Arnold Mathematical Journal (2023) 9:105-150
https://doi.org/10.1007/s40598-022-00203-4

RESEARCH CONTRIBUTION

n

Check for
updates

Cohomology Rings and Algebraic Torus Actions on
Hypersurfaces in the Product of Projective Spaces and
Bounded Flag Varieties

Grigory Solomadin’

Received: 13 September 2021 / Revised: 30 December 2021 / Accepted: 23 March 2022 /
Published online: 22 April 2022
© Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2022

Abstract

In this paper, for any Milnor hypersurface, we find the largest dimension of effective
algebraic torus actions on it. The proof of the corresponding theorem is based on
the computation of the automorphism group for any Milnor hypersurface. We find
all generalized Buchstaber—Ray and Ray hypersurfaces that are toric varieties. We
compute the Betti numbers of these hypersurfaces and describe their integral singular
cohomology rings in terms of the cohomology of the corresponding ambient varieties.
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1 Introduction

In the present paper, we study effective algebraic torus actions on the particular collec-
tions of nonsingular complex algebraic hypersurfaces, namely H; ;, BR; j and R; ;
inlP* x P/, BF; x P/ and BF; x BFj, respectively, for any nonnegative integers i, j.
Here, the n-dimensional varieties P* and B F,, are a complex projective space and a
bounded flag variety [7], respectively.
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For any integers 7, j > 0, the transverse intersection H; ; of the Segre embed-
ding image of P! x P/ to PCTDU+D=1 with a generic hyperplane is called a Milnor
hypersurface. In particular, H; ; is a hypersurface in P! x P/ of bidegree (1, 1). The
hypersurface BR; ; was defined as a toric variety in [6] for any integers 0 < i < j.
Following the definition of the hypersurface R; ; givenin [22] for any integers i, j > O
by Ray, we call it a Ray hypersurface.

Recall that a normal algebraic variety X over C containing an algebraic torus T
as a dense open orbit is called a toric variety if the action of T on itself extends to a
regular action on X. The motivation for our study stems from the question raised in
[23]:is R;,; a toric variety? A positive answer to this question leads to the short proof
of one theorem from algebraic topology, as described in [23].

For any integers i, j > 0, it was shown in [6] that the variety H; ; is a toric variety iff
min{i, j} < 1. Demazure’s result [11] allows to describe the automorphism group of
any Milnor hypersurface that is a toric variety. We remark that the automorphism group
of Hj 3 was described explicitly in [9, Lemma 4.5]. We compute the automorphism
group of H; ; for arbitrary integers i, j > 0. The computation is based on the well-
known sheaf-theoretic argument for projective Fano varieties. We deduce the first main
result of this paper from this computation.

Theorem 1.1 The largest dimension for algebraic torus actions on the Milnor hyper-
surface H; j is equal to max {i, j} for any integers i, j > 0.

We provide a natural definition of the variety BR; ; as a hypersurface in BF; x P/
for all integers i, j > 0. Taking into account that BR; ; is isomorphic to the variety
from [6] for any integers i, j > O such that i < j, we call the hypersurface BR; ;
a generalized Buchstaber—Ray hypersurface. The following two theorems represent
main results of this paper, in addition to Theorem 1.1.

Theorem 1.2 The hypersurface BR; ; is a toric variety iff 0 <i < jor j =0, 1.
Theorem 1.3 The hypersurface R; j is atoric variety iff min {i, j} =0, lori=j = 2.

Theorem 1.3 provides a complete answer to the problem discussed in [23]. To prove
Theorem 1.2, for any integers i, j such that 0 < i < jor j = 0, 1, we define the
algebraic torus action on BR; ; endowing it with the structure of a toric variety. For
any integers i, j > 0, we define the effective action of the algebraic torus (C*)™ax{./}
on BR; ;. This action corresponds to the max{i, j}-dimensional algebraic subtorus
T in the connected component Aut® BR;, ; of the automorphism group Aut BR; ; of
BR; j.Leti, j > 0 be any integers that do not satisfy the condition of Theorem 1.2.
Let T’ be any maximal algebraic torus in Aut® BR; ; such that T < T’. All maximal
algebraic tori of the algebraic group Aut’ BR; ; are conjugate to each other.

To prove that BR; ; with the T’-action is not a toric variety, we introduce a general
formalism of weight hypergraphs that combines the methods from [3, 15] and [24]. For
a torus action from a certain class (wider than GKM-actions), one associates a weight
hypergraph. A weight hypergraph notion is a refined version of the GKM-hypergraph
notion [3], which is in turn a generalization of a GKM-graph notion [14]. For a weight
hypergraph I', we define a connection V along the edges of a certain subgraph R(I")
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in I'. The respective connection acts on the edges of the maximal subgraph G(I') C I
for a weight hypergraph (I, o, V). We define a suitable generalization of a face in a
weight hypergraph and call it an invariant subgraph.

Suppose there is the GKM-graph (I'/, &', V') of an action of a torus with a dense
open orbit on a projective nonsingular toric variety and the weight hypergraph (T, «, V)
for the action of any its subtorus (satisfying some additional conditions) with rank
at least two. We show that the restriction to the action of such a subtorus gives an
embedding G(I') — T of graphs. For a definite edge ¢ € G(I'), one has V, = V/,..

We show that the weight hypergraph of the T-action on BR; ; has a nonidentical
action of the monodromy map (introduced in [24] for GKM-graphs) along a loop
consisting of definite edges. Together with the aforementioned argument of tori con-
jugacy this implies that BR; ; is not a toric variety (for these particular values of i, j).
We prove Theorem 1.3 by following a similar approach, however, we come to a con-
tradiction by finding an invariant subgraph in the corresponding weight hypergraph
consisting of definite edges and not satisfying the convexity property.

In addition, for all integers i, j > 0, we compute the Betti numbers of the hyper-
surfaces BR; ; and R; ;, and relate their integral singular cohomology rings to the
cohomology rings of BF; x P/ and BF; x BF ', respectively. Namely, we prove that
the morphism of the respective integral cohomology rings, induced by the embedding
of any hypersurface considered above to the ambient space, is onto, and describe its
kernel.

The paper is organized as follows. In Sect. 2, the automorphism group of any Milnor
hypersurface is computed and the proof of Theorem 1.1 is provided. In Sect.3, we
define generalized Buchstaber—Ray and Ray hypersurfaces. In Sect.4, we define a
certain class of algebraic torus actions on any nonsingular complex manifold. We
assign the hypergraph equipped with additional structures to any action from this
class. These structures generalize the notion of an axial function and a connection from
GKM-theory (see [14]) to the case of a hypergraph. In Sect. 5, the proofs of Theorems
1.2 and 1.3 are given. In Appendix A, we describe the generalized Buchstaber—Ray
and Ray hypersurfaces in terms of consecutive blow-ups along smooth subvarieties
as well as in terms of algebraic fiber bundles. In Appendix B, we study the integral
singular cohomology rings of generalized Buchstaber—Ray and Ray hypersurfaces,
and compute the respective Betti numbers by utilizing the results from Appendix A.

2 The Automorphism Group of a Milnor Hypersurface

Unless explicitly stated otherwise, in the sequel an algebraic variety (or, in short, a
variety) is defined as a separated reduced irreducible scheme of finite type over C. A
hypersurface in a variety is a subvariety of codimension 1. An algebraic fiber bundle
is a locally trivial algebraic fiber bundle in the Zariski topology. A holomorphic fiber
bundle is a locally trivial complex-analytical fiber bundle over a complex manifold.
We call any toric variety X" that is an algebraic fiber bundle 7: X — B a toric
fiber bundle, if the base B and the fiber F are toric varieties and the projection
is equivariant with respect to the given algebraic torus actions on X and B. A fiber
bundle is a locally trivial topological fiber bundle. Occasionally, we call a fiber bundle
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with a particular structure (topological, holomorphic, algebraic, toric) with fiber F' an
F-bundle. We indicate the complex dimension dim X = n of an algebraic variety (or
complex manifold) X by writing X”. We put dim @ := —1.

In this paper, we repeatedly use the well-known bijective correspondence between
(Cartier) divisors on a nonsingular algebraic variety X and algebraic line bundles
over X ([17, p.144]). This correspondence respects the equivalence relations of linear
equivalence on divisors and of algebraic isomorphism on line bundles. Another vari-
ant of this correspondence takes place for complex manifolds and holomorphic line
bundles, with appropriately defined equivalence relations in the holomorphic setting.
For more details, see [13, Chapter 1, §1].

We denote by &V the dual vector bundle to any vector bundle & (with a particular
structure). We denote by & X1 the vector bundle pj () ® p3(n) for any vector bundles
& — X, n — Y under the natural projections p;: X x Y - Xand pp: X XY = Y
of varieties.

We consider the set Aut X of all automorphisms of any algebraic variety X as an
abstract group with the natural group operation.

Definition 2.1 The group Aut X is called the automorphism group of an algebraic
variety X. The connected component Aut’ X of the group Aut X is the subgroup of
automorphisms that occur as a member of a family {¢} }»<p such that B is an irreducible
rational curve, the natural map B x X — X defined by (b, x) + ¢p(x) is a morphism,
and ¢p, = Idyx is the identity for some by € B.

It follows from the Definition 2.1 that for any algebraic torus T acting on X its
image under the natural embedding to Aut X is contained in Aut® X [1, Lemma 1.4,
p. 1715].

Proposition 2.2 [21, Corollary 1, p.31] Let X" be a nonsingular complete variety.
Then, Aut® X is an algebraic group.

Proposition 2.3 [11] Let X" be a nonsingular projective toric variety. Then, Aut X is
an algebraic group of rank n.

Corollary 2.4 Let X" be a nonsingular projective variety. Let k be the rank of Aut® X.
For any integer r > 0 and any effective action of T" := (C*)" by automorphisms on
X", the following holds:

(i) One hasr < k, and there exists an extension of T" -action on X" to an effective
action of T* on X":
(ii) Any two effective T*-actions by automorphisms on X" are equivariantly iso-
morphic;
(iii) If X" is a toric variety, then the action of any maximal torus in Aut® X on X"
endows X" with the structure of a toric variety.

Proof Claims (i), (ii) follow from the theorem about conjugacy of all maximal alge-
braic tori in any algebraic group ([25, p.119]) and Proposition 2.2. Claim (iii) follows
from Proposition 2.3 and (ii). O
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Definition 2.5 For for any integers i, j > 0, the nonsingular hypersurface H; ; in
P* x P/ given by the equation

min {i, j}
Z zrwg = 0. ()
k=0
in the homogeneous coordinates (z, w) = ([zo : -+ - : zi], [wo : w;]) of P! x PJ

is called a Milnor hypersurface. Denote by H i the hypersurface in P’ x P/ given by
the equation

min {i, j}

Z zikwjx = 0. )

The Milnor hypersurface H; ; is the divisor corresponding to the algebraic line
bundle ¥ ® (7)Y over P! x P/. Here n denotes the tautological line bundle over a
complex projective space.

Remark 2.6 The suitable automorphism of IP’GL,+1 (C) x PGL ]_H((C) induces the
isomorphism H, j = H; j of subvarieties in P! x P/. The map P! x P/ — P/ x P!,
(z, w) — (w, z), maps H; j to H; ;. Hence, H; ; >~ H; ;.

It is well known that AutP" ~ PGL,4+1(C) ([17, Example 7.1.1, p.152]). It is easy
to prove the following lemma.

Lemma 2.7 Leti, j = 0be any integers. If i # j, then Aut(P! xP/) ~ PGL;;1(C) x
PGLj4+1(C). One has Aut(P' x P') ~ (IP’GL,+1((C) X ]P’GL,+1((C)) X Zo.

We extend any automorphism of H; ; to the automorphism of P! x P/ as follows.

Lemma 2.8 There is the monomorphism of algebraic groups Aut H; ; — Aut(P! x
IP7). Its image consists of automorphisms of ' x P/ leaving H; j invariant.

Proof Recall that there is the standard exact sequence relating the ideal sheaf of the
subvariety to the structure sheaf of the ambient variety. For the natural inclusion
t: H; j — P' x [P/, the corresponding exact sequence of sheaves on ' x P/ is
0— OPiXP/’(—l, —1) — O]P:ixpj — L*OH,-_J- — 0. (3)
Twisting (3) by Opi pj (1, 1) one obtains the following exact sequence:
0 — Opiypi = Opiypi(1,1) > 1.0p, ;(1,1) — 0, 4)
of sheaves. By [17, Lemma 2.10, p.209], one has

H®' x P/ ; 1,0y, (1, 1) = H'(H; j ; O, ;(1,1)). ©)
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It follows from the cohomological long exact sequence of (4), the identity H P x
P/ ; Opipj) = 0 (which in turn follows from Kiinneth’s formula and the description
of sheaf cohomology of P"*) and (5) that

HOP' x P/ Opi,pi(1, 1)) — H(H; j; On, ,(1,1)) (6)

is an epimorphism. It is not hard to show that the abelian group H>(H; j; Z) ~ 7*
is generated by the first Chern classes of the restrictions of the sheaves Opi , p; (0, 1),
Opipi (1, 0) to H; ;. Then, one obtains Pic H; ; ~ 7?2 from the following part of the
long exact sequence

0=H'(H;;; Q — H'(H; j; C) — H*(H; j; Z) - H*(H; ;; Q) =0,

of the exponential sequence of sheaves, where 2 is the sheaf of germs of local holo-
morphic functions on H; ; (see [18, p.127, §15.9]). The classes of t*Opi,p; (0, 1),
*Opi pj (1, 0) span the semigroup of effective divisors in Pic H; ;. Any automor-
phism ¢ € Aut H; ; maps effective divisors to effective. Hence, the abelian group
isomorphism ¢* defines the bijective map on the basis of the semigroup of effec-
tive divisors to itself. We conclude that the homomorphism ¢* : Pic H; ; — Pic H; ;
restricts to the well-defined map on the set of generators of this semigroup, represented
by Opi pi (0, 1) and Opi ,p; (1, 0). This map is either identity or involution. Hence,
(p*OHi'j(l, 1) >~ Op, ;(1, 1), and @™ acts on the sections of O, ; (1, 1). We lift the
automorphism ¢* to an automorphism of HO(P! x P/ ; Opi,p;(1, 1)) by choosing
any section of the epimorphism (6) of C-modules. The projective embedding corre-
sponding to the sheaf Opi, p; (1, 1) is the Segre embedding

P x P/ — PHO(P' x P/ ; Opipi(1,1)).

