Arnold Mathematical Journal (2023) 9:505-597
https://doi.org/10.1007/s40598-022-00223-0

RESEARCH CONTRIBUTION

®

Check for
updates

Self-Similar Groups and Holomorphic Dynamics:
Renormalization, Integrability, and Spectrum

N.-B. Dang’ - R. Grigorchuk? - M. Lyubich'

Received: 4 January 2021 / Revised: 29 November 2022 / Accepted: 3 December 2022 /
Published online: 5 January 2023
© Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2023

Abstract

In this paper, we explore the spectral measures of the Laplacian on Schreier graphs
for several self-similar groups (the Grigorchuk, Lamplighter, and Hanoi groups) from
the dynamical and algebro-geometric viewpoints. For these graphs, classical Schur
renormalization transformations act on appropriate spectral parameters as rational
maps in two variables. We show that the spectra in question can be interpreted as
asymptotic distributions of slices by a line of iterated pullbacks of certain algebraic
curves under the corresponding rational maps (leading us to a notion of a spectral
current). We follow up with a dynamical criterion for discreteness of the spectrum. In
case of atomic spectrum, the precise rate of convergence of finite-scale approximands
to the limiting spectral measure is given. For the three groups under consideration, the
corresponding rational maps happen to be fibered over polynomials in one variable.
We reveal the algebro-geometric nature of this integrability phenomenon.
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1 Introduction

Spectral theory of the Laplacian is a classical area of Mathematical Physics, with
deep connections to Geometry, Probability, Dynamics, Geometric Group Theory, and
Number Theory. From the point of view of Quantum Mechanics, it describes the
observable energy spectrum of a free particle moving in the space under consideration.
In this interpretation, the dichotomy between atomic and continuous spectrum roughly
corresponds to the difference between insulating and conducting states of matter (see
[24] and Sect. 2.5 for more about this).

In a series of works by Bartholdi, Grigorchuk, Nekrashevich, Sunié, Zuk, and others
[4, 30, 50-53, 59, 60, 62] over the past 20 years, the spectral problem for Cayley, and
more generally Schreier graphs has been explored for discrete self-similar groups.
Homogeneity and self-similarity of the corresponding spaces leads to invariance of
the spectrum under Schur Renormalization transformations, which sometimes happen
to be rational maps in two variables. This allowed the authors to describe the spectrum
of the corresponding Schreier graphs in three remarkable cases: the Grigorchuk G,
Lamplighter L, and Hanoi 'H group. In particular, the spectrum turned out to be
absolutely continuous in the former case and discrete in the latter two.

In this paper, we bring ideas from Holomorphic Dynamics and Algebraic Geometry
to give a new insight into the above spectral phenomena. Namely, we take a close look
at the dynamics of the corresponding renormalization transformations and relate the
spectral results to the equidistribution theory for dynamical pullbacks of holomorphic
curves. We also analyze the nature of integrability of these transformations (that happen
to be fibered over one-dimensional maps). In particular, we give a general algebro-
geometric criterion for integrability (in the spirit of Diller and Favre [26]) that can be
applied to each of the groups in question. This allows us to put all the previous results
in a general framework.

To set up the renormalization scheme (for the above three self-similar groups), one
needs to introduce an extra spectral parameter and the corresponding two-parameter
pencil of operators. In the nth scale this pencil is reduced to a pencil of matrices of size
d" (where d = 2 for the groups G, £ and d = 3 for H corresponding to the branching
number of the regular tree on which the groups acts). Letting P, € C[A, u] be the
characteristic polynomial of that matrix pencil, one obtains the following spectral
relation between two consecutive scales:

Pur1 = Q" - (PyoR), (1.1)
where Q € C[A, u], Py is linear, and R: C? --» C? is the renormalization rational

map. For the groups G, H and L, the transformation R is given by the following explicit
expressions, respectively:
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It shows a clear connection between the spectral algebraic curves I', = {P, = 0} and
iterated pullbacks of the initial line 'y by the rational map R. We obtain the spectral
current T of a pencil of operators as the limit in the sense of currents

o1
T= lim [P, =0] (1.2)

n——+00

when it exists. This current is supported on an algebraic curve lamination related to
the Julia set of R in the Hanoi case and Grigorshuk cases, and to the non-wandering
set in the Lamplighter case.'

The desired spectral measure w for the Laplacian is the slice of this current by an
appropriate line {A = const} and is called the density of states, or is referred in [56,
59] as the KNS spectral measure (after Kesten, Von Neumann and Serre).

The density of states for the groups G, H and £ (naturally acting on the correspond-
ing regular trees) were described in the papers [4, 51] and [54] respectively. In this
paper, we will interprete these results from the outlined dynamical viewpoint, and, for
the latter two groups, give the rate of convergence w, — w, where w, is the counting
measure for the corresponding eigenvalues in n-th scale.

Theorem A The following properties hold.

(i) The density of states w associated with G is absolutely continuous with respect
to the Lebesgue measure (with an explicit density) supported on the union of two
intervals. This measure is the pushforward by ;u — (u + 1) /4 of the slice of the
Green current of the renormalization map Rg by the appropriate line. Its support
is the image by the above affine transformation of the slice of the Julia set of Rg
(see Sect. 5.2 and Theorem 5.11).

(i1) The density of states associated with the group L is atomic, and

on —w~n/2"" "'m
where m is the Lebesgue measure on the interval. This interval (equal to the

support of w) is the slice of the “neutral cylinder” (see Sect. 3.6.2) of the renor-
malization transformation R .

! In the Lamplighter case, one refers to the non-wandering set rather than the Julia set because the map has
zero topological entropy since both the topological entropy and the first dynamical degree are one.
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(iii) The density of states associated with the group H is atomic as well, and

where m is a Bernoulli measure on a Cantor set K. This Cantor set is the slice
of the Julia set (see Sect. 7.2) of the renormalization transformation Ry by the
appropriate line. Moreover, the support of the density of states for H consists of
a countable set of eigenvalues accumulating on K.

Remark 1.1 It turns out that the Hanoi group can be realized as the iterated monodromy
group of the rational function z> + 16/27z whose Julia set is homeomorphic to the
Sierpinski gasket [51]. A similar notion of density of states was defined for various
fractal sets in [70, 86]. It has been intensely studied for the Sierpinski gasket [38, 69,
79, 87] and other fractals [17, 83, 84]. It would be interesting to explore if there is a
direct connection between assertion (iii) and these results.

Remark 1.2 The Julia set for the map Rg (and for closely related map Rp for the
infinite dihedral group) was independently studied by Goldberg and Yang [41] (see
the discussion in Sect. 3.4 for more details).

What makes these results quite easy from the dynamical viewpoint is the “integra-
bility” of the corresponding renormalization transformations. The respective integrals
were explicitly given in [4, 51, 54] and communicated to us privately by Vorobets
[88]. They lead to the following simple dynamical models:

Theorem B (i) There exists two forward invariant domain Uy, U whose union is the
complement of 4 lines and a conic of C? such that the restriction of Rg on each
U, is conjugate via a biholomorphic map to the following direct product:

Oy 1) > (0, 1),

In this model, the Julia set of Rg is equal to the direct product C x T. The original
Julia set of Rg is foliated by complex conics parametrized by an interval.

(ii) [54] The Lamplighter map Rz : C* --» C? is conjugate via an invertible rational
map on C? to the following (rational) skew product:

A —4
() eC’ (k, ad ) e C2.
0

In this model, the recurrent part of the dynamics is supported by the fixed points
locus and the elliptic cylinder.
(ili) The Hanoi map Ryy: C* --» C2 is conjugate via an invertible rational map on
C? to the following (rational) skew product:
A —DA+2) 2
A eC > (A2—a—3 " 222 ) e
(x, ) < 3 M

@ Springer



Self-Similar Groups and Holomorphic Dynamics. . . 509

In this model, the Julia set of Ry is equal to the product of the Julia set of A> — A —3
(which is a hyperbolic Cantor set) times C.

Remark 1.3 In [55], the authors asked whether the spectrum is also atomic in the case
of the Basilica group, which is the iterated monodromy group for the Julia set of 7> — 1
[78, §3.9.2]. Though the corresponding renormalization is not integrable, our criterion
for atomicity (formulated in Theorem D below) is still applicable due to the fact that
the dynamical degree (calculated by Eric Bedford) turns out to be non-integer in this
case. We will discuss it in a forthcoming paper ([9] this problem was independently
studied in [17]).

Our main focus in this paper is to analyze the nature of this integrability phe-
nomenon, i.e., to identify from general principles invariant fibrations for the maps
under consideration. Note with this respect, that though meromorphic surface maps
preserving fibrations are classified (see [21, 26, 34]) and certain criteria are known to
rule out the existence of an invariant fibration [11, 67], there is no general method of
identifying an invariant fibration for a given non-invertible rational surface map.

We provide two ways to identify the above fibrations:

e Either by considering some explicit invariant pencils of conics passing through
special points of the maps R = Rg, R, Ry, namely certain points of indetermi-
nacy and certain fixed/prefixed points;

e Or else, by means of a systematic algebro-geometric approach.

In the latter approach, inspired by [18, 26, 40], we develop an algebraic criterion
to detect presence of an invariant (rational) fibration and give a method to calculate
an explicit semi-conjugacy. Let us explain briefly the ideas behind our criterion. To
construct an explicit semi-conjugacy, one has to find a rational map 7: C> — C
which semi-conjugates R to a one dimensional map. To this end we apply some ideas
from the Minimal Model Program which provides a setting in which one can contract
a rational curve to a point. A natural condition, due to Mori (see e.g [71]), is to ask
that those curves intersect negatively the first Chern class of the canonical bundle
in our space. When this happens, we obtain a map 7: C> — CF where k is either
0, 1 or 2. We then add an additional condition on the contracted curves so that the
Riemann—Roch-Hirzebruch formula rules out the cases k = 0, 2.

To state our next result, we interpret the contracted curves as the [zero and polar
loci] of particular holomorphic sections of a holomorphic line bundle whose first
Chern class is cohomologically equivalent to the integration along these sections and
compute the intersection of classes as a cup-product in the deRham cohomology of
P2,

Theorem C Let R: P? --» P? be a dominant rational map.> Suppose that there exists
a surface X obtained from P2 by a finite sequence of blow-ups of P2, an integer k > 1,
and a line bundle L on X whose first Chern class ci(L) € H2(X, 7)) satisfies the
following conditions.

() ci(L)-ci(L) =0in HY(X,Z) ~ Z.

2 j.e whose image is not contained in a curve.
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510 N.-B.Dang et al.

(ii) For any curve C on X, the intersection [C] - c1(L) € H*(X, Z) is non-negative
where [C] denotes the cohomology class in H*(X, Z.) induced by C.

(iii) ¢;(L) - Kx < 0in H*(X,7Z) where Kx is the first Chern class of the canonical
bundle on X.

(iv) The pullback of the line bundle R*L by R is isomorphic to the line bundle L®*.
Then the rational map R is rationally semi-conjugate to a degree k rational map
on a curve.

Now let us outline some ideas of the proofs.

Theorem C produces a particular semi-conjugacy whose fibers are rational curves.
Our proof follows closely the (non-dynamical) construction of a contraction morphism
on a ruled surface [71, Theorem 1.28 (2)]. We then show that our criterion applies to
the three maps, Rg, Rz, Ry, under consideration.

Once Theorem B is proved, then one proves successively the two assertions of
Theorem A.

For the first assertion, we let R = Rg, d = 2, Py = 2 — A — p, and we interpret
the density of states wg in Theorem A associated with the group G as the limiting
measure given by:

1
wg = lim —-RG"(Po=0}N {1 =~1).

n—-+00o

where the intersection R (_;” {Py = 0} N {A = —1} is the counting measure on the line
A = —1. The above formula shows that the convergence to the density of states is
related to the behavior of the iterated preimage of the curve {Py = 0} by R(’Ji which
is a classical equidistribution problem in the two-dimensional holomorphic dynamics
[7, 15, 28, 33, 82].

A typical result of this theory asserts that iterated pullbacks of a generic algebraic
curve converge to a canonical equivariant current called the Green current (see Sect. 3.3
for a more detailed discussion). Our goal is to justify this assertion in our three special
cases. Since in each case the pullback Ré"{Po = 0} coincides with the spectrum of
the spectral operator pencil on level n, we come up with the interpretation of the Green
current as the spectral current for our pencil (and thus, for the corresponding group
action).

Let us now dwell on each of our groups, one by one. As Rg is conjugate to a simple
model id xz2 on two domains whose union is a Zariski open set of C2, it is easy to
show directly that the sequence of curves

1 —n
RGPy =0)

converges towards the Green current of Rg, while their slices converge to the corre-
sponding transverse measure. (For more general results of this kind see [19, 32].) We
recover directly the so-called “joint spectrum” of a particular pencil [41] by looking at
the support of the Green current and our approach using currents gives a quantitative
way to measure this set. In this case, one finds that the spectral current 7 is a current
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representable by integration or the geometric current in Sullivan’s terminology (see
e.g [77, §4.3B]) supported on the union of hyperbolas:

1 5 do
Tg:= | [4—u*+xr —49A:0]2 (1.3)
—1

a1 —62

where [4 — 1% 412 —46 1 = 0] denotes the current of integration on the corresponding
hyperbola.

