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Abstract
We consider Bethe subalgebras B(C) in the Yangian Y(gl2) with C regular 2 × 2
matrix. We study the action of Bethe subalgebras of Y(gl2) on finite-dimensional rep-
resentations of Y(gl2). We prove that B(C) with real diagonal C has simple spectrum
on any irreducible Y(gl2)-module corresponding to a disjoint union of real strings.
We extend this result to limits of Bethe algebras. Our main tool is the computation of
Shapovalov-type determinant for the nilpotent degeneration of B(C).

Keywords Bethe subalgebra · Yangian · Quantum algebra

1 Introduction

1.1 Yangians and Bethe Subalgebras

TheYangian Y (gln) is a Hopf algebra deformation of the enveloping algebraU (gln[z])
of gln[z], the Lie algebra of polynomial maps C → gln . It is one of the first examples
of quantum groups. This algebra was considered in the works of Fadeev and St.-
Petersburg school in relation with the inverse scattering method, see e.g. [11,12]. We
refer the reader to [6] for more details.

The algebra Y (gln) is generated by elements t (r)i j , 1 ≤ i, j ≤ n, r ∈ Z≥0 and

t (0)i j = δi j . (The elements t (r)i j correspond to Ei j zr ∈ gln[z] where Ei j ∈ gln is the
standard matrix unit.) The relations are

[t (r+1)
i j , t (s)kl ] − [t (r)i j , t (s+1)

kl ] = t (r)k j t
(s)
il − t (s)k j t

(r)
il .
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314 I. Mashanova-Golikova

Introduce the formal power series in u−1, where u is a formal variable,

ti j (u) =
∑

r≥0

t (r)i j u−r .

These formal power series can be combined into a matrix with values in formal series
with coefficients in Y (gln)

T (u) =
∑

i, j

ei j ⊗ ti j (u) ∈ End(Cn) ⊗ Y (gln)[[u−1]],

where ei j is the standard matrix unit.

The Yangian Y (gln) has a filtration generated by deg t (r)i j = r . It follows from the
relations that this indeed gives a filtration on Y (gln).

In this text, we are considering the case n = 2.
It is of interest to study the Bethe subalgebras B(C), a family of commutative subal-

gebras of Y(gl2) parametrized by complex matricesC ∈ Mat2(C). These subalgebras
come from studying the XXX Heisenberg model. The Hamiltonian of the XXX chain
with external magnetic field is the image of some element from B(C) in the tensor
product of evaluation representations of the Yangian (C2)⊗n . The generators of B(C)

then give a complete set of integrals of the XXX chain.
The algebra B(C) is generated by all the coefficients of two following formal power

series:

qdet T (u) = t11(u)t22(u − 1) − t21(u)t12(u − 1)

and

trCT (u) = c11t11(u) + c12t21(u) + c21t12(u) + c22t22(u).

The algebra does not change under dilations of C , hence the family is parametrized
by points in CP3 = P(Mat2).

1.2 Limits of Bethe Subalgebras

IfC is a regular matrix, then B(C) is a maximal commutative subalgebra of Y(gl2), as
shown in [9]. Evenmore, for a regularC , all the coefficients of qdet T (u) and trCT (u)

generate B(C) and are algebraically independent. The Poincare series of B(C) with
respect to the above filtration is

PB(C)(t) =
∞∏

k=1

1

(1 − tk)2
.

For non-regular C the Poincare series drops. Namely, the coefficients at u−1 of
trCT (u) and qdet T (u) are both equal to t (1)11 + t (1)22 , while all other coefficients remain
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Simplicity of Spectra for Bethe Subalgebras in Y(gl2) 315

algebraically independent, and the Poincare series is equal to

P
B

((
1 0
0 1

))(t) = 1

1 − t

∞∏

k=2

1

(1 − tk)2
.

This and the more general situation of gln have been studied in [3].
We study maximal commutative subalgebras, in the sense of [9], so following [3]

we complete this smaller subalgebra to have the same Poincare series as for generic
C . This completion is defined as the limit

lim
t→0

B
((

1 0
0 1

) + tC ′)

and depends on the choice of direction in CP3, i.e., C ′. We consider the family of
Bethe subalgebras B(C) for regular C ∈ Mat2 and define its closure. We prove the
following result:

Theorem A The closureB of the family of Bethe subalgebras inY(gl2) is parametrized
by the points of the blow up of CP3 at the point corresponding to

(
1 0
0 1

)
.

We denote by Z this blow-up of CP3, i.e., the parameter space of the family B.
Remark The family B is a flat family of commutative subalgebras of Y(gl2) over Z .
In [4] the definition of B(C) is extended to the points of the De Concini–Procesi
compactification of the adjoint Lie group of the Lie algebra for which the Yangian is
defined. And it is expected that the limit space is some resolution of the De Concini–
Procesi compactification. In our case the algebra is gl2 and the corresponding group
is PGL(2,C). Its De Concini–Procesi compactification is CP3.

1.3 Representations of Y(gl2) and the XXX Chain

One can define the action of Y(gl2) on a representation of gl2 using the evaluation
morphism Y(gl2) → U (gl2):

ti j (u) 	→ δi j + Ei j u
−1.

We will call these representations of Y(gl2) the evaluation representations. Since
Y(gl2) is a Hopf algebra, it also acts on tensor products of the evaluation representa-
tions. Any finite-dimensional irreducible representation of Y(gl2) is isomorphic to a
submodule or a quotient of a tensor product of evaluation representations with respect
to the Hopf algebra structure on Y(gl2).

We consider the action of B(C) on finite-dimensional Y(gl2)modules. These mod-
ules are the state spaces for the XXX chain and the conservation laws are the elements
of B(C).

Let L(a, b) denote the evaluation representation of Y(gl2) which comes from the
finite-dimensional representation of gl2 with highest weight (a, b). Then B(x) acts on
L(a, b) = L(a1, b1) ⊗ · · · ⊗ L(an, bn) for any x ∈ Z .
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316 I. Mashanova-Golikova

In [7] it has been shown that for representations L(a1, a1−1)⊗· · ·⊗L(an, an−1),
wherea1, . . . , an are generic, the eigenspaces for the action of B

((
1 0
0 1

))
are irreducible

gl2 submodules.

1.4 Main Results

We extend the results of [7] as follows.
A string is a set S(a, b) = {a − 1, a − 2, . . . , b + 1, b} for a, b ∈ C, a > b,

a − b ∈ Z. It is known that the representation L(a, b) is irreducible if and only if,
for any 1 ≤ i < j ≤ n, one of three possibilities hold: S(ai , bi ) ∪ S(a j , b j ) is not a
string, or S(ai , bi ) ⊂ S(a j , b j ), or S(ai , bi ) ⊃ S(a j , b j ).

