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Abstract
We classify global surfaces of section for the Reeb flow of the standard contact form
on the 3-sphere (defining the Hopf fibration), with boundaries oriented positively by
the flow. As an application, we prove the degree-genus formula for complex projec-
tive curves, using an elementary degeneration process inspired by the language of
holomorphic buildings in symplectic field theory.

Mathematics Subject Classification 37J05 · 14H50 · 32Q65 · 53D35

1 Introduction

A global surface of section for the flow of a non-singular vector field X on a three-
manifold M is an embedded compact surface � ⊂ M such that

(i) the boundary ∂� is a union of orbits;
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(ii) the interior Int(�) is transverse to X ;
(iii) the orbit of X through any point in M\∂� intersects Int(�) in forward and

backward time.

If one can find such a global surface of section, understanding the dynamics of
X essentially reduces to studying the Poincaré return map Int(�) → Int(�), which
sends each point p ∈ Int(�) to the first intersection point of the X -orbit through p
with Int(�) in forward time.

In symplectic dynamics, where X is a Hamiltonian or Reeb vector field, there are a
number of results on the existence or non-existence of global surfaces of section, e.g.
[11–15,19]. Conversely, one can ask for the existence of flows with a given surface of
section and return map. For instance, in [2] we describe a construction of Reeb flows
on the 3-sphere S3 with a disc-like global surface of section, where the return map is
a pseudorotation; see also [1,16].

For Reeb flows on the 3-sphere coming from contact forms that define the standard
tight contact structure, the following are the main facts known about the existence
of global surfaces of section. Hofer, Wysocki and Zehnder [11, Theorem 1.3] give
a sufficient criterion (dynamical convexity) for the existence of a disc-like global
surface of section. Hryniewicz and Salomão [14, Theorem 1.3] describe a necessary
and sufficient condition for a periodic Reeb orbit of a non-degenerate contact form
to bound a disc-like global surface of section. A Reeb flow without a disc-like global
surface of section has been constructed by van Koert [19]. It is not known if there is a
Reeb flow (in the described class) without any global surface of section.

Thismotivates the questionwhether one can give a complete classification of global
surfaces of section for a given flow. In the present paper, we consider the Hopf flow
on the 3-sphere S3 ⊂ C

2, that is, the flow

�t : (z1, z2) �−→ (eit z1, e
it z2), t ∈ R, (1)

defining the Hopf fibration S3 → S2, as well as the induced flows on the lens space
quotients L(d, 1) of S3. Our first main result, which is purely topological, gives a
classification, up to isotopy, of the surfaces that can arise as global surfaces of section
for these flows.

The secondmain result is a symplectic dynamics proof of the classical degree-genus
formula for complex projective curves. This formula says that a non-singular complex
algebraic curve of degree d in the projective plane CP2 is topologically a connected,
closed, oriented surface of genus

g = 1

2
(d − 1)(d − 2). (2)

Our proof uses degenerations of complex projective curves in the spirit of Symplectic
Field Theory (SFT). Perhaps surprisingly, the SFT point of view elucidates why (2)
should be read as a sum

∑d−2
k=1 k. For a given non-singular complex projective curve

of degree d, we describe a 1-dimensional family of curves starting at the given one
and converging to a holomorphic building of height d in the sense of [3]. Each level
in this holomorphic building has genus 0, and the gluing of level k + 2 to level k + 1
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A Symplectic Dynamics Proof of the Degree–Genus Formula 43

contributes k to the genus, k = 1, . . . , d − 2 (see Fig. 11). This may be regarded as a
motivating example for the degenerations studied in SFT. We ought to point out that
we do not use any actual results from SFT.

The ‘standard’ proof of the degree-genus formula, using branched coverings and
the Riemann–Hurwitz formula, can be found in [18, Chapter 4]; see also [20, §21] and
[8, p. 219].

Here is an outline of the paper. In Sect. 2 we construct some examples of surfaces of
section for theHopf flow.We showhowcertain equivalences betweenSeifert invariants
can be interpreted as modifications of such surfaces.

In Sect. 3 we relate global surfaces of section for the Hopf flow on S3 to those for
the induced flow (which likewise defines an S1-fibration) on the lens space quotients
L(d, 1). We then classify 1-sections in L(d, 1), i.e. global surfaces of section that
intersect each fibre exactly once. The classification of d-sections (Definition 2.1) for
the Hopf flow on S3 with all boundary orbits traversed positively is achieved in Sect. 4.

In Sect. 5 we discuss a number of examples how algebraic curves in CP2 give rise
to global surfaces of section for the Hopf flow. This allows one to determine the genus
of these particular curves.

Finally, in Sect. 6 we prove the degree-genus formula, using genericity properties
of algebraic curves. We give one proof directly from the classification of global sur-
faces of section for the Hopf flow. The second, more instructive proof, uses SFT type
degenerations to interpret the degree-genus formula as as a sum

∑d−2
k=1 k. Technical

details of the SFT type convergence are relegated to Sect. 7.

2 The Hopf Flow

Our aim is to describe surfaces of section for the Hopf flow (1) on the 3-sphere S3.
Thinking of S3 as the unit sphere in R4, we can define a 1-form αst on S3 by

αst = (
x1 dy1 − y1 dx1 + x2 dy2 − y2 dx2

)|T S3 . (3)

This 1-form is a contact form, in the sense that αst ∧ dαst is a volume form; αst is
called the standard contact form on S3. The Reeb vector field Rst of this contact form
is defined by iRst dαst = 0 and αst(Rst) = 1. Here this means that

Rst = x1∂y1 − y1∂x1 + x2∂y2 − y2∂x2 ,

which is the vector field giving rise to the Hopf flow.
From this interpretation of the Hopf flow as a Reeb flow, and the contact condition

αst ∧ dαst �= 0, we see that the 2-form dαst defines an exact area form transverse to
the flow of Rst, so any surface of section must have non-empty boundary.

For more on the basic notions of contact geometry see [4].
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2.1 d-Sections

Let� ⊂ S3 be a surface of section for the Hopf flow. Then ∂� is a collection of fibres
of the Hopf fibration S3 → S2 over a finite number of points p1, . . . , pk ∈ S2. The
interior of � projects surjectively to the connected set S2\{p1, . . . , pk}. It follows
that each fibre over this set intersects Int(�) in the same number of points, and � is
a d-section for some d ∈ N, in the following sense.

Definition 2.1 We call an embedded surface � ⊂ S3 a d-section for the flow of Rst if
every simple orbit of Rst (i.e. every Hopf fibre) intersects Int(�) in exactly d points
or is a component of ∂�; the latter will be referred to as boundary fibres. We shall
always orient � such that the Rst-flow intersects � positively. The d-section is said
to be positive if the boundary orientation of ∂� coincides with the Rst-direction.

In some examples we shall construct such d-sections by starting from an honest
multi-section of the Hopf fibration over S2 with a certain number of discs removed,
and then extending it to become tangent to the fibres over the centres of these discs,
by gluing in helicoidal surfaces.

2.2 Examples of d-Sections

We think of S3 as being obtained by gluing two copies V1, V2 of the solid torus S1×D2.
Writeμi for the meridian and λi = S1×{∗}, with ∗ ∈ ∂D2, for the standard longitude
on ∂Vi . We shall use those same symbols for any curve on ∂Vi in the same isotopy
class. The gluing described by μ1 = λ2, λ1 = μ2 yields S3.