For the Lamplighter and Hanoi group, their spectral currents 7, and T4 are both
supported on a countable union of curves (instead of a continuum) and one obtains an
asymptotic expansion:

n 2 2dn n
T[l:Tn,ﬁ_Zn__l _2[)\4‘,“«:77]4—_"24‘0(?),
25.2n1

Ty = Tn,'H - 6. 3"

n
/ [32 = 1= —2p° = pul dm, () + 0 (2—) :
T (@) 3"

where T, r, T, 14 are some currents supported on 2" and 3" curves respectively and
mp, is the measure of maximal entropy associated to the polynomial p = 2—z-3.

The proof of the second and third statement of Theorem A is also of dynamical
nature. The fact that the spectrum is atomic follows from a discrepancy between the
branching degree d of the regular tree 7 under consideration and the first dynamical
degree of the renormalization transformation R, Ry, Rp, respectively.

The first dynamical degree A (R) is defined formally as:

A1(R) := lim sup(deg R™)'/",

n—-+o00

(where deg R" denotes the algebraic degree of R") and measures the growth of the
degree of the iterated preimages of generic algebraic curves.

For the Lamplighter group, A1 (Rz) = 1 whereas d = 2, and for the Hanoi group,
M (Ry) = 2 whereas d = 3. To understand the spectral measure, we expand the
inductive formula (1.1) into:

n
P, = (1_[ Qd’l_l_l ° Rl) Pyo R".

i=0

Observe that there are two different contributions for the growth of the degree of
P,, one from the power of d and the other from the iteration of R. We then show that
when A1 (R) < d, then the function 1/d" log | P, | converges to a non-constant function
which is equal to —oo on countably many curves making the density of states atomic.

Theorem D Tuke a dominant rational transformation R: C*> --s C? and take some
polynomials P, € C[A, u] of degree d" in the variable y satisfying:

n—k
Pip1 =07 (P, oR),
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512 N.-B.Dang et al.

for all integer n, where Q is a fixed polynomial and where k = 0, 1, 2. If \{(R) < d,
then for any Ao € C for which the line {A = Lo} is not contained in any of the curves
{Q o R" = 0}, {Py o R" = 0} for all n, any weak *-limit point of the sequence of
probability measures 1/d"[ P, (Ao, -) = 0] is atomic.

This second statement and its proof are reminiscent of the Dichotomy Theorem by
Sabot [83, Theorem 4.1], who observed a similar phenomenon for different rational
maps arising from the study of the spectrum of the Laplacian for a class of self-similar
sets. In our setting, Theorem D applies to the Lamplighter and Hanoi group and shows
that the density of states associated to these two groups is atomic.

Remark 1.4 This project originated at a conference in Saas-Fee in March 2016 as a
discussion (nicknamed “Saas-Fee nightmares”) of the dynamical interpretation of the
density of states for G. It was obtained shortly afterwards and was announced at a
conference in the Fields Institute in May 2019. The Lamplighter and Hanoi groups
were studied later; the corresponding results were announced at a Luminy meeting in
January 2020.

2 Background on Spectra of Graphs and Groups
2.1 General Spectral Theory

The study of spectral properties of operators on groups and graphs is very interesting
and important. There are hundreds (if not thousand) of articles on spectra of finite
graphs (including such topics as expanders and Ramanujan graphs) and many books
on that subject.

By spectrum of a graph I' = (V, E), one means the spectrum of the Laplace
operator L. Inthe case where I" is ad-regular graph,then L = I —M where M = A/d
and where A is the adjacency operator (or matrix) on the vertices of I'. The operator M
is called the Markov operator and corresponds to a simple random walk with uniform
transition probability 1/d along each edge of I'. One can also consider a more general
concept of weighted Markov or Laplace operators when a weight w: E — RT is
given. The weighted Laplacians are also used in various situations.

By spectrum of a group G with a system of generators S, one means the spectrum
of the Cayley graph I'(G, S).

If G is finite then one may try to use the information about irreducible unitary
representations of G to understand the spectrum (although this approach is often not
easy to implement). In the case of Cayley graphs or their generalization, Schreier
graphs, one chooses the weight w: S U §~! — R¥ so that it is symmetric w(s) =
w(s~") Vs € S. The symmetry of the weight is needed to keep the weighted Laplacian
L, self-adjoint.

The case of infinite graphs or groups is much harder and little is known about their
spectral properties. However, a big progress was achieved for self-similar groups and
their associated Schreier graphs. We give here some background in this setting.

Let M be a Markov operator on d-regular connected infinite graph I' = (V, E).
It is a self-adjoint operator of norm bounded by 1, so its spectrum is contained in
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Self-Similar Groups and Holomorphic Dynamics. . . 513

the interval [—1, 1]. By the spectral theorem for bounded self-adjoint operators, there
exists a projection valued measure P defined on Borel subsets of R which plays the
role of the diagonalization basis of M (see for instance [80, Chapter VII]). To each
vertex v € V, one associates the probability measure defined by:

wy(B) = {8y, P(B)dy),

where §, is the delta function at the vertex v and where B C R is any Borel subset.
The moments of this measure,

f AMduy(A) =< M"8y, 8, >
R

coincide with the probabilities of returns to v for the random walk induced by M.
It was proved by Kesten [68, Lemma 2.1] that the support of u, coincides with the
spectrum of M when I is a Cayley Graph.

These spectral measures are often hard to determine, so they were computed in the
rare cases: finitely generated free abelian and non-abelian groups are among those
[68]. For example, the spectral measure associated to the free abelian group Z" is
absolutely continuous with analytic density and has support in the interval [—1, 1].
Its density is the pushforward of the Haar measure on the torus R” /Z" by the map
1, ...,0,) — (1/n) Z?:l cos(6;). Kesten showed that the free group generated by
h elements admits a spectral measure which is absolutely continuous, has analytic
density and is supported in [—+/2h — 1/h, ~/2h — 1/h]. Moreover, the density of this
spectral measure is given by:

V2h — 1 — x2h?
B x.

2.2 Self-Similar Groups

The idea of self-similarity came to group theory at the beginning of 1980s in the relation
to the Burnside problem on periodic group and Milnor’s question on existence of
groups of intermediate growth [44—46]. The first examples of self-similar groups were
presented in dynamical terms, namely as groups acting on the interval [0, 1] or on the
square [0, 1] x [0, 1] by Lebesgue measure preserving transformations. Later on, along
with the development of the algebraic background of the theory of self-similar groups,
stimulating relations to various themes in dynamical systems, statistical mechanics,
and mathematical physics (including symbolic and holomorphic dynamics, random
Schrodinger operator, invariant random subgroups, etc.) were revealed [5, 31, 47, 48,
57,61, 62].

Initially used for resolving various difficult problems in Algebra and Functional
Analysis (e.g., non-elementary amenability), they were found later to be naturally
connected to some well-known and popular games like the Chinese puzzle or Hanoi
Towers game. Moreover, they can be seen from the analysis of Gray code, automati-
cally generated sequences (like for instance Thue—Morse sequence), Julia sets of one
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514 N.-B.Dang et al.

Fig.1 Picture of a 2 regular rooted tree

dimensional polynomials (like the Basilica Julia set [55]), higher dimensional holo-
morphic dynamics, etc. As we have already mentioned above, the latter connection
comes from the non-cyclic renormalization relating various scales of the group.

A self-similar group naturally acts on a regular rooted d-regular tree and this action
respects the self-similar structure of the tree. Namely, for each element ¢ € G and a
vertex v € V(T), the restriction g, of g on the subtree T, rooted at v can be identified
with an element of G (using the canonical identification of 7, with 7). There are
modifications of this definition that lead to the classes of self-replicating (or recurrent)
groups, branch groups, etc. An account of the theory of self-similar group can be found
in the surveys [5, 59, 81] and in Nekrashevych’s book [78].

There are two main ways to describe the action of self-similar groups on such tree:
either via wreath recursion or via Mealy automata.

Fix d > 2 an integer and let T = T be the d-regular rooted tree whose vertices
are in bijection with finite words (strings) over an alphabet of cardinality d (a standard
choice for A is {1, ..., d}). The ordering on each level is given by the lexicographic
order (see Fig. 1 below).

The boundary of the tree, denoted d7 consists of geodesic paths joining the root
with infinity. It can naturally be identified with the set {1, ..., d }N, endowed with the
product topology and the resulting topological space is homeomorphic to a Cantor set.

The group of automorphism Aut(7") of the (rooted) tree 7' consists of bijection
of the set of vertices of 7 which fix the root and preserve adjacency relations. For any
vertex v of T, let T,, be the d-regular subtree of 7 whose root is v. There is a canonical
isomorphism between T;, and T which is induced by a power of the left shift T on the
symbolic space E}' ={1,..., d}N.

Every automorphism g € Aut(7") can be described by the following data: an ele-
ment of the symmetric group o € Sym(d) which corresponds to the restriction of g
on the first level of the tree, and a d-tuple (g1, ..., gq) of elements of Aut(T) called
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sections at the vertices of the first level which encodes how g acts on each rooted
subtree 71, ..., Ty witharoot atlevel 1 using the canonical identificationof Ty, ..., Ty
with 7. More precisely, for any word w € Ej, gi(w) = 7 o g(iw), where iw is the
concatenation of the number i with the word w.

Using this description, we obtain an isomorphism:

¥ Aut(T) — Aut(T) x Sym(d),

where the sign x stands for the semi-direct product of groups and where Sym(d) acts
on the direct product Aut(7)¢ by permuting the factors.

Now, let G be a subgroup acting faithfully on 7" by automorphisms. We can view
G as a subgroup of Aut(7") and consider the restriction of ¥ to G. When Im(y/|) <
G? x Sym(d), we say that the group G is a self-similar group.

Another way to express this is as follows: A subgroup G < Aut(7) is self-similar
if its sections g1, ..., g¢ belong to G.

The relation ¥ (g) = (g1, ..., g4) o is called the wreath recursion and is usually
denoted:

g=1(g1,--.,8d)0.
Example 2.1 Take A = {1, ..., d} and the wreath recursion given by:
a=(1,...,1,a)0,

where o is a cyclic permutation of A. The subgroup generated by a is an infinite cyclic
group which is an algebraic realization of the odometer group (called also the adding
machine).

For the next examples, we take A = {0, 1} and denote by e, o the identity and the
standard involution in Sym(2) respectively.

Example 2.2 Consider the wreath recursion,
a={,1)o0, b= (a,b)e.

The subgroup (a, b) is isomorphic to D, the infinite dihedral group (see [57]).

We now present successively the three self-similar groups of interest in this paper.

Definition 2.3 Consider the wreath recursions
a=(,1)o, b=(a,c)e, c=(a,d)ye, d=(,b)e.

The subgroup G = {(a, b, c, d) is the first Grigorchuk group [4, Section 4.1].

Definition 2.4 Consider the wreath recursions
a=(b,a)o, b= (b,a)e.
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516 N.-B.Dang et al.

The subgroup (a, b) is the Lamplighter group [54, Section 5], it is the wreath product
Z 2 Z and is isomorphic to the semidirect product

(EB Zz) X 7,

Z

where a generator a of Z acts on @ Z; as the shift map.
Z

Definition 2.5 Consider A = {0, 1, 2} and the wreath recursions
a=(,1,a)a, b={1,b,DH)B, c=(,1,1y,

where « = (01), 8 = (02),y = (12) are the three involutions in Sym(3). The
subgroup ‘H = (a, b, c¢) is called the Hanoi tower group and is associated to the
Hanoi towers game on 3 pegs [51].

The groups in the above examples are not only self-similar groups but they are
groups with finite self-similar set of generators [59].

2.3 Spectra of Self-Similar Groups and Density of States

We have explained in the previous section how a self-similar group acts on a d-regular
rooted tree 7. Moreover, given a group G < Aut(7') with a finite generating set S, one
associates a sequence of finite graph I';, = (V,,, E;)) wheren = 1,2, ..., |V,| =d",
and an uncountable family of graphs {I's = (Vg, E¢)}ecaT Where Vg is the G-orbit of
the point &.

The vertices of the graphs I';, and I'¢ are level n vertices of T and points in the
G-orbit of &, respectively, and the edges are pairs of vertices of the form (v, s - v)
where s € S. Usually, all graphs I'¢ are infinite (for instance when the G action on T
is transitive on each level) and they are natural limits of the graphs I',,. Namely,

(Te. ) = lim (T, va),

where v, is the vertex of level n on the geodesic path representing &, and (I'¢, &),
(I'y, vy,) are the corresponding pointed graphs . The convergence above is taken in the
usual way: for all R > 0, the balls By, (R) of radius R in (I',, v,,) converge to Bg (R).
This leads to the idea of approximating sp(I'¢) with sp(I',).

For the groups G and H, certain Schreier graphs are shown below.

