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Abstract
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1 Introduction

In 1944 Atle Selberg proved the following integral formula:

l l n
/ / 1_[ (xi—xj)zynx?71(1 —x)Pdxy ... dx,
0 0 1<icj<n i=1

n

_ 1—[ Frd+jy) F'a+G-=Dy) LB+ G —Dy)
e r'+y) Fa+B+m+j—2)y)

) (1.1)

see [2,22].! Hundreds of papers are devoted to the generalizations of the Selberg
integral formula and its applications, see for example [2,11] and references therein.
There are g-analysis versions of the formula, the generalizations associated with Lie
algebras, elliptic versions, finite field versions, see some references in [1,2,4,5,7—
9,11-13,18,19,24,28-31,39-41]. In the finite field versions, one considers additive
and multiplicative characters of a finite field, which map the field to the field of
complex numbers, and forms an analog of Eq. (1.1), in which both sides are complex
numbers. The simplest of such formulas is the classical relation between Jacobi and
Gauss sums, see [1,2,7].

In this paper we suggest another version of the Selberg integral formula, in which
the IF,-Selberg integral is an element of the finite field IF;, with an odd prime number
p of elements, see Theorem 4.1.

Our motivation comes from the theory of the Knizhnik—Zamolodchikov (KZ) equa-
tions, see [6,14]. These are the systems of linear differential equations, satisfied by
conformal blocks on the sphere in the WZW model of conformal field theory. The KZ

U In 23] Selberg remarks: “This paper was published with some hesitation, and in Norwegian, since I was
rather doubtful that the results were new. The journal is one which is read by mathematics-teachers in the
gymnasium, and the proof was written out in some detail so it should be understandable to someone who
knew a little about analytic functions and analytic continuation.” See more in [11].
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The Fp-Selberg Integral 41

equations were solved in multidimensional hypergeometric integrals in [25], see also
[32,33]. The following general principle was formulated in [17]: if an example of the
KZ type equations has a one-dimensional space of solutions, then the corresponding
multidimensional hypergeometric integral can be evaluated explicitly. As an illustra-
tion of that principle in [17], an example of KZ equations with a one-dimensional
space of solutions was considered, the corresponding multidimensional hypergeomet-
ric integral was reduced to the Selberg integral and then evaluated by formula (1.1).
Other illustrations see in [9,10,20,28-30,34].

Recently in [26] the KZ equations were considered modulo a prime number p
and polynomial solutions of the reduced equations were constructed, see also [27,
35-38]. The construction is analogous to the construction of the multidimensional
hypergeometric solutions, and the constructed polynomial solutions were called the
F,-hypergeometric solutions.

In this paper we consider the reduction modulo p of the same example of the
KZ equations, that led in [17] to the Selberg integral. The space of solutions of the
reduced KZ equations is still one-dimensional and, according to the principle, we may
expect that the corresponding I ,-hypergeometric solution is related to a Selberg type
formula. Indeed we have evaluated that F,-hypergeometric solution by analogy with
the evaluation of the Selberg integral and obtained our IF,-Selberg integral formula in
Theorem 4.1.

The paper contains three proofs of our IF,,-Selberg integral formula. There might
be more proofs. It would be interesting to see if our formula can be deduced from
the known relations between the multidimensional Gauss and Jacobi sums, see for
example [2, Section 8.11].

The paper is organized as follows. In Sect. 2 we collect useful facts. In Sect. 3
we introduce the notion of [F,-integral and discuss the integral formula for the IF-
beta integral. In Sect. 4 we formulate our main result, Theorem 4.1, and prove it by
developing an I ,-analog of Aomoto’s recursion, defined in [3] for the Selberg integral.
In Sect. 5 we give another proof of Theorem 4.1, based on Morris’ identity, which
is deduced from the classical Selberg integral formula (1.1) in [16]. In Sect. 6 we
sketch a third proof of Theorem 4.1 based on a combinatorial identity, also deduced
from the Selberg integral formula (1.1). In Sect. 7 we discuss in more detail how
our [F,-Selberg integral formula is related to the IF ,-hypergeometric solutions of KZ
equations reduced modulo p.

The authors thank C.Bir6, I. Cherednik, P. Etingof, E.Rains, A. Slinkin for useful
discussions and the referee for helpful suggestions.