More intrinsically, if one thinks of S3 as the unit sphere in C2, we can define Vi as
the solid torus given by {|zi | ≤ √

2/2}. The identification of V1 with S1 × D2 is given
by

V1 =
{(
z,

√
1 − |z|2 eiθ ) : |z| ≤ √

2/2, θ ∈ R/2πZ
}
.

The soul of V1 is

C1 = {
(0, eiθ ) : θ ∈ R/2πZ

}
,

corresponding to S1 × {0} ⊂ S1 × D2. The solid torus V2 and its soul C2 are defined
analogously. The μi and λi are

μ1 =
{(√

2

2
eiθ ,

√
2

2

)
: θ ∈ R/2πZ

}

= λ2

and

λ1 =
{(√

2

2
,

√
2

2
eiθ

)
: θ ∈ R/2πZ

}

= μ2.
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Fig. 1 A helicoidal annulus
C1

−h + μ1

The two souls C1,C2 form a positive Hopf link, i.e. the two unknots have linking
number +1. The Hopf tori

T 2
r = {

(z1, z2) ∈ S3 : |z1| = r
}
, r ∈]0, 1[,

foliate the complement of C1,C2 in S3.
In these coordinates, the Hopf flow is simply the flow of ∂ϕ1 + ∂ϕ2 , where ϕi is the

angular coordinate in the zi -plane. The Hopf fibration is then made up of the souls
Ci = S1 × {0} of the two solid tori and the (1, 1)-curves on the Hopf tori, i.e. curves
in the class h := μ1 + λ1 = μ2 + λ2.

2.2.1 A Disc-Like 1-Section

The disc

{(√
1 − r2, reiθ

) : r ∈ [0, 1], θ ∈ R/2πZ
}

⊂ S3

bounded by C1 is a positive 1-section for the Hopf flow.
Alternatively, we may identify V1, V2 with solid tori such that the Hopf fibres

correspond to the S1-fibres in S1 × D2, so that the fibre class is now represented by
h = S1 × {∗}; this change in identification amounts to a Dehn twist of the solid torus
along a meridional disc.

The meridional disc in V2 defines a 1-section for the Hopf flow in that solid torus.
The boundary μ2 of this disc is identified with λ1 = h − μ1 in ∂V1. In V1 we have a
helicoidal surface A with oriented boundary C1 �−(h−μ1), see Fig. 1. This annulus
A glues with the meridional disc in V2 to form a positive 1-section for the Hopf flow.
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2.2.2 An Annular 2-Section

In V1 we find a helicoidal annulus A1 with boundary ∂A1 = C1 � −(h − 2μ1), with
Int(A1) intersecting each Hopf fibre positively in two points. Likewise, we have such
an annulus A2 in V2 with ∂A2 = C2 − (h − 2μ2). Since

h − 2μ1 = λ1 − μ1 = −(λ2 − μ2) = −(h − 2μ2),

A1 and A2 glue to form a positive annular 2-section for the Hopf flow.

Remark 2.2 This annular section is of the same kind as the one found by Poincaré for
the planar circular restricted 3-body problem.

2.3 The Euler Number

For the existence of positive d-sections, the sign of the Euler number of the Hopf
fibration is crucial.

Lemma 2.3 The Hopf fibration, regarded as an S1-bundle over S2, has Euler number
e = −1.

Proof We think of V1 as in Sect. 2.2.1 as a solid torus S1 × D2 with the Hopf fibres
given by S1 × {∗}. The helicoidal surface A ⊂ V1 described in Sect. 2.2.1 and Fig. 1,
together with the meridional disc in V2, can be turned into a section of the disc bundle
associated with the Hopf bundle by scaling in the fibre direction,

V1 = S1 × D2 ⊃ Int(A) 
 (
a(p), p

) �−→ (|p| · a(p), p
)∈ D2 × D2,

and extending to a section with a single zero at p = 0. Since ∂A ∩ ∂V1 = μ1 − h
makes one negative twist in the fibre direction as we go once along the boundary μ1
of the base disc (i.e. the second D2-factor), this rescaled section, seen as a vector field
on D2, has an index −1 singularity, which means that it cuts the zero section in a
single negative point. ��

2.4 The Hopf Fibration as a Seifert Fibration

In Sects. 2.5 and 3.2 we are going to show how different descriptions of the Hopf fibra-
tion as a Seifert fibration give rise to global surfaces of section with different numbers
of boundary components. Here we give a bare bones introduction to Seifert invariants.
All necessary background on Seifert fibrations can be found in [6, Section 2]; for a
comprehensive treatment see [17].

Consider again S3 as being obtained by gluing two solid tori V1, V2. In terms of
meridians μ1, μ2 and longitudes h (on both solid tori), the identification of ∂V1 with
∂V2 is given by μ1 = λ2 = −μ2 + h and h = h. The curve −μ2 is the negative
boundary of the section in V2 given by a meridional disc. Following the standard
conventions for Seifert invariants, see [6], the gluing of the neighbourhoods of the
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A Symplectic Dynamics Proof of the Degree–Genus Formula 47

distinguished fibres in a Seifert manifold should indeed be described with respect to
the negative boundary of the section away from the distinguished fibres (which, in
the general Seifert setting, include all multiple fibres). This means that the described
gluing corresponds to writing S3 as the Seifert manifold S3 = M(0; (1, 1)). Here 0 is
the genus of the base S2, and (1, 1) are the coefficients of−μ2 and h in the expression
for μ1.

For a Seifert manifold M
(
g; (α1, β1), . . . , (αk, βk)

)
, the Euler number is defined

as −∑
i βi/αi , see [17]. This is consistent with our calculation of the Euler number

of the Hopf fibration.
Given such a Seifert manifold M

(
g; (α1, β1), . . . , (αk, βk)

)
, one can obtain equiv-

alent descriptions by adding or deleting any pair (α, β) = (1, 0), or by replacing each
(αi , βi ) by (αi , βi + niαi ), where

∑
i ni = 0. For instance, the Hopf fibration can

alternatively be described as

M
(
0; (1, 1), (1, 1), (1,−1)

)
, (4)

by first adding two pairs (1, 0), and then replacing them by (1, 1) and (1,−1).

2.5 A Pair of Pants 1-Section

We nowwant to show that the description (4) of the Hopf fibration as a Seifert fibration
with three distinguished fibres (albeit of multiplicity 1) gives rise to a pair of pants 1-
section with one negative and two positive boundary components, i.e. one component
where the boundary orientation is the opposite of the direction of theHopf flow, and two
components where the orientations coincide. An alternative construction illustrates the
equivalences between Seifert invariants in terms of a modification of the surface of
section.We also describe a third construction that we shall take up again in Sect. 3.4.2.

(i) The description (4) means that we start with a 2-sphere with three open discs
removed, i.e. a pair of pants P . Over P the Hopf bundle is the trivial bundle S1 × P ,
and we take a constant section there (which we identify with P). Write the negatively
oriented boundary −∂P of P as

−∂P = σ1 � σ2 � σ3.

We now glue three solid tori V1, V2, V3 to S1 × P with gluing map

μi = σi + βi h, h = h,

where β1 = β2 = 1 and β3 = −1. In Vi we find a helicoidal annulus Ai with oriented
boundary ∂Ai = βiCi �σi , whereCi is the soul of Vi . These three annuli can be glued
to P along the σi to yield the desired 1-section.