The first observation is made in [53]: let us take a point £ on the boundary of the
tree, v, a vertex of level n which belongs to the geodesic &, and fix a Markov operator
M on IZ(GE) which induces a Markov operator on lz(Gvn) = [12(Ty). If Un 18 the
spectral measure associated with the operator M,, and with the delta function on the
vertex v,, then

lim  py = pe,

n— 400
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Fig.2 Above picture of the binary tree with the action of G on the level 1, 2, 3 vertices, below the first three
Schreier graphs associated to G

where pi¢ is a spectral measure of a Markov operator on I'¢ determined by the delta

function §¢ € 12(G¥).
Since each graph I';, 41 covers I'; and is covered by I'¢, the spectrum set increases

sp(T';) C sp(I'y+1), and an easy argument [4] shows that

sp(Te) € | sp(Tn).

n=1
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Fig.3 Third Schreier graph associated to the Hanoi group

Moreover, [4, Theorem 3.6] states that if the graph I'¢ is amenable then

o0

sp(Te) = | sp(Iw). @.1)

n=1

Recall that a graph I's is amenable if its Cheeger constant is 0, or equivalently [[M || =
1 (see [23]). If a group G is amenable then I'¢ is amenable for all £ € 97T .

The three groups studied in this paper, the Grigorchuk group, the Lamplighter, and
the Hanoi group, are all amenable, so (2.1) applies to their Scheier graphs.

To a finite graph I', one can associate the counting measure n given by:

Tli=ﬁ Z 82is

rjesp(M)

where A; are the eigenvalues of the matrix M counted with multiplicities.

If 5, is the counting measure associated to I';,, we define n as the weak limit of
measures 1 = lim,, n,,. This measure is called the density of states (or KNS spectral
measure where the initials stand for Kesten, Von-Neumann, Serre). If p is the uniform
Bernoullimeasureono7 ~ {0, 1,...,d— 1}N and p¢ as before is the spectral measure
associated to I's with respect to the vertex § € 9T, then by [49], one has

n=/ pedp(§),
T

i.e the density of states is an average of the spectral measures fi¢.
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To obtain the spectrum associated to the Cayley graph of a group G, an additional
property is needed. Recall that the action of G is essentially free with respect to the
Bernoulli measure p on 07 if Vg € G\{1}, p(Fix(g)) = 0 where Fix(g) denotes
the set of fixed points of d7. Equivalently, when G is countable, this condition is
equivalent to the property that the G —stabilizer of almost any point & € 97T is trivial.

Under this assumption, 1 coincides with the spectral measure associated with 1 €
I12(G). Thus, the computation of the density of states leads to the spectrum of the
Cayley graph of a group.

2.4 Schur Renormalization Transformations

In this section, we will define some operators on finite matrices called Schur comple-
ments. These operators will allow us to deduce inductively the spectrum of the Markov
operator on the Schreier graphs as one passes from one scale to another.

Take a finite dimensional vector space H which can be decomposed as the sum of
two non-zero subspaces H = H| @ H;. If M is an endomorphism of H, then M can
be expressed as a block-matrix according to this decomposition:

A B
M= (C D), (2.2)

where A, D are endomorphisms of H; and H; respectively, C, D are linear transfor-
mations from H; — H» and H, — Hj respectively.

Definition 2.6 (i) Assume that D is invertible, then the first Schur complement,
denoted S1(M), is the endomorphism:

Si(M):=A—BD™'C.

(i) Assume that A is invertible, then the second Schur complement, denoted S» (M),
is the endomorphism

D—CA 'B.

The Schur complements are useful in our setting because they relate the invertibility
of the Markov matrices in various scales, via the following classical result.

Theorem 2.7 (see e.g [50, Theorem 5.1]) Suppose that D is invertible. Then M is
invertible if and only if S1(M) is invertible. Similarly, if A is invertible then M is
invertible if and only if S»(M) is invertible.

In particular, we will exploit the relation between the determinant of M and the
Schur complement.

Proposition 2.8 Suppose that D is invertible, then

det(M) = det(D) det(S; (M)).
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Let us explain how the Schur complement arises in our study. We start with a
sequence of vector spaces H, of dimension d” together with an identification:

Hn—H:Hn@"'@Hns

for all n, where the direct sum is taken d times. More precisely, H, will be the
(Hilbert) space [2(V,) where V,, are the vertices of level n of the rooted tree T, and
each component in the decomposition of H,| corresponds to the space of functions
on the leaves of the subtree.

For all the self-similar group G treated in this paper, we will choose some generators
S, ..., Sk, which are identified as operators on H,, and we will consider a pencil of
operators (on H,):

My(z1,...,2x) = 2105 +s1_1) + oo+ 2k +sk_1)

where z = (21, ...,2k) € C* and where s; denotes the restriction of s; to H,,.
The self-similarity of the action on the tree and Proposition 2.8 will lead to a relation
of the form:

det My41(z) = Q)" " det(M,(F(2))),

where p =0,1,2, F : Ck — (C* is a rational map and Q is a polynomial function
on C*. The map F is called the renormalization map associated with the spectral
problem under consideration.

Under these conditions, we can now introduce the main notion of our paper. When
it exists, we say that the limit of currents:

. 1
lim d—n[det M, = 0],

n——+o0o

is the spectral current associated to the group G, where [M,, = 0] denotes the current
of integration on the zeros of the polynomial det(M,,) (see Appendix 9.1).

Although we do not work directly in the case where the dimension of H is infinite
but let us yet explain how the renormalization map can be defined in this situation
as well. Assume again that we have a pencil M (z) where z € C* of bounded linear
operators on an infinite dimensional Hilbert space H. We define the joint spectrum,
denoted jsp(M(z)), as the subset:

jsp(M(2)) = {z € C¥|M(2) is not invertible}.
Letus consider ¢ : H — H @ --- @ H (called d-similarity) where the direct sum is
taken d-times, a map F : CK — C¥ and a rational function A : z € C¥ — B(H) with
values in the space of bounded operators on H such that for some i < d, one has:

Si(M(2)) = A(x)M (F (2)),
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on a Zariski-open set of values of z. In this case, the map F is a renormalization map
associated with the problem of finding the joint spectrum jsp(M (z)). If we understand
jsp(A(z)) then the spectral problem for jsp(M (z)) gets reduced to a dynamical problem
for F.

Observe that the support of the spectral current measures the locus of points in
Ck where the restriction of the operator M (z) on finite dimensional subspaces is not
invertible. We thus expect the support of the spectral current, when it exists, to be
equal to the joint spectrum of M (z) when the group G is amenable.

2.4.1 Schur Transformations for the Grigorchuk Group

The self-similarity of the group G determines a morphism of algebra ¢ : C[G] —
M, (C[G]), where M (C[G]) denotes the space of matrices with coefficient in the
non-commutative group algebra C[G].
We consider the pencil M(A, u) = —da+b+c+d—1—pu e C[x, ullG].
Denote by ¢ the element (b 4+ ¢ +d — 1)/2. Then ¢ and a are involutions and the
recursion matrix associated to M is precisely the matrix ¢ (M (A, 1)) given by:

2a — p —A
(poM()L,M):(_)\ M2t—,u>'

Since a and ¢ are involutions, one sees directly that the element 2a — u and 2t —
are invertible in C[G]. The two Schur complements are given by :

Sipo M(A, ) = M(F(A, n)),
Srpo M, u) = MG, w)),

where F, G are the rational maps given by the formulas:

212 ur?
F,n) = -2 w+ .

4 4 —p?
4 —p? 4 —p?
G:(MpH— (2 2 —,u(l—i— 2 .

2.4.2 Schur Transformations for the Lamplighter Group

The recursion for the Lamplighter group £, induces an algebra morphism ¢ : C[L] —
M, (C[L]) as well.
Consider the following pencil of operators:

MO, =a+a '+b+b"' —rid—po,

@ Springer



522 N.-B.Dang et al.

where ¢ = b~ la is the involution which exchanges the two subtrees 77 and T»
introduced in Sect. 2.2. The recursion matrix associated to M takes the form:

. a+a ' —r a+b'—pu
voMuw= (10 T At ). 23
Consider the rational map F given by:
M—pur-2 2
FO,pw = , . 2.4)
H—A A=

The two Schur complements turn out to be the same, and are related to F as follows:

Proposition 2.9 We have:
Silgo M, w) = Sa(po M, ) =Mo F(i, ). (2.5)
Proof The first Schur complement yields:

Sigo M)A, w) =a—+a ' —rid— Gl —aT A= —a+r—p).

1
2(n —2)

Using the fact that 5~'a = o, we obtain that S;(¢ o M (A, u)) = M(F(x, p)).
Similarly, the second Schur complements gives:

Sz(</)oM)()L,pﬂ):b-i-b_1 —Aid — (@' =p7! +A—wa—>b+xr—p).

1
2(pn —2)

We then conclude that Sop o M (X, ) = S1¢ o M (A, ), as required. O

2.4.3 Schur Transformations for the Hanoi Group

Consider the Hanoi group H and we consider the pencil of operator
MO, =a+b+c—r+(u—1A e C[H],

where A is the operator given by the matrix:

011
A=]101
110
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The recursion matrix associated to M on two levels takes the form:

c—X20 0 | O 0 juw 0 O

0 21 [0 pun 00 n O

0 1 —A|0 O w0 0 un

7 0 0 |[—x0 I [ 0 O
oM, w) =10 nw 0 10 b—X2x0 [0 u O

0 0 w |l O —A0 0 u

" 0 0 |u O 0O |—A1 O

0 nw 0 [0 u 0 |1 —=x0

0 0O w |0 O w0 0 a—A

The computation of the Schur complement with respect to an appropriate corner
was carried out by Grigorchuk and Suni¢.

Proposition 2.10 [51, Proposition 3.1] One has the following recursive formula:
det My (1, ) = 02 = (14 w02 = 1 = u*¥" det My 1 (F G, ),

where F is the rational transformation

2P (=A% + X+ 1P A — 1+ )
F:(, A ,
( ’“‘)H( PR T p e ey <A—1—u)<A2—1+u—u2))

2.5 More Comments

As we have already mentioned in the Introduction, spectral theory of Laplacian has
a profound physical meaning, with atomic vs continuous dichotomy corresponding
to isolating vs conducting states of the matter (see e.g Rage theorem in [20, p.97]).
A thorough mathematical theory of this dichotomy has been recently developed in
the context of discrete one-dimensional Schrédinger operators with almost periodic
coefficients (see [2]). And recently an intimate connection was revealed between the
spectral theory of self-similar groups and the spectral theory of random Schrodinger
operators (see [42, 62]).

We have also indicated relation to many other areas of mathematics. As an illus-
tration, let us mention that the spectral theory of the Lamplighter group led to
counterexamples to Atiyah’s conjectures [1] on rationality of L2-Betti numbers of
compact manifolds. Namely, the atom 1/3 of the spectral measure at O calculated in
[54] was translated in [58] into the value 7/3 for the third L2-Betti number of a certain
7-dimensional manifold.

However, we are not aware of a direct characterization of the spectral dichotomy in
the group-theoretic terms. Let us emphasize with this respect that in fact, we study the
spectrum of the action of G on a Schreier graph. Only in the case of the Lamplighter
group (out of the three examples we consider) it coincides with the spectrum of the
regular action on the Cayley graph. Moreover, it does depend on the choice of gener-
ators of the group. In fact, with another natural choice of generators, the spectrum of
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the Lamplighter group becomes singular continuous [42]. Still, there is some property
of the spectral measure, related to the asymptotical behavior of the resolvent at the
origin, which does not depend on generators, and thus produces an invariant of the
group or its action, called the Novikov—Shubin invariant [12].

As the Schur renormalization is concerned, it can be considered for arbitrary self-
similar groups as a transformation of a C*-operator algebra. However, it is rarely a
rational function as the inversion involved in the definition of the Schur complement
is generally expressed as an infinite power series. So, the three examples we deal in
this paper are quite special (not to mention that they turn out to be integrable).

Note with this respect that there is a different viewpoint on the Schur complement
as a renormalization of random walks. It was introduced by Bartholdi and Virag [6],
and Kaimanovich [66] (as a tool to prove amenability of the Basilica groups), and
was related to the Schur complement in [50]. This viewpoint can give a more efficient
approach to spectral problems for general self-similar groups.

3 Background in Holomorphic Dynamics

3.1 Equidistribution of Preimages in Dimension One

3.1.1 General Result

Let f be a polynomial, it extends to a holomorphic map on the Riemann sphere C.

The filled Julia set IC( f) of f is the set of non-escaping points in C, the Julia set J (f)
is the boundary of that domain and the Fatou set F'(f) is the normality locus of f.

Theorem 3.1 [161 37,74,75] Let f: C— Cbhea rational function of degree d > 2.
Then for all 7 € C except at most two points, we have:

where w is the measure of maximal entropy for f. In the polynomial case, @ coincides
with the harmonic measure on the Julia set J (f).

