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Abstract
A d{n}-cage K is the union of n groups of hyperplanes in P

n , each group containing
d members. The hyperplanes from the distinct groups are in general position, thus
producing dn points where hyperplanes from all groups intersect. These points are
called the nodes of K. We study the combinatorics of nodes that impose independent
conditions on the varieties X ⊂ P

n containing them. We prove that if X , given by
homogeneous polynomials of degrees ≤ d, contains the points from such a special
set A of nodes, then it contains all the nodes of K. Such a variety X is very special: in
particular, X is a complete intersection.

Keywords Cayley–Bacharach theorems · Hyperplane arrangements · Cages ·
Varieties · Complete intersections.

1 Introduction

This paper is an extension and generalization of [11], which dealt with algebraic curves
in plane cages, to algebraic varieties in the multidimensional cages (see Definition
1.1). In this text, we use the term “variety” as a synonym of “algebraic set”.

Our tools are mostly combinatorial. They are based on some “Fubini’s-flavored”
versions of the Bésout Theorem in the spirit of [7–9]. Although the results of this
paper fit well into the general framework of Cayley–Bacharach theorems (see [6],
Theorem CB6), to apply this general machinery to the very special configurations of
nodes from a given cage still requires some effort. So here, we present a more direct
and elementary argument, whose application is limited in scope, but geometrically
transparent.

Let us consider two groups of lines in the plane (real or complex), each group
comprising three lines. We call such a configuration K of six lines a 3 × 3-cage, or
3{2}-cage for short. We label the lines of the first group with red, and of the second
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Fig. 1 Cage Theorem 1.1 helps to validate the associativity of the group operation on a nonsingular cubic
curve; e denotes the neutral element

group with blue. Assume that there are exactly 9 points where the blue lines intersect
the red lines. We call them the nodes of the cage.

Our originalmotivation for studying the varieties in cages comes from the following
classical result in the theory of plane cubic curves, a special case of Chasles’ Theorem
for a pair of cubic curves that meet at 9 points [4,14].

Theorem 1.1 (The Cage Theorem for Plane Cubics) Any plane cubic curve C, passing
through eight nodes of a 3 × 3-cage, will automatically pass through the ninth node.

Recall that CageTheorem1.1 reflects the associativity of the binary group operation
“+” on an elliptic curve C (see Fig. 1).

Definition 1.1 A d{n}-cage K is a configuration of n distinctly colored groups of d
hyperplanes each (the entire hyperplane configuration K consists of nd hyperplanes)
located in the n-space (projective or affine) in such a way, that K generates exactly dn

points where the hyperplanes of all n distinct colors α1, . . . , αn intersect transversally.
(It follows that any n-tuple of distinctly colored hyperplanes are in general position in
the ambient n-space.) These points are called the nodes of the cage. ♦

Hyperplanes in P
n form a dual projective space P

n∗, the space of linear homo-
geneous functions, considered up to proportionality. Therefore, d hyperplanes of the
same color from a d{n}-cage K ⊂ P

n represent an unordered configuration of d points
in P

n∗, a point in the symmetric product Symd(Pn∗). Therefore, the color-ordered
collection of n such points from Symd(Pn∗) is a point of the space

(
Symd(Pn∗)

)n .
By Definition 1.1, any set of n hyperplanes of distinct colors has a single intersection
point. The requirement that some set of n hyperplanes of distinct colors has multi-
ple intersection points in P

n puts algebraic constraints on the coefficients of the dn
homogeneous linear polynomials (in n + 1 variables) that define the hyperplanes.
Similarly, the requirement in Definition 1.1 that all transversal n-colored intersections
are distinct, and thus numbering dn , produces a Zariski open set. Therefore, we get
the following.

Lemma 1.1 The d{n}-cages form a Zariski open set K in the (dn2)-dimensional space(
Symd(Pn∗)

)n
. The group of projective transformations PGLA(n + 1) acts naturally

on
(
Symd(Pn∗)

)n
, and thus on the set K. ♦
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Varieties in Cages: A Little Zoo of Algebraic Geometry 3

The problem we address in this paper is to describe the varieties that contain all
dn nodes of a given cage K. It turns out that every variety V , defined by polynomials
of degrees ≤ d and containing the node set N, is very special indeed. In particular, V
must be a complete intersection (see Definition 2.2) of the type (d, . . . , d︸ ︷︷ ︸

s

), where

s = n − dim V . Furthermore, the requirements that a hypersurface of degree ≤ d will
pass through the nodes of a d{n}-cage are very much redundant. In this article, we
describe the combinatorics of the nodes that impose independent constraints on the
hypersurface in question. We call such maximal set A of “independent” nodes supra-
simplicial (see Definition 2.1 and Fig. 2). Crudely, the proportion of cardinalities #A

#N
declines as ∼ 1/n! with the growth of d.

We have mentioned already that some of our results share the flavor with a remark-
able family of classical theorems of Algebraic Geometry (see [2,3,5,6], and Theorem
1.2 below). These classical theorems operate within a much less restrictive environ-
ment than the one of the d{n}-cages. However, the theorems about varieties in cages
are more geometrical, transparent, and easy to state.

To provide a point of reference, let us describe briefly this family of classical results,
known under the name “Cayley–Bacharach theorems”.

Let Z+ denote non-negative integers. Recall that the Hilbert functions h X : Z+ →
Z+ of a variety X over a fieldA associate with a non-negative integer k the dimension
of the k-graded portion of the quotient ring A[x0, . . . , xN ]/IX , where IX denotes the
zero ideal that defines X . The ring A[x0, . . . , xN ]/IX is called the coordinate ring of
X .