In the paper we prove the following two results:

Theorem B The action of any algebra in the family B in L(a1, b1) ⊗ · · · ⊗ L(an, bn)
has a cyclic vector, if, for any 1 ≤ i < j ≤ n, S(ai , bi ) ∪ S(a j , b j ) is not a string.

We reduce this statement to the case of the principal nilpotent C = e12 using that
any non-scalar matrix in gl2 can be taken to any open neighbourhood of the principal
nilponent by conjugation and dilation. Then we use that the condition of having a
cyclic vector is open.

The case of the principal nilpotent is treated by proving that in the tensor product
of the corresponding gl2 Verma modules as representations of Y(gl2), the product of
highest weight vectors is cyclic for B(e12).

Second, we restrict to the closure of the subfamily corresponding to real diagonal
matrices parametrized by the points of RP1  Z ′ ⊂ Z .

Theorem C For any x ∈ Z ′ and any a1, b1 . . . , an, bn ∈ R such that S(ai , bi ) ∪
S(a j , b j ) is not a string for each pair i, j , the subalgebra B(x) acts on L(a1, b1) ⊗
· · · ⊗ L(an, bn) with simple spectrum.

We introduce a Hermitian form on real finite-dimensional representations of Y(gl2)
that extends the Hermitian form on L(a, b) for gl2. This form has been discussed in
appendix C in [8]. The generators of subalgebras B(x) for x ∈ Z ′ act with self-adjoint
operators with respect to this form. To prove Theorem C we use that if a commutative
algebra acts on a representation with self-adjoint operators and with a cyclic vector,
then it has simple spectrum in this representation.

1.5 Monodromy Problem

We can construct a branched covering of Z for any representation L(a, b) satisfying
the conditions of Theorem B. Define a subvariety of pairs P in Z × P(L(a, b)) ⊃
{(x, l) | x ∈ Z , l is an eigenline for the action of B(x) in L(a, b)}. Then we have the
projection map π : P → Z .

For any x ∈ Z the preimage π−1(x) is finite since L(a, b) has a cyclic vector for
B(x) for any x ∈ Z by Theorem B. Thus this is a finite morphism. By Theorem C
there is a point x ∈ Z for which the number of preimages is maximal and is equal to
dim L(a, b). Therefore this is a dim L(a, b)-fold branched covering.
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Simplicity of Spectra for Bethe Subalgebras in Y(gl2) 317

From Theorem C, it follows that the restriction of this map to Z ′ ⊂ Z is an
unbranched covering. It would be interesting to study themonodromy on this covering.

1.6 The Paper is Organized as Follows

In Sect. 2, we introduce the necessary objects and notation.
In Sect. 3, we prove the main technical lemma concerning an analog of the Shapo-

valov determinant [10].
In Sect. 4, we use the results of Section 3 to show that the Bethe subalgebra corre-

sponding to e12 has a cyclic vector in the tensor product of gl2 Verma modules.
In Sect. 5, we define families of subalgebras and their closures. We discuss what

holds in the case of the family of Bethe subalgebras and prove Theorem A.
In Sect. 6, we conclude from the existence of a cyclic vector for B(e12) for tensor

products of Verma modules that irreducible products of evaluation representations
have a cyclic vector (Theorem B).

In Sect. 7, we define unitarity for representations ofY(gl2) and show that irreducible
tensor products of evaluation representations have the unitary structure coming from
the unitary structure for the action of gl2.

In Sect. 8, we combine the results of the previous two sections and show that the
subfamily of Bethe subalgebras corresponding to real diagonal matrices has simple
spectrum in irreducible products of evaluation representations of Y(gl2) (Theorem C).
This subfamily is parametrized by RP1 therefore we get a cover of RP1 whose fibers
are the eigenlines in the representation.

2 Preliminaries

In this section, we follow the exposition in [6].
As we discussed above, the Yangian Y(gl2) is an associative algebra generated by

the elements t (r)i j , 1 ≤ i, j ≤ 2, r ∈ Z≥0, t
(0)
i j = δi j , which can be combined into

formal power series in u−1:

ti j (u) =
∑

r≥0

t (r)i j u−r ,

which themselves can be combined into a matrix with values in formal series with
coefficients in Y(gl2)

T (u) =
∑

i, j

ei j ⊗ ti j (u) ∈ End(C2) ⊗ Y(gl2)[[u−1]].

The defining relations are

[t (r+1)
i j , t (s)kl ] − [t (r)i j , t (s+1)

kl ] = t (r)k j t
(s)
il − t (s)k j t

(r)
il
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318 I. Mashanova-Golikova

and can be rewritten as

(u − v)[ti j (u), tkl(v)] = tk j (u)til(v) − tk j (v)til(u).

For 1 ≤ k < l ≤ n define

Pkl =
∑

i, j

1 ⊗ · · · ⊗ 1 ⊗ ei j ⊗ 1 ⊗ · · · ⊗ 1 ⊗ e ji ⊗ 1 ⊗ · · · ⊗ 1 ∈ End(C2)⊗n

where ei j and e ji are correspondingly in the k’th and l’th positions. We define the
R-matrix as

Rkl(u) = 1⊗n − u−1Pkl .

The Ri j ’s satisfy the Yang–Baxter equation:

R12(u)R13(u + v)R23(v) = R23(u)R13(u + v)R12(v).

The defining relations of Y(gl2) can be rewritten in the matrix form: let

Ta(u) =
∑

i, j

1⊗(a−1) ⊗ ei j ⊗ 1⊗(n−a) ⊗ ti j (u) ∈ End(C2)⊗n ⊗ Y(gl2)

where 1 is the identity matrix. Then the relations can be written in the eqiuvalent form,
we will call it the RTT relation (we omit tensoring the R-matrix by 1 ∈ Y(gl2))

R(u − v)T1(u)T2(v) = T2(v)T1(u)R(u − v).

For any formal series f (u) ∈ 1 + u−1
C[[u−1]], for any matrix G ∈ GL2(C), or

for any c ∈ C one can define an automorphism of the Yangian Y(gl2):

T (u) 	→ f (u)T (u), (1)

T (u) 	→ GT (u)G−1. (2)

T (u) 	→ T (u − c). (3)

In this text, we are considering Bethe subalgebras. They are maximal commutative
subalgebras ofY(gl2). All of them contain the center of theYangianwhich is generated
by the coefficients of the quantum determinant:

qdet T (u) = t11(u)t22(u − 1) − t21(u)t12(u − 1).