3.1.2 Squaring Map

The doubling or squaring map is the map fo: z — z°. It has two superattracting fixed
points on P! corresponding to the origin and the point at infinity and its Julia set is the
unit circle T in C. The measure of maximal entropy is the Lebesgue measure on the
circle.
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3.1.3 Chebyshev Map

The Chebyshev (or Ulam-Neumann) quadratic map ¢ appears in several normaliza-
tions:

tizr> 222 =1, or z+ 22 =2, or z+> 4z(1—72), 3.D

all of which are conjugate by appropriate affine changes of variable. Its special place in
dynamics becomes clear from the first expression, as it satisfies the functional equation

cos 26 = t(cosfh),

telling us that cos semi-conjugates the doubling map 6 +— 26 to ¢. In the coordinate
¢ = e(0) = ¥ it can be written as

Zh(¢?) = 1(Zh(¢)), where Zh(z) = % (Z n %)

is the Zhukovsky function. Thus, Zh semi-conjugates the quadratic map fo: z — z°
to the Chebyshev map t. The Julia set [J (fo) is the unit circle T, while the Julia set
J (t) is the interval I = [—1, 1]. Naturally, they are related by the Zhukovsky function:
Zh(T) =1

Let

1
dm = —do
2

be the normalized Lebesgue measure on T. It is the measure of maximal entropy for
fo, which gives the asymptotic distribution for the iterated preimages of all points
z € C* = C ~ {0}. (All these are well-known elementary statements.) Let us push
this measure forward to I:

1 dx
dw ;= Zh,.(dm) = — ——.
© = Zhi(dm) = = o—s

We see that w is the measure of maximal entropy for ¢, which gives the asymptotic
distribution for the iterated preimages of all points ¢ € C.

(3.2)

3.1.4 Cantor Case

Consider the polynomial map p: z — z> — z — 3. This map is called hyperbolic
(see [76, Section 14]) since it is conjugate to u + u®> — 15/4 where u = z — 1/2
and the critical point escapes to the attracting fixed point at infinity. The Julia set
of this map in the u coordinates is a Cantor set contained in the union of intervals
[—5/2, —/5/21U[+/5/2,5/2]. Translating back to the z coordinates, the Julia set of
p is a Cantor set contained in the union [—2, (—«/5 + 1)/2]1U [(ﬁ + 1)/2,2]. The
measure of maximal entropy is the Haar measure on this Cantor set.
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So, Theorem 3.1 is straightforward in the three particular cases singled out above.
Incidentally, these are the only cases relevant for this paper.

3.2 Algebraic, Topological and Dynamical Degrees, and Algebraic Stability

Take a rational map F: P2 --» P? (see Appendix 9.4 for the definition of a rational
map on any surface). The map F' is determined by three homogeneous polynomials
Py, P1, P, € Clx, y, z] with no common factors and with the same degree d, which
we denote by deg(F'). The integer d = deg(F) is called the (algebraic) degree of the
rational map F. whereas its topological degree is the number of preimages counted
with multiplicity of a generic point.

Arational map F : P?(C) — P?(C) s called dominant if its image is not contained
in any algebraic curve.

More generally, consider a surface X obtained from P? by finitely many blow-ups,
it is called a rational variety. A given rational map F: P> --» P? lifts to a rational
map Fx on X (see Appendix 9.4) and Fy is said to be algebraically stable on X if
there is no algebraic curve C whose proper transform under some iterate F'y is a point
of indeterminacy. When F is algebraically stable on P2, the sequence of degrees is
multiplicative (see [36]):

deg F" = (deg F)" forall n=1,2,...,

and if Fy is algebraically stable, then its induced action on the Dolbeaut cohomology
H"(X) (see Appendix 9.5) satisfies the relation (Fy)* = (Fy)" for all integer n.
Note that the sequence deg(F") is submultiplicative:

deg(F"™) < deg(F") deg(F™).

By Fekete’s lemma [35], the first dynamical degree of F', denoted Aj(F) and
defined by the formula:

M(F) = lim deg(F")'/",

is a well defined real number satisfying 11(F) < d. When the map Fx becomes
algebraically stable on a surface X, one can compute the dynamical degree using the
following statement.

Proposition 3.2 Let F : P? --» P2 and suppose that there exists a rational surface X
on which the lift Fx of F is algebraically stable. Then one has:

M(F) = p(Fy),

where p(Fy) denotes the spectral radius of the pullback action Fy on H L1x).

The rational surface X satisfying the conditions of the above Proposition is called an
algebraically stable model for the map F. For arbitrary maps, the dynamical degree
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can be difficult to compute, however there are methods to determine this degree in more
rigid situations. To do so, we state the general properties satisfied by these numbers.

Theorem 3.3 ([27], [22, Theorem 1], [29, Theorem 1.1]) The following properties are
satisfied:

(1) The dynamical degree is a birational invariant, i.e for any birational map
@: P2 =5 P2 one has A (¢~ o F o @) = A1 (F).

(i) If F is a skew-product F = (x,y) — (P(x), Qx(y)) where P is a rational map
of degree p on P! and Q. is a rational family of rational maps> of P' of degree
q, then the dynamical degree of F is given by the formula:

A (F) = max(p, q).

Moreover, the topological degree of F is equal to the product pq.

3.3 Existence of the Green Currents

Letnow F: P?(C) --» P*(C) be a rational map of the projective space (with points of
indeterminacy allowed). Then instead of taking iterated preimages of points as we did
in the one-dimensional case, one should consider iterated pullback of holomorphic
curves. Let [C] stand for the current of integration over a holomorphic curve C.
Then the desirable result would assert that for a typical C, the normalized currents
[(F™)*(C)] converge to some current 2 called Green. There is an extensive literature
on this subject [7, 14, 28, 33, 82]. Below we will quote a few sample results of this
kind.

Theorem 3.4 [63, Theorem 2.2] Let F : P*(C) --» P2(C) be a dominant rational
map and let X be a rational surface satisfying the following properties:

(1) The lift Fx of F to X is algebraically stable.
(i) One has A(F) > 1.
(iii) There exists a constant C > 0 such that deg(F™) < CA{(F)" for all n.
(iv) There exits a }(F) invariant class o € H1(X) by F; which is represented by
a closed smooth semi-positive form.

Then there exists a unique (up to scaling) closed positive (1, 1)-current Q2 on X
representing a such that

Fi(Q) = M (F)Q.

The current is called the Green current of the rational map F'.

This theorem was proved by Fornaess—Sibony [36, 85] in the particular case where
X = P¥(C) (in which case conditions (iii) and (iv) are satisfied automatically). How-
ever, our maps F (albeit, elementary) do not fit into this framework as they are not
algebraically stable on P(C).

3 Formally Q € C(x)(y).
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However, below we will show that each of them admits an algebraically stable
model (condition (i)), and two of them (Grigorchuk and Hanoi) satisfy condition (ii).
For these two maps we will provide an explicit geometric description of the Green
current (without appealing to Theorem 3.4).

In fact, these two maps do fit into the framework of Gued;j’s Theorem. Indeed,
conditions (iii) and (iv) of the theorem follow easily from the integrability of F. For
instance, if a map F is semi-conjugate to a degree A; one-dimensional map via a
projection ¢ : X — C to a smooth projective curve, the invariant cohomology class
for F can be represented by the ¢-pullback of a Kéhler form on C (providing us with
(v)).

Let us note that though the Lamplighter map does not fit into the above frame
(as A1 = 1), it still admits an analogue of the Green current that will be explicitly
described.

In conclusion, let us summarize properties of our three maps:

Group Grigorchuk group Lamplighter group Hanoi group
Branching number for the tree 2 2 3

Algebraic degree 3 2 4

Dynamical degree rM(Rg) =2 AM(Rp) =1 AM(Ry) =2
Topological degree di(Rg) =2 di(Rp) =1 di(Ry) =2
Algebraic stability on P2(C) No No No
Algebraically stable model Yes (Sect. 5.1) Yes (Sect. 6.1) Yes (Sect. 7.1)
Integrability Yes Yes Yes

3.4 Fatou, Julia Sets of Rational Maps in Higher Dimension

Given a rational map F : P?(C) --» P2(C), the Fatou set F(F) is defined as in
the one-dimensional situation: z € F(F) if there is a neighborhood U > z such that
the iterates (F' ”);’lozo are well defined (i.e., they do not hit the indeterminacy points)
and form an equicontinuous family on U (so, the orbits near z are Lyapunov stable).*
There are two version of the big Julia set:

A As the support of the Green current 7 (F) = supp 2.
B As the complement of the Fatou set, 7 (F) = P\ F(F).

For holomorphic map of P2, J(F) = J(F) but for rational maps, there could be
a difference between these two sets (see [85, Corollary 1.6.7]).

When F is the renormalization map associated to the Grigorchuk group (see
Sect. 2.4.1), the discrepancy between Julia sets J (F)\J (F) canbe made very explicit.
From the explicit expression of €2 in (1.3), the set 7 (F) is the union:

JFE) = | J 0 pwl | 4w? — p® + 32 — 400w = 0} € P(C)

—1=<6<1

4 Locally equicontinuous families of maps are also called normal in Complex Analysis.
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whereas the precise description of J (F) was obtained by Goldberg—Yang [41]:

JF) = 1(FHu I @),

n=0

where I(F™) are the indeterminacy points of F” on P?(C). For general maps, the
extended indeterminacy set Un>0 I(F"™) can be very large, but in our situation, we
will see that F' is integrable and preserves a fibration by conics (given by the map ¢
in (5.5) where ¢ o F = ¢). Since the indeterminacy set I (F') is contained in finitely
many fibers of this fibration, this set is contained in a union of finitely many conics in
P2,

Remark 3.5 In many cases, one can also define a “small” Julia set inside the big one
as the support of the measure of maximal entropy (see e.g [7, 10, 85]). However, it is
not canonically defined in the cases of interest for us since A1 (F) = d;(F).

3.5 General Equidistribution Results

As we have mentioned above, we are interested in a result of the following type:

DESIRED EQUIDISTRIBUTION STATEMENT Let R be a certain class of dominant
maps of degree d > 2. Then for any F € R and a typical algebraic curve C C P*(C),
we have:

®
(Fy'Cl
d"-degC

(ii) Forany holomorphic curve S, the restriction Q| S = wg is a well defined measure
ws§s.

(iii) Letting v, be the probability measure uniformly distributed over (F")*C N S, we
have v, — ws.

Assertion (i) was obtained in the following situations:

e N is the space of non-elementary polynomial automorphisms of C2, C is an arbi-
trary affine algebraic curve (Bedford and Smillie [7];

e R is the space of proper polynomial maps® of C2, C is a typical (in a capacity
sense) affine algebraic curve (Russakovskii and Shiffman [82]);

e R is the space of holomorphic endomorphisms of P?(C), C is an algebraic curve
which is not contained in the “exceptional subvariety” (Favre and Jonsson [33]);

e M is a space of dominant rational endomorphisms of P?(C) (subject of certain
technical assumptions); C is an algebraic curve which does not pass through “max-
imally degenerate” periodic points (Bleher, Lyubich and Roeder [15]).

5 We assume without saying that deg F > 2.
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The validity of assertion (ii) is a consequence of Bedford-Taylor’s intersection
theory of (1, 1) currents when the current 2 has bounded potential or when certain
transversality conditions are met (see Appendix 9.1).

Assertion (iii) does not follow immediately from (i). The reason is that the inter-
section of currents is not continuous with respect to the weak topology. However, this
fact is known in particular situations listed below.

e In the study of bifurcation of a holomorphic family of rational maps, Dujardin [32,
Theorem 2.11.] obtained these assertions when C is a horizontal curve and when
S is the graph of a marked family of critical points.

e The sliced equidistribution was obtained by Chio—Roeder [19, Theorem C] when
F = (A, 2) — (A, fo.(2)) where f; is a family of rational maps of the same degree
whose coefficients depend algebraically on A.

e In [13], Berteloot and Dinh showed that the so-called bifurcation measure associ-
ated to the quadratic family z> + ¢ can be realized as the slice of the Julia set of a
particular tangent map.

3.5.1 Transport of the Equidistribution by Conjugation

Fix two open subsets U, V of P? and two dominant rational maps F, G on on P?
which preserve U and V respectively and take a biholomorphism ¢: U — V such
thatp o F = G o ¢.

The following assertions show that the equidistribution property is invariant under
analytic conjugacies.

Lemma 3.6 Take an irreducible algebraic curve C in V. Suppose that the following
assertions holds:

() G is algebraically stable on P2,
(i1) The sequence of currents

(G"*[C]

A(G)"

converges to the Green current Qg of G.

Then the limit

Fh*o*[CNV
M(F)n( )7l ]

also exists and is equal to the restriction of p*Qg to U.

Lemma 3.7 Fix Cy, C; two irreducible algebraic curves on P2. Suppose that the fol-
lowing properties hold.

(i) The map G is algebraically stable on P>.
(i1) The curve (C1 N U) satisfies the condition of Lemma 3.6.
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(iii) The sequence of measures given by the intersection of currents

l nyk
W[(p(czﬂU)]/\(G )le(CiNU)]

converges to a multiple of the measure [p(C2 NU)] A Qg, where Q¢ is the Green
current of G.