2 Preliminary Remarks
2.1 Lucas’ Theorem

Theorem 2.1 [15] For nonnegative integers m and n and a prime p, the following
congruence relation holds:
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42 R. Rimanyi, A. Varchenko

(Z) =11 (Z’) (mod p), @2.1)

wherem = mbpb —i—mb_lpb_1 4+---+mp+moandn = nbpb +nb_1pb_1 +-- 4
n1p + no are the base p expansions of m and n respectively. This uses the convention
that () = 0ifn < m. m|

2.2 Binomial Lemma

Lemma 2.2 [38] Let a, b be positive integers such thata < p, b < p, p < a + b.
Then we have an identity in ¥,

b( b-1 ):b( b-1 ):(—1)“+1Lb!. (2.2)
a+b—p p—a-—1 (a+b—p)!

2.3 Cancellation of Factorials

Lemma 2.3 Ifa, b are nonnegative integers and a +b = p — 1, then in ¥, we have
alb! = (=1)*tL, (23)

Proof We have a! = (—1)*(p—1)---(p —a)and p —a = b+ 1. Hence a!b! =

(—=D%(p — D! = (=1)**! by Wilson’s Theorem. o

3 Fp-Integrals

3.1 Definition

Let p be an odd prime number and M an [F,-module. Let P(xy, ..., x¢) be a polyno-
mial with coefficients in M,

d d
Pxi,....ox0) =Y caxi' ... xph. (3.1)
d
Let! = (Iy,...,Iy) € Zk>o~ The coefficient ¢, p—1,....;, p—1 is called the IF,-integral
over the cycle [y, ..., I;], and is denoted by f[ll lily P(xi, ..., xp)dxy ... dxg.
Lemma3.1 Fori =1,...,k — 1 we have
[ P(xy, ..o, Xig1, Xiy ooy xg)dxy ... dxg
[seesdiprliveelicdp
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The Fp-Selberg Integral 43

=/ P(xy,...,xp)dxy...dxg. 3.2)
[l ]p

Lemma3.2 Foranyi =1,...,k, we have

P
—(x1,...,x) =0.
[llwwlk]p 8xi

O
3.2 [F,-Beta Integral
For nonnegative integers a, b the classical beta integral formula says
r b alb!
x(1=x)dx = ———. (3.3)
0 (a+b+ 1)

Theorem3.3 [38] Let0 <a <p,0<b<p,p—1=<a+b.TheninF, we have

1!
/ 1 —x)ldy = —— 47 (3.4)
[1]17 (a+b—p+1)'

Ifa+b < p—1, then

/ x4(1 — x)?dx = 0. (3.5)
(1

P

Proof We have x%(1 — x)? = Zfzo(—l)k (2)xk, and need a + k = p — 1. Hence
k=p—1—aand

/ x“(l—x)bdxz(—l)p_l_a< b )
[1]p p—]—d

Now Lemma 2.2 implies (3.4). Formula (3.5) is clear. O

4 n-Dimensional [Fp-Selberg and [F,-Aomoto Integrals
4.1 n-Dimensional Integral Formulas

The n-dimensional Selberg integral formula for nonnegative integers a, b, c is

1 1 n
/ / 1_[ (x,-—xj)zcl_[xf‘(l—x,-)bdxl...dxn
0 i=1

0 1<icj<n
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44 R. Rimanyi, A. Varchenko

1—[ (JC)' (a+ (G —Do)l b+ — Do)
B (@+b+m+j—2)c+ 1!

“4.1)
andfork = 1,...,n — 1, the n-dimensional Aomoto integral formula is

/1/ Hxi 1_[ (xi—xj)zcl_[xf(l—xi)hdxl...dxn
0 0 i=1

—ﬁ a+@n—jec+1 ﬁ(jc)!(a+<j—1>c)!<b+(j—1)c)!
Tl b+ On—j—De+1 ¢l (@+b+m+j—2c+2)!

j=1
4.2)
[2,3,22].
Theorem 4.1 Assume that a, b, ¢ are nonnegative integers such that
p—1<a+b+mn—1)c, a+b+2n—-2)c<2p—1. 4.3)
Then we have an integral formula in F -
/ [T —x,)zcl_[x (1 —xp)” dxy ..
[1,.es Hp 1<l<]<n
, ol a@a+G =D+ (G — Do)!
— (- 1>1]"[ / [ e . (4.4)
¢ (a+b+(m+j—2)c+1-p)!
Also, ifk=1,...,n—1, and
p—1<a+b+mn—1), a+b+Q2n—2)c<2p-2, 4.5)

then

f I_Ix, l_[ (x,—x])hl_[x (1= x)? dx;...dx,
1

""" Up =1 I<i<j<n

a+b+Cn—j—De+2 1t b+ m+j-2c+1-p!l
4.6)