(ii) Alternatively, we can start with a disc-like positive 1-section � for the Hopf
flow and modify it as follows. Choose a disc D2

0 ⊂ Int(�). The Hopf fibres passing
through D2

0 define a trivial bundle S
1×D2

0 → D2
0. Remove the interior of two disjoint

discs D2
2 and D2

3 from the interior of D2
0, leaving us with a product bundle over a pair
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A

P

Fig. 2 Gluing A and P

λ1

μ1

λ2

μ2

a1

h1 a2

h2

Fig. 3 A pair of pants 1-section

of pants P . In S1 × P we find a vertical annulus A with oriented boundary equal to
a positive fibre in S1 × ∂D2

2 and a negative fibre in S1 × ∂D2
3. This annulus can be

assumed to intersect the constant section P in a simple curve γ joining ∂D2
2 with ∂D2

3.
By slicing open both P and A along γ and regluing them as illustrated (in a cross

section) in Fig. 2, one obtains a 1-section with helicoidal boundary curves

−σ2 = −μ2 + h and − σ3 = −μ3 − h

on S1 × ∂D2
2 and S1 × ∂D2

3, respectively. This 1-section projects diffeomorphically
onto P (away from the boundary curves), so it is still a pair of pants.

By gluing in helicoidal annuli Ai in S1 × D2
i with boundary ∂A2 = C2 � σ2 and

∂A3 = −C3�σ3, whereCi = S1×{0} is the central fibre of S1×D2
i , we obtain again

the desired 1-section. This second construction actually explains the equivalences of
Seifert invariants that led from the description of the Hopf fibration as M

(
0; (1, 1)

)
to

that in (4).
(iii) Here is a third method of construction, which will be useful later on. This time

we think of S3, as at the beginning of Sect. 2.2, as a gluing of two solid tori V1, V2
with the identificationμ1 = λ2, λ1 = μ2. The Hopf fibration is given by the two souls
C1,C2 and the (1, 1)-curves on the Hopf tori parallel to ∂V1 = ∂V2.

The simple closed curve a1+h1 on ∂V1, shown in Fig. 3, is homotopic to−λ1. This
allows us to find an annulus A1 in V1 with boundary ∂A1 = C1 � (a1 +h1). Likewise,
we find an annulus A2 in V2 with boundary ∂A2 = C2 � (h2 + a2). With the chosen
orientations, the Ai intersect each Hopf fibre in Int(Vi )\Ci once and positively.
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Fig. 4 A piecewise linear helix

h1

h1

h2 a1 = −a2

a1 = −a2

Fig. 5 Smoothening rel boundary fibre

Under the identification of ∂V1 with ∂V2, the segment a1 is mapped to −a2. This
allows us to glue A1 and A2 along these boundary segments to obtain an oriented pair
of pants P with boundary ∂P = C1 � C2 � (h1 + h2). Since h1 + h2 is a negative
Hopf fibre, we have again a 1-section with one negative and two positive boundary
components.

Near the boundary component h1 + h2 in ∂V1 = ∂V2, this surface P looks as in
Fig. 4. This is a piecewise smooth surface that can be smoothened rel boundary fibre
into a helicoidal surface, see Fig. 5. From Fig. 4 we also see that this helicoidal surface
is a 1-section, for the Hopf fibres near −(h1 + h2) are parallel curves with respect to
the surface framing given by the 2-torus ∂V1 = ∂V2. Notice that in Fig. 4 this 2-torus
(near the fibre −(h1 + h2)) is given by the vertical plane determined by that fibre and
the line segments a1 = −a2; the solid torus V2 sits to the left of this plane, V1 sits to
the right.
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3 Lens Spaces

The lens space L(p, q), for p ∈ N and q an integer coprime with p, is the oriented
three-manifold defined as the quotient of S3 (with its natural orientation as boundary
of the 4-ball in C

2) under the Zp-action generated by

(z1, z2) �−→ (e2π i/pz1, e
2π iq/pz2).

Since this action commutes with the Hopf flow, the flow descends to the quotient.
However, the S1-action on the quotient defined by the Hopf flow will not, in general,
be free, so it only defines a Seifert fibration on L(p, q). For a classification of the
Seifert fibrations on lens spaces see [6].

3.1 The Lens Spaces L(d, 1)

The Zd -action on S3 that yields L(d, 1) as the quotient is the one generated by �2π/d ,
where�t is the Hopf flow from (1). Here the Zd -action is along the Hopf fibres, so the
Hopf fibration descends to the quotient to give L(d, 1) the structure of an S1-bundle
over S2 of Euler number −d. This is consistent with the description of L(d, 1) as
the manifold obtained from S3 by surgery along an unknot with framing −d, see [7,
p. 158].

This S1-fibration on L(d, 1) corresponds to writing it as the Seifert manifold
L(d, 1) = M

(
0; (1, d)

)
. Indeed, the gluing μ1 = −μ2 + h, which gave us S3 in

Sect. 2.4, becomes μ1 = −μ2 + dh′ with respect to the shortened fibre h′.

3.2 The Classification of 1-Sections

The S1-fibration of the lens space L(d, 1), including S3 = L(1, 1), coming from the
Hopf fibration can be written as

M
(
0; (1, 1), . . . , (1, 1)

︸ ︷︷ ︸
d+k

, (1,−1), . . . (1,−1)
︸ ︷︷ ︸

k

)
(5)

with any k ∈ N0. This description gives rise to a 1-section with k negative and d + k
positive boundaries. Indeed, let�0 be the 2-sphere S2 with d+2k open discs removed.
Write the boundary of �0 with the opposite of its natural orientation as

−∂�0 = S10 � . . . � S1d+2k .

The Seifert bundle (5) is then obtained by gluing d + 2k solid tori Vi = S1 × D2 to
the trivial S1-bundle S1 × �0 by gluing fibres to fibres (which in the Vi are given by
the S1-factor), and the meridian μi of Vi to S1i ± h, where h denotes the fibre class,
and the sign is positive for i = 1, . . . , d + k, negative for i = d + k + 1, . . . , d + 2k.
This means that Si = μi ∓ h.
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A Symplectic Dynamics Proof of the Degree–Genus Formula 51

Write Ci = S1 × {0} for the soul of the solid torus Vi . In Vi we have a helicoidal
surface with boundary±Ci � (μi ∓h). These helicoidal surfaces glue with�0 to form
a 1-section for the Hopf flow on L(d, 1).

Proposition 3.1 Any 1-section for the Hopf flow on L(d, 1) is isotopic to one of those
genus 0 surfaces just described.

Proof Let � be a 1-section with k+ positive and k− negative ends. Remove solid tori
Vi around the boundary fibres. In Vi , the 1-section � has to look like a helicoidal
surface with boundary ±Ci � (μi ∓ h); this is a consequence of one boundary of
� ∩ Vi being ±Ci , and the fact that � is a 1-section (cf. Fig. 1).

The part �0 of � lying outside the interiors of the Vi defines a trivialisation of the
S1-bundle there, so we can write L(d, 1)\ ∪ Int(Vi ) as S1 × �0. The identification of
the boundary components of�0 (with orientation reversed) with theμi ∓h completely
determines the gluing of S1 × �0 with the Vi . Each such gluing contributes ±1 to the
Euler number, sowemust have k+ = d+k−. It follows that� is, up to diffeomorphism,
one of the surfaces we described above.