Then the sequence of measures:

1 7y *
W[CQHU]/\(F Y*[Cy NUT

converges to a multiple of the measure [Co N U] A ¢*Qg.

3.6 Three Particular Direct Products

Although the existence of the Green current associated to two of our maps follows
from general results, the equidistribution of the preimages of curves toward this current

and the precise description of the Green current will hold because our maps have a
very specific form.

3.6.1 Direct Product id x f Related to the Grigorchuk Group
Let us consider a map
F:C*—C* F=Gdxf), .60~ (n, f(®)
where f is a polynomial in one variable of degree d > 2. It extends to P! x P! as a
holomorphic map. Its filled Julia set JC(F) (i.e the set of non-escaping points) in C?
is equal to the product C x KC(f).
The Green function G r for F' depends only on the second coordinate and is equal

to the one-dimensional Green function G ¢ (@) for the polynomial f. Indeed, on the
basin of infinity, C2 < IC(F), we have

.1 .1
Gr(n,0) =lim d—nlog IF"(n, 0)|l = lim d—nloglf"(é’)l =Gr(0),

while on [C(F) both functions vanish.
The Julia set J(F) = C x J(f) is naturally laminated by the horizontal complex
lines Lg = C x {0},0 € J(f). The Green current

Q:%BE_)G:AGfdG/\dézde/\dé,

- f [L1do ()
T
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is a horizontal laminar current whose transverse measure is equal to the harmonic
measure w for f. Thus, for a non-horizontal holomorphic curve S C C?2, the restriction
Q| S is identified with the measure wg: = (p2 | S)*(w), where ps: C? > Cisthe
projection to the 6-axis.

Given two holomorphic curves, C and S, which do not have common irreducible
components, we let [C N ST be the counting measure on C N S, it is equal to the
intersection of currents [C] A [S].

Recall that the points 0, co are fixed points of the squaring map z — z2. We thus
say that the lines P! x {0}, P! x {oo} are the exceptional lines for the map id x fo
where fo is the squaring map.

Lemma 3.8 Suppose that F = id x fo where fy is the squaring map z +— z>. Let C
and S be two irreducible algebraic curves such that C is neither a vertical line nor a
horizontal exceptional line while S is not horizontal and such that the points of C N S
are not on the exceptional lines. Then

2in [(FH*C N S]— (degC) - (deg S) - ws. 3.3)

Remark 3.9 Observe that the equidistribution of the preimages of C by F does not
directly imply the convergence of their intersection with S to the above measure. The
main issue is that the product of currents is not continuous with respect to the weak
topology on currents. However, here we exploit the basic dynamical properties of the
squaring map.

Proof Denote by pi, p» the projection of C x C = C; x C; onto the first and second
factor, C; = Cx {0} and C; = {0} x C, respectively. Forn € Cy, welet L, := pl_l(n)
be the fiber line over 1, and let T, C L,, be the unit circle inside.

Let B C C; be the set of projections of the branch points of 71 : C — Cj. Let

C*:=C~ (p;'(B)UP,' (O).

Note that the points of intersection of the horizontal line C; x {0} with the curve C
are fixed points of F, we choose a base point 5, € C; . (B U (C N Cy)) so that the
corresponding vertical line L, avoids C N C; and the branch points of p;| C.

LetCNLy, = {n.}x Q,;itconsists of § := deg C points of transverse intersections.
Then let

Q! :=F Q)= F"(C)NLy, ={no} x f5"(Qo);

it consists of d” transverse intersection points. The uniform measures ! on these
sets converge to the Lebesgue measure w, on T, = T, .

LetT := SNp, (T, and let T* be obtained from T by puncturing out branch point
of p1| S and p2| S, and points of 7N pl_1 (B). Take a point s € T*, and select a simply
connected neighborhood U D {19, p1(s)} in the horizontal axis C; whose closure
does not contain points of B and C. Then C is decomposed over U in § univalent
branches C; C C? (i.e., graphs of holomorphic functions ¥; : U — C). Taking
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preimages of these branches by F", we obtain § 2" univalent branches C l”J c C? over
U parametrized by holomorphic functions /' U= C such that:

(i) They are pairwise disjoint, so they induce a holomorphic motion &, of the set
X, :=J Q" over U (seee.g., [73, §17]).

(i) Their slopes go to 0 exponentially fast (since the fibered map F is vertically
expanding away from the exceptional lines).

By the A-Lemma (see e.g., [73, §17.2]), h; extends to a holomorphic motion of the
closure X, = X, UT, (for which we will keep the same notation). By (ii), the limiting
functions for 1//{’. are constants, so h,| T, = id.

Take now a relative neighborhood W C S of s that projects univalently to C,
by p2, and let W, := (p»] Lno)’l( p2(W)). Then our holomorphic motion induces a
homeomorphic holonomy map y : Wy — W.

Let w := yu(wo), U := yu2. Take a continuous test function u on S supported
on W, and let u, be its pullback to Wy. Since the measures @ converge to w.,

/uodu’; — /uodwo.

Pushing this forward by y to W, we obtain:

/ud,u” — /udw.

It follows that any limiting measure v on § for the sequence (u"), being restricted
to T*, coincides with w. In particular, v| T* is a probability measure, implying that
v(T \ T*) = 0. Hence v = w, and the conclusion follows. O

3.6.2 Twist Map on the Elliptic Cylinder Related to the Lamplighter Group
Consider a product map F: C> — C? given by:

m, 2) = (0, My(2)),

where M, € GL,(C) defines a Mobius transformation with polynomial coefficients
in R[»] such that the trace tr(M;) is a non-constant polynomial in 1 of some degree
d. Denote by E C C the locus of parameter 1 such that the transformation M, is
neutral (i.e parabolic or elliptic). Observe that £ = {5 | tr((M;) € [-2,2]} is a
finite union of at most d intervals. For each n € E, M, is conjugate to a rotation
by p(n) and the corresponding conjugation maps the real line to the unit circle. As
a result, the set of non-wandering points for F is the union E x C with the conic
of fixed points. Consider the parabolic locus P for the family (M;). To describe the
spectral current whose support is on this set, we need to consider the conjugation
@: (C\P)xC — (C~P) x C* such that the restriction to the non-parabolic locus
is of the form

poFog 't (nu) > (n,e"Mu).
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Note that p is a well-defined function determined by the equation 2cos(p(n)) =
tr(Mp), it is thus a non constant analytic function. Letting FF = ¢ o F o ¢! be the
conjugate of F by ¢, we obtain the following.

Proposition 3.10 Take two real lines L and C which are neither on a vertical nor
horizontal in R2, consider their complexifications Cc, L¢ in C?, et 6@, Z(c be their
image by ¢, and let 1: C — C be a rational function whose graph in C? is equal to
L. Then the following properties hold.

(1) The sequence of currents
1 NIV
—(F")"[Ccl
n

converges to a current supported on E x C*, laminated by vertical punctured
complex lines with transverse measure p*d6 where dO is the Lebesgue measure
on the circle.

(i1) The sequence of counting measures

1. . = ~
—F " (Cc)NLc
n

converges to the measure L, p*d6 on ZC.G

Remark 3.11 1In the case of the Lamplighter group, the associated map F is:

—4
m,2) — (n, i )
Z

and the line L¢ we consider is of equation n = z.

Proof Let us prove assertion (i). Observe that on the loxodromic locus, the restriction
of the above current converges exponentially fast to zero. Indeed, on the loxodromic
locus, we can suppose that Im p(n) > 0 and the forms (F")*du, (F")*du are given
by:

(F"y*du = e/"Repm=nImp(n) (qy 4 jnudp),
(F™y*dit = e~nRep=nImolD (qj3 — indp) .

Since these forms converge exponentially fast to zero in the loxodromic locus and since
C is not a horizontal line, we obtain that the current (F")*[C¢] converge exponentially
fast to zero on that locus.

Let us now consider the current on the elliptic locus. When n € E, p(n) is real and
the restriction of p to E is areal analytic function. Observe also that the lines C, L are
real lines, hence the images ¢(C N E x R), ¢(L N E x R) are contained in E x T.

6 Note that p*d6 is well-defined as d6 can be pulled back naturally to the interval of monotonicity of p.
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Suppose that the curve ¢(C) is parametrized by n +— g(n) € T. By restricting p to
a smaller subset, we can suppose that p is injective on E and let us consider the map
p 1. The pullback of the line C is then parametrized by:

n> g —np() € R/2nZ.
Reparametrizing by w = p(1n), we obtain:
weTr g(p~ (w) —nweT.
Geometrically, the above map is the graph of w — —nw € T which is transported

vertically by g(p~!). The graphs @ — —nw equidistribute towards the real laminar
current

/[{w} x T]df(w),
T

so we deduce that the real currents (1/n)[F~"(¢(C))] converge to the current

/[{n} X T] p*dé
E

In particular, the currents associated (1/n)(F™)* [Cc] converge to the laminar current

[1m < crptas
E
as required.

Let us prove assertion (ii). Let us also observe that the map p: E — T ~R/2n7Z
is surjective. By restricting to a smaller subset, we can suppose furthermore that
p: E — T is bijective. Let us show that F~"(C) N L contains n points counted
with multiplicity. Let us consider the real curves L= ¢(L), C = ¢(C). These two
curves L, C are the graphs in E x T of two analytic functions [, g: E — T. Using an
appropriate parametrization, one can always suppose that / is locally constant function
equal to 0 € R/2nwZ. Now the intersection LN F(C)is locally given by:

LNE™C):={(n,0) € ExR/27Z | g(n) —np(n) =0 € R/2n7Z}.
Reparametrizing by w = p(n), we consider the set
{8(p™" (@) —nw = 0}.
Let us chop the circle T into n subintervals [w1, @3], .. ., [y, ©wp+1] so that nw; =

0 € R/2nZ and such that the restriction of w + nw on each of these subintervals is
injective. Now the graph of g o p~! intersects the graph of @ — nw exactly once in
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each of these subintervals. As a result, the intersection LNF™™" (C‘) contains n points
and we have

| [PRUUU NN
—LNF™C) = -Len F(Co),
n n

since the measures i@ nF™" (C'@) have mass n. Moreover, going back to the n
coordinates, we obtain that the sequence of measures:

|
—(LNF7"(C))
n
converges to the measure [, p*d6. O

3.6.3 Skew Product Over the Cantor Dynamics Related to the Hanoi Group
Let us consider a map F: C> — C? of the form

F=,0)— (pn), 2(n)0),

where p(17) = n*> — n — 3 is a hyperbolic polynomial of degree 2 and

A =0 —Dm+2)/(n+3),

is a rational function on 7.

Recall from Sect. 3.1.4 that p is conjugate to the map u + u> — 15/4 with a Cantor
Julia set lying on the real line. The Julia set of F is laminated by a Cantor set of vertical
complex lines {n} x C where n € J(p).

The Green current of F

Q = AG ,dy A dij = wdn A d7f

is a vertical laminar current whose transverse measure is equal to the measure of
maximal entropy w for the polynomial p.

Proposition 3.12 Fix ng € R. Let L a real line which is neither vertical nor horizontal
and let L¢ be its complexification. Then the following properties hold.

(i) The sequence of currents

2 F () % ©)

converges to the Green current of F.
(i1) The sequence of counting measures

1 1
27F7"({ﬂ0} xC)NLc= z—n(F")*[{no} x CIA Lc
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converges to the measure 2 N\ Lc which is the transport under holonomy of the
measure of maximal entropy on J (p) to the line L.

Proof Assertion (i) follows directly from the equidistribution of the preimages of g
towards the equilibrium measure @ on the Julia set of p. The second assertion then
follows from the fact that L¢ is transverse to all the fibers {n} x C. Indeed, let us
denote by u,, the counting measure

. zinF—"({no} < C)N Le. (3.4)

Observe that the restriction of F on the horizontal axis is given by (1, 0) — (p(n), 0).

The preimage F~" ({no} x C) is a union of 2" vertical fibers counted with multiplic-

ity and each of the 2" point in the intersection of F~"({no} x C) with the horizontal

axis can moved to a point on F " ({no} x C) N L¢ via the holonomy along the vertical
foliation. Since the sequence of counting measures

1
EF*"({no} x €C) N (C x {0})

converge to the measure of maximal entropy of p on the horizontal axis, we deduce
that 1, converges to the transport of this measure to L¢ along the vertical foliation. O

In conclusion, let us relate this current to the Green current of the map Ry;. We
will see (e.g in §7.1) that the map Ry becomes algebraically stable on a blow-up X
of P2 at 4 points. Using Guedj’s theorem, the lift Ry, to X admits a Green current on
X that we denote Tg. Moreover, the map Ry is birationally conjugate to F via a map
@: X — P>. We claim that ¢*Q = Tk.