_ ﬁ at+@m—jlc+1 ﬁ (ol @+ G -DHol®+( - Do)t

The first proof of Theorem 4.1 is given in Sects. 4.2—4.4, the second in Sect. 5, and
the third one is sketched in Sect. 6.
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The Fp-Selberg Integral 45

Remark Formula (4.4) can be rewritten as

Z l_[ (x; _x])ch_[xa(l _xt)h
X1, xneF,,l<z<j<n
_ l—[ (o) (a+ (G —Dlb+(j — Do)l

¢l (@+b+mn+j—2c+1-p)° @.7)

if additionally a + b + (2n — 2)c < 2p — 2.

Remark The fact that the IF,-Selberg integral on the left-hand side of (4.4) equals
an explicit alternating product on the right-hand side of (4.4) is surprising. But even
more surprising is the fact that the alternating product on the right-hand side of (4.4)
is simply given by the alternating product on the right-hand of the classical formula
(4.1) with just several of factorials shifted by p.

Remark The Selberg integral (4.1) is related to the sl, KZ differential equations, see
Sect. 7, and is called the Selberg integral of type Aj. The Selberg integral of type A,
related to the sl 1 KZ differential equations, is introduced in [30,39-41].

We call the F-integral (4.4) the I ,-Selberg integral of type A. The F-Selberg
integral of type A,, n > 1, is introduced in [21]. The IF ,-Selberg integral formula of
type A, is deduced in [21] from the IF,-Selberg integral formula (4.4) by induction
onn.

Remark The integral analogous to (4.4) but with x; —x; factors raised to an odd power
vanishes:

/ [ & —x,)2°+1]_[x (1 —x)P dx;...dx, = 0. 4.8)
[

""" 1p 1<i<j<n

Indeed, after expanding the (x; — x2)20+1 factor, the integral (4.8) equals

2¢+1 20+ 1
Z( 1)’”“( )/ XM A= e x) dxy . dx, =0,
[l

m

with f symmetric in x1 and x. The terms corresponding to m and 2¢ 4+ 1 — m cancel
each other, making the sum 0.

4.2 Auxiliary Lemmas
Denote

T U9 @+ G =Dl + (= Do)
Puta, b0y = (=1 ,1:[1 A aibtatj-veti-p &Y
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46 R. Rimanyi, A. Varchenko