We conclude that the automorphism ¢ of H; ; is the restriction of an automorphism of
P* x P/ to H; ;. It also remains to notice that ¢ (H; ;) = H; ; is an algebraic condition
on ¢ € Aut(P* x P/). O

By Remark 2.6, one has Aut H; ; ~ Aut H; ;. Without loss of generality, we
compute the group Aut H; ; for any integers i, j > 0 such that i < j. Let Qo :
C/*! x C/*! — C be the bilinear form on C/*! given by the formula

j
Qo(z, w) = Y zxwy,
k=0

for any z = (z0,...,2;), w = (wp, ..., w;) € C/* Letw : C/+! — C*! be
the prqjection given by the formula 7 (z) := (zo, ..., zi). Define the bilinear form
Q : C/t! x C/*! — C by the formula

0z, w) 1= Qo(m(2), w) = ) _ Zxw.
k=0
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Let A € GLi+1(C), B € GL;11(C). Define A := A(A) € GL;41(C) as

~ (A 0
= (o)

where Id;_; is the identity (j — i) x (j — i)-matrix and the block structure is with
respect to the decomposition

C/t = Cleg, ..., ei) ® Cleigt, ..., ej), @)

inthe basis ey, ..., e; of CJ*1. The proof of the following lemma is straight-forward.

Lemma2.9 Let A € GL;41(C), B € GL11(C). Suppose that for any z, w € Cci+l
such that Q(z, w) = 0, one has Q(Az, Bw) = 0. Then, the identity

_ (At)—l C
)

holds for some B" = B'(B) € GL;_;(C) and some C = C(A, B) € Mat; 1 j_;(C).
The class [B'] € PGL j_;(C) is uniquely defined by the class [B] € PGL j11(C).

Forall0 <i < j,let

Aan=to

Ej = {([A], [B]) € PGL;+1(C) x ]IDGLj+1((C)‘ B = ( o B

) s B’ S GLj_,'((C)},
3)

be the subgroup of Aut H; ;. (This is a subgroup because the identity ((A1A2)’ yl =

(A1) 1((A2)")! holds for any Ay, A2 € GL;4+1(C). The inclusion E;; C

Aut H; ; easily follows from (1).) The following proposition is straight-forward to
prove.

Proposition 2.10 The group E; ; is a central extension of the following groups:
0— (CX — Ei,j — PGLI'+1((C) X PGLJ',[((C) — 0,

where the right homomorphism is given by ([A], [B]) — ([A], [B']) in terms of (8).

Theorem 2.11 Ler i, j > O be any integers such that i < j. One has Aut Hy j =
PGL;(C).If 0 <i < j, then Aut H; ; ~ CU+DU=D % E; ;. For0 < i = j, one has
Aut H; ; ~ PGL;1(C) X Zy. In particular, 7k Aut H; ; = j holds for any 0 < i < j.

Proof Since Hy j ~ P/~! one has Aut Hp ; ~ PGL;(C). Now leti > 0. We apply
Lemma 2.8. In the case of i = j, the involution (z, w) +— (w, z) descends from
P x P to H; ;. Hence, by Lemma 2.7, to prove the claim of the theorem it remains to
compute the subgroup of elements in PGL;;1(C) x PGL(C) with well-defined
restrictions to H; ;. This follows easily from Lemma 2.9. The proof is complete. O

@ Springer



112 G. Solomadin

Proof of Theorem 1.1 Follows from Theorem 2.11 and Corollary 2.4. O

Remark 2.12 The quotient GL,(C) - GL,(C)/(C*) = PGL,(C) by the subgroup
of the diagonal matrices is a principal C*-bundle. Let n — PG L,,(C) be the algebraic
line bundle associated with it. Denote by n* the associated C*-bundle over PG L, (C)
corresponding to 7. In particular, the total space of the algebraic fiber bundle n* over
PGL,(C)is GL,(C). The fiberwise transposed algebraic line bundle n — PGL,(C)
is defined in the obvious way. There is the natural isomorphism of the algebraic
line bundles n’, . The group Pic(PGL,(C)) is isomorphic to Z/nZ (see [4]). The
first Chern class ¢ (n) is the generator of this cyclic group. In terms of Proposition
2.10, the group E; ; as a variety is isomorphic to the total space of the C*-bundle
(' ®n)* - PGLi11(C) x PGL;;(C).

Let us compute Aut H; » by applying Theorem 2.11.

Example 2.13 The algebraic line bundles 1, n~! over PGL,(C) are isomorphic,

because PicPGL,(C) = Z/27. By Remark 2.12, the total space of the algebraic
C*-bundle n* — PG L,(C) is GL,(C). We conclude that the total space of the alge-
braic fiber bundle (~!)* over PG L, (C) is isomorphic to GL(C). By Remark 2.12
and Theorem 2.11, we obtain the isomorphism of algebraic groups

Aut Hy 5 ~ C? x (71 =~ C? x GL,(C). 9)

The Milnor hypersurface Hj 7 is a toric variety [8, pp.348-350]. Its automorphism
group can be computed by Demazure’s theorem (see [11], [20, §3.4], [2, Excercise
4.9, p. 329]), and the group obtained in this way agrees with (9). We finish this Section
by defining a maximal algebraic torus in Aut’ H; ;. For any integer n > 0, the formula

(t,....tp)oz=lzo:t1z1 - 1 tyznl, (t1, ..., 1) €T", z=[z0:21:---:za] €P",
(10)

determines the T"-action on P". Let i, j > 0 be any integers such thati < j. Then, we
define the effective T -action on the hypersurface H; ; inthe homogeneous coordinates

(z,w)=([z0:21: -zl [wo:wy:---:w;]) of P! x P/ by the formula
(t1s -5 tj)o(z, w) = ([zo: 1z1 : -+t 4izid,
[wo:tl_lwlz---:tj_le]), (tr,...,tj)) € T/ (11)

3 Definitions of BR; ; and R; j
3.1 Generalized Buchstaber-Ray Hypersurface BR;

Let us recall some definitions.

Definition 3.1 ([6]) Let B Fy be the point, and let 8y := C — B Fy be the trivial line
bundle. For any integer n > 0, let BF, 1| be the total space of the algebraic P!-bundle
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P(8, & C) associated with the algebraic vector bundle S, & C over BF,. Let 8,41 be
the (fiberwise) tautological line bundle of the projectivization B F,, 1| = P(8, & C) of
the vector bundle 8, & C — BF, [13, p.605]. The variety B F}, is called a bounded
flag variety. We abuse the notation slightly by defining 8y — B F}, to be the pull-back
of Bx — B Fj under the composition of projections BF,, - BF,_1 — --- — BF}
of P!-bundles, where k = 0, ..., n.

An equivalent definition of a bounded flag variety was given in [7] as follows.
Choose a basis e, . . ., e, in C"T!. Then, BF, is the set of sequences (o, ..., I,) of
lines in C"*! such that

kClho1®Cy, k=1,...,n, (12)
hold, where Cy := C(ex) denotes the line spanned by e in C"*1. Put Iy := Cq =

C(ep). The projection of the P!-bundle BF, — BF,_ from Definition 3.1 is given
by (lo, ..., In) = (o, ..., I,—1). Using (12), we obtain

Iy c Cleg,...,er), k=0,...,n, (13)
where C(e, . . ., ex) denotes the linear span of vectors ey, ..., ¢ in Crtl Letz; :=
[2ko0 : -+ : zk.k] be the homogeneous coordinates of the line /x in (13), where the
coordinates (2,0, - - -, Zk.k) aredual to e, .. ., ex, forany k = 0, ..., n. In particular,

zx = zk(x), forany k = 0, ..., n. The embedding BF, — [];_o Pk given by

oy .-, In) = (20,215 -+ Z0),

endows B F), with the tuple (zo, z1, - . -, Z,) of homogeneous coordinates. The image
of BF, in [[;_, IP¥ is given by the conditions

rk(Zk’O Zk’k—l)=1;k=z,...,n. (14)
Zk—1,0 - - Zk—1,k—1

These are quadratic equations (on the tuple of homogeneous coordinates
(20, Z1, - - - » Zn)) given by vanishing of all (2 x 2)-minors of the matrices (14).

It is well known that BF,, is obtained from P" by the sequence of blow-ups at
strict transforms of the subvarieties {z9 = - - - = zx = 0} of P in any order, where k
runs over {1, ..., n — 1}. The variety B F, is a nonsingular projective toric variety of
dimension n (see [7, 23]). The action of T" = (C*)" on BF,,, given by the formula

(t1, ..ot oz =lzko0:hzkn i -+t tkzkl, k=1,....n, (t1,...,1,) € T",
(15)

has a dense open orbit.

The varieties BR; ; were introduced by Buchstaber and Ray in [6] for any integers
i,j = Osuchthati < j. They showed in [6] that BR; ; is a nonsingular projective
toric variety for any integers i, j > O such that i < j. We generalize their definition
to the case of arbitrary integers i, j > 0, as follows.
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114 G. Solomadin

Definition 3.2 For any integers i, j > 0, we call the hypersurface BR; ; in BF; x P/
given by the equation

min{i, j}
> ziickwjk =0, (16)
k=0
where [wp : --- : w;] are the homogeneous coordinates on the second factor P/ in

BF; x P/, a generalized Buchstaber—Ray hypersurface.
Remark 3.3 Consider the hypersurface in BF; x P/ given by the equation

min{i, j}

Y zigwr =0. 17
k=0

For any integers i, j > 0 such that i < j, the hypersurface given by (17) is clearly
isomorphic to BR; ;. However, unlike B R; 1, the hypersurface given by (17) is singular
for (i, j) = (2, 1), see [23]. Notice that BRp o = &, because substituting O for i, j in
(16), we obtain the equation zg owo = 0 which has no solutions.

Here is the definition of B R; ; in terms of configurations of lines in a complex vector
space. Endow C™{%./}1+1 with the natural Hermitian metric such that the standard

basis ep, ..., emax(i,j) of Crax{i. 1 g orthonormal. Any point of BF; x P/ is the
sequence (lo, RN A ) of lines in C™{%./}+1 satisfying the conditions

li—r Cli—r—1 ® Craxfi, ji—r» I" C Clemax i, jl—j» - - - » €max{i, j})s (18)
for any integer r = 0,...,i — 1. Put ly := Cpax(; jj—i. Then, BR; ; is given in

BF; x P/ by the (algebraic) condition /; L 7, i.e., the lines /;, !’ are orthogonal in
(Cmax{i,j}+1 .

3.2 Ray Hypersurface R;
We introduce the next definition by following [22, 23].

Definition 3.4 For any integers i, j > 0, we call the hypersurface R; ; of BF; x BF;
given by the equation

min {i, j}
> ziiaw) k=0, (19)
k=0
where (zo, ..., zi), (wo, ..., w;) are the tuples of homogeneous coordinates on B F;,

BF;, respectively, a Ray hypersurface.
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Remark 3.5 The natural involution BF; x BF; — BF; x BF; maps R; j to R; ;.
Hence, R; ; ~ R;; for any integers i, j > 0. By definition, Ry ,+1 = BF, and
R,,1 = BR; 1 for any integer n > 0. Notice that Ry o = &, because substituting 0 for
i, j in (19), we get the equation zp gwp,0 = 0 which has no solutions.

Here is the definition of R; ; in terms of configurations of lines in a complex vector
space. Any point in BF; x BF; is the sequence (lo, ..., 0.1, ..., l;) of lines in

Ccmaxti i1+ gatisfying the conditions
lioy Cliey—1 ® Crnax{i, j—r» j—g Cli—g—1 ® Crmaxfi j}—q (20)

for any integers r =0, ...,i —landg =0, ..., j — L. Putly := Cpax{i, j}—i> l(’) =

Crax{i,j)—j- Then, R; ; C BF; x BF; is given by the (algebraic) condition /; L l;..

4 Monodromy in the Weight Hypergraph of an Algebraic Torus Action

In this section, we introduce the notion of a weight hypergraph. The definitions of a
weight hypergraph and of some other useful related notions are given in Sect. 4.1. In
Sect. 4.2, we define a weight hypergraph of any complex torus action on a smooth
complex manifold satisfying a certain condition (see Assumption 4.15). In Sect. 4.3,
we deduce some simple properties of the GKM-graph for the torus action with a dense
open orbit on a projective nonsingular toric variety. The properties are identical action
of the restriction for the monodromy map along an edge loop in a face to transverse
edges (Proposition 4.26), and convexity of faces of a weight hypergraph (Lemma
4.25). (These properties play important roles in the proofs of Theorems 1.2 and 1.3
given in Sect. 5.) Finally, we prove that any edge of the weight hypergraph for the
subtorus of rank at least two and satisfying Assumption 4.15 embeds to the GKM-
graph corresponding to the projective nonsingular toric variety (Proposition 4.28).

4.1 Definitions
Let us start this section by introducing the necessary notions.

Definition 4.1 (Compare with [3]) Let V be any finite set. Let Ey be any finite col-
lection of elements (a multiset, i.e., repetitions are allowed in Ej) of the set 2V,
Let £ := {(f,v)| f € Eo,v € f}. The pair ' = (V, E) is called an (abstract)
hypergraph. For any hypergraph I' = (V, E), any elements of V(I') := V, of Ey
and of E(I') := E are called a vertex, a hyperedge and a pointed hyperedge, respec-
tively. Any element f € Ep such that | f| = 1 is called a loop of I". Any collection
f1. ..., fx € Ep is called a collection of multiple hyperedges of I' if f1 = --- = fi.
For any e = (f,v) € E(I"), a vertex i (¢) := v is called an initial vertex of a pointed
hyperedge e. Put

E,() ={ee E(I')|i(e) = v}.
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Forany e = (f, u) € E(I'), the elements e and f are called an oriented edge and edge
of ', respectively, if | f| = 2. If e € E(I") is an oriented edge, then the complementary
vertex t(e) of e to i(e) is called a terminal vertex of e. In the following, we consider
only those hypergraphs that have neither loops nor multiple hyperedges. Denote the
oriented edge coming from u to vin I by E} (if such an edge exists). In this case, put
e = E7. If any hyperedge of I" is an edge, then I' is called a graph.

