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Abstract
We show how the formalism of 2-traces can be applied in the setting of derived
algebraic geometry to obtain a generalization of the holomorphic Atiyah–Bott formula
to the case when an endomorphism is replaced by a correspondence.
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1 Introduction

Let M be a compact manifold, and let f be an endomorphism of M such that the
fixed points of f are isolated. The famous Lefschetz fixed point theorem [9, Formula
71.1] expresses the super trace of the map H∗( f ) on cohomology induced by f in
terms of some local data at the fixed points of f . In fact, in loc. cit. Lefschetz treated
a more general problem: he considered a pair of maps g, f : N → M and gave a
cohomological condition for f and g to have a coincidence point. The fixed point
theorem above is a special case when M = N and g = IdM .
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Variations of the Lefschetz fixed point theoremwere also found to be very important
in algebraic geometry. For example, in the setting of étale cohomology, the Lefschetz
fixed point theorems were reestablished by the school of Grothendieck as a part of
their program on the proof of Weil conjectures. The variant for coincidence is called
Lefschetz–Verdier formula and appeared in [6, Corollaire 4.7]. However, this formula
has the drawback that the local terms are in general quite implicit. Deligne made a
conjecture that under favorable assumptions the local terms can be made precise, and
this conjecture was subsequently proved in [4, 12], and in [13] with the view towards
applications to the global functional Langlands correspondence.

Returning to the classical setting of the smooth manifolds, if all fixed points of the
endomorphism f are simple, the local terms in the Lefschetz fixed point theorem can
also be computed explicitly. Moreover, in this case, the theorem itself admits a vast
generalization, which is due to Atiyah and Bott [1, 2]. Specifically, given an elliptic
complex E on M and a bundle map b : f −1E → E , there is an equality

L(E, b) :=
∑

i

(−1)iTr(Hi (b)|Hi (M,E)) =
∑

x= f (x)

Trk(Ex � E f (x)
bx−→ Ex )

det(1 − dx f )
. (1)

In [8], we showed how one can use a simple traces machinery in (∞, 2)-categories
to prove an algebro-geometric analogue of the Atiyah–Bott formula (1). In this note,
we explain how to adapt our arguments to deduce a version of this theorem for a
pair of morphisms, that is, a version of the Lefschetz–Verdier fixed point formula for
vector bundles on algebraic varieties (Theorem 1.6), which we will further call the
holomorphic Atiyah–Bott formula for correspondence.

Convention For the rest of this work, we fix an algebraically closed base field k.

To state the holomorphic Atiyah–Bott formula for correspondences we first intro-
duce necessary notations.

Definition 1.1 Let X , Y be a pair of k-schemes. A correspondence is a pair of mor-
phisms g, f : Y → X .

Let us now denote by Vectk the unbounded derived category of cochain complexes
over k, and by QCoh(X) the unbounded derived category of quasi-coherent sheaves
on X (see conventions below). Recall that for an endomorphism f : X → X a lax-
equivariant structure on a sheaf E ∈ QCoh(X) is a map b : f ∗E → E . We first
generalize this notion to the case of correspondences.

To do this, let us assume that both X and Y are smooth and proper. Under these
assumptions, the pushforward functor g∗ on quasi-coherent sheaves admits a right
adjoint g!, and there is a natural equivalence g!(−) � g∗(−) ⊗ ωg , where ωg :=
g!(OX ) is the relative dualizing complex. This motivates the following

Definition 1.2 Let g, f : Y → X be a correspondence. A lax (g, f )-equivariant
structure on E ∈ QCoh(X) is a map b : f ∗E → g!E in QCoh(Y ).
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Holomorphic Atiyah–Bott Formula for Correspondences 499

Recall now the notion of a dualizable object (see Definition 2.1). Similar to the clas-
sical Lefschetz number, in the case E is coherent, any lax (g, f )-equivariant structure
on E produces an element of k:

Definition 1.3 For a lax (g, f )-equivariant coherent sheaf (E ∈ QCoh(X), b :
f ∗E → g!E) on X we define its Lefschetz number L(E, b) ∈ k of b as the trace
(Definition2.1) in Vectk of the corresponding endomorphism

�(X , E) �(X , f∗ f ∗ E) � �(Y , f ∗ E)
�(Y ,b)

�(Y , g! E) � �(X , g∗g! E) �(X , E)

on global sections, where the last morphism is obtained from the counit of the adjunc-
tion g∗ � g!. Note that the trace makes sense since �(X , E) is a dualizable object in
Vectk due to the properness of X .