The polynomial

d(xy,...,xpa,b,c) = ]_[ (x,—x/)zcl_[x (1 —x)b

I<i<j<n

is called the master polynomial. Denote

Su(a, b, c) =/ [T —x,)zcl_[x (1 — x)bdx; ... dx,,
[1

""" Hp 1<z<]<n

n
Skn(a,b,c) = /1 nx, 1_[ (x; —xj)zcl_[xf‘(l —x)ldx; ... dx,,
i=1

~~~~~ Up izl 1<i<j<n

fork = 0,...,n. Then Sy ,(a, b,c) = Sy(a,b,c), Sy.n(a,b,c) = S,(a+1,b,c).
By (3.2), we also have

n
Sk,,,(a,b,c)zf ]—[x,,, ]"[ i—xj)zcl_[xi“(l—xi)bdxl...dx
i=1

l’z 1 I<i<j<n
foranyl <oy < -+ <o <n.
Lemma4.2 We have S, (a,b + p,c) = S,(a, b, c).

Proof We have (1 — x;)PT7 = (1 — x))’(1 — x;)? = (1 — x;)?(1 — x). Hence the
factors (1 — x;)? and (1 — x;)?TP contribute to the coefficient of xip ~!in the same
way. O

Lemmad3 Ifa+b+ 2n—2)c <2p —2andc > 0, thenn < p. O
Lemma44 Ifa+b+ (n—1)c < p—1, then S,(a,b,c) =0.
P

Proof The coefficient of xf’ - . Xp, “lin the expansion of ®(a, b, ¢) equals zero. O

Lemmad4.5 If p <a+ (n — l)c, then S,(a, b, c) =0.

Proof Expand ®(x, a, b, ¢) in monomials xf‘ - d" If p <a+ (n—1)c, then each
monomial x?l . d” in the expans10n has atleastone of dy, . . ., d, greater than p—1,
Hence the coefficient of )c1 - .xf in the expansion equals zero. O

Lemma4.6 Ifa+b+ 2n—2)c <2p — 1, then S,(a, b, c) = S, (b, a, c).

Proof Expand ®(x, a, b, ¢) in monomials xill .. .xf,l" dfa+b+2n—2)c <2p—1,
then

(a) for each monomial xf‘ ...xf,l" in the expansion all of dy, ..., d, are less than
2p — 1.
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We also have

n
(1 —yi.....1—ypab.oy= [] Gi—yp*[[ofa—-y’.

I<i<j<n i=1

This transformation does not change the IFj-integral due to Lucas’ Theorem and

property (a), see a similar reasoning in the proof of [36, Lemma 5.2].
43 Casea+ b+ (n—T)c=p—1
Lemmad.7 Ifa+b+ (n—1)c =p — 1, then

— (—1)bnten(n—1)/2
Sn(avb’ C) - ( 1) rorentn (C')"

]

(4.10)

Proof If a +b + (n — 1)c = p — 1, then S, (a, b, ¢) equals (—l)b" multiplied by the
coefficient of (xy...x,)¢ in H1§i<j§n(xi — xj)2c, which equals (—1)0”(”_1)/2%

by Dyson’s formula

(cn)!

(ehm

CT. J] (=xi/xp)(d—x;/x) =

I<i<j<n
Here C.T. denotes the constant term. See the formula in [2, Section 8.8].
Lemmad.8 Ifa+b+ (n—1)c =p — 1, then

P,(a,b,c) = (_l)bn+cn(n71)/2 (Cn)!.
o (b
Proof We have

i TT G9! @+ (= Dol + (= De)!
Pa@.b.o) = (=" [] o (a+b+m+j—2c+1—p)

j=1
PN Gol (a+ (= Do)l b+ (G — Do)
=D Jljl c! o) ... ((n = o) '

.11

(4.12)

By Lemma 2.2 wehave a! (b+(n—1)c)! = (—D)PH0=Detl (g4e0)l (b4 (n—2)c)! =

(—1)PT(=2et+1 "and so on. This proves the lemma.

Lemmas 4.7 and 4.8 prove formula (4.4) fora+b+ (n — l)c = p — 1.

[}
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48 R. Rimanyi, A. Varchenko

4.4 Aomoto Recursion

We follow the paper [3], where recurrence relations were developed for the classical
Selberg integral. See also [2, Section 8.2].
Using Lemma 3.2, for k = 1, ..., n we have

k
o1l
=/ — (1—x1)1_[xid>(x,a,b,c)i|dx]...dxn
[,..1], 0x1 il

.....

k

= (a—l—l)/ (1 —x)) [[xi®(x. a. b, c)dx; ... dx,
[1,....11, s
—b+1 Hx,CD(x a,b,c)dxy ..
(L 1]p

X1

2 d b, c)dxy ...dx,. 4.13

+ c/ .... le_le_[x, (x,a, b, c)dx; Xn ( )

Lemma 4.9 The I ,-integral

| k

/ [[x ®x.a.b.c)dx ... dx, (4.14)
(L], X1 =X 00

equals 0 if2 < j < k and equals Sx—1,,/2 ifk < j < n. The I ,-integral

k
l_[xl ®(x,a,b,c)dx;...dx, (4.15)
i=1

equals Sk n/2 if2 < j <k and equals Sy, ifk < j <n.

Proof By Lemma 3.1 each of these integrals does not change if x1, x; are permuted.

The four statements of the lemma hold since —= -+ x)]”_x L =0, e+ x,-x—jxl =1,