Definition 4.2 Let I' be any hypergraph. Denote by G (I") the maximal subgraph of
the hypergraph I'. In particular, the set of all vertices for G(I') is V(I"), and the set
of all edges for G(I") is the set of all edges in the hypergraph I'. Denote by R(I") the
subgraph of T induced on the set E’ of all edges in T" that have empty intersection
with any hyperedge that is not an edge of I'. In particular, V (R(I")) consists of the
boundary vertices of all edges in E’. We call I" an n-regular hypergraph, if for any
vertex v of R(I") one has |E,(G(I"))| = n.

Clearly, R(I") is a subgraph of G(I"). In general, this inclusion is strict.

Example 4.3 Consider the edge graph of the tetrahedron with the set of vertices
V = {1, 2, 3,4}. Remove the edges corresponding to {1, 2}, {2, 3}, {3, 1} and add
the hyperedge {1, 2, 3} to this graph. Denote the obtained hypergraph by I'. Clearly,
V(GT))is{l,2, 3,4}, and the edges of G(I') are {1, 4}, {2, 4}, {3, 4}. However, the
graph R(I") has neither vertices nor edges.

We introduce the notion of a weight hypergraph, motivated by notion of GKM-
hypergraph ([3]) and GKM-graph ([14]), as follows. Let I' be any n-regular
hypergraph. Let o : E(I') — ZF be any map.

Definition 4.4 (cf. [3, 14]) We call « an axial function on T, if the following conditions
hold.
1) a(e) = —al(e) for any edge e € E(G(I));
2) tkZ{a(e): e € E,(I")) =k forany v € V().
We call a pair (I, &) an (n, k)-type weight hypergraph (or a weight hypergraph
for short, if the values of k, n are clear from the context). We call the pair (T, )
a weight graph if T is a graph.
Consider any collectionV = {V,: e € E(R(I"))} of bijectivemaps V. : Ej)(I') —
Ei@e)(T).
Definition 4.5 (cf. [14]) We call V a connection on the weight hypergraph (T, @), if
the following conditions hold for any e € E(R(I")).
1) Vo= (Vo)™
2) Ve(e) =¢;
3) Forany ¢’ € Ej«)(G(I)) there exists an integer c.(e’) € Z such that

a(Vee) —a(e) =cq.(e) - ale). 21
Remark 4.6 A connection V on a weight hypergraph (I", &) consists of the maps V,,

where e exhausts the oriented edges of the graph R(I"). These maps act on the subsets
of oriented edges of the graph G(I").
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To study different connections on a given weight hypergraph, we give the following
definition.

Definition 4.7 Let (I, o) be a weight hypergraph with a connection V. For any edge
e of E(R(T")), we say that (T, ) is definite at an edge e, if the affine lines a(e’) +
R({a(e)) in the affine space A% are mutually different where ¢’ runs over E; ) (I) \ {e}.
Otherwise, we call (I, @) nondefinite at e. When (I, @) is clear from context, we call
e (non-)definite, if (I', o) is (non-)definite at e, respectively. If (I, «) is definite at any
edge of R(I"), then we call (T, ) a definite weight hypergraph.

The notion of definiteness of an edge e is independent of an orientation of e due to
the following simple proposition.

Proposition 4.8 Let (I", o) be a weight hypergraph with a connection V. Let e €
E(R(T")) be an edge of T. If (', @) is definite at e, then (I', @) is definite at e, and
the values of V, are uniquely determined by (', «).

Proof Due to bijectivity of V, and (21), one establishes the equality

{oz(e’) +Ra(e)): €' € Eie)(I), € # e}

= {a(e”) + R{a(e)): " € Ey)(I), &' # E}, (22)

of the sets of lines in the affine space Alﬂ% by letting ¢” = V€', ¢’ € E;()(I'), € #e.
Hence, (', ) is definite at e. The set (22) contains exactly n — 1 elements because
V is definite at e. One has V.e’ = ¢” iff the affine lines in A% corresponding to
¢ € Ej)(I') and " € E;)(I") by (22) coincide. Hence, V, is uniquely determined
by (T, @). o

Definition 4.9 (cf. [14, 24]) A sequence y = (ey, ..., ¢,;) of edges in G(TI') is called
an edge path, if t(ej) = i(e;jy1) forany j = 1,...,r — 1. For any edge path y =
(e1,...,er) in G(I"), the initial and terminal vertices of y are i(y) := i(e;) and
t(y) = t(er), respectively. Let y = (ey, ..., e,) be any edge path in the subgraph
R(I") of the hypergraph I'. Then, the parallel transport map I1,, : E;;) (') —
E;()(I") of the connection V is defined by the formula IT,, (¢) := V., o---0 V. e,
where e is any oriented edge from E;(,)(I"). If i(y) = #(y), then I1, is called the
monodromy map of V along y.

We generalize the notion of a face of a GKM-graph to the case of a nonregular
subgraph in a weight hypergraph in the following two definitions.

Definition 4.10 Let I’ be a connected subgraph of G(I'). Let ¢ € E(G(I")) be any
oriented edge satisfying i(e) € V(I'’). We call e € E(G(T")) an internal (external,
respectively) edge for I in T, if t(e) € V(I'') (z(e) ¢ V(I"), respectively).

In general, an internal edge ¢ € G(I") for I’ may not belong to E (I').
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Fig.1 The internal edge Eé to
I'” does not belong to I'’

Example 4.11 Consider the graph " with the set of vertices {0, 1, 2}, whose edges
are {0, 1}, {1, 2}, {0, 2}. There exists a unique axial function «: E(I') — Z>on T
such that a(E}) = (0, —1), a(E}) = (1, —1), a(E9) = (0, 1). Clearly, there exists a
unique connection V on (T, a). Let I'” be the subgraph of I" with V(I'’) = V(I"), whose
edges are {0, 1}, {1, 2}. Then, the edge Eg is internal for I'". However, E(z) ¢ E().

Definition 4.12 LetI" be a connected n-regular hypergraph endowed with a connection
V. Let IV be any connected subgraph of the graph R(I'). We call I'” an invariant
subgraph of I" with respect to V., if the edge Ve’ € E;()(') is internal for I/, where
e is any edge of I'" and ¢’ € E;(,)(T") is any internal edge for I'"'.

Let us relate the above definitions with the notion from GKM-theory when I' is a
graph.

Definition 4.13 ([8, 14]) The axial function « on I' is called r-independent, if the
vectors a(eyq), ..., a(e;) are linearly independent for any v € V(I') and any different
er,....e, € Ey(I'). A weight graph I" endowed with an axial function o and a
connection V is called a GKM-graph, if « is 2-independent. A connected r-regular
subgraph T’ of the GKM-graph I is called an r-face of T" (or a face), if one has
V.(e") € E(T") forany v € V(I'’) and any ¢, ¢’ € E,(I").

Itis well known that for any GKM-graph (", o) with a 3-independent axial function
there exists no more than one connection V on it (e.g., see [14]).

Remark 4.14 Any face I'” of a GKM-graph (T", @) with a connection V is invariant
under V in sense of Definition 4.12. (We distinguish between the notion of a face of
a GKM-graph [14] and its generalization from Definition 4.12, namely, the notion of
an invariant subgraph in a weight hypergraph.) Let (I, «) be any weight hypergraph.
Let I'" be any connected subgraph of R(T"). It is easy to prove that I'” is invariant
under V iff for any edge e of I'” and any external edge ¢’ € E;()(I") for I'” the edge
Vee' € Eye) (') is external for I'". For any edge path y in any invariant subgraph
I'" of R(I") if an edge e € E;(,)(I") is internal (external, respectively) for I'’, then
IT, (e) is internal (external, respectively) for I'". Let us finally remark that, in general,
an invariant subgraph is not regular. Following the notation of Example 4.11, the
nonregular subgraph I'’ of T is invariant for V, because the set of external edges to I/
in I" is empty, see Fig. 1.
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4.2 Weight Hypergraph of a Complex (C*)¥-Manifold

Let TK ~ (C*) be the algebraic (i.e., noncompact) torus acting effectively by biholo-
morphic maps on a compact connected complex manifold X", where n, k > 0. Denote

by X T the set of fixed points of this action.

Assumption 4.15 The manifold X" has an open cover by its open complex T*-invariant
submanifolds U (x), where x € X Tk. One has U (x)Tk = {x}foranyx € X Tk. For any

xeX Tk, there exists a T¥-equivariant biholomorphism ¢, : U (x) — C". The action
of TX on C" here is induced by a monomorphism ¢: T — T” such that T" is a direct
product of ¢(T¥) and some algebraic torus. The T"-action on C” here is given by the
formula

(tlv ’tn) o (Z19 '°"Zn)=(tlzlv -~-sthn), (tl’ 7tn) € Tnv (Zlv 9211) € (Cn'
(23)

Remark 4.16 Assumption 4.15 implies that the set of fixed points X T is finite and
nonempty, and that the TX-stabilizer of any point x € X is a direct factor of TX, that
is an algebraic subtorus.

The induced representation of T* on the tangent space T, X" at any fixed point
xex™ decomposes into the sum

n
T X" =@ Vw,). (24)
j=1
of characters corresponding to the primitive nonzero elements wi,...,w, €

Hom(T*, T!) ~ ZF. These vectors are called the weights of the T*-action on X
at the fixed point x € X T,

For any x € X™ and any [/ € P(Z¥), let Y = Y(x,1) € X be the connected
component of XX/ such that x € ¥ (notice that there exists a unique Y for any x, /).
The T*-action on X induces the effective action of the algebraic torus T*/ ker [ ~ C*
onY.

Remark 4.17 For any [ € P(Z*) such that [ is not represented by a weight of the
T*-action at x, the set X*°'/ = X T is finite and zero-dimensional.

Forany x € XT let Wj, ..., wj, beall weights of the T*-action at x that are (£1)-
multiples of w for some ¢ = g(x, w) € Z, thatis, wj;, = fw foralli =1,...,q.
For any nonzero element of w € Z* denote the corresponding class in PZ* by [w].
Proposition 4.18 Suppose that Assumption 4.15 holds for the T*-action on X. Then,

forany x € X™ and any nonzero w € ZK, the set Y =Y (x, [w]) has a structure of a
complex T*-invariant closed submanifold of X. One has g = q(x, w) = dim Y and

q
T.Y =P Vw;) c T.X". (25)

r=1
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Proof Forany y € X Tk, the linear subspace (C™")X'* of C” coincides with the linear
subspace ¢y, (Y (x, [w]) NU(y)) (see Assumption 4.15). This implies all statements of
the proposition. O

The following fact is well known.

Proposition 4.19 Any 1-dimensional T*-invariant complex submanifold of X is equiv-
ariantly biholomorphic to the standard C*-action on P having weights k, —k for
some nonzero k € Z.

We assign a weight hypergraph to any effective T*-action on any compact connected
complex manifold X" satisfying Assumption 4.15, as follows. (Compare with [3, 15].)

Construction 4.20 (Weight hypergraph of an algebraic torus action, compare with [3])
Let W C P(ZF) be the (finite by compactness of X) set of all elements represented
by a weight at some T¥-fixed point of the T*-action on X. Put

Ve=x" E={ree, ™| x e x™, 1 e W},

Here we regard E as a finite multiset (due to compactness of X). Notice that
I' := (V, E) is a connected hypergraph. Denote the submanifold ¥ = Y(x,[) of
X corresponding to a hyperedge e € E(I') by Y(e) for any e € E(I"). For any
e € E(I'), let a(e) be any weight of the corresponding TX-action on Y (¢) at the fixed
point i (e) (in general, «(e) is defined up to sign). Notice that « is an axial function
on I'. We call (', @) the ((n, k)-type) weight hypergraph (', «) associated with the
action of T¥ on X"

In the following, we consider only the class of TX-actions such that the associated
hypergraphs have neither loops, nor multiple hyperedges. This implies that for any
associated hypergraph (I", E) the multiset E is a set.

Remark 4.21 Lete € E(I") be a hyperedge of the associated weight hypergraph (I, «)
of the T¥-action on X. If ¢ is an edge (thatis,dim Y (¢) = 1) of I, then e (e) is uniquely
defined by the T¥-action on X. In general, «(e) is defined for the T-action on X only
up to a sign.

We define the connection on the weight hypergraph (', &) associated with the
T*-action on X by following the construction from [14], as follows.

Construction 4.22 (Connection on a weight hypergraph of an algebraic torus action)
Lete € E(R(I")) be any edge. Consider any TK-invariant rational curve Y of X with
different fixed points x, y € Y. Let E,(I') = {e], ..., e,}and E,(T') = {e],... €, }.
Let a(e;.) = w;, a(e;’) = w}’ € ZF be the weights of the T*-action on X at fixed
points x, y, respectively, where j = 1,...,n. Any complex vector bundle over Y
splits equivariantly into the direct sum

(Tx"ly =EPs.

j=1
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of T*-equivariant complex line bundles & j over Y. Hence, there exist permutations
o,tof {1,2,...,n}such that (§;), = V(w;(j)), Ej)y = V(w’r’(j)). We put Vee’j =
e/r/,lw(j) forany j =1, ..., n. One can check that the collection V,, e € E(R(I")) is

a connection on the weight hypergraph (T, «).

Remark 4.23 In general, a connection on a weight graph, associated with a torus action
on a complex manifold, is not unique, because there is freedom in choosing the permu-
tations o, T from Construction 4.22, see Example 5.10 below. However, if an associated
weight graph is definite, then it uniquely determines a connection on it.

4.3 GKM-Graph of a Nonsingular Projective Toric Variety

Let X" be a nonsingular projective toric variety of dimensionn > 3. The weight graph
(I", @) and the connection V associated with the natural T"-action on X" coincide with
the associated GKM-graph (with the natural connection) which is given as follows [14].
The graph I' is the edge graph of the simple moment polytope P" C R”" of X", where
R" = 7" ®7R (see [8]). For any edge e of I, the vector a(e¢) € Z" C R”" is emanating
from i(e) to t(e) being parallel to the corresponding edge of the polytope P”. The
axial function « is n-independent, because P” is a simple polytope. Hence the weight
graph (I", o) admits a unique connection.

The faces of the graph I' with the connection V are described by the following
lemma.