To state how the Lefschetz number can be described in local terms, for a correspon-
dence as above let us denote by Y g= f ,cl the classical fixed point scheme, that is, the
fiber product

Y g= f ,cl Y

(g, f )

X
�

X × X

in the category of reduced schemes.

Definition 1.4 Given a correspondence g, f : Y → X , we say that g is étale at the
fixed points of (g, f ) if the morphism g is étale at each y ∈ Y g= f ,cl.

Remark 1.5 Note that if g is étale at the fixed points, then there is a canonical trivial-
ization ωg|Y g= f � OY g= f ,cl in QCoh(Y g= f ,cl).

We can now give a description of the local terms of the Atiyah–Bott formula. Let
g, f : Y → X be a correspondence such that g is étale at the fixed points, and let
y ∈ Y g= f ,cl be a fixed point. Note that then:

• Given a lax (g, f )-equivariant sheaf (E ∈ QCoh(X), b : f ∗E → g!E) on X , we
can restrict b to the fiber over y, obtaining an endomorphism

E f (y) � ( f ∗E)y
by

(g!E)y � Eg(y) ⊗ ωg,y � Eg(y)

in QCoh({x}) � Vectk , where x := f (y) = g(y) and in the last equality we have
used the trivialization of ωg|Y g= f from Remark 1.5.

• Since by our assumptions dy g is invertible, we obtain an endomorphism

Tx X ∼
(dy g)−1

TyY
dy f

Tx X

of the tangent space of X at our fixed point.
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Finally, we can formulate the main result of this work.

Theorem 1.6 (Holomorphic Atiyah–Bott formula for correspondences) Let X , Y be a
pair of smooth proper k-schemes and let (g, f ) : Y → X×X be a correspondence such
that the graph of Y intersects the diagonal in X × X transversally (see Definition 3.1)
and g is étale at the fixed points (Definition 1.4). Then for any lax (g, f )-equivariant
perfect sheaf (E ∈ QCoh(X), b : f ∗E → g!E) on X there is an equality

L(E, b) =
∑

f (y)=g(y)

TrVectk (E f (y)

by−→ Eg(y))

det(1 − dy f ◦ (dy g)−1)
. (2)

Example 1.7 In the case Y = X and g = IdX , we recover the usual Holomorphic
Atiyah–Bott formula [8, Theorem 3.1.2].

One interesting application of Theorem 1.6 is in the context of birational geometry.
Namely, given a rational endomorphism φ : X ��� X of a smooth proper variety X
one can take Y to be the closure of the graph of φ in X × X and g, f : Y → X to be
the projections to the first and second factors. Let us illustrate how this works in the
simplest nontrivial example.

Example 1.8 Assume that char k �= 2. Let X = P
2 and consider the Cremona trans-

formation

φ(x : y : z) := (
1

x
: 1

y
: 1

z
).

By taking the closure of the graph of φ, we obtain a correspondenc

P
2 Y

g f
P
2 , where Y is given by

{xu = yv = zw} ⊆ P
2(x : y : z) × P

2(u : v : w).

The intersection with the diagonal x = u, y = v, z = w consists of 4 points (±1 :
±1 : ±1). Consider E = ωP2 . There is a canonical lax-equivariant structure on E
given by the pullback on forms t : f ∗ωP2 → ωY � g!ωP2 .

Let us first compute the Lefschetz number of t . Since

�(P2, ωP2) � H2,2(P2)[2] � k[2],

It is enough to understand the map on H2,2(P2), which is the degree of φ since P2

is 2-dimensional. Since the Cremona transform is birational, it follows that L(t) = 1.
Now let us compute the right-hand side of the Atiyah–Bott formula. All fixed points

lie in the affine chart z = 1 with inhomogeneous coordinates (X , Y ). The differential
of φ at a point x = (X0, Y0) is given by the matrix

(−1/X2
0 0

0 −1/Y 2
0

)
.
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Holomorphic Atiyah–Bott Formula for Correspondences 501

Since for all fixed points X2
0 = Y 2

0 = 1, we have

det(dx g − dx f ) = det

((
1 0
0 1

)
−

(−1 0
0 −1

))
= det

(
2 0
0 2

)
= 4.

Also in this case the induced map f ∗ωP2,x → g!ωP2,x is just the identity; hence, we
find that the right-hand side of the Atiyah–Bott formula is

4 · 1
4

= 1.