Bethe subalgebras are parametrized by elements C = ( c11 c12
c21 c22

) ∈ End(C2) and the
corresponding Bethe subalgebra B(C) is generated by the coefficients of qdet T (u)

and the coefficients of

trCT (u) = c11t11(u) + c12t21(u) + c21t12(u) + c22t22(u).
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Simplicity of Spectra for Bethe Subalgebras in Y(gl2) 319

It is clear from the definition that Bethe subalgebras B(C) are stable under the
automorphism (1) of Y(gl2) of multiplication by a formal series T (u) 	→ f (u)T (u).

Now, we will introduce the Y(gl2) modules we are discussing in this text.
From the relations and the Poincaré–Birkhoff–Witt theorem for Y(gl2) it follows

that the map Ei j 	→ t (1)i j gives an embedding of the universal enveloping algebra

U (gl2) ⊂ Y(gl2). It also follows that the map ti j (u) 	→ δi j + Ei j u−1 defines a
surjective homomorphism Y(gl2) → U (gl2), we call it the evaluation map. It is clear
that their composition is identity on U (gl2).

Using the evaluation map, one can define the action of Y(gl2) on U (gl2)-modules.
In this text we are considering finite-dimentional irreducible modules L(a, b), Verma
modulesM(a, b) and contragredient modulesM∨(a, b), all with highest weight (a, b)
such that a − b ∈ Z≥0.

The Yangian Y(gl2) is a Hopf algebra with the comultiplication � : Y(gl2) →
Y(gl2) ⊗ Y(gl2) defined by

� : ti j (u) 	→
2∑

k=1

tik(u) ⊗ tk j (u).

Hence we can define the action of Y(gl2) in the tensor products of evaluation repre-
sentations.

We will also use another comultiplication �opp on Y(gl2) which is a composition
of � with the linear operator on Y(gl2) ⊗ Y(gl2) exchanging the two factors:

�opp : ti j (u) 	→
2∑

k=1

tk j (u) ⊗ tik(u)

Any irreducible finite-dimensional representation of Y(gl2) can be realized as a
submodule and as a quotient module of a tensor product of two-dimensional evaluation
representations.

We will denote σ R
i j (u) = Flipi j ◦ Ri j (u) the composition of the R-matrix and the

linear operator exchanging i’th and j’th tensor factors. The Flip operator and the
R-matrix commute and the Yang–Baxter equation for R-matrices can be rewritten in
the form:

σ R
23(u)σ R

12(u + v)σ R
23(v) = σ R

12(u)σ R
23(u + v)σ R

12(v)

which gives the braid group relations on σ R
i j ’s.

From the Yang–Baxter equation it follows that σ R
12(u) gives a homomorphism of

Y(gl2) representations:

σ R
12(a1 − a2) : L(a1, a1 − 1) ⊗ L(a2, a2 − 1) → L(a2, a2 − 1) ⊗ L(a1, a1 − 1).

If |a1 − a2| �= 1 then it is an isomorphism. If a1 − a2 = 1, then its kernel is the
3-dimensional representation L(a1, a1 − 2) and its image is one-dimensional. If a1 −
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320 I. Mashanova-Golikova

a2 = −1, then its kernel is a one-dimensional subrepresentation and its image is
L(a2, a2 − 2).

Consider the map

σ R(a1, . . . , an) : L(a1, a1 − 1) ⊗ · · · ⊗ L(an, an − 1) → L(an, an − 1)

⊗ · · · ⊗ L(a1, a1 − 1),

σ R(a1, . . . , an) =
←∏

1≤l≤n−1

←∏

1≤k≤n−l

σ R
k,k+1(al − al+k) =

σ R
12(an−1 − an) · · · σ R

n−2,n−1(a2 − an) · · · σ R
12(a2 − a3)σ

R
n−1,n(a1 − an)

· · · σ R
23(a1 − a3)σ

R
12(a1 − a2).

We will be using the following well-known statement.

Proposition 1 Themapσ R(a1, . . . , an) is a homomoprhism ofY(gl2) representations.
If ai = a1+i−1 for each i , then its image is isomorphic to the evaluation representation
L(an, an − n) up to an automorphism of Y(gl2) of multiplication by a formal series.

Proof First note that

σ R(a1, . . . , an) =
←∏

1≤l≤n−1

←∏

1≤k≤n−l

σ R
k,k+1(al − al+k)

=
←∏

1≤l≤n−1

←∏

1≤k≤n−l

Fli pk,k+1 ◦
←∏

1≤l≤n−1

←∏

1≤k≤n−l

Rl,l+k(al − al+k).

By Proposition 1.6.3 in [6] the map σ R(a1, a1 + 1, . . . , a1 + n − 1) is the sym-
metrization map of (C2)⊗n composed with changing the order of factors. Hence its
image is the symmetric n’th power of the 2-dimensional space, therefore the dimension
of the image of σ R(a1, a1 + 1, . . . , a1 + n− 1) is equal to dim L(a1 + n− 1, a1 − 1).

The weight of the highest weight vector in the tensor product corresponds to the
same Drinfeld polynomial as the weight of the highest weight vector in L(a1 + n −
1, a1 − 1). They differ by a twist determined by the automorphism (1). The highest
weight vector is symmetric, hence it lies in the image, so the twist of L(a1+n−1, a1−1)
by an automorphism (1) is a subrepresentation of L(an, an − 1)⊗· · ·⊗ L(a1, a1 − 1)
and is isomorphic to the image of the map σ R(a1, a1 + 1, . . . , a1 + n − 1). ��

In this text, we will consider Y(gl2) modules up to twisting by automorphisms of
multiplication by a formal series as in (1), since these automorphisms preserve the
subalgebras B(C) for any C and the subalgebras appearing in the limit of the family
of Bethe subalgebras.

Throughout the text we will be using a filtration on Y(gl2). The filtration F•Y(gl2)

is defined by deg t (r)i j = r . From the defining relations it is clear that this can be
extended to a filtration on Y(gl2).

Also we will be using a grading on Y(gl2). This grading is given by the adjoint
action of h = t (1)11 − t (1)22 , the Cartan element in gl2 embedded in Y(gl2) as above. This
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Simplicity of Spectra for Bethe Subalgebras in Y(gl2) 321

also gives us a grading on the Y(gl2) representations where the action of h is locally
finite.