Lemma4.24 [8, Lemma 7.9.7, p.306] For any v € V(I'), any integer k > 0 and any

distinct elements ey, . .., ey € Ey(I") there exists a unique k-face G of T containing
el, ..., ek Inparticular, G is the edge graph of a polytopal face of the moment polytope
of X"

It is straight-forward to deduce the following lemma from convexity of faces for
the moment polytope P.

Lemma4.25 Let G C P be a face of the moment polytope P of X". Ifu,v € V(G)
are connected by an edge e of the polytope P, then e C G. In particular, for any two
faces F|, Fp of the edge graph T of P" if V(F1) = V(F,) then F| = F}.

Proposition 4.26 Let I be any face of the GKM-graph T of X". Let y be any edge
path in T'. Then, one has

My (Ei) (D) \ Eigh(T)) = Ei))(T) \ Ern(T). (26)

Ifi(y) = t(y), then the well defined (by (26)) restriction of the monodromy map I1,
10 Ei()() \ Ej,)(I'') is the identity map.

Proof By Lemma 4.24, for any e € E(I") there exists a unique (n — 1)-face I'(e) of I"
such that i(e) € V(I'(e)) and e ¢ E(I'(e)). Let e € Ej(;,)(I")\Ei()(I""). Then, there
exists a unique edge ¢’ € E;,)(I')\E;(;)(I'") such that I'(e) = I'(e’). We conclude
that IT, (¢) = ¢/, because I'(e) is invariant. In particular, if i (y) = 1(y), then ¢’ = e.
This completes the proof of the proposition. O
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Let ¢: T — T" be any monomorphism of tori. Suppose that Assumption 4.15
holds for the induced T*-action on the toric variety X”. Then, the weight hypergraph
(I, &) associated with this T*-action on X is well defined.

Remark 4.27 Any T"-invariant submanifold of X” is T*-invariant. The opposite is
false. For example, the Milnor hypersurface H; ; is invariant under the restriction of
the action of the respective algebraic subtorus T™ {7/} in TV x T/. However, for any
integers i, j > 1 the hypersurface H; ; is not invariant under the natural (T% x T)-
action on P! x P/, see (11).

Proposition 4.28 Letk > 2. Then, one has X ™ x Tk, and any T"-invariant rational
irreducible curve of X is T*-invariant. In particular, one has E,(I'") = E,(T) for
any vertex v of R(I").

Proof The inclusion XT" cX T holds, because any T"-invariant submanifold of X"

is TX-invariant. To prove the first claim, it remains to note that the integers | X ™ 1x T |
are equal to the Euler characteristic of X" (see [16]). Let p: Z" — Z* be the homo-
morphism of character lattices corresponding to the monomorphism ¢ of tori. Let
v =x € V(R(I)). Any T"-invariant irreducible rational curve of X has the form
Y (x, [w]) for some weight w € Z" atx € X Let Y (x, [w]) be such a curve. Clearly,
Y (x, [w]) is T*-invariant. Hence, Y(x,[w]) C Y(x,[p(w)]), where Y (x, [p(w)]) is
the TX-invariant submanifold of X. The submanifold ¥ (x, [ p(w)]) is a rational irre-
ducible curve, because v € V(R(I'")). Hence, Y (x, [w]) = Y (x, [p(w)]). This proves
the second claim of the proposition. O

5 Algebraic Torus Actions on BR; j, R; j, and Proofs of Theorems 1.2,
1.3

Throughout this section we refer to some auxiliary results from Appendix A.

5.1 Generalized Buchstaber-Ray Hypersurface BR;

Let us start by recalling the description of T"-fixed points in the bounded flag manifold
BF,.Foranyk =0,...,nandany u = (u1, ..., up) eIE‘g put

ai(u) = max({O} U {r ef{l,....k}:u, = 1})

For any k = 1,...,n let by(u) be a unique integer such that {a;(u), b ()} =
{ax—1(w), k} holds. Let

Cg = ((Cal(g)v ce »(Can(g)) € BF;,

where C; is the line spanned by j-th vector of the standard basis in crtlj=0,...,n
(see Sect. 3.1). The following two lemmas are straight-forward to prove.
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Lemma 5.1 For any u € I} and any integer k = 0, . .., n one has the identity

{b1@),....bk(w), ar(w} =1{0,1,... k}.

Lemma5.2 ([6, 8]) One has (BF,)™" = {C,|u € F4}.

Forany u € 5 let U, := {lx # Cy |l k =1, ..., n}. Clearly, U, = {2k aqp) #
0] K = 1,...,n} is an affine subvariety of BF,, where (zo, ..., z,) is the tuple of
homogeneous coordinates on BF, (see Sect. 3.1). Hence, U, is T"-invariant with
respect to the action (15) for any u € IF}. It is easy to deduce the following lemma by
the induction on n > 0 from the equations (14).

Lemma5.3 For any u € I}, the invariant affine subvariety U, of the toric variety
BF, is equivariantly isomorphic to C" with the T"-action (23) under the following
isomorphism

21 Zn.b,
Us— C" (zor s 20) 1> ( 10 n.b <u>)_

AU
<1,a; () Zn,an (w)

Recall that the projective space IP" is covered by its open subvarieties Uy, := {wy #
0}, k=0,...,n, where [wg : --- : wy,] € P". These subvarieties are invariant under
the standard T"-action (10) on P". Any (C*)"-invariant irreducible rational curve of
P has the form P! (k, ¢) = {C(rex+pey) e PP [A:pu] € P!}, wherek, g =0, ...,n
are any integers such that k # g. For any vectors u, v € F; and any [A : u] € P!, let

AC, + uC,y = ((C()»eal(w + uea @), - - - Clrheq,w) + uean@)) € BF,.

Under the action (15) any (C*)"-invariant irreducible rational curve of BF,, has the
form

P'(u, q) := {ACu + uCus1,| [2: ul € P'},

where g = 1,...,n and u € I are arbitrary. Here 1, € [} has all zero coordinates
besides g-th coordinate that is equal to 1. The following proposition is easily deduced
from Lemma 5.3.

Proposition 5.4 For any u € ), the weights of the (C*)"-action (15) on BF,, at the
fixed point C, are €b, (w) — €a, ), Where q runs over {1, ..., n}

For any integers i, j > 0 such thati > j, the hypersurface BR; ; is an invariant
subvariety of BF; x [P/ with respect to the action of the algebraic subtorus

{(m,...,n), i jtih oo ity D) (0, 1) € T"}, 27)

in TY x T/. This torus acts on BF; x P/ by the formula
(tr, .. ti)o(zi,w) = ([zio s hizin s oo 4zl
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[t;lj wo r;_ljﬂwl cetTwi D, (.., 1) € T (28)

It follows that the open covering of BR; ; by the open T -invariant subvarieties (Uy x
U )NBR; j,whereu € Fi.k=0,..., Jj are any elements such that a; (u) # k+i —j,
satisfies the Assumption 4.15. Hence, the fixed point set of the T’ -action (28) on B R;
is the subset of fixed points of the toric variety BF; x IP/. It can easily be checked
that BRT] consists of the points x, x := (C,, Cy) € BR; j forany u € IF’ and any
k=0,...,Jjsuchthata;(u) # k + (i — j) holds.

Recall that two polytopes P C R"!, Q C R"2 of the same dimension are combina-
torially equivalent if there is a bijection between their faces preserving the inclusion
relation [8, p.2]. Combinatorial equivalence is clearly an equivalence relation.

Denote the combinatorial equivalence class of the standard simplex {(x1, ..., x,) €
R”: Z/ (Xj=1;x; >0, j=1,...,n}in R" by A". Let I" = (A')" be the
Cartesian product of n copies of Al

Proposition 5.5 (i) For any integersi, j > 0 such thati < j the variety BR; j isa
projective toric variety which is an algebraic P/~ '-bundle over BF;. Its moment
polytope is combinatorially equivalent to I' x AJ71;

(ii) For any integer n > 0, the variety BR,4+1,0 == BF, is a projective toric variety
whose moment polytope is combinatorially equivalent to I". In particular, BR, 11 o
is a Bott tower;

(iii) For any integer n > 2, the variety BRy 1 is a projective toric variety whose
moment polytope is combinatorially equivalent to the truncation of I" at its face
1"72 (see [8]).

Proof For the proof of (i), see [6] or [8, p.350]. The claim (ii) follows from the
Definition 3.2. By Theorem A 4, the variety BR,, | is the blow-up of BF,,_1 x P! along
the zero locus {z,—1,,—1 = w1 = 0}, which is invariant under the action (28) and is
isomorphic to B F;,,_;. Hence, the blow-up BR,,,| — BF,_1 X Plis T"-equivariant.
In particular, BR, | is a projective toric variety and the respective moment polytope
is obtained by the truncation indicated above. O

Notice that the fan of any projective nonsingular toric variety is the normal fan of
the respective moment polytope.

Remark5 6 By Proposition A.1 (iii), the blow-up BRy | — H2 1 18 Tz—equlvarlant
where H2 1 =PODHC) — P! is a toric surface. By Theorem A .4, the blow-up
BRy 1 — P! x P! is also T2- -equivariant. The two T2-actions on BR» 1 obtained in
this way coincide. Let ¥ be the fan in R? corresponding to the toric variety B Ry ;.
It is easy to show that the generators of the one-dimensional cones from X are the
columns of the following matrix

1-10 0 —1
001-11)"
For any integerq = 1,...,i andany u € IF’Z denote by b(q) = b(u, q) the vector
€b,(uw) — Cayw) € Z!. For any integers k,r = 0,...,j and any u € Fé denote by

@ Springer



Cohomology Rings and Algebraic Torus Actions on Hypersurfaces... 125

b'(r) = b'(k,r) the vector exti—j — e,+j—; € Z'. It is easy to prove the following
two propositions.

Proposition 5.7 Let i, j > 0 be any integers such that i > j. Then, for any u € F’z
andanyk =0, ..., j such that a;(u) # k + (i — j) the weights of the T"-action (28)
on BR; j at the fixed point x, i are the elements of the multiset

bw.g)|g=1,....i} u{b'k,r)|r=0,....7, r #k}\{erri-j) — eaw}-
(29)

Remark 5.8 If a;(u) < k + (i — j), then b(k + (i — j)) = exti—j) — €qw- If
ai(w) > k+ (i — j), then b'(r) = ex4(i—j) — €q;(w)> Where r = a; (u) — (i — j). This
justifies the exclusion in (29).

Proposition 5.9 Letu € Fi, k =0, ..., j be any elements such that a; (u) # k + (i —
7). Then, the multiset of collections of pairwise proportional weights of the T' -action
(28) on BR; j at x, x consists of the multiset of the (unordered) pairs b(q), b'(r) of
weights, whereq = 1, ...,iandr =0, ..., j are any integers satisfying the following
conditions

{ag), by} =tk + G —j),r+ G — D #{k+ G —j) ai@}

The T! -invariant subvariety Y = Y (xy.x, [b(q@)]) of BR; j corresponding to the weight
b(q) € Z! (see Sect.4) is P'(u, q) x P (k+ (i — j),r 4+ (i — j)) € BF; x P/. One

"Jrl
has Y™ = {Xuk, Xu+1,hk> Xurs Xutl,,r}-

The following example shows that the 4-dimensional variety BRj3 > has a fixed
point of the T3-action (28) whose weights are linearly dependent.

Example 5.10 The weights of the T3-action (28) on BR3 at the fixed points x111,0,
X111,1, X101,0, X101,1 are the respective collections of vectors in 73 given as follows.

-{1,-1,0),(-1,0,0), (1, -1,0), (0, 1, —=1);
-(=1,0,0),(1,-1,0), (0,1, -1), (1,1, 0);
- (1,-1,0),(-1,0,0), (-1,1,0), (1,0, —1);
- (-=1,0,0), (-1,1,0), (1,0, -1), (=1, 1, 0).

For any integers i, j > 0 such thati > j,_let (T',a) = ('(BR;,j), a(BR; j)) be
the weight hypergraph associated with the T*-action (28) on BR; ; (notice that the
Assumption 4.15 is satisfied for such an action).

Proposition 5.11 Let i, j > 0 be any integers such thati > j. Letk = 0,..., j and
u € I be arbitrary. Then,

(i) Foranyintegerp =0, ..., jsatisfying p # a;i(u)—({—j), k, the hypergraphT"
has a pointed hyperedge E such that x, i, Xy,p € E and a(E) = Z(ex4i—j) —
ep+i—j)
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(ii) Foranyintegerq =1, ...,1 satisfying a;(u+14) # k+ (i — j), the hypergraph
I" has a pointed hyperedge E suchthat x,, Xu+1,.k € Eanda(E) = :I:(ebq(ﬂ)—
€ayw);

(iii) If there exist integersr = 1,...,iands = 0, ..., j satisfying a;(u + 1,) =
k+ ({ — j)and aj(u) = s + (i — j), then the hypergraph T has a pointed
hyperedge E such that xy i, Xy+1,.s € E and a(E) = £(exi—j) — €q;w))-

Proof 1t is not hard to prove that any of the following irreducible rational curves

(Cu, ClA - e + - ep))‘ [A:p]eP! } w = E(ekti—j) — epti—j))

(A “Cu+ - Cyyay, C(ek))‘ [A:u]e IP’I}, w = E(ep, ) — €a,w)>

(A Cu4 - Cuq1,. Clu - egqi—j) — A~ €k+(ij)>)‘ [A:ule Pl}, w
= F(€r+i-j) — Caw):

of BR; j is invariant under the induced effective action of the one-dimensional alge-
braic torus C? / ker w from the Ti-action (28) on B R;. ;. For any of these curves, the
corresponding weight w € Z! given above is determined up to multiplication by —1.
This completes the proof. O

One can obtain the hypergraph I'(BR; ;) from Propositions 5.9 and 5.11. The
axial function o(BR; ;) can be computed from Propositions 5.7 and 5.11. Let V be
a connection on (I'(BR; ), a(BR; ;)) associated with the action (28). We compute
the values of V that are necessary for the proof of Theorem 1.2 in the following
proposition.