Conventions.

(1) All categories we work with are assumed to be (∞, 1)-categories (we refer the
reader to [10] for the theory of (∞, 1)-categories). For an (∞, 1)-category C we
will denote by C� the underlying∞-groupoid of C obtained by discarding all the
non-invertible morphisms from C .

(2) For a field k we denote byVectk the stable symmetric monoidal (∞, 1)-category of
unbounded cochain complexes over k up to quasi-isomorphism with the canonical
(∞, 1)-enhancement.

(3) We will denote by PrL∞ the (∞, 1)-category of presentable (∞, 1)-categories
and continuous functors with a symmetric monoidal structure from [11, Propo-
sition 4.8.1.14.]. Note that Vectk is a commutative algebra object in PrL∞. By
[11, Corollary 5.1.2.6.] it follows that the presentable stable (∞, 1)-category of k-
linear presentable (∞, 1)-categories and k-linear functorsCatk := ModVectk (Pr

L∞)

admits a natural symmetric monoidal structure. We will also denote by 2Catk the
symmetric monoidal (∞, 2)-category of k-linear presentable (∞, 1)-categories
and continuous k-linear functors, so that the underlying (∞, 1)-category of 2 Catk
is precisely Catk .

(4) We will further work in the setting of derived algebraic geometry over some fixed
algebraically closed field k, where derived affine schemes are modeled by commu-
tative simplicial k-algebras.1 For a derived prestack X we will denote the k-linear
symmetric monoidal (∞, 1)-category of unbounded complexes of quasi-coherent
sheaves on X by QCoh(X) ∈ CAlg(Catk). Similarly, all the functors between
quasi-coherent sheaves are assumed to be derived in an appropriate sense. We
refer the reader to [5] for an introduction to the basic concepts of derived algebraic
geometry using the functor of points approach.

2 Traces andMorphisms of Traces

We start with the following classical definition.

Definition 2.1 Let (C ,⊗, I ) be a symmetric monoidal (∞, 1)-category. Then:

1 If characteristic of k is zero this category is equivalent to the ∞-category of connective commutative
dg-algebras.
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502 G. Kondyrev, A. Prikhodko

1. An object X ∈ C is calleddualizable, if there exist an object X∨ ∈ C togetherwith
unit I X ⊗ X∨ and counit X ⊗ X∨ I maps satisfying triangle
identities.

2. Let X
f

X be a morphism in C where the object X is dualizable. Then the
trace of f denoted by TrC ( f ) ∈ HomC (I , I ) of f is defined as the composite

I
coev

X ⊗ X∨ f ⊗IdX∨
X ⊗ X∨ Twist

∼ X∨ ⊗ X
ev

I

in C .

Example 2.2 Notice that an object V ∈ Vectk is dualizable if an only if it has finite-
dimensional cohomology spaces nonzero only in finitely many degrees. If V ∈ Vectk
is dualizable and f ∈ HomVectk (V , V ) is some morphism, then the trace TrVectk ( f ) ∈
HomVectk (k, k) � k is the alternating sum of the ranks of the map on the cohomology
spaces of V induced by f . In particular, in case f = IdV we see that TrVectk (IdV ) =
XVectk (V ) ∈ k is simply the Euler characteristic of V .

Remark 2.3 Suppose we are given a dualizable object X ∈ C together with a map

X
f

Y ⊗ X ,whereY ∈ C is someobject. Similar to the secondpart ofDefinition
2.1, one can then consider the composite

I
coev

X ⊗ X∨ f ⊗IdX∨
Y ⊗ X ⊗ X∨ IdY ⊗Twist

∼ Y ⊗ X∨ ⊗ X
IdY ⊗ ev

Y

which we will further call a twisted trace of f .

The notion of trace is extremely useful in the setting of derived algebraic geometry.
Namely, note that by [3, Theorem 1.2] for any perfect derived stacks X , Y (see [3,
Definition 3.2]) there is a canonical equivalence QCoh(X)⊗QCoh(Y ) � QCoh(X ×
Y ) obtained from the bicontinuous functor

QCoh(X) × QCoh(Y ) ∼ QCoh(X × Y )

(F ,G) (q∗
1F)⊗ (q∗

2G),

where

X X × Y
q1 q2

Y

are the projection maps. In particular, the object QCoh(X) ∈ Catk is self-dual, with
the unit and counit maps given by

Vectk
�∗OX QCoh(X × X) � QCoh(X) ⊗ QCoh(X)

QCoh(X) ⊗ QCoh(X) � QCoh(X × X),
�(�∗−)

Vectk
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Holomorphic Atiyah–Bott Formula for Correspondences 503

where X
�

X × X is the diagonal map and QCoh(X)
�(−)

Vectk is the
(derived) global sections functor.