The evaluation homomorphism is the identity on the embedded gl2. Therefore, this
grading agrees with the corresponding grading defined by the action of E11–E22 on the
representations of gl2, and the product grading on tensor products of representations
is the grading obtained from the diagonal action of gl2.

3 Shapovalov Determinant

Here, we follow the idea introduced in [10]. The results of this section seem to be
well-known, but we could not find them in the literature.

Let A be a Z≥0-graded algebra without zero-divisors. Let U be a Z≥0-graded
A-module such that the Poincare series of A is equal to the Poincare series of U .
Pick a basis ami in Am , the m’th graded component of A, and a basis umi of Um

correspondingly. Since Poincare series of A andU are equal, the bases have the same
cardinality.

Since A has no zero-divizors, dim A0 = 1 = dimU0. Let u0 be a non-zero element
of U0.

Suppose that the action of A on U depends polynomially on the parame-
ters x1, . . . , xn . Then we can consider the action of A ⊗ C[x1, . . . , xn] on U ⊗
C[x1, . . . , xn]. Thenwe can define the ShapovalovmatrixDm that expresses ami ·u0 in
terms of umi with coefficients in C[x1, . . . , xn]. Let Dm = detDm be the Shapovalov
determinant.

Suppose that for generic values of parameters U is generated by the element u0 ∈
U0.

Lemma 1 Suppose Dm is divisible by some linear factor f ∈ C[x1, . . . , xn]. Then
Dm+k is divisible by f dim Ak .

Proof Denote K = C[x1, . . . , xn]( f ), the localization of C[x1, . . . , xn] at the prime
ideal generated by f . Then consider Dm as a matrix with coefficients in K .

ConsiderUm⊗K as a free K -module.And consider its free K -submodule generated
by Dm

Dm(Um ⊗ K ) = (Am ⊗ K ) · u0.

Denote dm = dimC Am = dimCUm .
Since K is a principal ideal domain, we can pick generatorsw1, . . . , wdm ofUm⊗K

as a K -module such that there are g1, . . . , gdm ∈ K and g1w1, . . . , gdmwdm generate
Dm(Um ⊗ K ) as a K -module such that Dm(wi ) = giwi . If we consider Dm as an
operator on Um , then its matrix in these set of generators is diagonal. We can pick
unique elements bmi of Am ⊗ K such that bmi · u0 = giwi .

It follows that Dm is equal to a product of two matrices of base change ({umi } to
{wi } and {giwi } to {umi }) and the diagonalmatrix diag(g1, . . . , gdm ) in the appropriate
order.
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322 I. Mashanova-Golikova

Thematrices of base change are invertible, so their determinants are not divisible by
f , hence the degree of f that divides the determinant of the diagonal matrix g1 · · · gdm
is equal to the degree of f that divides Dm . Hence one of gi ’s is divisible by f , suppose
that g1 is divisible by f .

Now, we want to show that Dm+k is divisible by f dk .
Let bki , 1 ≤ i ≤ dk , be a basis of Ak over C. Then we can complete bki bm1,

1 ≤ i ≤ dk , to a set of generators of Am+k ⊗ K as a K -module as follows. The
elements bki bm1 are independent since A has no zero divisors, therefore their images
in Am+k ⊗ K/( f ) are linearly independent over K/( f ) and we can complete them
to a basis of Am+k ⊗ K/( f ) over K/( f ). Since K is a local ring, the liftings of this
completed basis generate Am+k ⊗ K as well.

Suppose that um+k,i , 1 ≤ i ≤ dm+k is a set of generators of Um+k . Then they are
also generators of Um+k ⊗ K as a K -module.

Then bki bm1 · u0 = bki · g1wm1 = g1bki · wm1. Since A acts onU polynomially in
terms of xi ’s, the expression of bki bm1 ·u0 in terms of generators um+k, j ofUm+k ⊗K
will be divisible by f for any i .

Therefore ifwewrite thematrixDm+k in these sets of generators, its first dk columns
will be divisible by f . Hence Dm+k is divisible by f dk . ��

4 Cyclic Vector for Bethe Subalgebra of the Principal Nilpotent in the
Product of gl2 VermaModules

Throughout this section let B be the Bethe subalgebra of Y(gl2) corresponding toC =
e12. Then, B is generated by the coefficients of the series qdet T (u) = t11(u)t22(u −
1) − t21(u)t12(u − 1) and t21(u).

We want to show that the highest weight vector of the finite-dimentional represen-
tations of Y(gl2) is cyclic for B. For this we will show that it is cyclic in the product
of Verma modules which surjects on the finite-dimensional module.

Let a = (a1, . . . , an) and b = (b1, . . . , bn). Let M(a, b) = M(a1, b1) ⊗ · · · ⊗
M(an, bn) where M(a, b) is the Verma module for gl2 with highest weight (a, b) and
Y(gl2) acts on it via the evaluation morphism.

As we discussed above, the action of h = t (1)11 − t (1)22 produces a grading on M(a, b),
we shift it so that deg va1,b1 ⊗· · ·⊗van ,bn = 0. It is the standard grading on M(a, b) as
a gl2 module by the adjoint action of h. Let Mm be the component of grading −2m in
M(a, b). (Alternatively, we can consider the grading associated with the adjoint action
of −h/2.) Let va,b ∈ M(a, b) be the highest weight vector. Let vma,b = (t (1)21 )mva,b.
The degree of vma,b is equal to −2m. We can pick a basis of Mm that consists of all
vectors v

m1
a1,b1

⊗ · · · ⊗ v
mn
an ,bn

, such that
∑n

i=1 mi = m.
We want to show that va1,b1 ⊗ · · · ⊗ van ,bn is cyclic for the action of B on M(a, b).

In order to do so we will investigate the subspace V ⊂ M(a, b) generated from the
vector va1,b1 ⊗ · · ·⊗ van ,bn by the algebra B. Since coefficients of qdet T (u) lie in the
center of Y(gl2), it suffices to consider the action of the subalgebra of B generated by
the coefficients of the series t21(u), so further in this section we will write B for this
subalgebra.
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To understand what subspace is generated from the highest weight vector, we will
use the Shapovalov determinant discussed in Sect. 3.

We want to study the subspace Vm = V ∩ Mm . We know that the only coefficients
of t21(u)whose action is non-zero inM(a, b) are t (i)21 for 1 ≤ i ≤ n, and that they com-

mute. Therefore, B acts on M(a, b) as a polynomial ring C[t (1)21 , . . . , t (n)
21 ] and we can

think of B as this algebra further on. So Vm is generated by (t (1)21 )k1 · · · (t (n)
21 )km (va1,b1 ⊗

· · · ⊗ van ,bn ) such that
∑n

i=1 ki = m. The number of vectors is equal to dim Mm .