Given two such 1-sections with d + k positive and k negative boundaries, we can
first isotope them so as to make the boundaries coincide, since any finite set of distinct
points on S2 can be isotoped to any other set of the same cardinality. Near a positive
(resp. negative) boundary, the 1-sections look like left-handed (resp. right-handed)
helicoidal surfaces making one full turn; any two such surfaces are isotopic.

As before, use one of the two 1-sections to trivialise the complement of open solid
tori around the boundary components. In this trivialised complement S1 × �0, the
boundary of the other 1-section �′

0 coincides with that of �0, which implies that �0
and �′

0 are isotopic rel boundary. ��

3.3 d-Sections in S3 Descend to L(d, 1)

The following statement will allow us to analyse d-sections for the Hopf flow on S3

via their induced 1-sections in L(d, 1).

Proposition 3.2 Any d-section for the Hopf flow �t on S3 is isotopic to one that is
invariant under the Zd-action generated by �2π/d and hence descends to a 1-section
in L(d, 1).

Proof Near its boundary circles, a d-section looks like a helicoidal surface making
d full turns about the central fibre given by the boundary curve. Any such surface is
isotopic to a Zd -invariant helicoid. The remaining part of the d-section is a d-fold
covering of a punctured sphere �0, embedded transversely to the fibres in S1 × �0.
By isotoping (rel boundary) along the fibres we can ensure that any two adjacent
intersections along a fibre occur at a distance 2π/d. ��
Corollary 3.3 Any positive d-section for the Hopf flow on S3 is a surface with d bound-
ary components.

Proof By Proposition 3.2, any positive d-section descends to a positive 1-section in
L(d, 1). The latter has d boundary components by the classification of 1-sections in
Proposition 3.1. ��
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λ1

μ1

λ2

μ2

h1
1

h2
1

h3
1

a1

a1

c1

b1

b1

h1
2

h3
2

h2
2

a2

a2

b2

b2

c2

Fig. 6 A positive 3-section of genus 1

3.4 Examples of Invariant d-Sections

Before we classify the d-sections for the Hopf fibration, we look at two examples.

3.4.1 A Positive 2-Section

The annular 2-section described in Sect. 2.2.2 is composed of two helicoidal pieces
about the boundary fibres C1 and C2, glued along their other boundary curves with
the identification h − 2μ1 = 2μ2 − h. As we pass to the Z2-quotient, the two solid
tori V1, V2 become solid tori with fibre h′ of half the length of h. The gluing curves
descend to h′ − μ1 = μ2 − h′, or μ1 = −μ2 + 2h′. This, as explained in Sect. 2.4,
corresponds to the Seifert fibration M

(
0; (1, 2)

)
, which is the S1-bundle over S2 of

Euler class −2, i.e. L(2, 1).

3.4.2 A Positive 3-Section

We now want to exhibit a positive 3-section of genus 1 with three boundary compo-
nents.

(i) We first use a description as in Sect. 2.5 (iii), see Fig. 6. We think of S3 as being
obtained by gluing two solid tori V1, V2 with the identification μ1 = λ2, λ1 = μ2.
The Hopf fibration is given by the two souls C1,C2 and the (1, 1)-curves on the Hopf
tori.

Write σ1 for the curve on ∂V1 made up of the straight line segments h11, a1, h
3
1, b1,

h21, c1. Similarly, the curve σ2 on ∂V2 is made up of a2, h12, b2, h
3
2, c2, h

2
2. Notice that σi

is a (2,−1)-curve on ∂Vi with respect to the basis (μi , λi ). In V1 we have a helicoidal
annulus A1 with boundary ∂A1 = C1 �σ1; in V2, an annulus A2 with ∂A2 = C2 �σ2.

Under the identification of ∂V1 with ∂V2, the segments a1, b1, c1 are mapped to
−a2, −b2, −c2. This allows us to glue A1 and A2 along these segments to obtain a
surface � with boundary consisting of three positive fibres: C1, C2 and the one made
up of the segments h j

i . Near this third fibre, � can be smoothened as in Fig. 5.

123



A Symplectic Dynamics Proof of the Degree–Genus Formula 53

Fig. 7 The topology of the
3-section

The surface � is a positive 3-section. Indeed, � intersects the Hopf tori in (2,−1)-
curves; the intersection number of these curves with the Hopf fibres, which are (1, 1)-
curves, is (2,−1) • (1, 1) = 3.

From 2μi −λi = 3μi −h we see that nearCi the surface� looks like a left-handed
helicoid making three full turns along the fibre, as it should. The same is true for the
third component of ∂�, as can bee seen from the explicit gluing construction in Fig. 6
and a comparison with Fig. 4.

The surface � is invariant under the Z3-action generated by �2π/3, and hence
descends to a 1-section in L(3, 1) with three positive boundaries, i.e. a pair of pants.

This 3-section � is topologically a surface of genus 1. There are many ways to see
this. One is to observe that � is obtained by gluing two annuli along three segments
in one boundary component of each annulus. This is the same as joining the annuli by
one-handles. Joining the two annuli with a single one-handle is the same as attaching
two one-handles to a two-disc so as to create a pair of pants.We then attach two further
one-handles to the two-disc such that the ‘outer’ boundary stays connected (since this
is the boundary of the helicoidal surface about the fibre made up of the h j

i ) and the
surface is orientable. This is a 2-torus with three discs removed, see Fig. 7 or the
discussion in [5].

Alternatively, we can appeal to the Riemann–Hurwitz formula. We formulate the
relevant result in full generality for positive d-sections.

Proposition 3.4 Let �g,d be the connected, closed, orientable surface of genus g with
d open discs removed, and S2d the 2-sphere with d open discs removed. There is a
d-fold unbranched covering �g,d → S2d if and only if g = (d − 1)(d − 2)/2.

Proof The ‘if’ part will follow from the construction of a positive d-section below.
For the ‘only if’ part, we extend the unbranched covering �g,d → S2d to a branched
covering �g → S2 with d branch points upstairs, each of branching index d. Then,
by the Riemann–Hurwitz formula, the Euler characteristic of �g is

2 − 2g = χ(�g) = d
(
χ(S2) − d

) + d = 3d − d2,

and hence g = (d − 1)(d − 2)/2. ��
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Fig. 8 The 1-section � in L(3, 1) near two boundary fibres

Fig. 9 The projection of � to S2

Remark 3.5 In Sect. 4 we give a proof not only of the ‘if’ part of Proposition 3.4, but
also of the ‘only if’ part, directly from the classification of positive d-sections, which
does not use the Riemann–Hurwitz formula.

(ii) Here is an alternative construction of the positive 3-section � as a lift of the
positive 1-section� in L(3, 1). This construction has the advantage of generalising to
all d, while in (i) we made essential use of the fact that there was only one boundary
fibre apart from C1,C2, which we could place on the Hopf torus ∂V1 = ∂V2.

Recall from Proposition 3.1 that � is a surface of genus 0 with three boundary
components, i.e. a pair of pants. Near any of these boundary components,� looks like
a left-handed helicoid making one full turn along the fibre, see Fig. 8.