2 2 2 2
XiXj *x; o LN Yoo . ;
X1—Xj Xj—x1 X1Xj X1—x; X—x1 X1+ xj, respectively. O
Lemma4.10 Fork =1, ..., n we have
a+mn—k)c+1
Skn = Sk—1.n- (4.16)

a+b+Q2n—k—1)c+?2

Proof Using Lemma 4.9 we rewrite (4.13) as

O=@+DSk—1n—(@+b+2)Skn+cn —k)Sk—1.n —c@n —k — 1)Sk -
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The Fp-Selberg Integral 49

4.5 Proof of Theorem 4.1

Theorem 4.1 is proved by induction on a and b. The base induction step a + b + (n —
1)c = p — 11is proved in Sect. 4.3.
Lemma 4.10 gives

a+n—j)c+1

Su(a+1,b,¢) = S,(a, bC)H a+b+Qn—j—e+1

Together with the symmetry S, (a, b, ¢c) = S, (b, a, c) this gives formula (4.4). Then
formula (4.16) gives formula (4.6). Theorem 4.1 is proved.

4.6 Relation to Jacobi Polynomials

The statements (4.6) for different values of k can be captured in a single equation,
which involves a Jacobi polynomial—like it was done by K. Aomoto in [3] for the
classical Selberg integral. Recall that the degree n Jacobi polynomial is

n

P(")(x) Z()H(n+a+ﬂ+l) H(a+z)( 1>U

v=0 i=v+1

Proposition 4.11 Assuming inequalities (4.5) leta = (a+1)/c—1, 8 = (b+1)/c—1.
Then

/ l—[(xl —1) - ®(x,a,b,c)dx.

Ay o
: Sﬂ(a7 ba C)

= PP (1 —2p). 4.17)
H?i;fl(a +b+ic+2) "

The proof is the same is in [3]: After expanding ]—L’-’zl (x; — t) we have the sum of
integrals of the type

/ XoXoy -+ X, ®(x, a, b, c)dxy ... dx,,
[1,....11p
which—by symmetry (3.2)—are equal to Sk ,(a, b, ¢). Substituting

a+(n—j+1
a+b+Q2n—j—1c+2

k
Skanla, b, ) = Su(a, b ) - [ ]
j=1

from (4.4) and (4.6) yields (4.17).

@ Springer



50 R. Rimanyi, A. Varchenko

5 Fp-Selberg Integral from Morris’ Identity
5.1 Morris’ Identity

In this section we work out the integral formula (4.4) for the [F,-Selberg integral from
Morris’ identity. Suppose that «, 8, y are nonnegative integers. Then

CT.[Ja—xp)*a—1xp)f ] =xj/x)”
i=1 1<j#k<n

n

_ l—[ U»)! (@+B+G —Dy)!
y! @+ G = DB+ - Dyl

5.1)
j=1

Morris identity was deduced in [16] from the integral formula (4.1) for the classical
Selberg integral, see [2, Section 8.8].
The left-hand side of (5.1) can be written as

C.T.(-) 8 TT i —xp? [[x 7" —x*, (52

l<i<j<n i=1
while
n
Su@.b.o)=CT. [] Gi—xp*[[+""70-x)", (5.3)
I<i<j<n i=1

where the constant term is projected to IF,.
Puttinga+1—-p=-8—-m—-1y,b=a+B,c=y,or

a=a+b+m—l)c+1—p, B=p—a—m—1c—-1, y=c. (54

we obtain the following theorem.

Theorem 5.1 If the nonnegative integers a, b, c satisfy the inequalities
p—1<a+b+mn—-—1c, a+mn—-Dc=<p-1, (5.9
then the I¥ ,-Selberg integral is given by the formula:

Su(a, b, c) = (—1)Retna

n

o 1—[ o' b+ = Do)t

i ¢ (p—a—m—je—Dla+b+n+j—2)c+1-p!

(5.6)

where the integer on the right-hand side is projected to T .
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The [Fp-Selberg Integral 51

Lemma 5.2 If both inequalities (4.3) and (5.5) hold, that is, if

p—1<a+b+m—1)c, a+b+2n—2)c<2p—1, 5.7
a+m—1Dc<p-—1, (5.8)

then in ¥, we have

n

(=1)@e+na 1—[ (jo)! .(b +(j — Do)! . ’
i cl (p—a—(m—=jlc=Dla+b+ n+j—2)0)!
GOl (a4 (= Dol + (j — 1)o)!
= (=" 5.
=1 11:[1 ¢l (a+b+m+j—2c+1-pV 69
and hence (5.6)
S,(a.b.c) = (—1)" 1—[ (o (a+ (=Dl b+ (j — Do) (5.10)

Y @+b+m+j—2c+1—p)!

Notice that by Lemma 4.5 we have S, (a, b, ¢) = 0if inequality (5.8) does not hold.

Proof We have

n

l_[ 1 _ 1_[ (a+ (n— j)e)!
‘i (p—a—(n—j)—-1)! (p—a—m—j—Dla+m—jo)!

j=1 j=1
n
= [[D*r= P @+ (n = o),
j=1
by Lemma 2.3. This implies the Lemma 5.2. O

5.2 More on Values of S, (a, b, ¢)

Theorem 5.3 If inequalities (5.5) hold anda = p — 1 — (n — 1)c — k, then