Therefore, we can construct a matrix that expresses (t (1)21 )k1 · · · (t (n)
21 )kn (va1,b1 ⊗

· · · ⊗ van ,bn ) in terms of the basis of Mm we introduced earlier. Its determinant Dm is
zero if and only if Vm is a proper subspace of Mm .

We will use the generic Verma module M̃(x, y) = U (gl2) ⊗U (CE12+CE11+CE22)

C[x, y] where U (CE12 + CE11 + CE22) acts on C[x, y] in the following way:

E12 · 1 = 0

E11 · 1 = x

E22 · 1 = y

The usual Verma module M(a, b) is obtained from the generic Verma module by
plugging in x = a and y = b.

Note that numbers a and b are interchangeable with variables x , y in terms of action
of gl2 so we will abuse the notations and use a, b both as variables and numbers.

To study when Dm is equal to zero, we will consider M̃(a1, b1) ⊗ · · · ⊗ M̃(an, bn)
regarded as a C[a1, b1, . . . , an, bn]-module with the action of Y(gl2) defined on each
factor by the evaluation morphism.

Let Dm be the matrix expressing the monomial basis consisting of (t (1)21 )k1 · · ·
(t (n)
21 )kn (va1,b1 ⊗· · ·⊗van ,bn ) in terms of the basis v

k′
1

a1,b1
⊗· · ·⊗v

k′
n

an ,bn
of M̃(a1, b1)⊗

· · · ⊗ M̃(an, bn). We want to calculate its determinant Dm which is a polynomial in
ai ’s and bi ’s.

Proposition 2 The determinant Dm is equal to
∏m−1

l=0
∏

1≤ j<i≤n(ai −b j − l)(
m+n−l−2

n−1 )

up to a constant factor and its degree is equal to deg Dm = (n
2

)(n+m−1
n

)
.

Denote v = v
k1
a1,b1

⊗ · · · ⊗ v
kn
an ,bn

. Consider

t21(u)(v) =
∑

(i1,...,in−1)∈{1,2}n−1

t2i1(u)v
k1
a1,b1

⊗ ti1i2(u)v
k2
a2,b2

⊗ · · · ⊗ tin−11(u)v
kn
an ,bn

.

The coefficient of u−k is equal to t (k)21 (v). Recall that

t21(u)(vka,b) = u−1vk+1
a,b

t12(u)(vka,b) = u−1k(a − b − k + 1)vk−1
a,b

t11(u)(vka,b) = (1 + (a − k)u−1)vka,b

123



324 I. Mashanova-Golikova

t22(u)(vka,b) = (1 + (b + k)u−1)vk−1
a,b

Hence, the degree in ai ’s and bi ’s of the coefficient in front of u−k is at most k − 1
since u−1 appears with the coefficient of degree 0 or 1 in ai ’s and bi ’s and at least once
the degree is zero for t21(u). Therefore the degrees of all elements of M̃m (the m’th
graded component of M̃(a, b)) in the column corresponding to (t (1)21 )k1 · · · (t (n)

21 )kn (v)

is at most
∑n

i=1(i − 1)ki , and hence the degree of the determinant Dm for M̃m is at
most the sum of degrees of columns, that is

deg Dm ≤
∑

(k1,...,kn)∑
ki=m

(
n∑

i=1

(i − 1)ki

)
(4)

Now, we want to estimate the degree of the determinant from below. For this we
want to find some vectors that are not generated from va1,b1 ⊗ va2,b2 in M(a1, b1) ⊗
M(a2, b2). By the contragredient duality it is the same as finding singular vectors in
the contragredient dual module M∨(a2, b2) ⊗ M∨(a1, b1).

Lemma 2 For the action of t12(u) on M∨(a2, b2) ⊗ M∨(a1, b1) there is one singular
vector in degree m ≥ 1 if a2 − b1 = m − 1 and no singular vectors otherwise.

Proof Letwk
ai ,bi

be the basis vector of the k’th degree in M∨(ai , bi ) (the grading again
comes from the adjoint action of h such that the highest weight vector has degree 0)
such that the action of t (1)12 takes wk

ai ,bi
to wk−1

ai ,bi
.

If a vector is singular for t12(u), then it is singular for the diagonal action of
e12 ∈ sl2 ⊂ gl2 ⊂ Y(gl2). By a direct computation it can be verified that the only
such vectors are the scalar multiples of

∑m
i=0(−1)iwi

a2,b2
⊗ wm−i

a1,b1
. Let us calculate

the action of t12(u) on such vector:

t12(u)

(
m∑

i=0

(−1)iwi
a2,b2 ⊗ wm−i

a1,b1

)

=
m∑

i=0

(−1)i t11(u)wi
a2,b2 ⊗ t12(u)wm−i

a1,b1
+

m∑

i=0

(−1)i t12(u)wi
a2,b2 ⊗ t22(u)wm−i

a1,b1

=
m∑

i=0

(−1)i
(
u−1(1 + (a2 − i)u−1)wi

a2,b2 ⊗ wm−i−1
a1,b1

+ u−1

(
1 + (b1 + m − i)u−1)wi−1

a2,b2
⊗ wm−i

a1,b1

)

This equals zero if and only if a2 − i = b1 + m − i − 1 which is equivalent to
a2 − b1 = m − 1. ��

Lemma 3 The determinant Dk+1 is divisible by ai − b j − k for each i > j .
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Proof Consider the module M(a, b) as above such that al − bl is integer for each
1 ≤ l ≤ n, ai − b j = k ∈ Z≥0 and al ’s are generic for l �= i, j . We will show that for
such module the highest weight vector is not cyclic and Mk+1 is not generated from
the highest weight vector by the action of B. Consider the module M(a′, b′), such
that a′

l = aσ(l) and b′
l = bσ(l) where σ ∈ Sn is a permutation such that σ( j) = 1,

σ(i) = 2.
From Lemma 6.1 in [5], it follows that for generic values of c1, d1, c2, d2 with

c1−d1, c2−d2 ∈ Z≥0, there is a non-zero homomorphism M(c1, d1)⊗M(c2, d2) →
M(c2, d2)⊗M(c1, d1)mapping the highest weight vector to the highest weight vector.
Hence we can construct a morphism M(a′, b′) → M(a, b) as a composition of such
morphisms realising the permutation σ .