The cohomology class of any fiber { = ¢} in P? is invariant by F* and multiplied
by 2. Let us consider the projection 7 : P> — P! induced by the first projection
(n, 0) +— n. In general the map 7 o ¢ is rational and dominant but in our case, it is
holomorphic. Indeed, the map 7 o ¢ can be described geometrically as follows. To
any point x on X, we find the unique conic C of P? passing through the four points
[£1:0:1],[-1:1:0],[2:1:0] and going through x. The value of n = 7 o p(x)
can be determined geometrically as the slope of the tangent line to Cy at the point
[T : O : 1]. As the coefficients of the equation of the conic C, are holomorphic
functions in x and since taking the slope at a certain point is also holomorphic, we
conclude that 77 o ¢ is holomorphic. Let us consider the Fubini-Study form  on P!
and let & be the pullback (77 0 @)*w. The form « is a smooth closed and positive current
on X, and its class is in the same class as the Green current Tg:

{Tr} = {a}.
Moreover, using the semi-conjugation, we have:
Ry ¢"Q =2¢"Q. (3.5)
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Using Guedj’s result, the current Tg has minimal singularities among all the invariant
current whose class is equal to {Tg}. By definition, this means that if S is any closed
positive invariant current in the same cohomology class as Tg, then

Gs < Gr+C,

where C is a constant and G, Gy are the local potential Tg = o + dd“Gpg, S =
a + dd°Gg. We then say that S is more singular than Tk, and we say that T and S
have the same singularity type if S is more singular than Tk and T is more singular
than S.

In our situation, if 2 = o + dd“Gq, there exists a constant C such that:

Go <Gr+C.

Moreover, the potential G, is continuous as it is the pullback of the Green current of
a polynomial endomorphism by 7 o ¢. Since G is bounded above, we get:

Gr < Gqo+C.

We conclude that Gg and Ggq have the same singularity type. Let us consider the
difference u = Gg — ¢*G, it is a bounded function and the invariance gives:

1 -
Tr = 5 (Ri)" T
1 -
= 5 (Ri) (" Q + dd‘)

1 -
%
=¢ Q—l—z—nddcuoR;l_[.

Taking the limit as n — +o00, we deduce that (1/2")u o 15;’_[ converges to zero in
L% (X), hence in L' (X). Overall, this shows that T = ¢*<2.

4 Atomic Density of States

In some cases, the density of states (defined in Sect. 2.3) is atomic. We explain this
phenomenon by a discrepancy between the dynamical degree of the renormalization
map and the growth of the number of vertices of the sequence of Schreier graphs
that appear in the renormalization. This phenomenon already appeared in the work of
Sabot (see [84, Theorem 4.14]) who used it to study the spectrum of the Laplacian
arising from fractal sets. In our situation, the renormalization transformation is related
to the spectrum in a slightly different way but the resulting statement is similar. We
thus state our result.

Theorem 4.1 Consider a sequence of polynomial P, € Clx, y] of degree d" where
d > 1 is an integer and a rational map F: C* — C? whose dynamical degree \1(F)
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satisfies the condition A (F) < d and such that:

Pu(x,y) = Q" " P (F(x, y)),

where p =0, 1,2, Q is a polynomial in C[x, y]. Then the sequence of currents:

1
E[Pn = 0]

converges to a limiting current supported on countably many curves and its intersection
with a generic curve yields an atomic measure. More precisely, generic means we
require that this curve does not coincide with any of the curves {Po F" = 0}, { Qo F" =
0} for alln > 0)

Proof Taking the logarithm in the formula defining P,, we have:

1 _ 1
d—nlOgIPnl =d "log|Q| + d—nlOgIPn—l(F(x,y))I-

Applying the above formula inductively, we obtain:

1 o . 1
i log|Pal = )~ log | Q(FY (e y) | + - log | Po(F" (x. ).
Jj=0
Consider the current:

n
> ! [QoF-/—0]+i[PoF"—0] .1
L 7+ T = |
j=

Since the dynamical degree of F satisfies the condition A{(F) < d, so the currents
[Qion = 0]/dj have mass bounded by C (11 (F)+e)j/dj forany € > 0. This shows
that the above currents converge to a current supported on countably many curves, so
the current [P, = 0]/d" converges to a current satisfying the same properties. The
slice of the series by the generic curve C amounts to a series of atomic measures whose
partial sums have bounded weight equal to deg(C) times the mass of the current (4.1)
. It follows that this sliced series converges to an atomic measure. O

5 Two Rational Maps Associated with the Grigorchuk Group

We recall from Sect. 2.4.1 that the two maps are:

212 ur?
F(x, p) = a2 M+4—M2 .

4 — 2 4 — 2
G:()»,M)l—><2 AZM’_“<1+ ”)) (5.1)
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In homogeneous coordinates, these maps have the form:

F=[A:p:w]l— [2A2w : /L(4w2 — uz) + ,u)»z : w(4w2 — /Lz)], 5.2)
G:[h:p:wle R@w? — Hw: —u(W? +4w? — 1?) : 22w]. (5.3)

We shall set in this section Py, P, P> the three polynomials defining F':

Py = Zkzw,
Pr = pdw® — p?) + ua?,
P, = wdw? — p?).

In fact G = H o F where H is the particular involution:
A:rp:wl— [dw: —2un: Al 5.4)

We list the elementary properties satisfied by F, G.

e F and G have topological degree 2.

e F and G have algebraic degree 3.

e Both F and G have five indeterminacy points in total, the points [0 : £2 : 1] in
C2, and three more at infinity, the horizontal pole [1 : 0 : 0] and two diagonal
points [+1 : 1 : 0].

5.1 Integrability of the Two Renormalization Maps

We first investigate the properties of the map on P? and describe our method to recover
two invariant fibrations for F through the analysis of the dynamics of its indeterminacy
points and curves.

Consider 77 : C? --» C? the rational map given by:

T p) = (=9, ), 0=y, w),

where
4 — )\'2 + M2
PO ) = (55
n
and
4 — MZ + )\'2
M) = ——. 5.6
YA, 1) 1 (5.6)

For generic values of 7, the level set {¢ = 5} defines a smooth conic in P2, but at
n = =1, these conics degenerate to a union of two lines. We denote these degenerate
lines by

{p ==x1} = Ds1UDs>,
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where Dy ; are given by the equations:

Di1={24+2—u=0LD12={2+1+upn=0}
Do ={(24A—pu=0},D_r={2+nr+pu=0)

Let us also consider the smooth conic Dy of equation {¢p = 0}.

Theorem 5.1 The following properties are satisfied.

(i) The rational map F is semi-conjugate via w to id xt where t is the Chebyshev
map (i.e id xt) omr = mw o F).

(ii) There exists two F-invariant domain Uy, Uy C C? such that Uy U Uy =
(CZ\(DO U (Ui D+ ;)) and the restriction of F on each of these domain is ana-
Iytically conjugate to the map (n,z) — (1, z>). Moreover, we can choose the
analytic conjugation ¢ on U; so that:

-1 _1 1
Yop (n,z)—2 2+ -1,
Z

where  : C* — C is the function defined above.

Assertion (ii) in the above statement can be summarized in the diagram below.

(1, 2) € p(U;)) — (0, 2%) € o(U))

-

U; Ui

L L
1 1 1/, 1
§<z+z>e(ci>§<z +Z—2>€(C.

Remark 5.2 The second map G was studied in detail by M. and Y. Vorobets and a more
complicated conjugation has been determined [88].

The above theorem, for example the first assertion can be checked via a direct
calculation however we provide a proof to explain where the formulas come from.
To that end, we first study the dynamical properties of the map F in Lemma 5.3,
Proposition 5.4, Proposition 5.5. Using these, we then obtain in Proposition 5.6 the
existence of two invariant pencils for F. Finally we study in more detail these two
pencils by rational curves to determine in Lemma 5.8 an explicit conjugation for the
map F.

Let us study the orbit of contracted curves for both maps (i.e curves whose image
by F and G is collapsed to a point). Observe that since F' = H o G, the contracted
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curves for F' and G are the same. As a result, one finds that the jacobian of F is of the
form:

J(F) = —120( = 2wyw(u + 2w) (A% — p* + 4w?).

Observe that the vertical line {A = 0} is a curve of fixed point for F and is mapped by
G to the line at infinity.
Denote by C; the curve {12 — u? + 4w? = 0}. We obtain:

Lemma 5.3 The curve Cy is collapsed by F to [—2 : O : 1] which is then mapped by
F to the fixed point [2 : 0 : 1] for F.

Proof Recall that we have denoted by Py = 222w, Py = n(@w? —p?+1%) and P, =
w(4w? — %) the homogeneous polynomials defining F. Observe that 12 — 12 + 4w?
divides the polynomial P;, we have also

Po(h, £vV4w?2 + A2, w) = 227w,
Py(h, £vV4w? + 22, w) = —wi?.

In particular, this proves that the curve C| is contracted to the point [-2 : 0 : 1]. Now
F maps [—2 : 0 : 1]) to the point [2 : O : 1], which is then fixed by F, as required. O

We summarize the dynamics of all the contracted curves.

Proposition 5.4 The following properties hold.

(i) The map F collapses the curves {u = £2w} to the indeterminacy points [+1 :

1 : 0] respectively.

(i) The map G collapses the curves {;@ = 2w} to the indeterminacy points [0 :
42 : 1] respectively.

(iii) The orbit of Cy for both F and G is finite and does not contain any indeterminacy
points.

(iv) The line {A = 0} is a curve a fixed points for F and is mapped by G the the line
at infinity.

(v) The line at infinity (with the indeterminacy points removed) is collapsed by F and
G to the vertical pole g, = [0 : 1 : 0] which is a fixed point for both maps.

Proof Assertions (i),(ii) , (iv) and (v) follow from the expression (5.2), (5.3) of F
and G. Assertion (iii) follows from the previous lemma together with the fact that
G = H o F and that the points [—2 : 0 : 1], [2 : 0 : 1] are both fixed by H. O

We now look at the dynamical behavior of F near indeterminate points. Denote by
X the blow-up of PP? at the four points [1 : 1 :0]and [0 : £2 : 1]and by 7: X —
IP? the associated (regular) map (see Appendix 9.7). Denote by Ej, Ea, E3, E4 the
exceptional divisors over the points [—1 : 1 : 0],[1: 1:0],[0: —2: 1]and [0 : 2 : 1]
respectively. We consider the lifts ', G of F and G to X.

In the proposition below, we refer to Appendix 9.7 for the notion of strict transform.
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Fig.4 Blow-up of P2 at the four E,
points [£1:1:0], [0: £2: 1]
Ey —— =
X
Es —1—
™
0:1:0]
2
[0:2:1] P
[0:-2:1]
[0:0:1] [1:0:0]

Proposition 5.5 The following assertions hold.

(i) The involution H induces an automorphism of X, it exchanges E1 with E4 and

E> with E;.

(i) F has one indeterminacy point on E3 and Ey, the two exceptional divisors E3
and Ey are fixed by F and the restriction to these divisors has topological degree
2.

(iii) The image of the indeterminacy points of F on E3 and E4 are the strict transform
of the lines {A + u + 2w = 0} and {» — u — 2w = 0}, respectively.

(iv) Fis regular on E1, Ey and maps these two divisors to the strict transform of the
line {} = —2w} (each with multiplicity one).

(v) The image of the indeterminacy point [1 : 0 : 0] by F is the strict transform of
the line at infinity.

(vi) Both F and G are algebraically stable on X.

Proof of Proposition 5.5 Recall that we have denoted by Py = 22w, P; = pu(4w? —
w2+ 22 and P, = w@w? — u?) the homogeneous polynomials defining F'.

Observe that (i), (ii) and (iv) imply (vi). Observe that assertion (i), (iv) and (v) are
direct computations. We leave assertion (i) and (iv) to the reader and prove assertion
).

Let us blow-up the point [1 : 0 : 0], we choose some local coordinates (e =
w/x,l = w/w) such that the the exceptional divisor over [1 : O : 0] has local equation
e = 0. In these blow-up coordinates, the map F' composed with the blow-down is
given by:

(e,) > [1:e:le] € P> [Py(1,e,le): Pi(1,e,le): P(1,e,le)] € P?,
and we obtain:

(e,]) > [21 : 1 — e + 421> : *1(—1 +21)(1 + 2D)].
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In particular, the image of the exceptional divisor e = 0 by this map is parametrized
by [ + [2] : 1 : 0] and assertion (v) holds.

Let us prove (ii) and (iii) for the exceptional divisor E3, we fix some local coor-
dinates near E3. Take (¢ = A/w,l = (u/w + 2)/(A/w)) so that E3 = {e = 0}, we
write F o 7 in these coordinates:

Fom:(e,])—~ [Pyple, =2+ 1e,1): Pi(e,—2+1le,1): Pr(e, =2+ le, 1)].
We obtain:
Fom:(e,]) > [2¢: —(—2+el)(—e — 4l —i—elz) :—Il(—4 4+ el)].
In particular, the restriction to E73 is of the form:
Fom:(e=0,1)—>[0:-2]:1]1=[0:2:1],
when [ # 0. As a result F o 7 contracts E3 to the point [0 : —2 : 1]. We can thus

compute the lift F in these coordinates as F maps E3 to E3, which is obtained from
the following expression.