A convenient way to calculate traces of various endomorphisms of the dualizable
object QCoh(X) ∈ Catk is provided by the formalism of kernels. Namely, by [3,
Theorem 1.2] there is an equivalence

QCoh(X × X) ∼ FunCatk
(
QCoh(X),QCoh(Y )

)

K q2∗(K ⊗ (q∗
1−))

of (∞, 1)-categories. The sheafK is frequently called the kernel of the corresponding
functor. Moreover, by [8, Proposition 2.1.6] we have an equivalence

TrCatk (q2∗(K ⊗ (q∗
1−))) � �(X ,�∗K) ∈ Vectk (3)

allowing us to instantly calculate trace of an endomorphism of QCoh(X) ∈ Catk in
terms of its kernel.

It is now straightforward to see that notion of trace allows us to recover derived
fixed points schemes in the setting of derived algebraic geometry:

Definition 2.4 Let X Y
g f

X be a correspondence of derived stacks. We
then define the derived fixed points stack denoted Y g= f as the pullback

Y g= f j

i

Y

(g, f )

X
�

X × X

of derived stacks.

Proposition 2.5 In the setting of Definition 2.4 for a sheaf G ∈ QCoh(Y ) there is a
canonical equivalence

TrCatk
(

f∗(G ⊗ g∗−)
) � �(Y g= f , j∗G)

in Vectk .

Proof First, note that the kernel of the functor

QCoh(X)
f∗(G⊗g∗−)

QCoh(X)

is given by the sheaf (g, f )∗G ∈ QCoh(X × X). Indeed, due to projection formula
(see [3, Proposition 3.10]) we have

q2∗
(
(g, f )∗G ⊗ (q∗

1−)
) � q2∗(g, f )∗(G ⊗ (g, f )∗q∗

1−) � f∗(G ⊗ g∗−).
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Consequently, using Eq. (3) and projection formula we obtain

TrCatk
(

f∗(G ⊗ g∗−)
) � �(X ,�∗(g, f )∗G) � �(X , i∗ j∗G) � �(Y g= f , j∗G)

as claimed.

Now note that since Catk is the underlying (∞, 1)-category of the (∞, 2)-category
2Catk , it is natural to ask whether the 2-morphisms in 2 Catk provide some additional
functoriality on the level of traces. Motivated by this, let us discuss the notion of
trace in (∞, 2)-categories. Let E be a symmetric monoidal (∞, 2)-category (that is,
a commutative algebra object in the (∞, 1)-category of (∞, 2)-categories, see [5,
Chapter V.3, 1.4.1.]). As was shown in [8], in this case, the trace constructions admits
additional functoriality:

Proposition 2.6 [8, Proposition 1.2.3] Let E be a symmetric monoidal (∞, 2)-
category and suppose we are given a (not necessary commutative) diagram

A

ϕ

FA
A

ϕ
T

B

ψ

FB
B

ψ

in E , where ϕ is left adjoint to ψ and

ϕ ◦ FA
T

FB ◦ ϕ

is a 2-morphism in E . Then there exist a natural morphism

TrE (FA)
Tr(ϕ,T )

TrE (FB)

in the (∞, 1)-category HomE (I , I ) called a morphism of traces induced by T .
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Holomorphic Atiyah–Bott Formula for Correspondences 505

Moreover, given a diagram

A

ϕ1

FA
A

ϕ1
T1

B

ψ1

ϕ2

FB
B

ψ1

T2
ϕ2

C

ψ2

FC
C

ψ2

in E , where ϕ1 is left adjoint to ψ1, ϕ2 is left adjoint to ψ2 and

ϕ1 ◦ FA
T1 FB ◦ ϕ1

ϕ2 ◦ FB
T2 FC ◦ ϕ2

are 2-morphisms there is an equivalence

Tr(ϕ2 ◦ ϕ1, T2 ◦vert T1) � Tr(ϕ2, T2) ◦ Tr(ϕ1, T1),

where ◦vert is the vertical composition of 2-morphisms.