Since the node set N of a (d × d)-cage is the intersection locus of d red and d
blue lines, Theorem 1.1 is a special case of the Cayley–Bacharach Theorem ([1,2]),
stated below. For a complete intersection X ⊂ P

2, Theorem 1.2 connects the Hilbert
functions h X : Z+ → Z+, h X1 : Z+ → Z+, and h X2 : Z+ → Z+ of a finite set X , its
subset X1, and its complement X2 := X\X1. Recall that, for a 0-dimensional variety
X and all sufficiently big k, h X (k) = |X |, the cardinality of X .

Theorem 1.2 (Cayley–Bacharach) Let D and E be two projective plane curves of
degrees d and e, respectively, and let the finite set X = D∩E be a complete intersection
in P

2. Assume that X is the disjoint union of two subsets, X1 and X2. Then, for any
k ≤ d + e − 3, the Hilbert functions h X , h X1 , and h X2 are related by the formula

h X (k) − h X1(k) = |X2| − h X2((d + e − 3) − k). ♦

The RHS of this formula describes the failure to impose independent constrains by
the points of the set X2 on the polynomials of degree k. Therefore, Cayley–Bacharach
Theorem may be viewed as a duality claim; however, it does not compute explic-
itly each of the dual quantities in the formula above. In contrast, our Theorem 2.1
accomplishes this task, provided that X = X1

∐
X2 are very special: namely, X is the

0-dimensional variety of nodes of a cage K, and X1 ⊂ X is a supra-simplicial set.
Theorem 1.2 admits a comprehensive generalization by Davis et al. [5], and by

Geramita, Harita, Shin (see [8], and especially [9], Theorem 3.13). It is a “Fubini-
type” theorem for the Hilbert function of a finite subset X ⊂ P

n that is contained in
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4 G. Katz

the union of a family of hypersurfaces {Hi }1≤i≤s , whose degrees {di } add up to the
degree of X . Under some subtle hypotheses that regulate the interaction between X
and the hypersurfaces {Hi }1≤i≤s (they include the hypotheses “X = ∐

i (X ∩ Hi )
′′),

a nice formula for the Hilbert functions {h X∩Hi : Z+ → Z}1≤i≤s of Hi -slices of X
emerges

h X (k) = h X∩H1(k) + h X∩H2(k − d1) + · · · + h X∩Hs (k − (d1 + · · · + ds−1)).

A clear beautiful overview of the research, centered on the Cayley–Bacharach type
theorems, can be found in [6].

Now, let us describe the results of the paper and its structure in some detail. The
paper is divided in two sections, including the Introduction.

Our main results of are: Theorems 2.1, 2.2, and Corollary 2.4. Here is a summary
of their claims. Any variety X ⊂ P

n that is the zero set of homogeneous polynomials
of degrees ≤ d and contains a supra-simplicial set A of nodes of a given d{n}-cage
K ⊂ P

n contains all the nodes of K. Such X is a complete intersection of the multi-
degree (d, . . . , d︸ ︷︷ ︸

s

), where s = codim(X ,Pn). Moreover, X is smooth in the vicinity

of the node set N. The variety X is completely determined by A and the tangent to X
space τp at any of the nodes p. Conversely, any subspace τp ⊂ Tp(P

n) of codimension
s, where p ∈ N, with the help of A, produces such a variety X .

In all the figures, we restrict ourselves to depictions of cages in the space R3. Most
of the figures are produced with the help of the Graphing Calculator application. In
the figures, for technical reason, the nodes of the cages are invisible. Although the
images depict real surfaces in only 3{3}- and 4{3}-cages, the entire exhibition looks
surprisingly rich.

We tried to make this text friendly to readers who, as the author himself, are not
practitioners of Algebraic Geometry but who may enjoy a visit to the small zoo of
varieties in cages, a microcosmos of the old fashion Italian style Algebraic Geometry.

2 AMultidimensional Zoo

As a default, we choose the base field A to be the field of real or complex num-
bers. However, starting with Definition 2.2, we assume that A is the field of complex
numbers.

Let L j be a degree d homogeneous polynomial whose zero set is the union of
d hyperplanes of a particular color α j (L j is a product of d linear forms). Since
deg(L j ) = d, Bézout’s Theorem implies that the solution set N of the system {L j =
0} j∈[1,n] consists of dn points at most, provided that N is finite. Thus, Definition 1.1
implies that each node p ∈ N of the cage belongs to a single hyperplane of a given
color and the hyperplanes of distinct colors are in general position at p, and thus in the
ambient n-space. It follows that the node locus N ⊂ P

n is a 0-dimensional complete
intersection of degree dn .
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Varieties in Cages: A Little Zoo of Algebraic Geometry 5

Fig. 2 A supra-simplicial set of
nodes in a 4{3}-cage

Example 2.1 Consider the complex Fermat curve F ⊂ CP
2, given by the equation

{x̃d + ỹd = z̃d} in the homogeneous coordinates [x̃ : ỹ : z̃]. In the affine coordinates
(x, y) = (x̃/z̃, ỹ/z̃), its equation may be written as xd + yd = 1, or as

∏
ξ (x − ξ) +

∏
η(y−η) = 0,where ξ, η run over the set of complex d-roots { d

√−1/2}. Therefore,F
passes through the nodes of the d ×d-cage K := (

⋃
ξ {x = ξ}) ⋃

(
⋃

η{y = η}) ⊂ C
2.
♦

Let In(d) be the subset {I = (i1, i2, . . . , in)} of the lattice Zn+, such that each i j ∈
[1, d]. So In(d) is a n-dimensional “cube” of the size d. By definition, ‖I‖ = ∑n

j=1 i j .
If we introduce some order among the hyperplanes of the same color α j ( j =

1, . . . , n), then each node pI of Kwill be marked with a unique multi-index I ∈ In(d).