From Lemma 2, it follows that in M(a′, b′) the highest weight vector va′
1,b

′
1
⊗· · ·⊗

va′
n ,b

′
n
is not cyclic and dim Bk+1va′

1,b
′
1
⊗ · · ·⊗ va′

n ,b
′
n

< dim M(a′, b′)k+1 (here Bk+1

is the (k + 1)st graded component of B, deg t (l)21 = 1) since M(a′
1, b

′
1) ⊗ M(a′

2, b
′
2)

satisfies the conditions of the lemma. Therefore dim Bk+1va′
1,b

′
1

⊗ · · · ⊗ va′
n ,b

′
n

<

dim M(a′, b′)k+1, and it follows that dim Bk+1va1,b1 ⊗ · · · ⊗ van ,bn < Mk+1 and
Mk+1 is not generated from the highest weight vector by the action of B. Hence Dk+1
is divisible by ai − b j − k for each i > j . ��
Lemma 4 For generic values of the parameters a, b the highest weight vector va1,b1 ⊗
· · · ⊗ van ,bn is cyclic for the action of B on M(a, b).

Proof We can define the evaluation module M(a, b) by composing the evaluation
morphism for the module M(0, b− a) with the shift automorphism (3) and the multi-
plication autmorphism (1) T (u) 	→ (1 + au−1)T (u + a). Then the twisted action on
M(0, b − a) is defined by

t11(u) 	→ 1 + u−1(a + e11),

t12(u) 	→ u−1e12,

t21(u) 	→ u−1e21,

t22(u) 	→ 1 + u−1(a + e22),

which gives a Y(gl2) module isomorphic to M(a, b).
We identify the tensor product ofM(0, bi−ai )with this twisted actionwithM(a, b).

There t (r)21 acts by an element of U (gl2)
⊗n ⊗ C[a1, . . . , an] that has degree r − 1 in

ai ’s.
The vector space of the representation does not depend on (a, b), sowe can consider

these representations as representations with the same vector space and the operators
depend on (a, b).

We can restrict the values of the parameters to the line (s−1a, b + (s−1 − 1)a) for
a fixed (a, b). The operator t (r)21 depends on s and has a pole of order r − 1 at 0. So

operators sr−1t (r)21 are well-defined for all s ∈ C.
The condition that the highest weight vector in M(a, b) is cyclic is a Zariski open

condition on the space of the parameters.Wewill show that for the point corresponding
to s = 0 added to the parameter space, the highest weight vector is cyclic. Hence it is
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cyclic for the parameter values from some Zariski open subset of the projective space.
Thus the highest weight vector is cyclic for the values of the parameters from some
Zariski open subset of the initial parameter space.

Consider M(s−1a, b + (s−1 − 1)a) and take the operator sr−1t (r)21 at s = 0. It will

be equal to the highest degree (in ai ’s) term of the image of t (r)21 :

sr−1t (r)21 |s=0 =
n∑

i=1

er−1(a1, . . . , âi , . . . , an)1
⊗i−1 ⊗ e21 ⊗ 1⊗n−i

where er (x1, . . . , xn, . . .) is the elementary symmetric function and âi means omitting
ai .

Now to show that the vector va1,b1 ⊗ · · · ⊗ van ,bn is cyclic for the action of B in
the limit module, it suffices to prove that it is cyclic for the collection of operators∑n

i=1 er−1(a1, . . . , âi , . . . , an)1⊗i−1 ⊗ e21 ⊗ 1⊗n−i , 1 ≤ r ≤ n.
To show thiswewill check that

∑n
i=1 er−1(a1, . . . , âi , . . . , an)1⊗i−1⊗e21⊗1⊗n−i ,

1 ≤ r ≤ n, are linearly independent, and thus their linear combinations generate
1⊗i−1 ⊗ e21 ⊗ 1⊗n−i , 1 ≤ r ≤ n.

Therefore, we need to show that the determinant of the matrix K where

Ki, j = e j−1(a1, . . . , âi , . . . , an)

is not zero for genetic values of ai ’s. Since

e j−1(a1, . . . , âi , . . . , an) =
j∑

k=1

(−1) j−ka j−k
i ek−1(a1, . . . , an),

we can present K as a product K = K ′K ′′ where K ′
i j = (−1)i e j−i (a1, . . . , an) for

j ≥ i , K ′
i j = 0 for j < i and K ′′

i j = a j−1
i . Therefore

det K = det K ′ det K ′′ = (−1)�
n
2 � ∏

1≤i< j≤n

(ai − a j ).

��
The action of B on M̃(a1, b1)⊗· · ·⊗ M̃(an, bn) satisfies the conditions of Lemma 1

since for generic values of parameters themoduleM(a, b) is generated from the vector
va1,b1 ⊗ · · · ⊗ van ,bn by Lemma 4. The dimension dim Mm = (m+n−1

n−1

)
. Therefore

combining Lemmas 1 and 3we get that Dm is divisible by (ai − b j − k)(
m+n−k−2

n−1 ),
k + 1 ≤ m.

Hence, Dm is divisible by

m−1∏

k=0

∏

1≤ j<i≤n

(ai − b j − k)(
m+n−k−2

n−1 )
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This gives a lower bound on the degree of the determinant:

deg Dm ≥
(
n

2

) m−1∑

k=0

(
n + m − k − 2

n − 1

)
=

(
n

2

)(
n + m − 1

n

)
. (5)

The following lemma shows that the bounds (4) and (5) are equal.

Lemma 5

∑

(k1,...,kn)∑
ki=m

(
n∑

i=1

(i − 1)ki

)
=

(
n

2

)(
n + m − 1

n

)

Proof Denote

Sm,n =
∑

(k1,...,kn)∑
ki=m

(
n∑

i=1

(i − 1)ki

)

We will prove the statement by induction on m + n. For n = 1 we have Sm,1 = 0 and(n
2

) = 0 hence the statement is correct.
Note that the number of (k1, . . . , kn) ∈ Z

n≥0 such that
∑n

i=1 ki = m and kn = j is

equal to
(m− j+n−2

n−2

)
since it is the number of tuples (k1, . . . , kn−1) ∈ Z

n−1
≥0 such that

∑n−1
i=1 ki = m − j , i.e., the number of monomials of degree m − j in n − 1 variables.