Proposition 5.12 Let i, j be any integers such that 0 < j < i. Letu € IF‘ be any
vector such that a;(u) < i — j holds. Then, for any integers k,r = O cn ] sattsjj)zng
k # r, the hypergraph T has the definite oriented edge E = E The connection V
is well defined at E € E(R(T")), and one has the following ldentmes

u+lg.k u+l,.r u,r u.k
VEE*k = Eu o VEEM k =E, ", VEEQ,k =E,,,
u+1 _ i,k u+1 _,r
VEEE‘]( r+(i—j) — Eir k+@i—j) ,
where a = 0,...,j and g = 1,...,i are any integers such that a # k,r and

qFk+G—j)r+G—).

Proof By Proposition 5.9, the collection of weights at x, ¢, as well as at x,, ,, is 2-
independent, because a; (#) < i — j. Hence, by Proposition 5.11, there exists the edge
E = Ei,: in the hypergraph I". By Proposition 5.7 this edge is definite and belongs
to the graph R(I"). To prove the identities from the claim of the proposition, we
compute the congruences modulo a(E) = ex4(i—j) — er+(—j) between the weights
(in particular, vectors in Z') in Fig.2. During the computation we use the identity
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ur
Ei,k' mod ek+(i_]-) - er+(i—j)
u,a u,a
Ek Ct(i—j) ~Ca+(i-j) | er+(i-j) ~€a+(i-j) | Bur a#kr
ut+lgk u+lg,r P P
E%k Chq(w) ~ Cag(w Chq(w) ~ Cag(w Eﬂ,r qEk+—-j),r+@i-j)
uwr uk
wk Ck+(i—j) ~Cr+(i-j) | €r+(i-j) ~Ck+i-j) | Eur
Urlyy - j)k Utljep (i j) T
Wk eri(i—j) ~ €a;(w €t (i—) ~ Ca;(w) Eur

Fig.2 Congruences of weights for I'(BR; ;). The values of o on the edges from the columns 1, 4 are given
in the columns 2, 3 rowwise, respectively. The conditions for the integers a, ¢ are given in the column 5

byy(i—j)(u) = g+ (i — j) forany integerq = 0, ..., j which holds, because a; (1) <
i—J. O

Proof of Theorem 1.2 For any integers i, j > 0 which do not satisfy i > j > 2,
the claim of the theorem follows from Proposition 5.5. Let i, j > O be any inte-
gers such that i > j > 2. Suppose that BR; ; is a toric variety. The idea of the
following argument is to find an invariant 2-face in I' with a nontrivial action of the
monodromy map along it on the external edges. By Proposition 5.12, for any integer
k =0,...,j — 2 the vertex xox of I" belongs to V(R(I")). Hence, the edge path
Yk = (Eg:llfrl, Egllzif, E8:],§+2) belongs to R(I") for any integer k = 0, ..., j — 2.
This implies that the monodromy map IT,, is well defined forany k =0, ..., j — 2.
By Proposition 5.12, the subgraph yy is a 2-face of I" for any integer k =0, ..., j —2.
By Proposition 5.12, we compute IT,, E(])k,: L=k with respect to the connection V
as follows:

Lit1+G—j) -k Liti—jy k+1 Liti—j) k42 Lito+ii—j) .k
Eo i = E kg = Eg ki = Eg g :

Hence,
Leviri—p-k _ plevara—ipok .
I, Ey ) =E) ,k=0,...,j—2. (30)

It follows from the assumption and Corollary 2.4 that there exists the extension of
the T'-action (28) on BR;, j to the toric action with the GKM-graph (I, «) with the
connection V’. By Proposition 4.28, yy is the subgraph of I'' forany k =0, ..., j —2.
Since the edges of y; are definite in (I, @), one has V|,, = V’|,,. In particular, (30)
holds with respect to V’. However, this contradicts Proposition 4.26. The proof is
complete. O

5.2 Ray Hypersurface R;

In this paragraph we use the notation introduced in §5.1. For any integers i, j such that
0 < j < i, the hypersurface R; ; is an invariant subvariety of B F; x B F; with respect
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to the action of the algebraic subtorus (27) in T¢ x T/. This torus acts on BF; x BF i
by the formula

(t1, ..., 1) o (zi, wy)
~1 ~1 ~1
=(zio:tzin sz [ wi0 7wy oot wj ),
(t,....1;) € T (31)

It follows that the open covering of R; ; by the open T -invariant subvarieties (Uy x
Uy)NR; j,whereu € [, v € F/ are any elements such that a; (1) # aj)+ 3 —j),
satisfies the Assumption 4.15. Hence, the fixed point set of the T'-action (31) on
R;,j is the subset of (BF; x BF j)Tl *T/ 1t can easily be checked that RR consists

of the points x, , = (C,,C,) € R;; forany u € ]F’2 and any v € IF% such that
ai(u) #aj) + @G —j).

Corollary 5.13 Let n > 0 be any integer.

(i) The variety Ro n+1 is a projective toric variety whose moment polytope is com-
binatorially equivalent to 1". In particular, Ry 41 is a Bott tower;
(ii) The variety R, is a projective toric variety whose moment polytope is combi-
natorially equivalent to the truncation cut;u— I of I" at its face 1"~2;
(iii) The variety Rj 7 is a projective toric variety whose moment polytope is combi-
natorially equivalent to the truncation cut 1 I3 of I? at its edge.

Proof Parts (i) and (ii) follow from Proposition 5.5, because Ro,+1 = BRo.n+1,
Ry, = BRy . Now we prove part (iii). By Theorem A.10 (ii), there is the algebraic
Ri>-bundle Ry» — P!. This algebraic fiber bundle is represented as the fibered
product Ry» = E X2 Rip — P! for some principal algebraic T2-bundle E over
P!. The equivariant blow-up R; 2> — BR;» from Remark 5.6, where we identify
R12 >~ BR3,1, induces the ']I‘3-equivariant morphism

R2,2 = F X2 R1,2 E X2 BR],Z = BRQ’Z

N

by acting on the fibers. The fan of the toric P!-bundle BRy> — BF> is the normal
fan of the polytope in R combinatorially equivalent to the cube /3. The columns of
the following matrix:

1-10 000
011-100 ],
0-2011-1

are the generators of the one-dimensional cones for its fan, see [23]. Hence, the fan
of Ry is the normal fan of the polytope in R? combinatorially equivalent to edge
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truncation cut;1 I° of the cube 3. The columns of the following matrix:

1-10 000 O
011-100 -1},
0-2011-10

are the generators of the one-dimensional cones for its fan. We remark that the last
column in the above matrix corresponds to the truncation facet. This completes the
proof. O

Remark 5.14 The fan of the toric R >-bundle R 3 — P! is obtained from the fan of
the toric P2-bundle BR; 3 — P! in a similar way as in the proof of Corollary 5.13.
The corresponding map of fibers is the composition of the T2-equivariant blow-up
Ry 2 — BRj > from Remark 5.6 and the ']I‘2—equivariant blow-up BR» — P2 at any
fixed point. Hence, the columns of the following matrix:

1-10 000 O
011-100 -1},
00001-11

are the generators of the one-dimensional cones for the fan of Ry 3. We remark that
the last column in the above matrix corresponds to the truncation facet of cut;1 I3,

For any integer ¢ = 1,...,7 and any u € IF’2 denote by r(q) = r(u, g) the
Vector ep, () — €a,w) € Z!. For any integer s = 1,...,j and any v € Fé denote
by r'(s) = r'(v, s) the vector e, (v)+i—j — €p,w)+i—j € Z'. It is easy to prove the
following two propositions.

Proposition 5.15 Let i, j > 0 be any integers such that i = j. Then, for any u € [
and any v € I/ such that a;(u) # a;(v) + (i — j), the weights of the T'-action (31)
on R; ;j at the fixed point x, , are the elements of the following multiset:

{ru, q)| g=1,....i}u{r'(, s)| s=1,...,j}\ {eaj(g)+(i—j) — eqw |-
(32)

Remark 5.16 1f a; (u) < aj() + (@ — j), thenr(qg) = €a;()+(i—j) — €a;(u)» where
g=a;j@+ - j)lfa@ >a;j@ + @~ j), thenr'(s) = eq;w)+i—j) — €arw)>
where s = a; (u) — (i — j). This justifies the exclusion in (32).

Proposition 5.17 Let i, j > O be any integers such thati > j. Letu € F', v € F/
be any vectors satisfying a;(u) # a;j(v) + (i — j). Then, the multiset of collections
of pairwise proportional weights of the T' -action (31) on R;.j at x, y consists of the
(unordered) pairs r(q), r'(s) of weights, where ¢ = 1,...,iands = 1, ..., j are
any integers satisfying the following conditions:
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{ag), by} = {as(W) + (@ — j). bs@) + (0 — )} #{a; @) + ( — j), ai (W)}
(33)

The T -invariant subvariety Y =Y (Xu,v, [r(@)]) of R; j corresponding to the weight
r(q) € Z! (see Sect.4) is P'(u,q) x P'(v,s) € BF; x BF;. One has YT =
Xuws Xut1g,00 Xuv+1ys Xutiy,v+14}-

For any integers i, j > 0 such that i > j, let (', ) = (I'(R; ), a(R; ;) be
the weight hypergraph associated with the T*-action (31) on R; ; (notice that the
Assumption 4.15 is satisfied for such an action).

Corollary 5.18 Let i, j be any integers such that i > j > 2. Then, xi,_,1;,
X1 1415 X110 € V(R(D)).

Proof Let u = 1,_1,v = 1;. To prove the first claim of the corollary it is enough
to check that the condition (33) fails for x, ,. Following the notation introduced in
Proposition 5.17,if ¢ < i — 1, then a,(u) = 0 < i — j, so (33) does not hold. If
q =i—1,thenby;(u) = b;—1(w) =0 < i — j, so the condition (33) is not satisfied.
If g =i, then

{aqg), bgW)} = {ai ), biw)} = {i, i — 1} ={a;®) + ( — j), ai(w)}.

Hence, the condition (33) is not satisfied in this case, as well. The proof of the second
claim from the corollary is obtained by substituting 1; 1, 1;_; + 1; for u, v in the
above proof, respectively. Now letu = 1;_1,v=0.1f g <i — 1, thenay(1;-1) =0,
and (33) fails. If ¢ =i — 1, then b;_1(1;-1) = 0, and (33) fails. Let ¢ = i, so that
{ag(w),by(w)} = {i — 1,i}. Then, forany s = 1,..., j, one has a;(0) +i — j =
i —j <i—1,and (33) fails. The proof is complete. O

Proposition 5.19 Let i, j > O be any integers such thati > j. Letu € F’z v e ]Fé be
any elements. Then,

(i) For any integer p = 0,...,1 satisfying a;(u + 1,) # a;j@) + (i — j), the
hypergraph ' has a pointed hyperedge E such that xy v, Xy+1,v € E, and
a(E) = E(ep,w) — €a,w);

(ii) For any integer q = 0, ..., j satisfying a;(u) # aj(v + 1y) + (i — j), the
hypergraph T" has a pointed hyperedge E such that xy y, Xy v+1, € E, and
a(E) = £(eq,)+i—j) = €by@+i—)s

(iii) If there exist integersr = 1,...,i ands = 1,..., j satisfying a;(u + 1,) =
aj() + (@ — j) and a;(w) = aj(w + 1) + (i — j), then the hypergraph
I’ has a pointed hyperedge E such that x, v, Xy+1, v+1, € E, and a(E) =
E(€a;@+i-j) ~ €aiw)-

Proof 1t is easy to prove that any of the following irreducible rational curves:

{()“(Cz"‘l"(cl,wcg)

A:pleP! } w = £(eh,w) — €ayw)-
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Fig.3 Weight hypergraph of
Ry ». Black edges and grey
hyperedges

{(ccﬁ,x.cgw.cclq)

[ : ul e P! } W = £(€a, () +i—j) ~ €by@+i—)))»

{(»(‘CNM-CML_,M.CWA_ —3-Cy)

[:p) e P! } w = £(€q;)+G—j) — €a;w))>

of R; ; is invariant under the induced effective action of the one-dimensional alge-
braic torus C!/ker w from the T’-action (31) on R; j. For any of these curves, the
corresponding weight w € Z' given above is determined up to multiplication by —1.
This completes the proof. O

Remark 5.20 The condition from the third case of Proposition 5.19 holds iff the
numbers a; (1), aj(v) + (i — j) belong to the images of the functions f(r)
aj(w+1,) + @G — j), g(s) := a;(u + 1), where r runs over {1, ..., i} and s runs
over {1, ..., j}, respectively. If this condition holds, then the number of the weights
from first two cases in Proposition 5.19 is equal to i 4+ j — 2, otherwise this number
isequaltoi 4+ j — 1.

One can obtain the hypergraph I'(R; ;) from Propositions 5.17 and 5.19. The axial
function «(R; ;) can be computed from Propositions 5.15 and 5.19. Let V be a con-
nection on (I'(R; ), a(R; ;) associated the action (31). In the following proposition,
we compute the values of V that are necessary for the proof of Theorem 1.3 (Fig. 3).

Proposition 5.21 Let i, j > 0 be any integers such thati > j > 2 holds. Then, the

ST S TS R P P
graphR(l")hasthedeﬁmteorzentededgesEo’lj,EOfO' ’El,«,l,o 7E1;,11,1;l !, and

the following identities hold.