Definition 2.1 A set of nodes T from d{n}-cage K is called simplicial if, with respect
to some orderings of the hyperplanes in each group, it is comprised of the nodes
{pI }I∈In(d), subject to the constraints ‖I‖ ≤ d + 1.

A set of nodes A from a cage K is called supra-simplicial if, with respect to some
orderings of the hyperplanes in each group, it is comprised of the nodes {pI }I∈In(d),
subject to the constraints ‖I‖ ≤ d + 2. (see Fig. 2, where the grid corner is located at
(1, 1, 1)). ♦

Example 2.2 For d = 2, the 2{n}-cage is modeled after the union of the hyperplanes in
R

n that extend the faces of a n-cube. The cardinality of the node locus N is 2n , and the
cardinality of the simplicial set T is n +1, while the cardinality of the supra-simplicial
set A is C2

n + n + 1 = 1
2 (n

2 + n + 2). ♦
Example 2.3 A famous example of a K3-surface is given by the equation {y40 + y41 +
y42 + y43 = 0} in CP

3, or by the equation {x41 + x42 + x43 + 1 = 0} in C
3. Using the
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6 G. Katz

partition {1 = 1/3 + 1/3 + 1/3}, the latter equation may be written in the form

∏

α

(x1 − α) +
∏

β

(x2 − β) +
∏

γ

(x3 − γ ) = 0,

where α, β, γ each runs over the four complex roots of the equation {z4 = −1/3}.
Therefore, the K3-surface contains all the 64 nodes of a 4{3}-cage K, defined by the
equations

{∏

α

(y1 − α · y0) = 0
} ⋃ {∏

β

(y2 − β · y0) = 0
}⋃ {∏

γ

(y3 − γ · y0) = 0
}
.

In fact, the K3-surface is nailed to the notes of a two-dimensional variety of cages,
produced in similar ways by writing down 1 as a sum of three complex numbers,
all different from 0. The previous construction was based on the composition {1 =
1/3 + 1/3 + 1/3}.

We notice that the nodes of this cage K are “invisible” in RP
3.

The permutation group S4 of order 24 acts on CP
3 by permuting the coordinates

(y0, y1, y2, y3). Under this S4-action, this surface is invariant. In contrast, the cage K
is invariant only under the S3-action that permutes the coordinates (y1, y2, y3). (This
action does not preserve the colors of the cage!) Thus, using the S4-action on K, the
K3-surface contains the nodes of at least four distinct 4{3}-cages in CP3. ♦

Example 2.4 Recall a remarkable Cayley–Salmon Theorem [3]: any smooth complex
cubic surface X contains exactly 27 lines. If X ⊂ CP

3 is given by the equation
{z30 + z31 + z32 + z33 = 0} (this surface is called Fermat cubic surface), then putting
ω := e2π i/3, each of these 27 lines is given by 2 linear constraints [(see [15], Corollary
(8.20)]

{z0 + ωi z1 = 0, z2 + ω j z3 = 0}, i, j ∈ [0, 2],
{z0 + ωi z2 = 0, z1 + ω j z3 = 0}, i, j ∈ [0, 2],
{z0 + ωi z3 = 0, z1 + ω j z2 = 0}, i, j ∈ [0, 2]. (2.1)

As in the previous examples, using the decomposition {1 = 1/3+ 1/3+ 1/3}, we
notice that X is inscribed in a 3{3}-cage K, given by the formula

3⋃

j=1

{ 2∏

k=0

(
z j + 1

3
√
3

ωk z0
) = 0

}
.

As inExample 2.3, there exists a 2-parameter family of cages inwhich X is inscribed
(it corresponds to different ways one can represent 1 as a sumof three nonzero complex
numbers).
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Varieties in Cages: A Little Zoo of Algebraic Geometry 7

Fig. 3 Two cubic surfaces, each
passing through the nodes of a
3{3}-cage K ⊂ R

3. Note the
curve C ⊂ R

3 of the
multi-degree (3, 3), where the
two surfaces (of two colors)
intersect. C also contains all the
27 nodes of K

The symmetric group S4 acts on the Fermat surface X by permuting the coordinates
in CP3. This action must preserve the configuration of 27 lines in X , since these lines
are the only ones residing in X . The subgroup S3 ⊂ S4 that permutes the coordinates
(z1, z2, z3) evidently preserves the cage K, but not its colors. Thus, X contains the
nodes of at least 4 distinct cages in CP3, obtained from K by the S4-action.

Consider the 27 lines, contained the 3{3}-cage K, where two planes of distinct colors
intersect (this locus is the “1-skeleton” of K), and compare them with the 27 lines on
a smooth cubic surface X (see [10], Chapter V, Section 4, for the explicit description
of the configuration, the 27 lines on X ). ♦

Question 2.1 For a smooth complex cubic surface X ⊂ CP
3 that contains all the

nodes of a given 3{3}-cage K, how to describe in terms of K the pattern of 27 lines that
belong to X? Is there anything special about the locus where the 27 lines in X hit the
nine planes that form the cage?