Consider two of these three helicoids. They project to discs in S2. Join these discs
by a band as shown in Fig. 9. Over this part of S2 the bundle L(3, 1) → S2 is trivial,
and the two helicoids can be joined by a band to form a 1-section.

The lift of this part of � to S3 is shown in Fig. 10. Observe that this surface in
S3 has three boundary components: the two special fibres and one further connected
component.

If we write μ0 for the boundary of the disc in S2 shown in Fig. 7 (oriented posi-
tively, i.e. counter-clockwise), and h for the Hopf fibre in S3, then this third boundary
component represents the class 3μ0 − 2h in the 2-torus in S3 sitting over μ0.

Now consider a small disc around the base point in S2 of the third boundary fibre of
�. We denote the boundary of this disc by μ3. Over this disc, � forms a left-handed
helicoidmaking one full turn; its lift� to S3 makes three full turns. Thus, the boundary
of this helicoid on the 2-torus in S3 sitting over μ3 is the curve 3μ3 − h.

In order to obtain the 3-section � in S3 we need to glue the part shown in Fig. 10
with this third helicoid by identifying 3μ0 − 2h with −(3μ3 − h). This amounts to
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Fig. 10 Alternative view of the
positive 3-section

the same as gluing μ0 with −μ3 + h, which—as discussed in Sect. 2.4—corresponds
to the description of S3 as M

(
0; (1, 1)

)
, so we have indeed found a positive 3-section

in S3.

4 Positive d-Sections

We now want to extend the examples from Sect. 3.4 to all natural numbers d, and then
give a classification of these d-sections.

4.1 Construction of a Positive d-Section

In order to obtain a positive d-section for the Hopf flow, we need to replace the two
3-helicoids in Fig. 10 by d − 1 left-handed helicoids making d full twists, joined in
sequence by d bands between any two successive helicoids.

First of all, we want to observe that the boundary of this oriented surface consists
of one connected component besides the d − 1 boundary fibres where the helicoids
are attached. Start at a boundary point at the top right of Fig. 10 (generalised to d).
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Each time we walk along the boundary of a horizontal band and continue along the
boundary of the next helicoid to the left, we move down one level on these helicoids.
After having reached the left-most helicoid, wemove back to the right along horizontal
bands, staying on the same level. When we have returned to the right-most helicoid,
we move down one more level until we arrive again at a band going to the left. In the
base, this path projects to one full passage along the outer boundary of �.

Thus, with each such turn, we have moved down d − 1 levels. After completing
d full turns in the base, the lifted path has covered the whole boundary upstairs. So
this boundary upstairs is connected, and it represents the class dμ0 − (d − 1)h on the
boundary of the solid torus sitting over �. As at the end of the preceding section, we
see that this accords with the description of the Hopf fibration as M

(
0; (1, 1)

)
.

After joining the d − 1 helicoids in sequence by a single band between any two
successive helicoids, we have a surface consisting of d − 1 one-handles attached to a
single two-disc. We then add a further (d − 1)(d − 2) one-handles, ending up with an
oriented surface with d boundary components. Thus, the genus of this surface is

g = 1

2

(
(d − 1)2 − (d − 1)

) = 1

2
(d − 1)(d − 2).

This proves the ‘if’ part of Proposition 3.4.

4.2 The Classification of Positive d-Sections

By considering the choices in the above construction, we arrive at the following clas-
sification result. In particular, this reproves the ‘only if’ part of Proposition 3.4.

Theorem 4.1 For each d ∈ N there is, up to isotopy, a unique positive d-section for
the Hopf flow on S3. It is a connected, orientable surface of genus (d − 1)(d − 2)/2
with d boundary components.

Proof Let � be a positive d-section. Given two distinct points x, y ∈ �, consider
their images x, y ∈ S2 under the Hopf projection S3 → S2. Join either of x and y by
a path in S2 to the base point z of a boundary fibre of � (such a boundary exists, as
observed at the beginning of Sect. 2). These paths lift to paths in � joining both x and
y with the component of ∂� over z. This proves that � is connected.

An example of a positive d-section with the claimed topological properties was
exhibited above, so it only remains to prove uniqueness up to isotopy. Given two
positive d-sections, by Proposition 3.1 we may assume, after an isotopy, that they
project to the same 1-section in L(d, 1). In particular, the d boundary fibres of the two
surfaces sit over the same d points in S2. Therefore it suffices to show that there are
no choices, up to isotopy, in the construction of a positive d-section we described.

The d lifted d-helicoids near the boundary fibres are determined by 1-helicoids
of the 1-section in L(d, 1). The d − 2 bands connecting d − 1 of these helicoids in
L(d, 1) into a chain lift uniquely to d times d − 2 bands in S3 as in Fig. 10: start with
a helicoid at the end of the chain and look at the d lifted bands to the neighbouring
helicoid. Shifting this helicoid along the fibre by a suitable multiple of 2π/d will make
the bands ‘horizontal’, so we obtain the standard picture as shown in Fig. 10.
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In the remaining construction we join this partial d-section by an annulus with the
helicoid around the last boundary fibre. Again, there are no choices up to isotopy. ��

5 Complex Projective Curves

In this section we study how algebraic curvesC ⊂ CP2 give rise to surfaces of section
� ⊂ S3 for the Hopf flow. The surface � is obtained, under suitable assumptions
on C , by radially projecting the affine part Caff := C ∩C

2 of the algebraic curve, with
the origin (0, 0) ∈ C

2 removed if it happens to lie on Caff , to the unit sphere S3 ⊂ C
2.

Intersection points of C with the complex projective line at infinity will correspond
to positive boundary components of �. If Caff avoids the origin in C

2, there will be
no negative boundaries; if (0, 0) ∈ Caff , this will give rise to negative boundaries.

5.1 Projecting to S3

For (a, b) ∈ S3 ⊂ C
2, the Hopf circle �t (a, b), t ∈ R/2πZ, in S3 is the image of the

punctured radial complex plane

Pa,b := {
(az, bz) : z ∈ C

∗}

under the radial projectionC2\{(0, 0)} → S3. Thus, in order to show that the projection
of an algebraic curve Caff ⊂ C

2\{(0, 0)} to S3 intersects a Hopf circle in d distinct
points, we need to show that Caff intersects the corresponding plane Pa,b in d distinct
points, no two of which lie on the same real ray

{
reit (a, b) : r ∈ R

+}
.

Anycomplex plane P through the origin inC2 determines a point P∞ in the complex
projective line CP1∞ at infinity and vice versa. In order to show that the projection of
Caff to S3 is a positive d-section for the Hopf flow, we need to verify that the projected
surface in S3 becomes asymptotic to the Hopf circles P ∩ S3 corresponding to the
intersection points P∞ ∈ C ∩ CP1∞ (and there should be no intersection points of P
with Caff in this case). The positivity of the d-section is ensured by the positivity of
complex intersections.