0,1,+1; 0.1
q r s1r
(’)VEE01 = Eoo ) VEEOI =Ey

0 _ 70 i-jslj _ 01,0
VEEo,lj = Eo,o ’ VEEo,lj =Egp

whereq = 1,...,iandr = 1,..., j are any integers such thatq #i — j,i, r # j,
0,0
and E = Eo,lj"

1110 0,0

1+ 0,1, z 17 l ls 5
(i) VEEOO = E s VEE o =E; " o+ VEE)y = =E|" o

0,11 ,]+1110

1i-1,0

]laO i—1+1;,0

VEE 1i-1,0 ’

=E, » VEE E
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whereq = 1,...,iandr = 1,..., j are any integers such thatq =i — j,i — 1,1,

r;éj—landE EO’IO,

11 1,0 lq"l‘li 1,1

—1,1; 1,-4,1 lioq, 1+1;5
J i—lsir t r J
lio1; VEE, E

Li-1,0 = Loy ’

Ol.f tl+1 ,0 tllj 1+1
VEE 10— 1,1j’VE —El11 ,

(iii) VEE1 at =FE

s 1;—1,0
VEE’ : ’ =E"",
1171,1/

where ¢ = 1,...,i andr = 1,..., ] are any integers such that q # i — 1,i;
. . li—1,1;
r#j—1,j,and E = El[_]l,oj;

+1i-1,1

(iv) VEElq -1l E1q+1i—lvlj—l+1j 11+l Lo, L1415
Li—1,1; -

Li1,1j—1+1; ’ EEI —1,1; T Tl o+l ’
0’]_/—1+1j
Li—1,1j—1+1;°

VEE! | = E
J

1;,-1,0 Li—1+1;,15

Lici, o +1; li—1,1; ,
VEE vEEli—lvlj - Eli—l-,lj—l“‘lj’

1,1
Li—1,1; — Tliog i+l

where ¢ = 1,...,i andr = 1,...,j are any integers such that ¢ # i — 1,i;

o1+
r#j—l,j,andE:El'lll’ 1+l

Proof Notice that the edge E from any of the four cases from the proposition has vertex
Xy,y for some u, v such that q; (u) < i — j. By Proposition 5.15, 2-linear independence
of weights now follows from definiteness of E. To prove the identities from the claim
of the proposition we deduce the congruences between the weights of (I', &) given in
Fig.4. (Here we follow the notation introduced in the proof of Proposition 5.12). O

Proof of Theorem 1.3 For any integers i, j > 0 such that min{i, j} =0,lori = j =
2, the claim of the theorem holds by Corollary 5.13. Let i, j > 0 be any integers
that satisfy neither of these conditions. Without loss of generality, we prove the claim
for the case i > j > 2 only, because R; ; ~ R; ;. Suppose that R; ; is a toric
variety. The idea of the following argument is to find a 3-face in I" with nontrivial
action of the monodromy map on the external edges to G along some loops in G.
By Proposition 5.17, for any v € IF% the vertex xg , belongs to V(R(I")), because
a4(0) =0 <i— jholdsforanyq =1, ...,i. Hence, one has X0,1;,X0,0 € V(R(T)).
By Corollary 5.18, one has X115 X1y, 14155 X140 € V(R(T")). We conclude
that the connection V on (F «) is well defined along the edges of the edge path
y = (E01 , 0‘01’0, Elll vl ’) as well as along the oriented edge E;; it 1’ U of
G@T).

It follows from the assumption and Corollary 2.4 that there exists an extension
of the T’-action (31) on R; ; to a toric action with the GKM-graph (F’ "y and the

1 1+1;
connection V'. Let v be any vertex of y or of the oriented edge E; .~ e . H . By
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Eg:?j , mode;—e;_;
1g,1; 14,0
a7 q . e
Fo1; €q €q Boo | 47i-J1
. 0,lr+l‘ 0,1
i J Lo . .o . r i
] Eo,lj ej—j=er+(i-j) | €i-j—er+i-j | Eg r#j
0,0 e e 0.1
E01 €i—€i-j €i-j~€i Eoo
1,-,-,1- 1;,0
A L. . i
EO,lj €i-j € Ego
1;21,0
Eo,lo , mode;_y
14,0 14+1;-1,0 ... .
EO% eq eq El?%j) q#i—j,i—1,i
0,1 1‘_1,1r .
| Eoo ei—j=ervii-j) | €i-j~er+i-j | i |0 r#j-1
(i1
1;21,0 0,0
E(),() €i-1 —€i-1 E1[71,0
Ol] 1 o o li—j+1i—1'0
0,0 €i-j~¢€i-1 €i-j 1;_1,0
ll‘,O . . . 1i—1+1iv0
EO,0 e; ei—ej_1 E1i71,0
L1l
Eli,l,o , mode;_;j—e;
1g+1;_1,0 1o+l 11;
qTli-1 qrri-Dtj c 1.
Eli—1,0 eq eq 11,1 q#i-1,i
1, 1,1p+1;
i-1lr . . . . =Ly i i
Elz L0 €i—j=Cr+(i-j) €i—j = Cr+(i—j) 11,15 r#zj-1,j
(iii) o1
0,0 ) . 1y
Ell 1,0 —€j-1 €i-1 Eli—lvlj
1;-1+1;,0 . . Li-plj-1+lj
Eli—lvo €j—ej-1 €i—j—e€i-1 Lol
Li—1,1j 1;21,0
Eli-1,0 eji_j—ej ej—ej_j Eli—lvlj
1i—1’1j—1+1j
Y , mode;_j—e;j1
1g+1;_1,1; 1g+1;_1,1;_1+1;
qrii-Dtj grli-Llj-171j . .
E e e i—1,i
Li—1,1; q q Liop1j+1; q# )
1i,1,1r+1j 1l',1,1r+1j,1+1j . 3
€j_j—ery(i—j ej_ji—ery(i—j rZj-1,j
X 1;,.1,1; i—j r+(i—j) i—j r+(i—j) 1, 1,1 1+1; ’
(iv) Oll1 ! Olll ]11 !
oL i1+
1: ! 1; —€i-1 —€i-1 El. ! 1; j+1
i-1j - j-17g
ll'fl'lj*1+1j ll 1,1]
By ¢i-j = €i-1 Ci-1=Ci-j URRYRES
1;.1,0 Lioi+1Lj
ej—ej_i e;—ej_ E
111 | T vi-1 11,1 1+1;

Fig.4 Congruences of weights for I'(R; ;) in four tables. The values of & on the edges from the columns
1, 4 are given in the columns 2, 3 rowwise, respectively. The conditions for the integers r, g are given in

the column 5
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Fig.5 Subgraph of the weight xli—l)lj—l"'lj X1 1,15 X1;.1,0
hypergraph I' = T'(R; ;) for
i>j>2 ®
Y
xO,lj
xO,lj_1+lj X0,0
[
X1 1

il

Proposition 4.28, one has E,(I'") = E,(T"). In particular, y is a subgraph of I'". By
Proposition 5.21, the subgraph y is invariant in F The connections V, V' coincide
il ’ IH of G(I') due to definiteness
of V at these edges. By Lemma 4.24, there ex1sts a umque 3- face G of T/ with respect

. 1i— sl j ]1 5
to V'’ such that G contains the edges Eg? Eo’l? ! Ey. 1’ L . In particular, y C G

and E0 1’ 1+ ¢ G.By Lemma 4.25, this implies that the vertex xo,1,_,+1; of r’
does not belong to G. On the other hand, by Proposition 5.21, the edges

along the edges of y as well as along the edge E .

I EO’ il =V i1, V10V ooEO' il =V i1V 1,10E0

Eyi 1o 0.0 Ey 1o Eoo
_ Lioi+1;,0 Lo 11+
- VE:f*;’;f Eli—|,0 - Eli 1,1 ’
o1
0.1j-1+1;
Vil e Eviy = Evoi
11—
0,1;_1+1; . ..
belong to G. Hence, x0,1;,_,+1; € E| { ey belongs to G. This contradiction
1 Jj= J
proves the theorem (Fig. 5). O
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several important discussions with A. Ayzenberg and C. Shramov. The author thanks the anonymous referee
for the valuable remarks that helped improve the quality of the exposition.

A Descriptions of BR; ; and R; j in Terms of Blow-Ups and Fiber
Bundles

Here is the list of main results of this section. In Proposition A.1, for any integers

i, j = 1 we prove that the variety BR; ; is obtained from H; ; by the sequence of
J — 1 blow-ups along strict transforms of the subvarieties of H; ; which are isomorphic
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to H; j_r—1,wherekrunsover{l, ..., j—1}.InTheorem A .4, forany integersi, j > 1
we prove that BR; ; is the blow-up of BF;_; x IP/ along the subvariety isomorphic
to BR;_1,j—1. We also find two similar descriptions for Ray hypersurfaces in terms
of blow-ups in Proposition A.6 and Theorem A.9. We find the structures of algebraic
fiber bundles on generalized Buchstaber—Ray and Ray hypersurfaces in Theorems A.5
and A.10, respectively. Throughout of this section, we use the notions introduced in
Sect. 3.

A.1 Generalized Buchstaber-Ray Hypersurface BR; ;

Leti, j > 0be any integers. Let (z, w) = ([zo : z1 : -+~ : zi], [wo : wy -+t wj]) be

the homogeneous coordinates of P x P/, Denote the subvariety {zg = - - - = 7 = 0}

inP x PJ by Zy foranyk=1,...,i — 1.

Proposition A.1 (i) The divisor BR; jin BF; x P/ corresponds to the algebraic
line bundle B X n" over BF; x P/;

(ii) Forany k = 1, — 1, two subvarieties Zj and H, .j (see Definition 2.5)
intersect transversally in P! x P/, The subvariety Zj N H; jof P x P/ is
isomorphic to H; 1, ;.

(iii) Thevariety BR; ; is a strict transform of H, ,j under the sequence of consecutive
blow-ups of P! x P/ along strict transforms of the subvarieties Zj in P x P/,
where k runs over {1, ...,i — 1}. In particular, BR; ; is the nonsingular variety
that is obtained from fI, j by i — 1 blow-ups with nonsingular centers.

Proof Under the natural embedding BF; — Hi:o P the restriction of the homoge-
neous coordinate z; 4 to B F; is the global section of the sheaf ,Biv over B F;. Hence, the
left-hand side of the Eq. (16) is a global section of the sheaf 8" X 1" over BF; x P/
This proves (i).
Consider the isomorphism
Zi — Pkl IP’j, (z,w) = ([Zkg1: -zl [wo = -+ 2 wj]).

Under this 1s0m0rph1sm Zr N H, ,j maps isomorphically onto the hypersurface
H, —k-1,j C Pi—¢=1 x P/ We compute the dimensions as follows.

dmZy =i+ j—k—1,dmH j=i+j—1, dmH 41 ;=i—k—14j—1
We obtain
dim Z; + dim H; ; — dim H;_;_; ; = dim(P' x P/),
which proves (ii). The projection
BF; x P/ - P x P/, (ly,....1;,1") — (;, 1), (34)

decomposes mto a sequence of blow-ups along strict transforms of Z, where k runs
over {1, . — 1}. The subvarieties Z; and H, ,j intersect transversally in P! x P/ by
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(ii) forany k = 1,...,i — 1. Hence, the argument from [13, pp. 604—-605] applies.
Therefore, the restriction of the projection (34) to BR;, j decomposes into a sequence
of blow-ups of H, ,j- This proves (iii). O

Remark A.2 The arrangement { Z, ﬂ]f-l\i’j| k=1,...,i—1}in ﬁ,, is a simple instance
of a building set in terminology of [19], because the elements of this arrangement form
a chain of embeddings of submanifolds in H; ,j- The wonderful compactification of
this arrangement is isomorphic to the iterated blow-up of Z; N H; ,j» where k runs over
1,...,i — 1. This can be seen either directly from the embedding of a blow-up to the
Cartesian product, or from [19, Theorem 1.3, p.537]. Comparing this with Proposition
A1 (iii), one obtains that BR; ; is a wonderful compactiﬁcation The embedding of
BR;_j obtained from wonderful compactificationis to [ [,_; | BI Zin H .j» where the

blow-up centers are described by Proposition A.1 (ii). In this paper we utilize the
different embedding BR; ; — BF; x P/ — ([T P¥) x P/.

Remark A.3 The projective toric variety BR» > is a Bott tower (see [6] or [23, p.769,
Proposition 9]). One can easily compute the fan ¥ in R3 of the toric variety BR, > by
following the general description of the fan for any Bott tower (see [8, p.290, Corollary
7.8.7]). The columns of the following matrix:

100-1 0 O
0101 -1 0},
001-21 -1

are the generators of the respective one-dimensional cones 09, 1, 00,2, 00,3, 01,1, 01,2, 01,3
of X. The three-dimensional cones of X are

3
{R{0u,,1, Oup 2, 0uz 30| (1, uz, uz) € F}.

Leti, j > 1 be any integers. Denote by E the subvariety in BF; x P/ consisting
of all points (ly, ...,1;,1") such that [;_; L Iand ' L Crax(i,jy hold. Each of the
conditions I’ L Crax(i, j) and U1 Crnax{i, j} is equivalent to the condition w; = 0.
Therefore, /; L I’ holds for any point from E. In particular, E C B R; ;. Denote the
natural embedding BR; ; — BF; x P/ from Definition 3.2 by f; ;. Consider the
projection

7w: BR;j > BFi_1 X Pj, Uoy.... L, 1D — (o, ..., Li—1, D).

Consider the embedding g: BF;_1 X P/ fl — BF?‘ | x P/ induced by the identity
map on BF;_; and by the embedding P/~! — P/ given by [wg : --- : wi_1] =
[wo:---:wj—q:0].

Theorem A4 (i) The normal bundle of the embedding go f; —1,j—1 : BR;—1,j—1 —
BF;_1 x P/ is the restriction of (B;”, ® C) X n";
(ii) The morphismm: BR; j — BF;_1 X P/ is the blow-up of BF;_1 X P/ along
go fi—1,j—1(BR;_1 j_1) with the exceptional divisor E;
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(iii) The exceptional divisor E is the total space of the algebraic fiber bundle
P((Bi-1 ®COXC) — BR;—1 j-1.

Proof The normal bundle of the embedding g is isomorphic to C X n¥. The normal
bundle of the embedding f; _1,;—1 is 8;”; X n" by Proposition A.1 (i). This proves
(i). The subvariety g o f;—1,j—1(BR;_1,j—1) of BF;_; x P/ is given by the equations
{s1 = s = 0}, where

min(i, }
s1 = Z Zi—1,i—kWj—k, §2 = Wj,
k=1

are global sections of the algebraic line bundles 8, | Xn" and CRn" over BF;_j x P/,
respectively. The regular morphism 7 is an isomorphism outside the zero locus {s; =
52> = 0}. The restriction of the morphism 7 to the preimage of {s; = s, =0} is E =
P((Bi—1 & C) X C). Since this projective bundle is isomorphic to the projectivization
of the normal bundle of g o f;—,j—1(BR;—1,j—1) in BF;_j x P/ by basic property of
a blow-up, we conclude that 7 is the required blow-up. Hence, E is the exceptional
divisor of the blow-up . This proves (ii) and (iii). m]

TheoremA.5 (i) Let i, j > 0 be any integers such that i > j + 1. Then, the
morphism

p:BR;j — BFi_j_1, (lo,....l;,") = (o, L, ..., Licj—1),

is an algebraic BR 1, j-bundle;
(ii) Leti > 1 be any integer. Then, the morphism

p1: BRi; — P (o, ..., 1i,1") > (o, 1),

is an algebraic BR;_1 ;-bundle.