Perhaps, within the family of cubic surfaces X that are inscribed in K, the 27
bicolored lines of the cage are “the limits” of 27 lines on X, as X degenerates into the
completely reducible variety of three planes of a particular color? ♦

By examining the diagonal lines in the Pascal Triangle, we get the following useful
combinatorial fact (Figs. 2, 4 and 5).
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8 G. Katz

Lemma 2.1 Each simplicial set of nodes T in a d{n}-cage is of the cardinality Cn
d+n−1

(Fig. 2).
Each supra-simplicial set of nodes A in a d{n}-cage is of cardinality Cn

d+n − n. ♦
Let Hj,i be the i th hyperplane of the color α j , and let L j,i be a homogeneous

linear polynomial in the coordinates (y0, y1, . . . , yn) on the space An+1 that defines
Hj,i . Each L j,i is determined, up to proportionality, by Hj,i . In what follows, we fix
particular linear forms {L j,i }i, j . Put L j := ∏

i∈[1,d] L j,i .

For any nonzero vector λ = (λ1, . . . , λn) ∈ A
n , we consider the homogeneous

polynomial of degree d

PK, λ :=
∑

j∈[1,n]
λ j · L j . (2.2)

Evidently, each polynomial PK, λ vanishes at all the nodes of the cage K.

Theorem 2.1 Consider a subvariety V ⊂ P
n, given by one or several homogeneous

polynomial equations of degrees ≤ d.

• If V contains all the nodes from a supra-simplicial set A of a d{n}-cage K ⊂ P
n,

then V contains all dn nodes of the cage. Moreover, any such variety V is given
by polynomial equations of the form {PK,λ = 0}λ for an appropriate choice of

vectors λ (see (2.2)).
• In contrast, no such variety V contains all the nodes from a simplicial set T̃ of any

(d + 1){n}-cage K̃ ⊂ P
n.

Proof As in the case of encaged plane curves [11], the argument is based on a combi-
natorial similarity between the Newton’s diagram of a general polynomial of degree d
in n variables and a simplicial set T̃ of nodes of any (d +1){n}-cage. Also, the cardinal-
ity of such a Newton’s diagram exceeds the cardinality of a supra-simplicial set A of

Fig. 4 Another pair of cubic
surfaces, passing trough the 27
nodes of the same cage K, as in
Fig. 3. Again, the “bicolored”
intersection locus C of the two
surfaces contains all 27 nodes of
K
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Varieties in Cages: A Little Zoo of Algebraic Geometry 9

Fig. 5 A surface of degree 4,
passing through 64 nodes of a
S3-symmetric 4{3}-cage K ⊂ R

3.
Although this surface is not
compact in R

3, there are
compact real surfaces of degree
4 that pass through the nodes of
K

nodes of a d{n}-cage K by n. In other words, the dimension of the variety of hypersur-
faces of degree d in the space Pn exceeds #A by n − 1. Indeed, the monomials in the
affine variables x1, . . . , xn of degree ≤ d (equivalently, the homogeneous monomials
in the variables y0, . . . , yn of degree d) are in one-to-one correspondencewith the set B
none-negative integral n-tuples I ∈ Z

n , subject to the inequality ‖I‖ ≤ d. At the same
time, the nodes {pI } of an supra-simplicial set A satisfy the inequality ‖I‖ ≤ d + 2
together with {1 ≤ is ≤ d}s∈[1,n]. Shifting by the vector (−1, . . . ,−1) embeds A
into B, so that only the n corners (d, 0, . . . , 0), (0, d, . . . , 0), . . . (0, 0, . . . , d) of the
Newton diagram remain outside of the shifted A. Finally, proportional polynomials
define the same hypersurface.

The following proof is recursive in nature. The induction is carried in n, the dimen-
sion of the cage. We assume that the first assertion of the theorem is valid for all
d{k}-cages of any size d in spaces of dimension k < n, and the second assertion is
valid for all cages of any size d + 1 in spaces of dimension k < n.

Our argument relies on slicing K ⊃ A by the hyperplanes {H1,i = 0}i∈[1,d] of the
first color α1, thus reducing the argument to families of cages in (n − 1)-dimensional
affine or projective spaces. This leads to a “Fubini-type cage theorem” in the spirit of
[9] (see Fig. 2 for guidance).

For any integer s ∈ [1, d − 1], we consider the (d − s + 1){n−1} sub-cage K[s] ⊂
K ∩ H1,s , formed by the hyperplanes

H1,s

⋂
⎛

⎝
⋃

j∈[2, n], i∈[1, d−s+1]
Hj,i

⎞

⎠
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10 G. Katz

in H1,s ≈ P
n−1. In the hyperplane H1,s , the cage K[s] is given by the equation

⎧
⎨

⎩
LL[s] :=

∏

j∈[2, n], i∈[1, d−s+1]
L j,i = 0

⎫
⎬

⎭
.

We denote by T[s] the simplicial set of nodes in T∩K[s] and byA[s]—the set of nodes
from the supra-simplicial set A ∩ K[s]. Note that the set T[s] can serve as a simplicial
set and A[s]— as a supra-simplicial set for the cage K[s].

We start with a given homogeneous degree d polynomial P in the projective coor-
dinates [y0 : y1 : . . . yn], which vanishes at all the nodes of a supra-simplicial set A
of a d{n}-cage K ⊂ P

n .
Consider the restriction of P to the first hyperplane H1,1 of the color α1. Then,

P vanishes at the supra-simplicial set A[1] := A ∩ H1,1 of the induced d{n−1}-cage
K[1] := K∩H1,1, the zero set of the polynomialL2·L3· . . . ·Ln in H1,1. By induction on
n, the restriction P|H1,1 must be of the form P1 := ∑

j∈[2,n] λ
[1]
j ·L j (being restricted

to H1,1) for some choice of the coefficients λ
[1]
2 , . . . λ

[1]
n . For this special choice of

(λ
[1]
2 , . . . λ

[1]
n ), the difference P − P1 is identically zero on H1,1. If a homogeneous

polynomial R vanishes on a hyperplane, given by a homogeneous linear polynomial L ,
then R is divisible by L . Indeed, by a linear change of the homogeneous coordinates,
we may choose L as the first new variable and write down R as L · Q + S, where S is
a homogeneous polynomial that depends only on the rest of the new variables. Since
S = S|{L=0} = 0, the polynomial S = 0 identically, and R = L · Q.