We refer the reader to [8, Example 1.2.5] for an explicit description of the (∞, 2)-
categorical trace Tr(ϕ, T ).

We now provide several examples in the case E = 2Catk :

Example 2.7 [8, Definition 1.2.9] In the case E = 2Catk , suppose we are given some

dualizable object C ∈ 2Catk together with an endofunctor C
F

C . Note that
there is a canonical equivalence

Fun2Catk (Vectk,C )ladj
evk

∼ C comp ,

where Fun2Catk (Vectk,C )ladj ⊆ Fun2Catk (Vectk,C ) is the full (∞, 1)-subcategory
spanned by those morphisms in 2 Catk which admit a right adjoint, and C comp ⊆ C
is the full (∞, 1)-subcategory of compact objects (see [5, 7.1.1]).

In particular, given a compact object E ∈ C comp together with a morphism

E
t

F(E) in C , we can apply the (∞, 2)-categorical trace construction to the
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diagram

Vectk

ϕ

IdVectk
Vectk

ϕT

C

ψ

F
C

ψ

,

where φ is the functor obtained from the compact object E ∈ C comp and T is the
2-morphism obtained from t .

The corresponding element

k � Tr2Catk (IdVectk )
Tr(ϕ,T )

Tr2Catk (F) ∈ Hom2Catk (Vectk,Vectk) � Vectk

is called the Chern character of E and is denoted by ch(E, t) ∈ Tr2Catk (F).

Example 2.8 (Chern character for vector spaces) In the case C = Vectk , F = IdVectk
in the setting of Example 2.7 (in particular, we have t ∈ HomVectk (E, E) and
Tr2Catk (F) � k) directly by definition we have an equality ch(V , t) = TrVectk (t)
of two numbers.

Example 2.9 (Chern character for lax-equivariant sheaf) Let X Y
g f

X be
a correspondence of perfect derived stacks (see [3, Definition 3.2]), and E ∈ Perf(X)

be a perfect sheaf (by [3, 3.1] equivalently compact/dualizable object of QCoh(X))
equipped with a map t : E → f∗(G ⊗ g∗E) for some G ∈ QCoh(Y ). Then similar to
[8, Remark 2.2.4] one checks that the Chern character ch(E, t) of E obtained from
the diagram

Vectk

ϕ

IdVectk
Vectk

ϕ
T

QCoh(X)

ψ

f∗(G⊗g∗−)
QCoh(X)

ψ

is equivalent to the twisted trace (see Remark 2.3) of the induced map

i∗E � j∗ f ∗E
j∗(b)

j∗(G ⊗ g∗E) � j∗G ⊗ j∗g∗E � j∗G ⊗ i∗E

in QCoh(Y g= f ), where b : f ∗E → G ⊗ g∗E is the morphism which corresponds to
t ∈ HomQCoh(X)

(
E, f∗(G ⊗ g∗E)

)
via the adjunction f ∗ � f∗.
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Holomorphic Atiyah–Bott Formula for Correspondences 507

Example 2.10 The case we are most interested in is when both X and Y are smooth
and G = ωg := g!(OX ). In this case g∗(−) ⊗ ωg � g!(−), so a morphism of
traces corresponding to the lax-equivariant structure from Definition 1.2 under the
identification from the previous example corresponds to the twisted trace with the
value in �(Y g= f , j∗ωg).

Remark 2.11 In the setting of Example 2.9, suppose we are given a map

Z

u

W

v

g′ f ′
Z

u

X Yg f
X

of correspondences (in particular, we automatically get a map l : W g′= f ′ → Y g= f on
derived fixed points). The map b : f ∗E → G ⊗ g∗E in QCoh(Y ) then gives a map

b′ : ( f ′)∗u∗E � v∗ f ∗E
v∗(b)

v∗G ⊗ v∗g∗E � v∗G ⊗ (g′)∗u∗E

and hence by adjunction a map t ′ : (u∗E) → f ′∗(v∗G⊗ (g′)∗(u∗E)). Moreover, using
Example 2.9 we obtain a canonical equivalence

l∗ ch(E, t) � ch(u∗E, t ′)

of Chern characters.