(nc)! n (b+(j;1)c)

(chr i ((j— 1k)c+k)

Sa(p—1—(n—1)c—k,b,c) = (—1)Detna

, (5.11)

where the integer in the right-hand side is projected to I p,. O

(b+( j}(—m

Notice that the projections to IF,, of the binomial coefficients ) can be

calculated by Lucas’s Theorem and both integers in the binomial coefficients ((j B lk)”k)
are nonnegative and less than p.
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Proof We have

(@+ B+ (= Dy)! =<a+ﬁ+(j_1)y>(/l—_[1>y X
@+ G —DyNB+ G — Dy 8 _,3+i

i=1
B b+ (j — e (jl’_‘[)c 1
T \p—a—-m—-1Dc—1 e p—a—m—Dc—1+i

Ifa=p—1—(n— 1)c—k, then this equals

b+ (j — 1)c> UZbe b+ (j— De k!
ki

k B k >((j — D! T2 (G = De +1)
1 (b+(j—1)c‘)
k

(= Doyt (TR

Substituting this to (5.6) we obtain (5.11). O

Example Formula (5.11) gives

b(b+c)
c+1

’

S(p—c—1.b,c) = (—1)“<ZCC>, So(p—c—2,b,c) = (—1)C<ZCC)

and so on. Notice that these values are not given by Theorem 4.1. See more examples
in Fig. 1.

5.3 Factorization Properties

By Lemmas 4.2 and 4.5 we have S, (a, b+ p, c) = S,(a, b, ¢) and S, (a, b, c) = 0if
a > p —(n—1)c. Thus, for given c, it is enough to analyze S, (a, b, c¢) in the rectangle
Q={@a,b)|laec[0,p—1—(n—1)c],b e [0, p—1]}. This rectangle is partitioned
into n smaller rectangles :

Qon,c) ={(a,b)|lacl0, p—1—m—1)], be[0, p—1—(n—1)c]},
Qi(n,c) ={(a,b)|laecl0, p—1—(n—1)],
belp—1—-m—i)c+1, p—1—-—m—i—1Dxcl}, i=1,....,n—1,

see the tables in Fig. 1. The values of S, (a, b, ¢) in Q¢(n, c¢) are given by Theorem 4.1
and Lemma 4.4. The values of S, (a, b, ¢) in a rectangle 2; (n, c) are given by Theo-
rem 4.1 and Lemma 4.4 also, but applied to IF ,-Selberg integrals of smaller dimensions
with the same value of ¢ and suitable choices of values for a and . Namely, we have
the following factorization property.
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Fig. 1 Tables of S;(a, b, —), S2(a, b, 3), S3(a, b, 3) values for p = 11 and small integers a, b. Yellow

shading indicates the range covered by Theorem 4.1, and the dotted lines enclose the region covered by

Theorem 5.1. The structure of the gray shading is discussed in Sect. 5.3
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Theorem 5.4 For (a, b) € Q;(n, c) withi > 0, we have

Sp(a,b,c) = (=)~ >< )
lC
I e
T2 O T ()
—I=(n=j)e—

H?:l (p (jfl)/cc a)

x8p—ila +ic,b,c)Si(a+ (n—i)e,b+ (n—i)c—p,c).

(5.12)

Notice that all binomials (g) in the second line of (5.12) have p > o > B > 0.
Notice alsothat (a+ic, b) € Qo(n—i, c)and (a+(n—i)c, b+(n—i)c—p) € QLo(i, ¢),
and hence Theorem 4.1 and Lemma 4.4 can be applied to S,—;(a + ic, b, c¢) and
Si(a+ m —i)e,b+ (n—1i)c— p,c).

Proof The theorem follows from formula (5.11) and Lucas’ Theorem. m]

6 A Remarkable Combinatorial Identity

In this section we sketch another proof of Theorem 4.1. We do this because at the
heart of this proof there is a remarkable identity (Theorem 6.1) for polynomials in two
variables.

Notation. Let ¢, n be positive integers. For 1 < i < j < n we will consider non-
negative integers 0 < m;; < 2c¢ and we set m;; = 2c —m;;. For 1 < k < n define

"y = Zmik+ kai, Sk = Zmik+ kai-
1<i<k k<i<n 1<i<k k<i<n
We will use the Pochhammer symbol (x),, = x(x + )(x +2)--- (x +m — 1).

Theorem 6.1 Letn > 2, ¢ > 1 be positive integers. In Z[x, y] we have the identity

Z (_])Zi<j mij 1_[ ( ) H(x)r/\ (y)Sk

m i<j mij _

— ((k+1
H M(x)kc ke (x +y + @n — k = 2)c)ge

where by Y . we mean the (5)-fold summation Zmn_o Zmn_o me —0-
2>
