a point,

(9.3)

where m ∈ N is the topological degree of the restriction of f to C onto its image.
We shall refer to m as the multiplicity of the divisor [ f (C)]. The pushforward is then
defined by extending linearly f∗ to the abelian group of divisors on X .

Pullback by regular maps: Take a regular map f : X → Y between two smooth
projective varieties and take an irreducible hypersurface D onY .Write a local equation
g = 0 of D near some point p ∈ D, write

g ◦ f =
∏
j

g
a j
j ,

where a j are integers and g j are local holomorphic functions on X vanishing on an
irreducible hypersurface Dj . Then the pullback of the divisor D by f , denoted f ∗D
is the divisor given by:

f ∗D :=
∑

ai [Di ].

For a more abstract definition of the pullback, we shall refer to [72].
We now explain the general convention for the pullback and pushforward for ratio-

nal maps.
Pullback and pushforward for rational maps: Take a rational map f : X ��� Y

between smooth surfaces, we take the desingularization � of the graph of f in X × Y
(defined in the previous section) and denote by π1, π2 the two projections from � onto
the first and second component respectively.We thus obtain the following commutative
diagram:

�

π2π1

X
f

Y .

The pullback and pushforward of a divisor DY on Y and of a divisor DX on X
respectively, denoted f ∗DY and f∗DX are defined formally as:

f ∗DY := π1∗π∗
2 DY ,

f∗DX := π2∗π∗
1 DX .

The pullback and pushforward action on divisors induce morphisms in the (1, 1)
cohomology:

f∗ : H1,1(X) → H1,1(Y ),

f ∗ : H1,1(Y ) → H1,1(X).
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One conceptwewill often use is the notion of strict transform. The strict transform
of a curve C in X by f , denoted f o(C) is by definition the closure

f (C \ I ( f )),

where I ( f ) denotes the indeterminacy set of f .
In practice, computing the pullback and pushforward action in cohomology can

be done geometrically for classes represented by ample divisors. The method is to
choose a representative in good position to simplify the computations. Indeed, if the
divisor DX does not contain any indeterminacy point of f , then its pullback by π1 is
the preimage of DX by π1 and f∗DX is the strict transform of DX by f :

f∗DX = [ f (DX )].

When DX is an ample divisor which passes through an indeterminacy point of f ,
we can choose another divisor D′

X representing the same class as DX in H1,1(X)

which does not contain any indeterminacy point and determine the strict transform of
D′

X by f . However, the difficulty arises when one wants to compute the pullback or
the pushforward of a class of a divisor which is not ample, in this case, one needs to
compute explicitly the pullback by π1 and the pushforward by π2 associated with f .

9.6 Canonical Divisor

One divisor of particular interest in the paper is the canonical divisor. We give its
definition below. Take a smooth projective curve or a smooth projective surface X and
fix ω a meromorphic 1-form if X is a curve or a meromorphic 2 form if X is a surface.
The canonical divisor, denoted KX , is by definition the divisor of poles and zeros of
the form ω.

Example 9.7 When X = P
1, the form ω = dz in C ⊂ P

1, and at infinity ω has a pole
of order 2, i.e ω is of the form −(1/z′2)dz′ where z′ = 1/z. In particular, we have:

KP1 = −2[∞].

When X = P
2, the form ω = dx ∧ dy in the affine coordinates [x; y; 1] ∈ P

2 has
a pole of order 3 on the line at infinity. So we have:

KP2 = −3L,

where L is the line at infinity.

9.7 Blowing Up and Down

Let Y be a smooth projective surface and fix a point p in Y . As a set, the blow-up X
of Y at the point p is obtained by replacing p with the projective tangent bundle at
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p:

X := Y \ {p} ∪ P(TpY ).

Since p is the smooth point, the tangent space at p is naturally identified to {p} × C
2

and since P(C2) = P
1, the space X is obtained from Y by adding a P

1 corresponding
to the tangent directions at p. The subset E := P

1 = P(TpY ) is called the exceptional
divisor of the blow-up of Y at p. By construction, the spaces X \ E and Y \ {p} are
biholomorphic. The set X has a natural complex structure induced by Y so X is also a
smooth projective surface and there is a natural holomorphic map π : X → Y which
collapses E to p and is a biholomorphism from X \ E to Y \ {p}. This map π is called
the blow-down map.

When one works with blow-ups, one common fact is to relate the strict transform
with the full preimage by π . Take a curve C in Y , the strict transform of C is given
by:

π−1(C \ {p}).

One sees that if p belongs to C , then the preimage of π−1(C) is the union of the strict
transform of C with the exceptional divisor, whereas π−1(C) is equal to the strict
transform of C when the curve C does not pass through p.

Since we will be blowing-up points and compute explicitly the images of excep-
tional divisors by rational transformations, let us explain how one proceeds in local
coordinates. Observe first that blowing up is a local operation as one only modifies the
variety near the point p. Let us identify a neighborhood of p as C

2 with holomorphic
coordinates (x, y) so that p is identified with (x = 0, y = 0). The set of complex
lines passing through (0, 0) are of the form:

−λx + μy = 0,

where [λ; μ] ∈ P
1. The blow-up X of C

2 at (0, 0) is given in coordinates by:

{((x, y), [λ; μ]) ∈ C
2 × P

1| − λx + μy = 0} ⊂ C
2 × P

1.