Therefore we can rewrite Sm,n as following:

∑

(k1,...,kn)∑
ki=m

(
n∑

i=1

(i − 1)ki

)
=

m∑

j=0

∑

(k1,...,kn−1)∑
ki=m− j

(
n−1∑

i=1

(i − 1)ki

)

+
m∑

j=0

(n − 1) j

(
m − j + n − 2

n − 2

)

=
m∑

j=0

Sm− j,n−1 + (n − 1)
m∑

j=0

j

(
m − j + n − 2

n − 2

)

Now, we calculate this sum using the induction assumption:

m∑

j=0

Sm− j,n−1 =
m∑

j=0

(
n − 1

2

)(
n + m − j − 2

n − 1

)

=
(
n − 1

2

)(
n + m − 1

n

)
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m∑

j=0

j

(
m − j + n − 2

n − 2

)
=

m∑

j=0

(
j

1

)(
m − j + n − 2

n − 2

)
=

(
n + m − 1

n

)

Therefore Sm,n = (n−1
2

)(n+m−1
n

) + (n − 1)
(n+m−1

n

) = (n
2

)(n+m−1
n

)
.

��

5 Bethe subalgebras and families of algebras

Let A be an algebra with a filtration F•A. Following the [2], we give the definition of
a family of subalgebras. Having a family of subalgebras of an algebra A parametrized
by a variety X means that we are given a subalgebra A(x), for each x ∈ X , such that
for each N ∈ N, dN := dim(A(x) ∩ FN A) is independent of x , and such that the
resulting map

X → G(dN , FN A)

x 	→ A(x) ∩ FN A

is a morphism of algebraic varieties (here G(d, V ) denotes the Grassmannian of d-
dimensional subspaces of V ).

If we have a family of subalgebras of A parametrized by a variety X , we can take
the closure of this family in the following way.

Consider Rees algebra A = ⊕
N≥0 F

N A of the filtered algebra A. The multi-
plication FN A ⊗ FM A → FN+M A is defined by multiplication in A. There is a
homomorphism of algebras projection map p : A → A that is defined on FN A as
identity map.

The Rees algebra A is an algebra over C[t] with t being the unit in degree 1. If we
set t = 1, we get the initial algebra A, and for t = 0 we get the associated graded of
A.

For each x ∈ X we can lift the subalgebra A(x) to a subalgebra p−1(A(x)) =
A(x) ⊂ A and thus obtain a family of subalgebras of A. We will define the closure of
this family and then take its image in A.

For each N , let

ZN ⊂
∏

N ′≤N

G(dN ′ , FN ′
A)

be the closure of the image of the product map

X →
∏

N ′≤N

G(dN ′ , FN ′
A).
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Then there are surjective restriction maps ZN → ZM for any N > M . The inverse
limit Z = lim←− ZN is well-defined as a pro-algebraic scheme. We can project

Z ⊂
∏

N≥0

G(dN , FN A)

to G(dN , FN A) for each N ≥ 0. Therefore for each z ∈ Z we get a graded subspace
A(z) of A with dimA(z)N = dN .

Clearly, this defines a commutative graded subalgebra of A since the conditions of
being a subalgebra and of being commutative are closed conditions. It projects to a
commutative subalgebra of A.

Now, we want to apply this general theory in the case of Bethe subalgebras of
Y(gl2).

Bethe subalgebra B(C) is a commutative subalgebra of Y(gl2) that depends on
C = (ci j ) ∈ gl2. It is generated by the coefficients of the quantum determinant

qdet T (u) = t11(u)t22(u − 1) − t21(u)t12(u − 1)

and by the coefficients of trCT (u) = c11t11(u) + c12t21(u) + c21t12(u) + c22t22(u)

where

T (u) =
(
t11(u) t12(u)

t21(u) t22(u)

)
.

These generators are algebraically independent for C not equal to a multiple of(
1 0
0 1

)
. Therefore we have a family of subalgebras of Y(gl2) over CP3 − {( 1 0

0 1

)}
(B(C) depends on C up to a scalar multiple). Over

(
1 0
0 1

)
it happens that t (1)11 + t (1)22 is

both the coefficient of qdet T (u) and t11(u)+ t22(u). We want to define the closure of
this family of subalgebras of Y(gl2).

Proposition 3 The closure of the family of Bethe subalgebras B is defined over Z,
the blow up of CP3 at

(
1 0
0 1

)
. Algebra B(x) over a point of the exceptional divisor

x ∈ CP2 ⊂ Z is generated by B
((

1 0
0 1

))
and an element t ∈ 〈t (1)12 , t (1)21 , t (1)11 − t (1)22 〉 

sl2 ⊂ Y(gl2) such that x represents the line Ct .

Proof As in Proposition 1.5.2 and Theorem 1.7.5 in [6], we can consider a filtration
on Y(gl2) such that deg t

(r)
i j = r − 1. The corresponding associated graded gr′Y(gl2)

is isomorphic to U (gl2). The coefficient of u
−r in qdet T (u) has the form t (r)11 + t (r)22

plus terms of degree less than r − 1. The coefficient of u−r in trCT (u) has the form:

c11t
(r)
11 + c12t

(r)
21 + c21t

(r)
12 + c22t

(r)
22 .

It is clear that their images are algebraically independent in gr′Y(gl2) unless C is a
multiple of

(
1 0
0 1

)
.

Therefore, for any C not equal to a multiple of
(
1 0
0 1

)
, B(C) ∩ FNY(gl2) has the

same dimension.
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We will construct a family of commutative subalgebras of Y(gl2) over Z with con-
stant Poincare series (i.e. independent of x ∈ Z ) by explicitly defining the subalgebra
for each poing of Z . It is clear that such family can be lifted to the corresponding fam-
ily of commutative subalgebras of the Rees algebra of Y(gl2) with constant Poincare
series.

If we have an embedding of Z into
∏

N≥0 G(dn, FNY(gl2)) extending the embed-
ding

CP3 − {[(
1 0
0 1

)]} →
∏

N≥0

G(dn, F
NY(gl2))

then the image of Z is the closure of the image of CP3 − {[(
1 0
0 1

)]}
in∏

N≥0 G(dn, FNY(gl2)) since Z is proper.
The variety Z = {([( x11 x12

x21 x22

)]
, [y0 : y1 : y2]

) | y1(x11 − x22) = y0x1, y2x12 =
y1x21, y2(x11− x22) = y0x21} ⊂ CP3×CP2 where [y0 : y1 : y2] are the coordinates
on CP2. So if

[( x11 x12
x21 x22

)] �= [(
1 0
0 1

)]
, [y0 : y1 : y2] = [x11 − x22 : x12 : x21], and

otherwise any point of CP2 satisfies the equations.
For the point x = ([( x11 x12

x21 x22

)]
, [y0, y1, y2]

) ∈ Z let the subalgebra B(x) be gener-

ated by the center of Y(gl2), the coefficients of tr
( x11 x12
x21 x22

)
T (u) and 1

2 y0t
(1)
11 + y1t

(1)
21 +

y2t
(1)
12 − 1

2 y0t
(1)
22 .