In order to understand the asymptotic behaviour of (not necessarily positive) sur-
faces of section near their boundary, it will be useful not to look at the projection of
Caff\{(0, 0)} to S3, but rather to regard Caff\{(0, 0)} as a surface in R× S3 under the
identification ofC2\{(0, 0)}with the symplectisation

(
R× S3, d(e2sαst)

)
of (S3, αst),

with αst as in (3). This identification is given by sending the flow lines of the radial
vector field

X = 1

2
(x1∂x1 + y1∂y1 + x2∂x2 + y2∂y2)
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on C
2 to those of ∂s/2. The vector field X is a Liouville vector field for the standard

symplectic form ωst = dx1 ∧ dy1 + dx2 ∧ dy2 on C
2, that is, LXωst = ωst, and

it is homothetic for the standard metric. Therefore, the described identification of
C
2\{(0, 0)} with R × S3 sends the complex structure on C

2 to the standard almost
complex structure J on the symplectisation. This J preserves the contact structure
ker αst and, with Rst denoting the Reeb vector field of αst, it satisfies J∂s = Rst, since
iX = Rst/2 along S3 ⊂ C

2.

5.2 Homogeneous Affine Polynomials

We begin with the simple situation that the affine curve Caff = C ∩C
2 is described by

a homogeneous polynomial of degree d. We write [z0 : z1 : z2] for the homogeneous
coordinates on CP2.

Proposition 5.1 The complex projective curve C = {F = 0} ⊂ CP2, where F is a
complex polynomial of the form

F(z0, z1, z2) = f (z1, z2) − zd0 ,

with f �= 0 a homogeneous polynomial of degree d, defines a positive d-section for
the Hopf flow on S3 if and only if F is non-singular.

Proof We first determine the intersection points of the affine part

Caff =
{

(z1, z2) ∈ C
2 : f (z1, z2) = 1

}

(which does not contain the origin (0, 0) ∈ C
2) with the radial planes Pa,b in C

2.
These intersection points are given by the equation

f (a, b)zd = 1.

If f (a, b) �= 0, this equation has d solutions z, related by multiplication by a power
of the d th root of unity. Otherwise, there are no solutions.

The partial derivatives of F are given by

∂F

∂z0
= −dzd−1

0 ,
∂F

∂z1
= ∂ f

∂z1
, and

∂F

∂z2
= ∂ f

∂z2
.

For z0 �= 0 we have ∂F/∂z0 �= 0, so the affine part is always non-singular.
We now look at the points of C in

CP1∞ = {[z0 : z1 : z2] ∈ CP2 : z0 = 0
}
.

Solutions of F = 0 of the form [0 : a : b] are determined by the equation f (a, b) = 0.
In other words, a point at infinity lies on C precisely when C does not intersect the
radial plane in C2 determined by that point.
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Now, the projection of Caff to S3 extends to a positive d-section precisely when
it is asymptotic to d distinct Hopf orbits. This amounts to saying that the equation
f (a, b) = 0 should have d distinct solutions [a : b] ∈ CP1, which is equivalent to f
being non-singular. This, in turn, is equivalent to F being non-singular.

It remains to check thatCaff has the correct asymptotic behaviour near these d Hopf
orbits. Let [a1 : b1] ∈ CP1 be a solution of f (a, b) = 0. We may assume without loss
of generality that a1 �= 0. For a small ε > 0 the curve

θ �−→ [aθ : bθ ] := [a1 : b1 + εa1e
iθ ], θ ∈ S1 = R/2πZ,

describes a circle in CP1 around the point [a1 : b1].
The points of Caff (projected to S3) in the Hopf fibre over [aθ : bθ ] are given by

the solutions wθ of the equation f (aθ , bθ )w
d
θ = 1, and then radially projecting the

points (aθwθ , bθwθ ) to S3. As θ makes one full turn in S1, the function arg
(
f (aθ , bθ )

)

likewise makes one complete turn, provided ε > 0 is sufficiently small. This can be
seen by factorising f as

f (z1, z2) = (b1z1 − a1z2) · · · (bd z1 − ad z2)

with the a j , b j describing d distinct points [a j : b j ] ∈ CP1.
Thus, if we choose a solution w0 and then define wθ , θ ∈ R, continuously in θ ,

we have wθ+2π = e−2π i/dwθ . This guarantees that the projection of Caff to S3 does
indeed look like a left-handed d-fold helicoid about a Hopf fibre near each of its d
boundary components. ��

In particular, for d = 1 the polynomial F describes a projective line L �= CP1∞,
since f �= 0. This line has a single point at infinity, and the projection of the affine
part La = L ∩ C

2 to S3 defines a disc-like 1-section for the Hopf flow.

Remark 5.2 For the final part of the proof of Proposition 5.1, the asymptotic behaviour
near the boundary components, one may also look at the behaviour ofCaff near s = ∞
under the identification ofC2\{(0, 0)}withR× S3 described in Sect. 5.1. The tangent
spaces of Caff contain vectors getting closer and closer to ∂s as we approach s = ∞,
and hence also tangent vectors close to the Reeb vector field Rst = J∂s . This suffices
to see that Caff becomes asymptotic to a Reeb orbit, but it does not guarantee, as our
ad hoc argument does, that this orbit will only be simply covered.

5.3 Algebraic Curves Giving Rise to 1-Sections

We next want to describe a class of homogeneous polynomials F(z0, z1, z2) of degree
d that give rise to 1-sections for the Hopf flow with d positive and d − 1 negative
boundary components.

Write fk(z1, z2) for a non-zero homogeneous polynomial of degree k. As in the
previous section, we can factorise this as

fk(z1, z2) = ck(b
k
1z1 − ak1 z2) · · · (bkk z1 − akk z2)
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with ck ∈ R
+ and (akj , b

k
j ) �= (0, 0). The factor ck in this expression allows us to

assume without loss of generality that the (akj , b
k
j ) lie in S3 ⊂ C

2.
The following is easy to see.

Lemma 5.3 Let C = {F = 0} ⊂ CP2 be the algebraic curve defined by

F(z0, z1, z2) = fd(z1, z2).

With notation as above, we assume that the [adj : bdj ] ∈ CP1 are pairwise distinct for

j = 1, . . . , d. Then Caff\{(0, 0)} ⊂ R× S3 defines a collection of d cylinders R× γ

over the Hopf fibres γ through the points (adj , b
d
j ) ∈ S3. ��

Next we look at polynomials defined by a pair fd , fd−1.

Proposition 5.4 Let F be a homogeneous complex polynomial of degree d of the form

F(z0, z1, z2) = fd(z1, z2) + z0 fd−1(z1, z2),

andC = {F = 0} ⊂ CP2. With notation as above, we assume that the [akj : bkj ] ∈ CP1

are pairwise distinct for k ∈ {d − 1, d} and 1 ≤ j ≤ k. Then the projection of
Caff\{(0, 0)} to S3 defines a 1-section for the Hopf flow with d positive and d − 1
negative boundary components, given by the Hopf fibres through the points (adj , b

d
j )

and (ad−1
j , bd−1

j ), respectively.

Proof Observe that C is non-singular, since a common zero [z0 : z1 : z2] of F and
∂F/∂z0 = fd−1 would also have to be a zero of fd , which our assumptions rule out.

The case d = 1 is covered by Proposition 5.1, so we assume d ≥ 2 from now on.
There are d distinct points at infinity on the curve C , as C ∩ CP1∞ is given by

the equation fd = 0. The intersection of Caff with a (punctured) radial plane Pa,b is
described by the equation

fd(a, b)z + fd−1(a, b) = 0, z �= 0.

There are no solutions if fd(a, b) = 0, since this would force a common zero with
fd−1. Likewise, there is no solution if fd−1(a, b) = 0. For fd(a, b), fd−1(a, b) �= 0,
there is a unique intersection point of Caff with Pa,b. This proves that Caff\{(0, 0)}
projects to a 1-section for the Hopf flow away from the Hopf fibres over the points
[akj : bkj ].