chll—l,nzo'

The summands of the left-hand side are of degree 4c( ) polynomials, and according
to the theorem, their sum is the right-hand side, which is the product of degree 30( )
with linear factors. The reader is invited to verify that for n = 2 the theorem reduces
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to a hypergeometric identity, namely Dixon’s Theorem [2, Theorem 3.4.1] on the
factorization of 3 F, with certain parameters. For instance the n = 2, ¢ = 2 case of
Theorem 6.1 states that the sum of the terms

x+2)x+3)H+2)(y+3), —4xx+2)y(y+2), 6x(x+Dy(y+1),
—4x(x +2)y(y+2), (x+2)x+3)(y+2)(y+3)

is 12(x + y + 2)(x + y 4+ 3) (here we canceled the factor xy(x 4+ 1)(y + 1), which
appears in each term and on the right-hand side as well). The explicit form of the
identity for n = 3 is

2¢

Y (et ( 2 > < 2 ) ( 2 )
mjz/) \ma3/) \mi3

mi2,ma3,mi3=0

mip+miz—1 2c—mi3+mo3—1 4c—mi3—mop3—1
x [ «+b [ @+ J[ «+h
k=0 k=0 k=0
de—mip—m3—1 2c—ma3+mip—1 mi3+mo3—1
< [ o+ I o+ [ o+h
k=0 k=0 k=0
! [
_ (2cc!). (3:!)' ]l_[l(x k=D +k—1)&+y+4c—k)
2¢
x [Ja+k=DG+k=D&+y+4c—k).
k=1

Sketch of the proof of Theorem 6.1. Consider Eq. (4.1) for a positive integer c, that
is, the classical Selberg integral formula in n dimensions. On the left-hand side we
decouple the variables, i.e. we substitute (x; — x;)%¢ = Zrznc,»jzo (mzlc])xlm” (—x;)"i.
We obtain

n 1
S [ EnXemi] (,ic) T1 ( | - Xk>”ka)

m i<j U7 k=1

_ ﬁ (ol a+ (j—DAlb + (j — Do)l
j=1

¢l (a+b+mn+j—2c+1)

Now writing I'(a + ry + )I'(b 4+ 1)/ '(a + rr + b + 2) for the one-dimensional
Selberg integrals on the left-hand side, and substituting

x=a+1, y=—@+2n—1)c+b+1),
the obtained identity rearranges to the statement in the theorem. O
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We believe that the identity in Theorem 6.1 is interesting in its own right, but here
is a sketch of how to use the identity to prove Theorem 4.1.

Consider the left-hand side of (4.4), and carry out the same decoupling of vari-
ables as we did in the proof of Theorem 6.1. We obtain a sum, parameterized by
choices of m;;, and in each summand we get a product of one-dimensional I -
Selberg integrals of the form f[l],, x,’? “(1 — xx)bdxy for some Ay. Substituting the
value —Ag!b!/(Ax + b+ 1 — p)! for such a one-dimensional integral (formula (3.4)),
we obtain an explicit formula (no integrals anymore!) for the left-hand side of (4.4).
The summation Theorem 6.1 brings that sum to a product form, and one obtains exactly
the right-hand side of (4.4).

In this proof one has to pay additional attention to the case a+b < p—1, when some
integrals f[llp x,?" (1 —x)?dx; have Ay 4+b < p — 1 and are equal to zero by formula
(3.5). Still in this case the sum of nonzero terms is transformed to the desired product by
the identity of Theorem 6.1 with parameter c replaced by d := a+b+(n—1)c+1—p.

O

7 KZ Equations

7.1 Special Case of s[; KZ Equations Over C

Let e, f, h be the standard basis of the complex Lie algebra sl, with [e, f] = &,
[i, e] = 2e, [h, f] = —2f. The element

1
Q=e®f+f®e+§h®h€5[2®5[2 (7.1)

is called the Casimir element. For i GZEO let V; be the irreducible i + 1-dimensional
slp-module with basis v;, fv;, ..., f'v; such that ev; = 0, hv; = iv;.
Letu(z1, z2) be a function taking values in V,,,; ® V,,, and solving the KZ equations

ou Q ou Q
K— = u, K—= u, (7.2)
z1 1 —22 022 22 —1z1

where k € C* is a parameter of the equations. Let Sing[m| + m, — 2n] denote the