- ,  Pole,—2+41le, 1) , 2+ Pile,—2+1e,1)/Pr(e,—2+1e, 1)
Fie i =272 7 ) = :
Py(e, =2 +le, 1) Py(e, =2+ 1le, 1)/ Pr(e, =2+ e, 1)
We thus obtain:
. 2 —2 4 el +41> —el?
F:(e,) > (e =— ¢ = el “).
(=4 +el) 2

The above formula proves that / = ¢ = 0 is an indeterminacy point of F. Blowing-up
this point (e.g writing e = e, [ = lje; in F o) gives the image of the indeterminacy
point by F, and the computation is direct. The restriction to E3 also yields:

F:@:OJM»(Q—1+y§.

This proves that E3 is mapped to itself with multiplicity 2 by F (i.e the restriction of
F to E3 has topological degree 2), we have thus proven assertion (ii) and (iii) for the
exceptional divisor E3. Similar computation holds for the determination of the image
of Ey4. O

We now use the dynamical features of F' above to find two invariant fibrations.

Let D be the pencil of conic in P>(C) passing through all four points
[£1:1:0],[0: 42 : 1], and let D, be the pencil of conics in P2 (C) passing through
all four points [£1 : 1 : O], [£2 : 0 : 1]. We will now show that both pencils are
invariant under F. A general algebraic-geometric view of this phenomenon will be
given in Sect. 8.2.
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Proposition 5.6 The two pencils D1, D; are invariant under F.

Proof Observe that the vertical line {A = 0} is a line of fixed points, which is trans-
versely super-attracting. So the image of any conic passing through [0, £2, 1] also
passes through those points (see Proposition 5.5 (iii)). Take a conic C in the pencil
D. Since the horizontal lines {t = 2w} do not belong to the pencil D, Bezout’s
theorem proves that C intersects each of those lines at 2 points. Since these lines are
collapsedto[£1 : 1 : 0] by assertion (i) of Proposition 5.4, this proves that the image of
C by F passes through the two points [£1 : 1 : 0]. We have shown that for any conic in
the pencil Dy, its image by F passes through all four points [£1 : 1 : 0], [0 : 2 : 1].
Let us now argue that the image of any conic in the pencil D by F is also a conic, i.e is
also a curve of degree 2. Since the curve C passes through all four points [£1 : 1 : 0]
and [0 : +£2 : 1], we can calculate (using Proposition 9.12 (v)) the class of C in
H"(X):

C=2Lo+Ei+E— Es— Es € H''(X),

where Zoo is the strict transform of the line at infinity by the blow-up at the four points
[il 0], [0 : &2 : 1]. By Proposition 5.5.(iv), the divisors E | and E; are mapped
by Ftoa llne in X, the exceptional divisors E3, Ey4 are fixed by F, their indeterminacy
point are mapped to a line and the image of the indeterminacy point [1 : O : 0] is the
line at infinity. This implies that the image of C by F, denoted F,C is given by:

C =2F.Loo + FLEy + FLEy — FLE3 — F.E4
=Q+41+41—1—1)Ls € H 1 (P?).

In conclusion, F maps a conic in Dj to a conic passing through the same four points,
so the pencil Dj is preserved by F.

Let us now prove that the pencil D; is also invariant. The same argument proves that
any conic in D, has an image of degree 2 which passes through the points [*1, 1, 0].
Take a conic C in the pencil D5. Since the conic C; := {A> — u? + 4w? = 0} does
not belong to the pencil Dy, Bezout’s theorem proves that C intersects C; at four
points. By Lemma 5.3, the curve C is collapsed by F to [—2 : 0 : 1], so the image
F(C) passes through that point. Moreover, the point [2 : 0 : 1] is a fixed point for
F, so the image F(C) also passes through that point. Overall, we have shown that
any conic in the pencil D; is mapped by F to a conic passing through all four points
[£1:1:0],[£2:0: 1], hence F preserves the pencil D;, as required. O

We obtain an explicit characterization of the two pencils D1 and D;.
Corollary 5.7 The pencil Dy and D, are parametrized respectively by two rational
maps ¢: P2 —-» P! and ¢ : P* --> P! defined by the formulas (5.6) and (5.5).
Moreover, po F = ¢,y o F =t oy where t is the Chebyshev map,

To go further, we need to parametrize holomorphically the fibers of the map ¢ to
find an appropriate conjugate for F. Recall that the point [2 : 0 : 1] is fixed by F and
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that the point [—2 : 0 : 1] is mapped by F to that point. These two points correspond
to the repelling fixed point and its preimage for the Chebyshev map 2z — 1.

Choose two simply connected domains Vi, V, of C\{=£1, 0} such that V; U V, =
C\{—1, 0}. Let us take the preimage U; C C? of V; by themap (A, u) — ¢>(h, u)—1.
By definition, each domain U; is contained to (CZ\(DO U U; D+ ;) and we have the
equality Uy U U, = (Cz\(Do UU; D+ ;). On each of these domains U;, the square root
Vn? —1=/¢? — 1 is well-defined.

For each i = 1,2 and any point p € U; N ¢~ (), we take oy(p) € P! to be the
slope of the line joining p and the point (2, 0) € C?>. We normalize in such a way
that the tangent line to the hyperbola ¢~' (1) at [2 : 0 : 1] is mapped to [1 : 1] € P!,
such that the point [0 : 217 4+ 24/n% — 1 : 1] is mapped to [0 : 1] € P! and the point
[0: 2 —2/n? —1: 1] is mapped to the point at infinity [1 : 0] € P'.

Lemma 5.8 The following properties hold.

(i) Foreachi = 1,2 and for any n € C\{=£1, 0}, the map ¢,: U; N o~ ') — Cis
an analytic function of the form:

2—r—nu—pyn*—1

24— punE—1

(ii) Foreachi = 1,2 and for any n € C\{£1, 0}, the inverse (pn_] C— Uing~ ')
of @y is given by:

( 4(=14nd)z
= | A==

on: O ) €CPNg~ ) >

1422 4+ ny/=1+ n2(=1 +22) = n2(1 + 22))
= 2y=1+n*(=1+2(1+2)
1+22 4+ 0y =14+ n*(=1+22) = n?(1 +2?)

(iii) For generic z € C and for all n € C\{=£1, 0}, one has:
gpoFog, () =2"

(iv) For generic z € C and for all n € C\{%1, 0}, one has:

. 1 1
Voo, (Z)=§(Z+Z>-

Proof Let us describe how one can obtain assertion (i). Let us denote by / the slope

[ := (A —2)/u. At the two point [0 : 21 + 2¢/n2 — 1 : 1],[0: 2n — 2y/n? — 1 : 1],
the slopes /4, [_ are given by:

lyr=—n+yn>=1;1_:=—n—n*>-1
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One checks that the slope / of the hyperbola at the point [2 : 0 : 1] is —». Since the
Mobius transformation z + (z — [—)/(—z + [+) which maps the triplet (I, [_, —n)
to the triplet (0, oo, 1) on P!, we obtain @y by applying this Mobius transformation to
I=0.—2)/:

(E>+n+ 1
o H

n

For assertion (ii), one determines the inverse is obtained by first solving the system of
equation

4= 2%+ pu? =4,
A—2=1u.

This determines A, i as a function of / and then one precompose by the Mobius
transformation z +— (I4z+I1_)/(z+1) which maps the triplet (0, oo, 1) to (I, I—, —n).
The last two assertions (iii) and (iv) also follows from direct computations. O

Recall that the map F leaves each fiber ¢! (1) invariant, so that one has the fol-
lowing commutative diagram for eachi = 1, 2:

(p,,oFo:p,Tl

C————C
R
Uing~' i —— Ui N~ ().
Proof of Theorem 5.1 Consider the analytic map ¢ given by
o, ) == (0 :=d(h, 1), 2 7= @y, ) (A, 1)) -

Using assertion (iii), (iv) of the previous lemma, we deduce that F and (1, z) — (1, 22)

are conjugate on each U; via ¢ and that ¢ o go,;l (z) = 1/2(z + 1/z), as required. O

5.2 Structure of the Map F

Recall from the last section that we have found amap 77 : C? --» C? such that 7o F =
t o w, where t is the Chebyshev map (3.1) where 7 is defined by 7 (A, u) = (3, 6)
with
4_)\‘2_{_“2 4_H2+)‘2
=pA,u)=———, 0=y, u)=—"""-—7—.
n=a¢@,pn ™ v (x, 1) 1

This is a rational map of algebraic degree 3, of topological degree 2 with the following
features:
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e It is equivariant with respect to the reflections (A, u) — (u,x) and (n,0) —
. m).

o It has the following indeterminacy points: two vertices [0 : 2 : 1] and [0 : —2 : 1]
on the line {A = 0}, [1 : 0 : 0] and two “diagonal” points at the line A, at infinity:
de =[1:41:0];

e The vertical axis A" = {A = 0} is collapsed (after puncturing out the indetermi-
nacy points) to the vertical pole g, = [0 : 1 : 0]. Symmetrically, the horizontal
axis A" is collapsed to the horizontal pole g, = [1: 0 : 0].

e The pullback of a vertical line Lxer through (7, 0) is a rational algebraic curves (a
“vertical hyperbola™ )

Ly ={4—22+pu*—4pp =0}

union the vertical axis AY®'. Symmetrically, the pullback of a horizontal line Lg"r
through (0, 6) is a horizontal hyperbola

LA = (4 — 4> + 2% —46 % = 0}

union the horizontal axis A" The projection 7 is a degree two branched covering
of each of the hyperbolas onto its image.
e The vertical hyperbolas L)’]er form a pencil through the points ay = (£2, 0), i.e.,

all of them pass through these points, and form a holomorphic foliation of C> ~
{0, ax, b+}. [From the projective point of view, they form a pencil through four
points (one should add the diagonal points d+ = [1 : £1 : 0] at infinity) forming
a foliation of the same space, (OZEN {0, ax, b+}.] The description of the pencil of
horizontal hyperbolas is symmetric (with respect to the reflection (1, ) +— (6, 1)).

e Each real vertical hyperbola iver R with || < 1 projects under 7 to the interval
{n} x I whose endpoints correspond to the points a+. For || > 1, the hyperbola
LVer R projects to the complement of this interval, {5} x (R~ intT). The picture
for the real horizontal hyperbolas is symmetric.

It follows that 7 (RP?) is the union of the square {|n| < 1, |0| < 1} and four
quadrants attached to its vertices.
Now the dynamics of F' can be readily understood as the lift by 7 of the Chebyshev
dynamics:
e The vertical foliation £"¢" := | J

degree two rational endomorphism on each leaf iver This endomorphism has two

neC i‘fr is leafwise invariant, and F restricts to a
superattracting fixed points, the intersections of LVer with the vertical axis A%,

Hence it is conformally conjugate to the squaring map fy: z > z2 of C. In this
coordinate, the projection 7 : L, — L, becomes the canonical semi-conjugacy
between fy and ¢.

A ~ h
e The horizontal foliation £M°F := Wpec Lo Tis F -invariant, with the leaves trans-
formed by the Chebyshev map:

F(Ly)) = 1:1(0)-
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Fig.6 Vertical hyperbolas I:‘,;‘“ for |n| > 1
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e Let W, be the superattracting basins of F | I:Xler (with “4-” corresponding to,
say, the fixed point with [u| > 2). Since the orbits in the disks W, , converge to
the corresponding fixed points on AY®", these disks get interpreted as the global
superattracting manifolds of these fixed points.

e The action of F on the real hyperbolas ifler’R with |n| > 1 is real conjugate

to the map fo: x — x2 on R. For || < 1 it is real conjugate to the map
1 1

forx — 3 <x — —) on R (which is in turn conjugate to fy on the unit circle
X

T).
e The Julia set of F is equal to

J(F) =n"NJ(T) =7"1(C x D).

This is a real-symmetric 3D variety M that can be described as follows. Let i
be the union of four semi-strips in R2. It is projected by ¥ to the interval I, and
the fibers of this projection are real horizontal hyperbolas. Complexifying these
hyperbolas, we obtain L. In this way, M gets interpreted as the complexification
of 1 along the horizontal foliation.

e Thus, M is foliated by (complex) horizontal hyperbolas. This foliation has a global
transversal, e.g., an interval 7, A > 2, which is the slice of one of the half-strips
of I by the real vertical line through (X, 0).

e The transverse measure on C x I to the horizontal foliation £'" lifts to a transverse
measure on M to the horizontal foliation £ It is induced by the the 1-form

dy
Ty 1 — 2

o =n%w) =

restricted to M.
Explicitly, the Green current is then given by the formula

Q /1[4 2402 —400=0] 49
-1 27/1 =62

Remark 5.9 Note that we normalize by dividing by a factor 2 which corresponds to
the degree of the semi-conjugacy, so that €2 has mass 1.

5.3 The Density of States Via an Equidistribution Result for F

Recall from Sect. 2.4.1 that the sequence of polynomials associated to the density of
states follows from the inductive formula:

Pah ) = (4 — 12 " P (FLL ). (5.7)

where Pp = A 4+2—u, Pr=(-2+2—pn)(A+2—pn)andn > 2.