For the asymptotic behaviour near these fibres, we consider a small circle θ �→
[aθ : bθ ] ∈ CP1 around a solution [a : b] of fd = 0 or fd−1 = 0, as in the proof of
Proposition 5.1. The point of the 1-section in the Hopf fibre over [aθ : bθ ] is given by
radially projecting the point (aθwθ , bθwθ ) to S3, with wθ determined by

wθ = − fd−1(aθ , bθ )

fd(aθ , bθ )
.
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As we encircle a zero of fd , the argument of wθ makes one negative rotation; around
a zero of fd−1, a positive one. Thus, near these fibres the 1-section looks like a left-
handed resp. right-handed helicoid. ��
Remark 5.5

(1) By Proposition 3.1, the 1-sections found in Proposition 5.4 are of genus 0.
(2) For the asymptotic behaviour of Caff\{(0, 0)} ⊂ R × S3 near s = −∞ we may

alternatively observe that asCaff 
 (z1, z2) → (0, 0), the surface becomes asymp-
totic to the surface given by fd−1 = 0, which by Lemma 5.3 is a cylinder over a
Hopf fibre. The same caveat as in Remark 5.2 applies.

6 Holomorphic Buildings and the Degree–Genus Formula

In this section we present two proofs of the degree-genus formula.

Theorem 6.1 Any non-singular algebraic curve C ⊂ CP2 of degree d is homeomor-
phic to a closed, connected orientable surface of genus g = (d − 1)(d − 2)/2.

One proof only uses the classification of d-sections for the Hopf flow. The second
proof uses degenerations of complex algebraic curves into holomorphic buildings
in the sense of symplectic field theory. This second proof yields an explanation of
the degree-genus formula as a sum

∑d−2
k=1 k. Either proof relies on the fact that, as

a consequence of Bertini’s theorem [9, Lecture 17], the general (in the sense of [9,
p. 53]) algebraic curve of degree d in CP2 is non-singular.

The projective space of homogeneous polynomials F(z0, z1, z2) of degree d is of
dimension N = (d2 + 3d)/2, since there are (d + 2)(d + 1)/2 monomials of degree
d in three variables. There is an embedding CP2 → CPN given by sending the point
[z0 : z1 : z2] to [... : z I : ...], where z I ranges over all monomials of degree d in three
variables. The image of this embedding is the Veronese variety [9, p. 23], which is a
smooth variety.

The algebraic curves of degree d in CP2 are exactly the hyperplane sections of
the Veronese variety. To this description of algebraic curves one can apply Bertini’s
theorem on the smoothness of hyperplane sections to conclude that the subset of non-
singular algebraic curves in the space of all algebraic curves of degree d is open, dense,
and connected.Under deformations throughnon-singular curves, the topological genus
is invariant.

A slightly more direct (and more sophisticated) argument can be based on the
version of Bertini’s theorem proved in [10, Corollary III.10.9]. The projective space
of degree d homogeneous polynomials in three variables (or the set of divisorsmade up
of the curves defined by these polynomials) is a linear system (see also [8, Section 1.1]
for a discussion of linear systems more accessible to non-algebraic geometers). This
linear system is without base points, i.e. for every point in CP2 there is an algebraic
curve of degree d not containing the given point. Then Bertini’s theorem says that
almost every element of this linear system, that is, every element outside a lower-
dimensional subvariety, is non-singular.
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First proof of Theorem 6.1 The algebraic curves C of degree d in Proposition 5.1 have
d distinct points at infinity, and their affine part Caff does not contain the origin. The
projection of Caff to S3 defines a positive d-section. By Theorem 4.1 this means that,
when viewed inR×S3, the complex curveCaff is topologically a connected, orientable
surface of genus g = (d −1)(d −2)/2 with d ends asymptotic to cylinders over Hopf
fibres. The algebraic curve C is obtained topologically by capping off these ends with
discs.

This proves the degree-genus formula for the algebraic curves described in Propo-
sition 5.1. For the general case, it suffices to appeal to the connectedness of the space
of non-singular curves of degree d. ��

Our second proof illustrates the degeneration phenomena in symplectic field theory.

Second proof of Theorem 6.1 After a projective transformation ofCP2 wemay assume
that [1 : 0 : 0] /∈ C . Then C can be written as {F = 0} with F of the form

F(z0, z1, z2) = fd(z1, z2) + z0 fd−1(z1, z2) + · · · + zd−1
0 f1(z1, z2) + zd0 .

By a small perturbation of F we may assume that each fk has k distinct zeros, and
no adjacent pair fk, fk−1 has zeros in common. In particular, the intersectionC∩CP1∞
then consists of d non-singular points, and we shall focus our attention on the affine
partCaff . As before, topologically the closed surfaceC is obtained by capping off the d
ends of Caff with discs. Since the subspace of singular curves is of real codimension 2
by Bertini’s theorem, we may further assume that the whole family

f λ(z1, z2) := fd(z1, z2) + λ fd−1(z1, z2) + λ3 fd−2(z1, z2) + · · ·
· · · + λd(d−1)/2 f1(z1, z2) + λ(d+1)d/2, λ ∈ (0, 1],

where the power of λ multiplying fd−k is
∑k

j=0 j , consists of non-singular polyno-

mials. Notice that none of these curves Cλ = { f λ = 0} contains the origin in C
2, so

we may think of this as a family of curves Cλ ⊂ R × S3.
Our aim is to determine the topological genus of the affine curve { f 1 = 0}, which is

a curve with d boundary components. In the naive limit λ → 0 we lose all topological
information, since by Lemma 5.3 the curve { fd = 0}\{(0, 0)} is simply a collection
of d cylinders, for as λ → 0, the topology of Cλ disappears towards −∞ in R × S3.

In the spirit of SFT [3], we now rescale the curve in different ways during this limit
process λ → 0, which amounts to zooming in at different parts of the curve to see its
topology. We first present the heuristic argument; details of the convergence process
will be discussed in Sect. 7.

For the rescaling, we replace (z1, z2) by cλ(z1, z2), with judicious choices of the
scaling factor cλ. The rescaling leads to the family of polynomials

f λ∗ = cdλ fd + λcd−1
λ fd−1 + λ3cd−2

λ fd−2 + · · · + λd(d−1)/2cλ f1 + λ(d+1)d/2.
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f4 + f3 = 0

f3 + f2 = 0

f2 + f1 = 0

f1 + 1 = 0

Fig. 11 A holomorphic building from a degree 4 curve

We now choose cλ = λk for some 1 ≤ k ≤ d. Then the polynomials fd−k+1 and
fd−k are multiplied by the same power

k(d − k + 1) +
k−1∑

j=0

j = k(d − k) +
k∑

j=0

j

of λ, whereas all other summands contain a larger power of λ. Hence, as λ → 0 the
rescaled polynomial

f λ∗ /λ
k(d−k)+∑k

j=0 j

converges to fd−k+1 + fd−k , which for k = d has to be read as f1 + 1. By
Remark 5.5 (1), this defines a surface of genus 0 with d − k + 1 positive and d − k
negative boundaries at ±∞, respectively, in R × S3.