Example 2.12 (Todd class) One of the main theorems of [7] is that for a classical
smooth scheme X the morphism of traces

⊕

p,q

Hq,p(X)
HKR�

π∗Tr2Catk (IdQCoh(X))
Tr2Catk (−⊗OX )

π∗Tr2Catk (IdICoh(X))

HKR◦t−1
S�

⊕

p,q

Hq,p(X)

123



508 G. Kondyrev, A. Prikhodko

induced by the commutative diagram

QCoh(X)

OX

IdQCoh(X)
QCoh(X)

−⊗OX

ICoh(X)
IdICoh(X)

ICoh(X)

is given by the multiplication by the classical Todd class, where ICoh(X) here is
the (∞, 1)-category of ind-coherent sheaves and HKR is the Hochschild–Kostant–
Rosenberg isomorphism. We refer the reader to [7] for more details.

3 Proof of the Atiyah–Bott Formula

In this section, we show how one can adapt the proof of [8] to the case of correspon-
dences. First we make precise the transversality condition from Theorem 1.6.

Definition 3.1 Let X Y
g f

X be a correspondence of algebraic k-varieties.
We say that Y → X × X intersects with the diagonal X → X × X transversely if
the derived fixed point scheme Y g= f (see Definition 2.4) is discrete. In more classical
terms this is equivalent to the following pair of conditions:

• The underlying classical scheme Y g= f ,cl is discrete.
• The induced map on tangent spaces 1 − dy f ◦ (dy g)−1 is invertible for all y ∈

Y g= f ,cl.

Proof of Theorem 1.6 The strategy of the proof is similar to [8, Proposition 3.2]. We
have a diagram

Vectk

E

IdVectk
Vectk

E
T1

QCoh(X)

�

f∗g! QCoh(X)

�
T2

Vectk IdVectk
Vectk

in 2 Catk , where the 2-morphism T1 is obtained from the lax (g, f )-equivariant struc-
ture on E and the morphism T2 is given by

�(X , f∗g!−) � �(X , g!−) � �(X , g∗g!−) �(X ,−) .
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Holomorphic Atiyah–Bott Formula for Correspondences 509

By applying the 2-trace formalism Proposition 2.6 to the commutative diagram, we
obtain a commutative triangle

k
ch(E,t)

Tr(�(X ,E),T2◦vertT1)

Tr2Catk ( f∗g!)

Tr(�,T2)

k

in Vectk , that is, an equality

Tr(�, T2) ◦ ch(E, t) � Tr(�(X , E), T2 ◦vert T1) (4)

of two numbers. First, we note that using Example 2.8, we have

Tr
(
�(X , E), T2 ◦vert T1

) � Ł(E, b).

Second, by Proposition 2.5, we have an equivalence

Tr2Catk ( f∗g!(−)) � Tr2Catk ( f∗g∗(−) ⊗ ωg) � �(Y g= f , j∗ωg),

where j : Y g= f → Y is the natural map. Moreover, by Remark 1.5 we have j∗ωg �
OY g= f , and hence

Tr2Catk ( f∗g!(−)) �
⊕

f (y)=g(y)

key,

where ey := 1 ∈ �({y},Oy). In particular, we can write

ch(E, t) =
∑

f (y)=g(y)

ch(E, t)yey .

Moreover, for y ∈ Y g= f by Example 2.9, we obtain

ch(E, t)y � TrVectk (E f (y)

by
Eg(y)).

It suffices now to show that the map

∫

Y g= f
:

⊕

f (y)=g(y)

key � Tr2Catk ( f∗g!) Tr(�,T2)
k

sends ey to 1/ det(1− dy f ◦ (dy g)−1). Note that
∫

Y g= f is independent of E ; hence, to
compute λy := ∫

Y g= f (ey), we can apply (4) to the special case E := x∗k, a skyscraper
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sheaf at a fixed point x = f (y) = g(y), with the natural lax (g, f )-equivariant
structure given by

f ∗E � f ∗ f∗y∗k y∗k g!g∗y∗k � g!E .

In this case, (4) produces an equality

1 = Ł(E, b) = λy ch(E, t)y = λyTrVectk (E f (y)

by
Eg(y))

and so we want to see that the trace TrVect
(
( f∗y∗k) f (y)

by
( f∗y∗k)g(y)

)
is equal

to det(1 − dy f ◦ (dy g)−1). But by smoothness, the cohomology of the derived fiber
Ex can be computed as

H∗(Ex ) � 
∗(T∗
X ,x )

and the induced map H∗(by) is precisely 
∗((dy f ◦ (dy g)−1)∨). The result then
follows from the well-known relation between traces and determinants, see [8, Lemma
3.2.5] for more details. ��
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