Therefore, P −P1 is divisible by the liner polynomial L1,1. Therefore, P = P1 +
L1,1 · P1, where P1 is a homogeneous polynomial of degree d − 1.

Next, we consider the restrictions of P and P1 to the hyperplane H1,2 = {L1,2 = 0}
of color α1. Since both P and P1 vanish at the set A ∩ H1,2 and, by Definition 1.1,
L1,1 �= 0 at the points of A∩ H1,2, we conclude that P1 (of degree d − 1) must vanish
at the set A∩ H1,2 as well. Note that A∩ H1,2 = A[2] is a simplicial set for the induced
d{n−1}-cage K[2] ⊂ K ∩ H1,2. Therefore, by induction, any homogeneous polynomial
of degree d −1 that vanishes at a simplicial set A[2] of the d{n−1}-cage K[2] must vanish
at H1,2. Hence, P1 = L1,2 · P2 for some homogeneous polynomial P2 of degree d −2.
Therefore, we get P = P1 + L1,1 · L1,2 · P2.

Similarly, we argue that of P2 of degree d − 2 vanishes on the simplicial set A[3] ⊂
A∩H1,3 of the (d−1){n−1}-cageA[3]. Therefore, P2|H1,3 is zero, and P2 = L1,3·P3 for a
homogeneous polynomial P3 of degree d−3.As a result, P = P1+L1,1·L1,2·L1,3·P3.

Continuing this reasoning, we get eventually

P = P1 + λ(L1,1 · L1,2 · · · · · L1,n) =
∑

j∈[2,n]
λ

[1]
j · L j + λL1,

where λ is a constant. Therefore, P = λ · L1 + ∑
j∈[2,n] λ

[1]
j · L j is of the form PK,λ

and must vanish at every node of the d{n}-cage K ⊂ P
n .

By a similar reasoning, wewill validate the second claim of the theorem. Therefore,
we take any polynomial P of degree d that vanishes at a simplicial set T̃ of a (d +1){n}-
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Varieties in Cages: A Little Zoo of Algebraic Geometry 11

cage K̃ ⊂ P
n . As before, we slice K̃ by the hyperplanes {H1,s}i∈[1,d+1] of the color α1.

Now, all the slices T̃
[s]

(including the first one) are simplicial sets on K̃
[s]
. The latter

locus K̃
[s]

is given by the equations

⎧
⎨

⎩
L̃L[s] :=

∏

j∈[2,n], i∈[1, d−s+2]
L j,i = 0

⎫
⎬

⎭
.

Since P vanishes at T̃
[1]
, by the induction hypotheses, P|H1,1 = 0. This implies

that P = L1,1 · P1, where P1 is a homogeneous polynomial of degree d1. The set T̃
[2]

is simplicial in the cage d{n−1}-cage. Since L1,1|T̃[2] �= 0, we get that P1 must vanish

at the nodes from T̃
[2]
. By induction, this implies that P1|H1,1 = 0 and thus is divisible

by L1,1. So P = L1,1 · L1,2 · P2 for a homogeneous polynomial P2 of degree d − 2.
Continuing this process, we get P = L1,1 · L1,2 · . . . , ·L1,d · λ must vanish at the

unique node of the set T̃
[d+1]

. This forces λ = 0, and so P is identically 0.
Finally, the validity of the basis of induction “n = 1” is obvious for univariate

polynomials of any degree d. In fact, Theorem 2.1 has been proven in [11] for n = 2.
Since the varieties V we consider in the theorem are defined by polynomials of

degrees ≤ d, the claim follows. ��
Remark 2.1 Note that the assumption that A is supra-simplicial set in Theorem 1.1
is essential: not any subset of nodes of the cardinality #A from a d{n}-cage imposes
independent relations on the set of homogeneous polynomials of degree d in n + 1
variables!

For example, in a 4× 4-cage, #A = 13. However, if B is the complement to the set
of three nodes C := {p42, p43, p44}, then not every curve of degree 4 that contains B
will contain C. In fact, B is contained in the union of three red and one blue lines from
the cage; they all miss C. ♦
Example 2.5 Consider any curveC inP3, given byhomogeneous polynomial equations
of degree ≤ 3 (typically, C is of degree 9). If C passes through 17 nodes of a supra-
simplicial set A of nodes of a 3{3}-cage, then it passes through all the 27 nodes of the
cage.

A similar conclusion holds for any surface of degree 3 in P
3 that passes through

the 17 nodes from A. ♦
Corollary 2.1 Consider a subvariety V ⊂ P

n, given by one or several homogeneous
polynomial equations of degrees ≤ d. If V contains all the nodes from a supra-
simplicial set A (of cardinality Cn

d+n − n) in a d{n}-cage K ⊂ P
n, then all the

polynomials that define V are exactly of degree d.