Proof We prove the claims of this theorem by constructing the trivializations for the
corresponding algebraic fiber bundles. Let L = (ly, ...,1;,I") € BR;, j- Recall that
any N = (lp, ..., li—j—1) € BF;_j_yisdetermined by the tuplez = (2o, ..., Zi—j—1)
of the homogeneous coordinates. Let Uy = {z;—j_1 x # 0} be the open subvariety of
BF;_j_1,wherek=0,...,i —j—1

(i) Foranyk =0, ..., i — j — I there exists a unique morphism Ay : Uy x C'*! —
Ci*! and its fiberwise inverse morphism AZ: Uy x C+1 — €'+ such that

— Ax(N, —): C*! — C*!is a C-linear map for any N € Uy;

— Ag(N,—): C*! — C™*! takes e, ..., e, ..., €ij—1 t0 €j42,..., ¢, and
takese;_j,...,e; toey,...,ej41, respectively, forany N € Uy;
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— the following (well-defined) conditions (where z; — ;1 = z;—j—1(N) is atuple
of homogeneous coordinates) hold:

1
Ag (N, z . (Zi—j—1,0-€0 + -+ Zi—j-1,i-j-1 ~€i—j—1)> =ep, VN € Uy;
imj—1,

— AL(N, =) = (A(N, —))"! forany N € Up.
The desired trivialization for the fiber bundle p is
p~'(Uk) = Ui x BRjy1,.

L (P(L), (Ak(p(L), limj—1), ..., Ak(p(L), 1), Ar(p(L), l'))>,
k=0,...,i—j—1

Its inverse morphism is given by the formula (below N = (I, ..., [ 1) €
Uy CBF;—j_1)
UkXBRjJ,_Lj—)BF,'XIPj, (N (o, .-y i, l))
> (s ALNL T, LN, L), ALV, D)),
k=0,....i—j—1 (35)
Let N be determined by the tuple (z,...,2;_ i) of the homogeneous

: +1 1
coordinates. Let ;41 and /' be spanned by >/ zj41,4¢4 and 307, wyeq,

respectively. Then, one deduces from the definition of A;: that

Jj+1 z:
A/t(N’sz"‘lsqeq):Z/'J-l'—l’lok(zi —j— 1060+ Zi— j—Li—j— 16i—j— 1)
q=0 t—j—1
j+1 Jj+1
+sz+lqeq+(z —j-1, A T N, queq
g=1
j+1

= queqﬂi—j—l)v
g=1

hold. Therefore, AZ(N, liv1) L AZ(N, I”) follows by the condition/; ;1 L I for
anyk =0, ...,i— j—1.Hence, the image of (35) is belongs to the hypersurface
BR; j, and the trivialization map is well defined. (Clearly, the image of (35)
belongs to p_l(Uk).) This proves (i).

(i) Let z = (zo, z1) be the tuple of homogeneous coordinates of any N € BFj.
Let Vi = {z1.x # O} be the open subvariety of BF;, where k = 0, 1. Let
{eo, e1} = {ex, e,}. Forany k = 0, 1 let By: Vi x Ci*! — Ci*! be a morphism
such that for any N € Vi the C-linear map By(N, —): C'T! — CH! acts
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identically on e», ..., ¢;, and takes e, to e, respectively. Furthermore, for any
k = 0, 1 there exists a unique By, satisfying the well-defined conditions

1
By (N, Z—(m,oeo +Zl,1€1)> =e¢,VN € V.
1Lk

Let B; : Vi x C't1 — C*1 be the fiberwise inverse morphism to By, that is,
BZ(N, —) = By(N, =)~ ! holds for any N € BF. Consider the morphism

Fi: pr (Vo) = Vi x (BFi_y x P),

L~ <P1(L), (Be(pi(L), 11), ..., Bi(pr(L), i), B{ (p1(L), l/))), k=0,1.
(36)

Its inverse is given by the formula (below N = (I§/, ) € Vi C BF})

F*:WxB&lieBFxW,WJh“”hhm)
— (I, 1{, BN, 1), ..., B{(N, li 1), B«(N, 1)), k=0,1.  (37)

Let I;_; and [’ be spanned by Z;;lo Zi—1,g€q+1 and Z;zo wyey, respectively.
Then, one deduces from the definition of Bj that Bg(N,li_l), Byo(N, 1),
BT(N, l;_1) and B{(N,!’) are spanned by

i—1 "

4
211 211
Zi—1,0 <eo + 761) + ZZi—l.qeq+ls wo(€1 - 760) + wieg
210 g=1 210

i—1

—I—queq, Zi— 1060+Zz1 1,g€q+1- woel+w1(eo——el +queq,
q=2 g=1

respectively, where /]’ is spanned by z,e0 + 2}, 1. Hence, it follows from /; 1 L
1 that B (N,Li—y) L W holds for any k = 0, 1. The image of FO_1 is
the subvarlety {zi—1.0 #Z0}N {Zq —0Zi—1,qWg+1 = 0} of BF; x P'. Hence, the
image of F,° belongs to BR; ; and is equal to p° (Vo). We conclude that Fj is
the well-defined trivialization (over Vg) of the fiber bundle p;. The image of F;” !
is the subvariety {z; 1,1 # 0}N{zi—1.0wo+Y_5_} zi—1.4wqs1 = O} of BF; xP'.
Notice that this subvariety maps isomorphically onto pfl(Vl) C BR; ; under
the involution D of BF; x IP* given by

(o, .-, 1, l/) = (C(ll), . Cd), l/),

where C: Cit! — C/*! is the linear operator mapping eg, e, ..., ¢ to
e1, ep, ..., e, respectively. Hence, D o Ff] is a well-defined invertible mor-
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phism, and the composition F o D is the well-defined trivialization (over Vi)
of the fiber bundle pj. This completes the proof of the theorem.

O
A.2 Ray Variety R; ;
Leti, j > 0be any integers. Denote the subvariety {wo = = wy = 0}in BF; x P/
by Wi forany k = 1, ..., j — 1. The proof of the followmg proposition is similar to

the proof of Proposition A.1.

Proposition A.6 (i) Thedivisor R; j corresponds to the algebraic line bundle ﬁiv X
,BJV over BF; x BF;;
(ii) Foranyk =1, ..., j—1, two subvarieties W and BR; ; intersect transversally
in BF; xP). The subvariety Wy N BR; j of BF; xP/ isisomorphicto BR; j_1_j.
(iii) The variety R; j is a strict transform of BR; j under the sequence of consecutive
blow-ups of BF; x P/ along strict transforms of the subvarieties Wy, in BF; x P/,
where k runs over {1, ..., j — 1}. In particular, R; ; is the nonsingular projective
variety that is obtained from BR; ;j by j — 1 blow-ups with nonsingular centers.

Remark A.7 The arrangement {W;, N BR; j| k = 1,...,j — 1} in BR; ; is also a
building set in terminology of [19], because the elements of this arrangement form a
chain of embeddings of submanifolds in B R; ;. The wonderful compactification of this
arrangement is isomorphic to the iterated blow-up of Wy N BR; ;, where k runs over
1, ..., j — 1. This can be seen either directly from the embedding of a blow-up to the
Cartesian product, or from [19, Theorem 1.3, p.537]. Comparing this with Proposition
A.6 (iii), one obtains that R; ; is a wonderful compactiﬁcation The embedding of

;,j obtained from wonderful compactification is to Hk 1 Blwinsr;, BR, ,j» Where
the blow-up centers are described by Proposition A.6 (ii). In this paper we utilize the
different embedding R; ; — BF; x BFj — ([[i_oP") x (]_[jzo P9).

Leti, j > 1 be any integers. Denote by D, D1, D, the subvarieties in BF; x BF;
consisting of all points (lo, ..., i, Ly, ..., l}) such that/;_; L l;.fl and [; L l} hold;

li L1} and l; = iy hold; [ L I} and I, = I’_, hold, respectively. It is straight-
forward to prove the following lemma.

Lemma A.8 Onehas D = D1UD,, where Dy, D> C R; j are nonsingular irreducible
hypersurfaces of R; j. The intersection D1 N Dy is isomorphic to Rj_1 j_1.

Denote by 7; ; the natural embedding R; ; — BF; x BF; from Definition 3.4.
Consider the following morphisms:

mi: Rij = BFi—1 x BFj, (o, ..., lim1, L I, . 1) = oy oo dimny D, o2 1),
nz:R,-j—>BF,~><BFj_1, (o, ..., 1,-,1{),...,;. 1,1.)»—>(10,...,1,-,10,...,1;_1),

: BF;_1 x BFj_ 1—>BF, leF, (oo lim1,Lgs -5 1))
|—>(lo,...,l,-,1,lo,.. L,
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g2: BFi_1 x BFj_1 - BF; x BFj_i, (l(),...,li—l,lé)a~--al;'—1)

i (10, cve li7]5 li*lv l(/)a ceey l;_l)

The proof of the following theorem is similar to the proof of Theorem A.4

Theorem A.9 (i) The normal bundles of the embeddings

grori—1,j-1: Ri—1,j-1 - BF;—1 X BF},
gori—1j-1: Ri-1j-1 —> BF; x BF;_,

are the restrictions of (B, ; ® C) X ,ij_l and B | X (,3}/_1 @ C), respectively;
(ii) The morphisms w1: R; j — BF;i_1 x BFjand my: R; j — BF; x BFj_y are
the blow-ups along the centers gior;_1 j—1(R;_1,j—1) and gror;_1 j_1(Ri—1,j—1)
with exceptional divisors D1 and D», respectively;
(iii) The exceptional divisors D1 and D; are the total spaces of the algebraic fiber
bundles P((Bi-1 PO KC) — Ri—1,j-1 and
PCX (Bj—1 @ C)) = Ri_1,j—1, respectively.

The proof of the following theorem is similar to the proof of Theorem A.5.

Theorem A.10 (i) Let i, j > 0 be any integers such thati > j + 1. Then, the
following morphism:

p:Rij— BFi_j_1, (lo,....li, 1o, ... 1)) = (o, ..., licj—1),

is an algebraic R, j-bundle.
(ii) Leti > 1 be any integer. Then, the following morphisms:

pi: Rii =P (o LIy, ... 1)
> (o, 11)s p2: Rii — P (o bl . 1) > (g, 1),

are algebraic fiber bundles with fibers R;_1 ; and R; ;_1, respectively.

B Cohomology Rings of BR; j and R; ;

In this section, we prove that the cohomology rings of the hypersurfaces BR; ; and
R; j are isomorphic to the quotients of the known cohomology rings of the ambient
varieties BF; x P/ and BF; x BF ; by the annihilator ideals of the first Chern classes of
the respective normal line bundles for any integers i, j > 0. We deduce the formulas
for the Hodge-Deligne polynomials of the hypersurfaces BR; ; and R; ; from the
Hodge-Deligne polynomial of H; ; using the blow-up descriptions of BR; ; and R; ;
from Sect. A. In particular, we compute all Betti numbers of BR; ; and R; ; for any
integers i, j > 0. In the following, by omitting the coefficient group in singular
cohomology we assume Z-coefficients.
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B.1 Cohomology Ring of the Blow-Up of a Complex Manifold Along a Submanifold

Let¢: Z C X be any holomorphic embedding of complex compact connected mani-
folds. Consider the blow-up 7 : Blz X — X of X along Z. The exceptional divisor
E of & is the holomorphic fiber bundle £ >~ P(v) — Z, where the projection map
is given by the restriction of m to E, and v — Z is the normal bundle of ¢. The
restriction of the projection map 7 to E induces the structure of a H*(Z ; Z)-module
on H*(P(v); Z).

Theorem B.1 (Leray, Hirsch, see [5, §15]) Let &€ — B be a complex vector bundle
of rank k over B. Consider the fiberwise projectivization p: P(§) — B of &. Let
v =c1(¢Y) € H*(P(£); Z) be the first Chern class of the dual to the tautological line
bundle ¢ over P(£). Then, the following rings

H*(P(£)) ~ H*(B)[v]/ (" + v*er1(€) + -+ + (), (38)

are isomorphic. In particular, H*(P(§)) is a free H*(B)-module with generators
Lov, ..., 0L

Example B.2 By applying Theorem B.1 recurrently to the P!-bundle BF,, = P(8,_1 ®
C) — BF,_1, one obtains an isomorphism

H*(BF,;7Z) ~ , 39)
" (xg—quq_ﬂq:l,...,n)

of graded rings, where xg := 0, see [8].

Let Y be any compact complex submanifold of X which intersects Z transversally
in X.

Proposition B.3 (/12, 13]) The normal bundle of the hypersurface E in Blz X is
isomorphic to the tautological line bundle ¢ — P(v). The strict transform Y of Y
under 1 is isomorphic to Blzny Y. The following abelian groups:

H*Blz X;7Z) ~ H*(X; Z) ® H*(P(v); Z)/H*(Z; Z)
~ HY(X; Z) @ HY(Z; Z)(v, v*, ..., v* ), (40)
are naturally isomorphic, where k is the codimension of Z in X. The ring
H*(Blz X; Z) is isomorphic to the quotient of the ring on the right hand side of
(40) by the relations

x-v=0"x)-v, x € H (X; Z),
ok + vk_lcl(v) + - Fvc—1(v) +wx =0,

where wx € H2k(X;Z) is Poincaré dual to the homology class .[Z] €
Hy(—i(X; Z), and v restricts to c1(¢Y).
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B.2 Cohomology Ring of a Hypersurface

Let X" be any compact complex manifold with no torsion in H*(X; Z). By the
Poincaré duality, the Z-bilinear form Qy,

H*(X;7Z) x H*(X;Z) — Z, QOx(a,b) :={a-b,[X]), 41)

given by the natural pairing with the fundamental class [X] € Hj,(X; Z), is nonde-
generate.

In addition, let X" be connected and simply connected. Then, the group H>(X; Z) is
isomorphic to the Picard group of equivalence classes of the holomorphic line bundles
over X modulo holomorphic isomorphisms. Let & — X be any holomorphic line
bundle. In the following, we assume that the divisor corresponding to £ is represented
by an irreducible nonsingular hypersurface D in X. In this case, the homology class
of D in Hy,—1)(X; Z) is Poincaré dual to x = c1(§) € H?%(X; 7). Consider the
homomorphism ¢* : H*(X;Z) — H*(D;Z) induced by the natural embedding
t:D— X.