space of singular vectors of weight m 4+ m2 —2n in V,,;; ® Vs,

Sing[m1 +my —2n] = {v € Vi, ® Vi, | hv = (m1 + m2 — 2n)v, ev = 0}.

This space is one-dimensional if the integer n satisfies 0 < n < min(my, my) and is
zero-dimensional otherwise. According to [25], solutions u with values in Sing[m | +
mo — 2n] are expressible in terms of n-dimensional hypergeometric integrals

w(z1,22) = Y ur(21,22) £ m; @ £ v,y
-
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with
(21, 22) = (21 — z2)™1m2/% / W, (z1, 22, D (21, 22, 1) dry ... dty.
C

Here the domain of integration is the simplex C = {r e R" |z; <1, <--- <11 < 22}.
The function ¥ (z1, z2, 1) is called the master function,

n
WLz = [ &=t [Ja -2 @ )7/,
I<i<j<n i=1

the rational functions W, (z1, z2, t) are called the weight functions,

Wr(z1,22,1) = Z Ht-iz H :

i—2
JCiln) jeg W TR Gyt T2
|J|=r

The fact that u is a solution in Sing[m| + m, — 2n] implies that

m—=rymy—n+r+Du +@+Dm —ru,41 =0, r=1,...,n—1.
(7.3)

The coordinate functions u, are generalizations of the Selberg integral. In fact, u#( and
u, are exactly the Selberg integrals. For example,

2 2
uo(z1,22) = (21 — z22)™"m2/% | | (1 — 1)/
¢ 1<i<j<n

n
X H(l‘i —2) M — zp) T A L dy.
i=1

The change of variables #; = (zo — z1)s;i +z1 fori =1, ..., n gives

uo(z1,22) = — a0 Sn

(=DAz1 — )8 | <1 mp  mp 1)
where Sn(a, B, y) denotes the Selberg integral (1.1), A = M +n, B =

m‘m2_2"(m‘;<m2)+2"("_1) . By formula (7.3), we obtain

(=DAG@ —2)B ST+ D) ra - Mty p - mait

u(z1,z2) =« | |
n 11:[1 F(l+1) (- mtmensiis)
x i:(—l)r (n) fru® " o4
r=0 r H;zl(ml —j+ 1 l_[’]l;q(mz —j+0D
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7.2 Special Case of sl KZ Equations Over [,

Let p be an odd prime number. Let x be a ratio of two integers not divisible by
p. Let my, my be positive integers such that m1, my < p. Consider the Lie algebra
slp over the field ). Let V,ﬁl, V,,’,’2 be the sl;-modules over F,, corresponding to
the complex representations V,,,;, Vi,,. Then the KZ differential equations (7.2) with
values in V,J, ® V,}, are well-defined, and we may discuss their polynomial solutions
in variables z1, z. Let

Sing[my +my — 2nl, = {v e Vi, ® Vih, | hv = (m1 + ma — 2n)v, ev = 0}.
This space is one-dimensional, if the integer n satisfies 0 < n < min(m1, m>) and is
zero-dimensional otherwise.

Choose the least positive integers M1, M, M1, ¢ such that

mi mimy
Mi=—-——, Mp= )
K 2k

(mod p). (7.5)

o

1
K
According to [26], solutions u with values in Sing[m | + m2 — 2n], are expressible in
terms of n-dimensional I ,-hypergeometric integrals

u(z1.22) = Y up(21.22) f 0y ® " Vm, (7.6)
r
with

ur(z1,22) = (21 — Zz)M‘2/ Wi (z1, 22, )Vp (21, 22, 1) dty .. . dty,
(1.1,

where W, (z1, 22, t) is the master polynomial,

V,(z1,22,1) = 1_[ (t — 1)) l_[(li — )M — )™

I<i<j<n i=1
Theorem 7.1 Assume that My, My, M1, ¢, n are positive integers such that

Mi+m—1Dc<p, My+@n—1)c<p,
p<M +My+(n—1)c, M +My+ @2n—2)c<2p—1. 7.7

Then the function u(z1, z2), defined by (7.6), is given by the formula

n

u(ziz2) = (=D - 2)? []

j=1

N n fru®
<—1)’( ) i , ,1,, (18
X; )M+ (G = Do T2 (M2 + ( — Do) 7:8)

GOl (M1 + (j — D) (Ma + (j — 1)e)!
My +My+(n+j—2)c—p)
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where

A=nMi+(n—Dc+1), B=Mp+nM+ M+ (n—1c—p).

For n = 1 this is [38, Theorem 4.3].

Proof The proof follows from the F,-Selberg integral formula of Theorem 4.1 and

formula (7.3), cf. Sect. 7.1. O
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