Proof By Theorem 2.1, if a homogeneous polynomial P of degree less than d, which
vanishes at V , also vanishes at the simplicial set T ⊂ A of the d{n}-cage K, then P = 0
identically. Thus, deg P = d, provided that P is nontrivial. ��

In this paper, we will use the following “working definition" of complete intersec-
tions.
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12 G. Katz

Definition 2.2 A purely (n − k)-dimensional Zariski closed subset V ⊂ P
n over a

field A of characteristic zero is a complete intersection of the type (d1, . . . , dk), if V
is an intersection of hypersurfaces H1, . . . , Hk in Pn of degrees d1, . . . , dk , such that,
at a generic (nonsingular) point x of each component of V , the embedded (n − k)-
dimensional tangent space Tx V ⊂ TxP

n is the (transversal) intersection of the tangent
hyperspaces {Tx Hj ⊂ TxP

n} j∈[1,k]. ♦
The next proposition was stated by the reviewer of this paper as a natural gen-

eralization of some claims from our Theorem 2.2. It puts this theorem in a larger
context.

Proposition 2.1 Suppose that W ⊂ P
n is a smooth complete intersection of r ≤ n

hypersurfaces of degree d and that V ⊃ W is an algebraic subset of Pn that is (set-
theoretically) an intersection of hypersurfaces of degree d. Then, V is a complete
intersection of hypersurfaces of degree d, and V is smooth along W .

Proof Let homogeneous polynomials g1, . . . , gr ∈ A[x0, . . . , xn] of degree d be
generators of the zero ideal I(W ) of the complete intersection W of codimension
r . In particular, they are linearly independent elements of the d-graded portion of
the ring A[x0, . . . , xn]. Let V be the zero set of homogeneous degree d polynomials
f1, . . . , fs ∈ A[x0, . . . , xn]. Since V ⊃ W , each f j ∈ I(W ). Since f j is of the
degree d, we get f j = ∑

k ck j gk , a linear combination of gk’s overA.Wemay choose a
maximal subset of the set { f1, . . . , fs}, comprised of linearly independent elements.By
linear algebra, s ≤ r . Abusing notations, we denote these new elements by f1, . . . , ft .
To show that V is a complete intersection, we need to show that the codimension of
V in P

n is t . At a smooth point p ∈ W , in an affine chart that contains p, we replace
the homogeneous polynomials g1, . . . , gr by their non-homogeneous representations
g̃1, . . . , g̃r in the affine coordinates. Then, the differentials dg̃1, . . . , dg̃r at p (that
span the normal cotangent to W bundle) are linearly independent. Thus, by linear
algebra, d f̃1, . . . , d f̃t are linearly independent at p, as well. Therefore, V is smooth
at p ∈ W and codim(V ,Pn) = t . ��

We choose the node set N ⊂ K for the role of the complete intersection W from
Proposition 2.1. With this choice, Proposition 2.1, being combined with Theorem 2.1,
implies directly Theorem 2.2 below.

Theorem 2.2 Let V ⊂ CP
n be a subvariety of codimension s, given by one or several

homogeneous polynomial equations of degrees ≤ d.
If V contains all the nodes from a supra-simplicial set A of a d{n}-cage K ⊂ CP

n,
then V is a complete intersection of the multi-degree (d, . . . , d︸ ︷︷ ︸

s

), which is smooth at

each node of the cage K. Thus, deg V = dn−dim V . ♦
In turn, Theorem 2.2 forces the following obvious logical conclusion.

Corollary 2.2 If a variety V ⊂ CP
n, given by homogeneous polynomials of degrees

≤ d, is not a complete intersection, then it cannot be trapped in any d{n}-cage in P
n.
♦
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Perhaps, Theorem 2.2 and Corollary 2.2 are valid also over the base field R.

Example 2.6 Since the twisted cubic curve C : [s : t] → [s3 : s2t : st2 : t3] is not a
complete intersection in CP

3, by Corollary 2.2, C does not contain the nodes of any
3{3}-cage K in CP3, or even the nodes from a supra-simplicial set A ⊂ K. ♦
Example 2.7 Despite looking diverse, all the figures in this paper depict varieties,
attached to the nodes of d{n}-cages K(Q) that are produced following a very simple
recipe. It starts with a small setQ ⊂ A

n of “nodes in the making” and uses the product
structure in A

n as follows.
Consider d points q1, . . . , qd ∈ A

n , such that, for each coordinate function z j :
A

n → A, their z j -coordinates are distinct. Let us denote by A(n, d) the space of
such configurations Q := (q1, . . . , qd). Then, each Q ∈ A(n, d) produces a d{n}-
cage K(Q) ⊂ A

n , formed by the hyperplanes
{

Hj,i := z−1
j (z j (qi ))

}
j∈[1,n], i∈[1,d]. By

Theorems 2.1 and 2.2, for any s ≤ n, the cage K(Q) supports the family of varieties X
of the multi-degree (d, . . . , d︸ ︷︷ ︸

s

) and dimension n − s that contain the node set N(Q) of

K(Q). By Theorem 2.4 below, the family is parametrized by points of the Grassmanian
GrA(n, n − s).

OverC, we can enhance this cage construction. Consider the complexViètemap� :
C

n → Symn
C ≈ C

n , given by the elementary symmetric polynomials in z1, . . . , zn . It
takes the “roots” z1, . . . , zn ∈ C to the coefficients of themonic polynomial

∏n
j=1(x−

z j ) in the variable x .
We denote by D the hypersurface in Symn

C, formed by the x-polynomials with
multiple roots. It is called the discriminant variety. Remarkably, the � images of the
hyperplanes {Hj,i ⊂ C

n} are hyperplanes, tangent toD; moreover, the normal vector
to �(Hj,i ), whose nth coordinate is 1, has its (n − 1)st coordinate equal to z j (qi )

([12], Corollary 6.1)!
Therefore, {�(Hj,i )} j,i form a new d{n}-cage �(K(Q)) in Symn