Proposition B.4 Suppose that all odd cohomology groups H>**t1(X; Z) vanish and
that * is an epimorphism. Then, ker(* is the annihilator ideal Ann x of x in the
ring H*(X;Z). In particular, the quotient homomorphism H*(X;Z)/ Annx —
H*(D; Z) induced by (* is an isomorphism of rings.

Proof Since (* is an epimorphism, we conclude from H 2/“H(X 1 Z) = 0 that
H 2k“(D; Z) = 0 holds for any integer k > 0. The universal coefficients for-
mula then implies that the groups H*(X; Z),H*(D; Z) have no torsion. The class
tx(D) € Hyu—1)(X; Z) is Poincaré dual to x € H?(X; 7). This means that the iden-
tity

(¥, :[D]) = (x -y, [X]), (42)

holds for any y € H?*"=D(X: 7). For any elements «, 8 € H*(X; Z) of degree 2k
and 2(n — k — 1), respectively, we deduce the following identities:

(*(e)™(B), [D]) = ((@B), [D]) = (@B, 1:[D]) = (x - o, [X]) = ((eex) - B, [X]),
(43)

from (42). Let o be any element of ker ¢*. Then the left hand side of (43) is zero.
Hence, ax belongs to the kernel of the bilinear form Qx. Then, ax = 0, because the
bilinear form Qy is nondegenerate. We conclude that ker ¢* € Ann x.

Leto € Annx be any element. Then, the right-hand side of (43) is zero for any B €
H*(X; Z). We conclude from (43) that (L*(a),g, [D]) = 0 for any E € H*(D; 7Z),
because ¢* is epimorphic. Hence, ¢*(«) belongs to the kernel of the bilinear form
Op. We conclude that (*(e) = 0, because Qp is nondegenerate. This implies that
Ann x C ker (* holds. The proof is complete. O
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In general, the embedding of a hypersurface to the ambient manifold does not
induce epimorphism of the respective cohomology groups.

Example B.5 For any integers n,d > 0, let f;: Xy C P" be the embedding of a
generic hypersurface X4 of degree d to P". One can check that for any even n and any
integer d > 2 the group H"~!(X4; R) is nonzero and the homomorphism f] is not
epimorhic. For d = 2 and n = 3, the Veronese embedding f>: P! x P! — P3 of the
nonsingular quadric induces the homomorphism

£ X)) = Zly, 2/ (0, ), x ey 42,

of the respective cohomology rings, which is clearly not onto. (The last example was
pointed out to the author by A. Ayzenberg.)

LemmaB.6 Let &, v be complex vector bundles over a compact topological space
B. Suppose that v is a subbundle of &. Let a: P(v) — P(§) be the corresponding
embedding. Then the induced homomorphism o*: H*(P(§); Z) — H*(P(v); Z) is
onto.

Proof Consider the tautological line bundles ¢ — P(v), ¢’ — P(§) of the respective
projective fiber bundles. Let k = rk v, r = rk &. By Theorem B.1, the following free
H*(B)-modules:

H*(P(v)) = H*B)(1,u, ..., u*™ Y, H*P®E)) = H*B)(1,v,...,v" "), (44)

are isomorphic, where u = ¢1(¢Y), v = ¢1((¢")Y). By the definition, a*(¢') =
¢'lapwy) = ¢. Hence, o*(v) = u. Now, the statement follows from (44), because
k<r. O

Recall that Z is a submanifold and D is a hypersurface in X. Assume that Z
and D intersect transversally in X. Then, by Proposition B.3, the strict transform
D of D W1th respect to the blow-up Bl X — X is isomorphic to Blznp D. Let

7: D — X ~Bly X be the corresponding embedding.

Lemma B.7 Suppose that the embeddings D — X and Z N D — Z induce epimor-
phisms of the respective cohomology rings. Then, the embedding D — X induces an
epimorphism of the respective cohomology rings.

Proof Let E/ = P(v') be the exceptional divisor of the blow-up Blznp D — D,
where v and v’ are the normal bundles of the inclusions Z C X and ZN D C D,
respectively. The normal vector bundle v’ is a subbundle of v|znp due to the sequence
ZN D — D — X of embeddings. Consider the following commutative diagram

H*(X) T H*(D)
| |

(H*(X) ® H*(P(V)))/H*(Z) — (H*(D) ® H*(P(v/))>/H*(Z N D)

(45)
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where the vertical arrows are the isomorphisms from Proposition B.3, and the lower
arrow is induced by the embeddings ¢ and P(v') — P(v) (by naturality). By the
condition of the lemma, t*: H*(X) — H*(D) is epimorphic. By Lemma B.6 and the
assumption, the composition H*(P(v)) — H*(P(v|znp)) — H*(P(V)), induced by
the natural embeddings, is epimorphic. Then, the lower arrow in (45) is epimorphic.
By the commutativity of (45) we conclude that 7* is epimorphic. This completes the
proof. O

Let Zo C Z1 C --- C_Zk be any closed connected submanifolds of the complex
manifold X. Denote by Z the strict transform of the subvarlety Z ; under the blow-up
X = Blz, X - X of X along Zo,where j =1,..., k. We generahze Lemma B.7 as
follows.

LemmaB.8 (i) Assume that Zj and D intersect transversally in X for any j =
0,...,k. Then, Z and D intersect transversally in X, where j=1,...,k
(ii) In addmon to the condition (i), suppose that the embeddings D — X and
Zj N D — Z; induce epimorphisms of the respective cohomology rings for
any j = 0, ..., k. Then, the embeddings D — X and Z; " D — Z; induce
epimorphisms of the respective cohomology rings forany j = 1, ..., k.

Proof The claim (i) follows from Proposition B.3 immediately. Now we prove (ii).
The claim about D — X follows by substituting X, Zo, D for X, Z, D in Lemma B.7.
The claim about Zj ND — Zj follows by substituting Z;, Zg, Z; N D for X, Z, D
in Lemma B.7. ]

See Sect. 3 for the definitions of f; ;, r; ;.

TheoremB.9 (1) The embedding f; j: BR; ; — BF; x P/ induces epimorphism
in cohomology. One has the ring isomorphism

Zlx1, ..., xi, y]
H*(BR; ;) ~ Ann
( z,]) (xz_quq L y]+1|q_1 ) (xl+)’)

where xo := 0.
(2) The embedding r; j: R; j — BF; x BF; induces epimorphism in cohomology.
One has the ring isomorphism

Zlx1y ..., Xis V1o onvs vil
H*(Ri j) ~ — . d I — [/ Ann(x; + ;).
(g —xgxg—1, Y —Yyryr—1lg=1,....05 r=1,....))

where xo := 0, yp := 0.

Proof Propositions A.1, A.6 and Lemma B.8 imply that f;* o ri jare epimorphic. The
respective kernels are given in Proposition B.4. It remains to compute the cohomol-
ogy of the respective Cartesian products. This follows by Kiinneth formula from the
computation of the cohomology rings of P, B F), (see (39)). O
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Example B.10 By Theorem A.9, R; > is the blow-up of BF| x BF; along R; 1. The
normal bundle of the composition R1 1 — BF; x BFi — BF; x BF, of embeddings
is the restriction v of (,31v o0 KX ,B]v to Rp,1. The irreducible rational curve Rj i
is obtained by taking subsequently the divisors corresponding to the algebraic line
bundles 8\’ X B)', CX By over BF1 x BF>. Hence, wg,, = (x1 + y1)y2. Clearly,
H*(Ri1; Z) ~ Z[t1/(t?), where n — P! is the tautological line bundle and ¢ =
c1(nY). It is not hard to compute the Chern class c(v) to be 1 + 3¢ of v. Hence, by
Proposition B.3, one has

(ZLx1. y1, y21/ (3, yE, v3 = yiy2)) @ (ZI]/ (1)) (v, v?)
(V24301 + (x1 + yDy2, (02 — YD, (y2 — x1)v, 1V — x1v)

H*(Ry 2, Z) ~
~ Z[x1, y1, 2, v]/(xlz, v ¥3 = yiya, v7 4+ 3uy + (x1 + y)y2, (2 — yDv, (72 — xov).
(46)

Here we can vanish 7 by expressing the additive generators rv and fv? as xjv and xj v?,

respectively.

Example B.11 It is not hard to compute the ideal Ann(x, + y,) of the ring H*(B F> x
BF,; Z) to be

(2 = xD (2 — Y, X3 +xay2 + y%)
Hence, by Theorem B.9, one has

H*(Ry23 Z) =~ Zlx1, x2, y1, 21/ (x7, %3 — x1x2, ¥, ¥3 — y1y2, (x2 — x1)(y2 — y1), X3
+x2y2 4 ¥3). (47)

The isomorphism

Zlx1, x2, ¥1, Y21 = Zlx1, y1, y2, vl, (X1, Y1, ¥2, X2) = X1, X1 + v, Y1, ¥2,

of polynomial rings induces the isomorphism between the quotient rings, which are
given on the right hand sides of (47) and (46). A similar computation shows that

H*(BR32; Z)
~ Zlxi, x2, x3, Y1/ (¥}, X3 — x1x2, x5 — x0x3, ¥%, 22y? — x3y%, X123y — x5y — x1°

+X3y2, x% - x%y + x3y2).
B.3 Betti Numbers

Consider the Hodge—Deligne polynomial e(X)(u,v) := Zi’j heJ (X)utv! of a
quasiprojective complex algebraic variety X (see [10, 16]).

Proposition B.12 ([10, p.929])
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(i) For any quasiprojective complex algebraic varieties Y C X one has
e(X)(u,v) = e(¥)(u,v) +e(X \ Y)(u, v);

(ii) For any integer n > 0 one has e(P")(u,v) = 1 +uv +--- + (uv)";
(iii) For any algebraic F-bundle E — B, where B, F are nonsingular projective
varieties, one has

e(E)(u,v) =e(B)(u,v)e(F)(u,v).

(iv) For any closed immersion Z C X of nonsingular projective algebraic varieties,
the identity

e(Blz X)(u, v) = e(X)(u, v) + v + - - - + Wv)* " He(2)(u, v),

holds, where k is the complex codimension of Z C X.

For any complex projective manifold X, the k-th Betti number by (X) of X is equal
o), j=k h""7 (X) by the Hodge decomposition, where k > 0 is any integer. If X
has only diagonal Hodge numbers, i.e., h’/(X) = O for any i # j, then we put
e(X)(t) ;== e(X)(u, v), where t = uv.

Proposition B.13 Ler i, j > 0 be any integers. Then, the following relations hold.

eBRi )@ =0+ (1 +14---+1t/71), where 0<i < jand 0 < j; (48)
eBR ) =1+ U +t4+t/")+t/ A+ 0771, where i > j > 0;
(49)
e(Ri ) =+ (403 4.
+t[—1(1 + t)j—l"'rl _I_ tmin{i,j}(l + t)i+j—2min{i,j}—17 (50)
where 0 < i, jandi # j;
eRi)0) =1+ "+ 11 +0D* 3+ + 17 (1 +1), where 2 <i. (51)
Proof By Proposition 5.5 the variety BR; ; is the algebraic P/~!_bundle over BF;
for any integers i, j such that 0 < i < j and j > 0. The variety BF; is the tower
of algebraic P!-bundles over the point. Hence, by Proposition B.12 one obtains the
formula (48) from the Hodge—Deligne polynomial of the projective space.

We prove (49) by the induction on j. By Theorem A.4 (ii), the variety BR; j is the
blow-up of BF;_1 X P! along its subvariety B F;_;. Hence, by Proposition B.12,

eBRDO =0+ A+ +t(1+0)2=0+0) +t(1+1)72,

which proves the induction basis j = 1. Assume that (49) holds for j = jo—1 > 1. By
Theorem A.4 (ii), the variety BR; ; is the blow-up of BF; | x P/ along its subvariety
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BR;_1,j—1. We conduct the computation for j = jo using the induction hypothesis
and Proposition B.12 as follows.

eBR 1) = L+ (1 +14--+1))
+r<(1 e O R T B T O s t)ij1>
=+ A +t+- -+ 1+

This proves the identity (49).

It is enough to prove (50) only for any integers i, j > O such thati < j, because
R; j >~ R; ;. We prove (50) by the induction on j. For j = 1, (50) follows from (49),
since Ry,j > R; 1 = BR; 1. Assume that (50) holds for j = jo — 1. Let j = jo. By
Theorem A.9 (i7), the variety R; ; is the blow-up of BF; x BF; along its subvariety
R;_1,j—1. We conduct the computation for j = jo using the induction hypothesis and
Proposition B.12 as follows.

e(RLj)=:(14—1Y+j‘14—1((14—1Y+f‘3—+t(l4—1Y+j‘5—%-~~+-f“m +r)f4—‘>.

This proves the identity (50).
Finally, prove (51) by the induction on j. Note that R; 5 is the blow-up of BF| x B F»
along its subvariety P'. By Proposition B.12, then one has the identity

e(R12)(1) = (1 + 1) +1t(1+1),
which proves the induction basis j = 2. Assume that (51) holds for i = iy — 1. By
Theorem A.9 (ii), the variety R; ; is the blow-up of BF;_; x BF; along its subvariety

R;_1,i—1. We conduct the computation for i = iy using the induction hypothesis and
Proposition B.12 as follows.

e(Rii)=(0+0*""4 t<(1 + 0 3 A+ 0¥+ + t)).

The proof is complete. O

Corollary B.14 Let i, j, k > 0 be any integers. Then, one has the following formulas:

b2k(BR- i) = i + i + -4 i + i—=j-l wherei > j > 0;
1= k) T k-1 k—j+1 k—j ) I

i+ j—1 i+j—3
*Ri ) = (' .
(Ri.j) ( . >+<k_1 +

i+j—2min{i, j} —1
k —min {i, j}

" 21\ (23 1 _
b= (R ;) = K + E—1 +- 4+ k—itl , where 1l < i.
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Remark B.15 The identities from Proposition B.13 agree with the various algebraic
fiber bundle structures on BR; ; and R; ; from Sect. A and the property of Hodge—
Deligne polynomial from Proposition B.12 (iii).
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