7 Incidentally, this map describes the Newton method for finding +i, the roots of 241
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The density of states is then deduced from the zeros of the polynomials:

. 1
Py (—=1,1)=0

Note that one had to apply the transformation u +— (u + 1)/4 to get the density of
states associated to the Grigorchuk group.

Theorem 5.10 Let C and S be two irreducible algebraic curves in C? such that C is
not a vertical hyperbola while S is not a horizontal hyperbola and the intersection of
S with C and the vertical line of fixed points is empty. Then

2% [(FH*C N S]— (degC) - (deg S) - ws, (5.8)

where ws is the probability measure obtained by restricting the 1-form

_dv
71— y?

to S.

Proof By Lemma 3.8 applied to the map id x f where f is the squaring map, we get
the convergence of (id x f m~1(C)N S for any two generic curves C, S. Now since F
is locally analytically conjugate to id x f by assertion (ii) of Theorem 5.1, we conclude
that the same property holds for F using Lemma 3.7. O

Consider the affine map A: u +— (u + 1)/4. In case of C = Lgor, S =7, we
obtain the desired equidistribution result.

Theorem 5.11 We have:

1. The sequence of currents

1

51 =0l

converges as n — +o0 to the Green current of F.

2. The density of states associated with the Grigorchuk group is a multiple of A.g
where the measure &g corresponds to the slice of the Green current of F by the line
S := {A = 1}. Moreover, the support of this measure is a union of two intervals.

Proof Observe that P; = 4u(¢p— 1) andthat [P} = 0] = [¢ — 1 = 0]. Since F*¢ = ¢
and since F*u = 4auyr/(4 — u?), F*A = 242 /(4 — u?), we obtain using (5.7):

Py = (4 — pHF*P = 4o (¢p — 1),

hence
div(Py) = div(4ruy (¢ — 1)).
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Since the term (4 — u?) gets simplified in the previous calculation, we also deduce
that:

[P, =0] = F*[P; =0].
By induction, using the fact that F*y» = T o ¥, we get:

n—1
Py =Capp — DAZ T ] TH 0y,
k=1
where C,, € C* is a constant. The presence of the term /U»TH’I gives that:
[P, =0] = F*[Pn—l =0].
Finally we get:
[P, = 0] = (F")*[Py = 0].
Applying the previous result, we deduce that the sequence of currents [P, =
0] converges to a multiple of the Green current and the sequence of measures
1/2"[P,(—1, -) = 0] converges to the slice of the Green current by the line {A = —1}.

We finally obtain the density of states by applying the appropriate affine transforma-
tion. m|

6 The Rational Map Associated with the Lamplighter Group

The map associated to the lamplighter map F: C> — C? is defined as:

M—pr-2 2
w—=~r T ou=x)

F%Luhﬁ(—
In homogeneous coordinates, F is of the form:
Fi=[h o w] > [=22 4 p? + 2w, =20, (n — Mw],
and it has topological degree 1 and algebraic degree 2.

6.1 Integrability of the Map Associated with the Lamplighter Group

Although the classical identity M- =0+ — implies directly that F
preserves a fibration, we also follow our systematic method in this case. The main
result of this section is the following proposition.
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Fig.7 Blow-up of P2 at the two E
points [£1:1:0] 1

]P;Q

[0:0:1] [1:0:0]

Proposition 6.1 Take ¢: (A, ) — (A + @, A — W), then the map F is conjugate via
@ to the map:

aff —4
(a,ﬂ)r—)(a, 5 )

The method of the proof is the same as in the previous section, Sect. 5.1, and allows
one to recover the formula for the conjugation ¢.

We consider the blow-up X of P2 at the two points [+1 : 1 : 0], the lift F of F
to X, denote by 7: X — P? the blow-down map onto P? and by E;, E, the two
exceptional divisors such that E; is the exceptional divisor above [—1 : 1 : 0], E3 is
above [1:1:0]and I:oo is the strict transform of the line at infinity.

Proposition 6.2 The following properties are satisfied.

(1) F is a birational map, i.e its topological degree is one.

(ii) F has two indeterminacy points on P* consisting of the two points [+1, 1, 0] at
infinity.

(iii) The only contracted curves for F are the lines {» = |} and the line at infinity.

(iv) The strict transform of the line at infinity is contracted by F to the fixed point
[1, 0, O], the line {A = w} is collapsed by F to the indeterminacy point [—1, 1, 0].

(v) F is regular near the strict transform of the line at infinity and the image of the
line {» = u} by F is the exceptional divisor E.
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(vi) Fis regular on E1 and maps E; to the line 1= ({in = 0}).
(vii) F has one indeterminacy point on E» and collapses E- to the point
7 1([1:0:0]).
(viii) F maps the indeterminacy point on E» to the strict transform of the line at infinity.
(ix) F is algebraically stable on X.

Proof Let us denote by Py = 22+ ,u2 +2w?, P = —2uw?, P, = (u — M)w the
three homogeneous polynomials defining F'.

Assertions (i), (ii), (iv), (v) are direct computations. Observe also that (iv), (v), (vi),
(vii) imply that assertion (ix) since no curve is contracted by any iterate of F to an
indeterminacy point. Assertion (iii) follows from the fact that the jacobian of the lift
of F to C3 is of the form:

Jac(F) = —8(h — w)w?.
Let us prove assertion (vi).
In the coordinate chart (e = A/ + 1,1 = (w/w)/(A/ + 1)), the map F o 7 is
given by the expression:
Fom:(e,l)—~ [Py(e—1,1,le): Pi(e—1,1,le): Py(e —1,1,le)].
We obtain:

Fom: (e,]) > [<2+ e —2el*: —2¢el> : —(=2 + e)l],

and in the chart (e = w/u,l = (A /u+ 1)/(w/w)), the map F o m is given by the
expression:

Fom:(e,]) = [Po(—1+1le,1,¢e): Pi(—1+1le,1,¢e): Po(—1+1e,1,e)],

which simplifies as follows:
Fom: (e,]) > [—2e—2]+el®: —2¢:2—ell.

In both charts, F o 7 is well-defined and F o 7w maps regularly E| to the line {u = 0}.
S~ince this line is disjoint from the indeterminacy points [£1, 1, 0], we deduce that
F is regular on E| and maps E to the preimage of the line {u = 0}. We have thus
proved (vi).

Let us prove assertion (vii).

Take a first chart (e = A/ — 1,1 = (w/pn)/(A/u — 1)), then F o 7 is given by:

Fom:(e,)—~ [Pp(1+e,1,le): Pi(1+e,1,le): Po(1+e¢,1,le)].

We obtain:

Fom: (e,]) > [2+e—2el®: —2el*: —el], 6.1)
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and F o m is regular for near e = 0 for all / € C. In the other chart (¢ = w/u,l =
(A/pu = 1)/(w/p)), we have:

Fom: (e,]) > [Py(1 +1le,1,e): Pi(1+1le,1,e): Po(1 +1e, 1,e)],
which simplifies as follows:

Fom:(e,]) > [—2e+2]+ el? . —2e¢: —ell, (6.2)
and the latter expression has a unique indeterminacy at (e = 0,/ = 0). One checks
from the last expression that E5 is mapped to [1, 0, 0] by F ox. This finishes the proof
of (vii).

Let us prove assertion (viii). We blow up the indeterminacy point (¢ = 0,/ = 0)
on E» where (¢ = w/u,l = (/i — 1)/(w/w)). Denote by 7’ the blow-up of this

point. Take e = e, [ = l1e] where e; = 0 is the equation for the exceptional divisor,
the map F o 7 o 7’ is given in those coordinates by:

Fomon': (e1,l1) — [Po(1 + 1€l 1,e1): Pr(14+1Led, 1,e1): Py(1 +11e3, 1, e1)].
We simplify the above formula and get:
Fomon': (e, 1) = [-2+ 2l + &1} : =2 : —eyly).

The above expression is regular near e; = 0. Let us look near [; = oo, take e =
lyey, 1 = ep, sothe map F o7 o 7' is given in those coordinates by:

Fomon': (e, o) - [Po(1 +lae3, 1, e2ly) : Pi(1 4+ 1ae3, 1, ealn)
: Py(1 + hes, 1, ealy)].

We obtain:

Fomon': (e, 1) > [2 =2l + €3l : =215 : —eals], (6.3)
which is also regular near e = 0,/ = 0. In particular, this proves that the map
F o o’ is regular on the exceptional divisor above the indeterminacy point of F
on E>. The above expression also shows

Fomon':(e1 =0,11) = [-2+2; : —2:0],

so the indeterminacy point of F is mapped to the line at infinity. We have thus proved
assertion (viii). O

Consider the pencil D of lines passing through the point at infinity [—1 : 1 : O].

Proposition 6.3 The pencil of lines D is preserved by F.
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Proof Take aline C belonging to the pencil D. We show that the image of C by F is a
curve passing through the point [—1 : 1 : 0]. Observe that the line {* = u} intersects
the line C, and since {A = u} is collapsed by F to the point [—1 : 1 : 0] by assertion
(iv) of Proposition 6.2, we deduce that the image of C by F is a curve passing through
the point [—1 : 1 : O]

Let us show that the image of C by F is a line or equivalently that the curve
F(C\ I(F)) is of degree 1. Since C is a line passing through the point [—1 : 1 : 0],
assertion (v) of Proposition 9.12 shows that its strict transform C in X satisfies:

C=Lo+E,e H''(X).
We have thus:
F.C = FyLoo + F.E>.

By assertion (iv) and (v) of Proposition 6.2, the line at infinity is collapsed regularly
by F to a point, so we have

Filoo =0e HYY(X).

By assertion (vii) and (viii) of Proposition 6.2, the divisor E» is collapsed and its
indeterminacy point is mapped to L, so we have:

F.E» = Lo € HY(X).
This shows that F,C = Lo, hence the line C is mapped to a line by F. O

Observe that the member of the pencil D are lines passing through [—1 : 1 : 0], so
each of those line is given by an equation of the form:

dA, u)=r+u=aqa,

where a € C. One checks that ¢ o F = ¢ so ¢ semi-conjugates F to the identity.
We now choose a transverse coordinate on each fiber of ¢, let ¢ : C> — C be the
map:

1#()&111«):)\—/%

then the map F is conjugate via ¢ x i to the rational map:

aff — 4
(a,ﬂ)r—)(a, 5 )
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6.2 The Density of States for the Lamplighter Group

Recall from Sect. 2.4.2 that the spectrum of the Schreier graph associated to the
lamplighter group is related to a sequence of polynomials P, defined inductively as
follows:

PaG ) = (=02 P (FO., ),

where Py = 4 — A — p. The spectrum associated to the lamplighter group is the limit
of 1/2"[P, = 0] with the line {ix = 0}. We thus recover the fact that the density of
states is atomic, which was first proved by Grigorchuk—Zuk [54, Theorem 3]. Denote
by w, the counting measure 1/2"[P, = 0] A [u = 0] and denote by w the limiting
measure. Recall that we have defined in Proposition 3.10.(i) a laminar current 77 on
the elliptic cylinder.

Theorem 6.4 The following properties are satisfied.

(i) The sequence of currents 1/2"[ P, = Q] converges as n tends to 0o to a current
supported on countably many curves.
(ii) The sequence of measures 1/2"[P, = 0] A [u = 0] converges to an atomic
measure.
(iii) The sequence of measures

_n(a) — wy)
n

converges to the measure —2Tp N {;u = 0}.

In particular, assertions (i1) shows that the density of states of the Lamplighter group
is atomic.

Proof By Proposition 6.2, the map F is conjugate to the map:

aff —4
G: (a, ) .
(o ﬂ)'—><a 5 >

By assertion (ii) of Theorem 3.3, we have that A;(F) = max(l,1) = 1 = X (F)
and F is a birational map. Using the change of coordinates, we see that the lines of
equations u = 0, Py = 0, u — A = 0 are given by the equations o — 8§ = 0, ¢ = 4
and B = O respectively. Note that the preimage of the fiber {&¢ = 4} by G is itself,
thus it is always distinct from the diagonal « = S. Let us show that G™"*{ = 0} is
always distinct from the diagonal for all n > 0. Let us observe that the diagonal and
{8 = 0} intersect at only « = 8 = 0. Moreover, when « belongs to the elliptic locus,
the map B +— (aff —4)/p is arotation, and the point 8 = 0 is never a fixed point of the
rotation. In particular, the line {8 = 0} restricted to the elliptic locus can be viewed as
the graph I" of a non constant section over the circle T. Its winding number is exactly 1.
Since the restriction of G on each fiber @ = cte over the elliptic locus is a rotation, the
restriction of curve G~ {g = 0} to the elliptic locus is a curve whose winding number
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is exactly n. In particular, it intersects the diagonal at exactly n distinct points. This
shows that G7*{8 = 0} and {« = B} are distinct, and we conclude that F " {u = 1}
and {u = 0} have no common components. We have thus shown that the line {u = 0}
is generic, hence Theorem 4.1 can be applied and we obtain assertion (i) and (ii).

Let us now prove assertion (iii). Set [1 = {Py = 0} and A = {u — A = 0}. Observe
that Pp =4 — A — w so its poles and zeros s