C ≈ C
n , whose

hyperplanes are tangent to the discriminant variety D. The nodes of �(K(Q)) reside
in C

n . Via the tangency property, the cage �(K(Q)) is completely determined by the
configuration�(Q) of d points inCn\D, since any point p ∈ C

n\D belongs to exactly
n hyperplanes that are tangent to D [12]. As a result, any generic (that is, of the form
�(C(n, d))) configuration P of points p1, . . . , pd ∈ C

n\D produces a d{n}-cage K(P)

in C
n , whose hyperplanes are aligned with the tangent cones of D. Again, for any

s ≤ n, the cage K(P) supports a family of complex varieties V of the multi-degree
(d, . . . , d︸ ︷︷ ︸

s

) and dimension n − s that contain the node set N(P) of K(P). By Theorem

2.4, the family is parametrized by points of the Grassmanian GrC(n, n − s).
Thus, we got an effective device for producing varieties in cages. A configuration

Q ∈ C(n, d) or a configuration P ∈ �(C(n, d)), together with a choice of a (n − s)-
dimensional affine subspace τ ⊂ C

n at a point q1 ∈ Q, or a (n − s)-dimensional
affine subspace τ̃ ⊂ C

n at a point p1 ∈ P, produces unique varieties X(Q, τ ) ⊂ C
n

and Y (P, τ̃ ) ⊂ C
n
coef of the dimension n − s that are attached to the nodes of the two

cages, respectively.
Over the real numbers, the outcome is similar, if we consider only the chamber C

in the space R
n
coef of monic real polynomials with all real roots; C is one of many
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14 G. Katz

chambers in which the real discriminant hypersurface DR divides Rn
coef. Therefore,

over R, the cage-generating configuration P must be chosen in the chamber C.
The construction (Q, τ ) ⇒ X(Q, τ ) has one pleasing property: if the configuration

Q consists of d points with all the coordinates in Z or Q, then the variety X(Q, τ )

contains at least dn integral or rational points. Since the Viète map � is given by
elementary symmetric polynomials with integer coefficients, the same property holds
for any variety Y (�(Q), τ̃ )) that is attached to the nodes of the cage K(�(Q)) ⊂
Symn

C. ♦
Remark 2.1 Recall that, thanks to the Lefschetz Hyperplane Theorem (see Corollary
7.3 and Theorem 7.4 in [17]), the topology of complete intersections is very special.
In particular, by a theorem of Thom, the diffeomorphism type of a smooth complete
intersection X overC is determined by its dimension and its multi-degree (d1, . . . , dk)

[13]. Therefore, the combinatorics of a supra-simplicial set imposes strong restrictions
on the homology groups, homotopy types, and characteristic classes of the varieties
inscribed in a given cage. ♦

Let us consider a n-dimensional polyhedron P in R
n , whose combinatorics is

modeled after the combinatorics of a n-cube. The opposite faces ofP are labeled with
the same color; so, the total pallet has n colors. We wish to place the vertices ofP on a
given variety V ⊂ R

n that is defined as the zero set of several quadratic polynomials
(think about V as being an ellipsoid or a hyperboloid). The next corollary testifies that
to accomplish this task, one needs to place just few vertices of P on V , the rest of
the vertices will reside in V automatically. Actually, the following direct corollary of
Theorem 2.2 makes sense over any infinite field A.

Recall that any complex projective variety may be given as an intersection of
quadrics in an appropriate projective space [16].

Corollary 2.3 (Varieties in the Cube Cage) Let a variety V ⊂ P
n be given by homoge-

neous polynomials of degree 2 and contain all 1
2 (n

2+n+2) nodes of a supra-simplicial
set A in a 2{n}-cage K ⊂ P

n.
Then, V is a complete intersection of degree 2s , where s = n − dim(V ). Moreover,

V contains all 2n nodes of K and is smooth in their vicinity. ♦
Example 2.9 If a smooth curve C ⊂ P

3 is given by two homogeneous quadratic forms
and contains 7 nodes of a 2{3}-cage K ⊂ P

3, then it contains the 8th node of the cage.
Moreover, C is a complete intersection of the multi-degree (2, 2). In fact, such a curve
C is elliptic (i.e., smooth and of genus 1). ♦

Proposition 2.2 is another claim, formulated by the reviewer. It frames well our
Corollary 2.4.

Proposition 2.2 Suppose that W ⊂ P
n is a smooth complete intersection of r ≤ n

hypersurfaces of degree d. Pick a point p ∈ W and a linear subspace τp ⊂ TpP
n

of dimension δ > n − r , such that τp ⊃ TpW . Then, there exists a unique complete
intersection V ⊂ P

n of n − δ hypersurfaces of degree d, such that V ⊃ W and
TpV = τp.
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Proof As in the proof of Proposition 2.1, let homogeneous polynomials g1, . . . , gr ∈
A[x0, . . . , xn] of degree d be generators of the zero ideal I(W ) of a smooth complete
intersection W of the codimension r . We denote by L(W ) the linear space spanned
over A by g1, . . . , gr . In an affine chart that contains the given point p ∈ W , we
replace g1, . . . , gr by their expressions as polynomials g̃1, . . . , g̃r in the affine coor-
dinates. Since W is smooth at p, the differentials dg̃1, . . . , dg̃r at p vanish exactly at
the tangent subspace TpW of codimension r . We consider a linear subspace μ∗(τp)

of ν∗
p := SpanA{dg̃1|p, . . . , dg̃r |p} which consists of 1-forms that vanish at the

given vector space τp ⊃ TpW . Let dh̃1, . . . , dh̃n−δ be a basis of the vector space
μ∗(τp). Then, each dh̃ j = ∑

k a jk dg̃k for some a jk ∈ A. Consider the polynomials
{h̃ j := ∑

k a jk g̃k} j∈[1,n−δ]. Denote by {h j } j∈[1,n−δ] their homogeneous representa-
tives. Then, we define V by n − δ homogeneous equations {h j = 0} j∈[1,n−δ], where
{h j } are linearly independent elements in the d-graded portion of A[x0, . . . , xn]. By
its construction, V has τp for its tangent space at p. Therefore, its dimension is δ.
Therefore, V is a complete intersection which is smooth at p.