This is the intrinsic definition of the blow-up, but to write the blow-down map f ,
one needs to write in the two charts on P

1, corresponding to the parametrization of
non-horizontal lines and non-vertical lines, we obtain:

(x, λ) ∈ C
2 �→ ((x, λx), [λ; 1]) ∈ X �→ (x, y = λx) ∈ Y ,

where the exceptional divisor f −1(0, 0) has local equation x = 0 and the second chart
is given by:

(y, μ) ∈ C
2 �→ ((μy, y), [1; μ]) ∈ X �→ (x = μy, y) ∈ Y ,

where y = 0 is the local equation of the exceptional divisor.
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Example 9.8 If C is the curve P(x, y) = y − x2 = 0, we can compute the local
equations of the strict transform C̃ of C on the blow-up of (0, 0). Observe that the
tangent line to C at (0, 0) is horizontal. We thus choose the parametrization of non-
vertical curves (x, λ) �→ (x, λx), [λ, 1] on the blow-up: The equations of f −1(C \
{(0, 0)}) are of the form:

P ◦ f : (x, λ) ∈ C
∗ × C �→ λx − x2 = x(λ − x).

Since the local equations of E is x = 0 but x �= 0, we deduce that the local equation
of the strict transform is λ − x . The intersection of C̃ with the exceptional divisor E
is transverse at (x = 0, λ = 0), and this comes from the fact that the tangent line to C
at (0, 0) is horizontal.

Let us now discuss the cohomology of the blow-up at one point. The cohomology
of X can be split into two parts:

H1,1(X) = π∗H1,1(Y ) ⊕ CE .

In practice, one decomposes divisors on X as a sum of strict transform of divisors on
Y with a multiple of E (see [43, p.475]).

One crucial fact is that the intersection product on X can be deduced from the
intersection product on Y together with the fundamental equality (see [43, p. 475]):

(E · E) = −1.

The intersection of a strict transform of a curve with the exceptional divisor can be
deduced geometrically or in coordinates. For the self-intersection of a strict transform
of a curve, one uses the following statement.

Proposition 9.9 If Xis the blow-up of Y at a point p. If p is a smooth point on a curve
C in Y , then the strict transform C̃ satisfies:

(C̃ · C̃) = (C · C) − 1.

Example 9.10 Take a line L in P
2 and a point p on L . Let X be the blow-up of P

2 at
p and denote by π : X → P

2 the blow-down map, E the exceptional divisor π−1(p).
Then:

π∗L = L̃ + E,

where L̃ is the strict transform of the line at infinity by π . Moreover, we have:

(L̃ · E) = 1, (E · E) = −1, (L̃ · L̃) = 0.

Example 9.11 If X is the blow-up ofP
2 at a point on the line at infinity andπ : X → P

2

is the blow-down map, then

KX = π∗KP2 + E = −3(L̃ + E) + E = −3L̃ − 2E,
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where L̃ is the strict transform of the line at infinity.

We now summarize the formula involving pullback and pushforward of divisors
under blow-ups and blow-down and general maps in the following proposition.

Proposition 9.12 Let f : X → Y be a regular map of smooth surfaces.

(i) [39, Proposition 2.3 (c)] Fix D a divisor on Y , D′ a divisor on X, one has:

( f ∗D · D′) = (D · f∗D′)

(ii) [72, Remark 1.1.13] Take two divisors D, D′ on Y , then one has:

( f ∗D · f ∗D′) = d(D · D′),

where d is the topological degree of f .
(iii) Take a divisor D on Y . One has f∗ f ∗D = dD ∈ H1,1(Y ), where d is the

topological degree of f .
(iv) [65, Proposition 2.5.5] Suppose that X is the blow-up at one point of Y and that

π is the map blowing down the exceptional divisor E to that point, then one has
in H1,1(X):

KX = π∗KY + E .

(v) [43, Formula p.475] If X is the blow-up of Y at one point p and π : X → Y is the
blow-down map. Fix an irreducible curve C on Y and consider the local equation
f = 0 defining C near p. The pullback π∗C is equal to:

π∗C = πo(C) + ordp( f )E,

where E is the exceptional divisor above p, πo(C) is the strict transform of C by
π and where ordp( f ) is the order of vanishing of the function f at the point p.

Proof We only need to prove (iii), which is a consequence of (i) and (ii). Indeed, take
D, D′ two divisors on Y , we have using (i):

( f∗ f ∗D · D′) = ( f ∗D · f ∗D′).

By assertion (ii), we obtain:

( f∗ f ∗D · D′) = d(D · D′),

for all divisors D′ on Y . Using the fact the the intersection product is non-degenerate
in H1,1(Y ), we have proved that f∗ f ∗D = dD. ��
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