As shown in Proposition 5.4, the curve { fd−k+1+ fd−k = 0}\{(0, 0)} is asymptotic
to the Hopf fibres determined by the zeros of fd−k+1 and fd−k at +∞ and −∞,
respectively. Hence, these limits for the different choices of rescaling cλ fit together
into a holomorphic building in the sense of SFT as shown in Fig. 11.

Observe that intermediate rescalings only lead to trivial cylinders over the boundary
orbits and hence do not carry any additional topology. For instance, if we choose
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cλ = λ3/2, then

f λ∗ = λ3d/2 fd + λ(3d−1)/2 fd−1 + λ3d/2 fd−2 + · · · ,

and after rescaling only the polynomial fd−1 will survive in the limit. Then refer to
Lemma 5.3.

Thus, the genus of C can be read off the holomorphic building we obtain in this
SFT limit. The individual levels carry no genus, and the gluing of two adjacent levels
adds #(limit orbits) − 1 to the genus. We conclude that the genus of the curve C of
degree d is given by

∑d−2
k=1 k = (d − 1)(d − 2)/2. ��

Example 6.2 Here is a concrete example that illustrates the essential aspects in the fol-
lowing discussion of convergence. Suppose we would like to understand the topology
of the Fermat curve of degree 3,

{[z0 : z1 : z2] ∈ CP2 : z30 + z31 + z32 = 0
}
.

We consider the affine part

{
(z1, z2) ∈ C

2 : z31 + z32 + 1 = 0
}
.

We now introduce terms of lower order and a family parameter λ:

f λ(z1, z2) = z31 + z32 + λ(z21 + z22) + λ3(z1 + z2) + λ6.

When we evaluate f λ at (λz1, λz2), we obtain

f λ(λz1, λz2) = λ3(z31 + z32 + z21 + z22) + λ4(z1 + z2) + λ6;

rescaling with λ2 yields

f λ(λ2z1, λ
2z2) = λ6(z31 + z32) + λ5(z21 + z22 + z1 + z2) + λ6;

the third rescaling to consider is

f λ(λ3z1, λ
3z2) = λ9(z31 + z32) + λ7(z21 + z22) + λ6(z1 + z2 + 1).

After dividing these polynomials by λ3, λ5 and λ6, respectively, we see that in the
limit λ → 0 we obtain the respective polynomials

z31 + z32 + z21 + z22, z21 + z22 + z1 + z2, z1 + z2 + 1.

7 SFT Convergence

In this section we fill in the technical details of the second proof of Theorem 6.1.
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7.1 Convergence of Submanifolds

In order to understand the convergence of submanifolds defined by equations, we
consider the following general situation. Let M ⊂ R

n be a compact submanifold of
codimension k defined globally by k smooth functions h1, . . . , hk : R

n → R. This
means that

M = {h1 = . . . = hk = 0},

with the gradient vector fields ∇h1, . . . ,∇hk pointwise linearly independent along
the common zero set M of the hi . In particular, the normal bundle of M is trivial, and
we find a tubular neighbourhood νM of M ⊂ R

n diffeomorphic to M × Dk such that
at each point of M × Dk the orthogonal complement to the span of ∇h1, . . . ,∇hk is
transverse to the Dk-factor.

We may assume that there is an ε > 0 such that at any point outside the tubular
neighbourhood νM , at least one of the functions |hi | takes a value larger than ε. Now
let d1, . . . , dk : R

n → [−1, 1] be smooth functions. Then, for |λ| < ε, the common
zero set of the functions hi + λdi lies inside νM . By shrinking νM and ε we can
ensure that the gradient vector fields ∇hi + λ∇di are pointwise linearly independent
on νM for any |λ| < ε, and the orthogonal complement to their span is transverse to
the Dk-factor.

Under these assumptions, the common zero set

Mλ = {h1 + λd1 = . . . = hk + λdk = 0}

will be a submanifold contained in νM = M × Dk for |λ| < ε, given as the graph of
a map M → Dk . In particular, Mλ will be an isotopic copy of M .

7.2 Degeneration of Algebraic Curves

We now return to the specific situation of Sect. 6. We write (z1, z2) = et q with t ∈ R

and q ∈ S3 ⊂ C
2. Set

gk = fk |S3, k = 0, . . . , d,

where f0 = 1. Then

Gλ(t, q) := f λ(et q) =
d∑

�=0

e(d−�)tλ�(�+1)/2gd−�(q).

The rescaling of (z1, z2) by a constant factor amounts to a shift in the t-coordinate,
so we set

Gλ
μ(t, q) = gλ(t + μ log λ, q) =

d∑

�=0

e(d−�)tλμ(d−�)+�(�+1)/2gd−�(q).
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The choiceμ = k corresponds to f λ∗ with cλ = λk in the second proof of Theorem 6.1.

7.3 Convergence to a Holomorphic Building

With this choiceμ = k wewant to get a quantitative understanding of the convergence
of the rescaled function

Gλ
k (t, q)

λk(d−k)+k(k+1)/2
= 1

λk(d−k)+k(k+1)/2

d∑

�=0

e(d−�)tλk(d−�)+�(�+1)/2gd−�(q) (6)

to
G0

k(t, q) = e(d−k+1)t gd−k+1(q) + e(d−k)t gd−k(q) (7)

for λ → 0. Notice that the summands in (6) that vanish in the limit are of the form

λme(d−k+1+n)t gd−k+1+n(q) or λme(d−k−n)t gd−k−n(q)

withm ≥ n > 0.On any compact interval t ∈ [−N , N ], these summands go uniformly
to zero for λ → 0, but we can do a little better than that.

For large positive t , the first summand in (7) dominates, so we consider the rescaled
function

G+
k (t, q) = gd−k+1(q) + e−t gd−k(q); (8)

for t < 0 with |t | large, we look at

G−
k (t, q) = et gd−k+1(q) + gd−k(q).

Lemma 7.1 On [0,− 3
4 log λ] × S3, the rescaled function

Gλ
k (t, q)

λk(d−k)+k(k+1)/2 e(d−k+1)t

converges uniformly to G+
k (t, q) for λ → 0.

On [ 34 log λ, 0] × S3, the rescaled function

Gλ
k (t, q)

λk(d−k)+k(k+1)/2 e(d−k)t

converges uniformly to G−
k (t, q) for λ → 0.

Proof For t ∈ [0,− 3
4 log λ] and m ≥ n > 0 as above, we have

λment < λm−3n/4 −→ 0

for λ → 0. The other case is analogous. ��
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Remark 7.2 Notice that the domain of convergence increases as λ gets smaller. By
uniform convergence we mean that for any ε > 0 there is a λ0 = λ0(ε) such that for
any λ < λ0 the function (8) is ε-close to G+

k (t, q) for all (t, q) ∈ [0,− 3
4 log λ] × S3,

similarly for the other case. This statement remains true for any finite number of
derivatives, with a smaller λ0(ε).

The considerations of Sect. 7.1 now imply that for λ sufficiently close to 0, the
curve

Cλ ∩ [k + 3

4
log λ, k − 3

4
log λ]

has the topology of
{
fd−k+1 + fd−k = 0

}
. The intervals [k + 3

4 log λ, k − 3
4 log λ]

overlap for adjacent k, and similar considerations show that in the region of overlap
the topology of Cλ is that of a collection of cylinders over Reeb orbits.

This concludes the convergence argument in the second proof of Theorem 6.1.
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