The same kind of arguments, based only on linear algebra, validates the claim that
V is unique among complete intersections of the multi-degree (d, . . . , d) and with τp

for a tangent space at some point p ∈ W . ��
By taking the node set N for the role of the complete intersection W in Proposition

2.2 and applying Theorem 2.2, we get instantly the following claim.

Corollary 2.4 Consider a d{n}-cage K ⊂ P
n and a vector subspace τp of dimension

n − s in the tangent space Tp(P
n), where p is a node of K. Then, there exists a unique

complete intersection V ⊂ P
n of the multi-degree (d, . . . , d︸ ︷︷ ︸

s

) and of dimension n − s

that contains all the nodes of K and whose tangent space Tp(V ) = τp.
As a result, any supra-simplicial node setA ⊂ K and a (n−s)-dimensional subspace

τp ⊂ Tp(P
n),1 where p ∈ N, determine such a variety V and the distribution of

(n − s)-subspaces τV in T (Pn)|N it produces. Therefore, the cage K, with the help of
the inscribed V ’s, defines canonically a “diagonal” embedding of Grassmanians

�K : GrA
(
Tp(P

n), n − s
) −→

∏

q∈N\p

GrA
(
Tq(Pn), n − s

)
.

♦
We may give a slightly different interpretation to Corollary 2.4 by viewing the

Grassmanian GrA(n, n −s) as a moduli space of varieties in a given d{n}-cage K ⊂ P
n .

Consider a subvariety E(K, p) of Pn × GrA(n, n − s) which depends on the cage
K ⊂ P

n and its preferred node p. By definition, E(K, p) = {(x, τ )| x ∈ V (τ ), τ ∈
GrA(n, n − s)}, where V (τ ) ⊂ P

n is the complete intersection of dimension n − s and
multi-degree (d, . . . , d︸ ︷︷ ︸

s

) that contains all the nodes of K and has τ as its tangent space

Tp(V (τ )) at p. Then, the obvious projection π : Pn ×GrA(n, n − s) → GrA(n, n − s)

1 Equivalently, a point in the Grassmanian GrA(n, n − s).

123



16 G. Katz

gives rise to a surjective regularmapof algebraic varietiesπ : E(K, p) → GrA(n, n−s)
whose fiber over a point τ ∈ GrA(n, n − s) is the complete intersection V (τ ).

The subvarieties of the Grassmanian GrA(n, n − s) that consist of points τ , such
that the fiber π−1(τ ) is singular or reducible (and thus singular), deserve a separate
research.

The reader may be entertained by one special case of Corollary 2.4, where the
variety V is a complete intersection of the multi-degree (d, . . . , d︸ ︷︷ ︸

n−1

), a curve with

a given tangent line � at one of the nodes of the cage to which V is attached. In
this “Cage Croquet" game, the nodes represent the gates, and the curve represents
the desired trajectory of the ball, passing through all the gates. One can aim in any
direction � from any gate, and the “right trajectory" V of the multi-degree (d, . . . , d︸ ︷︷ ︸

n−1

)

will pass through all the gates.
Let us glance now at three-dimensional cages and the polyhedral surfaces that have

their vertices among the nodes of these cages.
A tricolored polyhedral surface� ⊂ R

3 is a surface whose faces are flat polygons,
colored with three colors. We say that a vertex v of � is trivalent if exactly three
distinctly colored faces join at v. A tricolored polyhedral surface is trivalent if all
its vertices are. Finally, a perfect trivalent polyhedral surface is a trivalent tricolored
polyhedral surface with equal number of faces, colored with each of the three colors.
A surface of a cube is an example of a perfect trivalent polyhedral surface.

We notice that a generic perfect trivalent polyhedral surface with 3d faces deter-
mines a d{3}-cage in the space. For example, a generic union of k tricolored cubes in
R
3 is a perfect trivalent polyhedron that gives rise to a (2k){3}-cage in R3.
In view of these observations, Corollary 2.4 leads to the following claim.

Corollary 2.5 Let � ⊂ R
3 be a perfect trivalent polyhedral surface with 3d faces that

generates a d{3}-cage K� in R
3. Given a plane τ through one of vertices v ∈ �, there

exists a unique affine algebraic surface S ⊂ R
3 of degree d, such that

• all the vertices of � lie on S (i.e., � is inscribed in S);
• S contains all the nodes of the d{3}-cage K�;
• S is tangent to the plane τ at v and is smooth in the vicinity of all verticies of �.

♦
Example 2.10 The surface � of a tricolored cube with three quadrangular wormholes
that connect pairs of similarly colored opposite faces (� is a surface of genus 3) has
18 = 6 + 3 × 4 faces (6 of which are not simply-connected polygons). It can be
inscribed in an algebraic surface S of degree 6 = 18/3. In addition to the 32 vertices
of�, lying on S, the rest of the nodes (numbering 184) of the 6{3}-cage K� also belong
to S. Such a surface S with a prescribed tangent plane τ at one vertex of � is unique.
♦
Acknowledgements The earlier version of this paper contained a generalization of Theorem 2.1 for cages
on complex projective varieties. My proof of this generalization contained a basic irreparable mistake. I am
very grateful to the reviewer who has found the mistake and came with valuable suggestions for improving
the entire presentation.
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