Note that if
[( x11 x12

x21 x22

)] �= [(
1 0
0 1

)]
, then B(x) = B(C) with C = ( x11 x12

x21 x22

)
.

If
[( x11 x12

x21 x22

)] = [(
1 0
0 1

)]
, thenB(x) is generated by B

((
1 0
0 1

))
and 1

2 y0t
(1)
11 + y1t

(1)
21 +

y2t
(1)
12 − 1

2 y0t
(1)
22 . The latter element does not lie in B

((
1 0
0 1

))
. This algebra is commu-

tative since commutativity is a closed condition.
By Proposition 6.1 in [3], the number of algebraically independent elements in

B
((

1 0
0 1

))∩ FNY(gl2) is at least the number of algebraically independent elements in
B(C)∩FNY(gl2)minus 1 for N ≥ 1 for genericC . Hence by adding an algebraically
independent element which lies in F1Y(gl2) − F0Y(gl2), we get the same Poincare
series as for a generic Bethe subalgebra.

The algebras B(x) are different for different points of Z .
Therefore, for each x ∈ Z we obtained a commutative subalgebraB(x), the Poicare

series of B(x) are constant, the regular map

Z →
∏

N≥0

G(dn, F
NY(gl2))

is an embedding and extends the map

CP3 − {[(
1 0
0 1

)]} →
∏

N≥0

G(dn, F
NY(gl2)).

Hence, we obtained the closure of the family of Bethe subalgebras.
��
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6 Cyclic Vector for Bethe Subalgebras

Let L(a, b) be the evaluation representation of Y(gl2) with parameters a, b ∈ C, a −
b ∈ Z>0. Consider B(C) ⊂ Y(gl2), the Bethe subalgebra corresponding to a matrix
C ∈ gl2.

We define a string to be a set S(a, b) = {a − 1, a − 2, . . . , b + 1, b} for a, b ∈ C,
a > b. It is known that the representation L(a, b) is irreducible if, for any 1 ≤ i <

j ≤ n, S(ai , bi ) ∪ S(a j , b j ) is not a string.

Proposition 4 The representation L(a, b) ofY(gl2) such that, for any 1 ≤ i < j ≤ n,
S(ai , bi ) ∪ S(a j , b j ) is not a string, has a cyclic vector for the action of B(C) where
C is a nonscalar matrix.

Proof From the condition on parameters of the representations it follows that L(a, b)
is irreducible. If we permute the factors of such representation, we get an isomorphic
representation. Therefore we can arrange the factors so that ai − b j /∈ Z≥0 for any
pair i > j .

First, consider C = e12. We apply Proposition 2. The tensor factors of L(a, b) are
ordered so that the determinant Dm does not vanish for any m and hence the vector
va1,b1 ⊗· · ·⊗ van ,bn ∈ M(a, b) is cyclic for B(e12). We have that M(a, b) � L(a, b)
is a surjection and the image of the vector va1,b1 ⊗ · · · ⊗ van ,bn in L(a, b) is cyclic for
the action of B(e12).

For the general case note that for any semisimple nonscalar matrixC we can choose
a matrix A ∈ GL(2,C) and a scalar λ ∈ C such that λA−1CA lies in an arbitrary
chosen open neighbourhood of e12. The condition that a representation has a cyclic
vector is open, therefore it follows that the action of Bethe subalgebra B(A−1CA) on
L(a, b) has a cyclic vector under the same conditions on ai ’s and bi ’s as for B(e12).

The Yangian automorphism T (u) 	→ AT (u)A−1 maps B(C) to B(A−1CA). The
representation L(a, b) is finite dimensional, so the action of gl2 lifts to the action of
GL(2,C). Hence conjugation by A gives an isomorphic representation. Therefore
B(C) has a cyclic vector in L(a, b). ��

It takes somewhat more effort to prove that the algebras appearing in the limit of
the family of Bethe subalgebras act on such representations with a cyclic vector. This
has been shown in [7]. We provide an independent proof that follows the argument in
[2].

There is an sl2-triple in Y(gl2): f = t (1)21 , e = t (1)12 and h = t (1)11 − t (1)22 . The limit
subalgebras in B are generated by the coefficients of qdet T (u), t11(u) + t22(u) and
one of the elements of this sl2 ⊂ Y(gl2).

The grading on Y(gl2) defined by the adjoint action of h restricts to a decreas-
ing filtration on B

((
1 1
0 1

))
and a grading on B

((
1 0
0 1

))
. Note that the degrees of all

coefficients of qdet(u), t11(u) and t22(u) are zero so B
((

1 0
0 1

))
lies in degree 0. The

generators of B
((

1 1
0 1

))
are non-homogeneous and their highest degree components

have degree 0.

Lemma 6 The associated graded with respect to this filtrartion gr B
((

1 1
0 1

)) =
〈B ((

1 0
0 1

))
, t (1)21 〉.
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Proof The algebra B
((

1 1
0 1

))
is generated by the center of Y(gl2) (which lies in degree

0 ofY(gl2)) and the elements t (r)11 +t (r)21 +t (r)22 . The degree 0 component of t (r)11 +t (r)21 +t (r)22

is t (r)11 + t (r)22 . For r ≥ 2 these elements are algebraically independent and with some
set of algebraically independent elements generating the center they comprise a set of
independent generators of the algebra B

((
1 0
0 1

))
. On the other hand, t (1)11 + t (1)22 lies in

the center, so in the associated graded we will also have t (1)21 . ��
Let (V , π) be a finite dimensional representation of Y(gl2) such that B

((
1 1
0 1

))

acts on it with a cyclic vector. It is graded by the action of h and this grading agrees
with the grading on B

((
1 0
0 1

))
and the filtration on B

((
1 1
0 1

))
. The representation can

be decomposed into irreducible representations with respect to the sl2 action: V =⊕
λ Vλ⊗Wλ where Vλ is an irreducible representation of sl2 with highest weight λ and

Wλ is the multiplicity space. This decomposition can be obtained using the Casimir
element ω ∈ B

((
1 0
0 1

))
, ω = e f + f e + h2

2 . Since B
((

1 0
0 1

))
commutes with the sl2,

it preserves the summands and acts only on Wλ in Vλ ⊗ Wλ for any λ.

Lemma 7 For each λ in the decomposition above, B
((

1 0
0 1

))
has a cyclic vector in Wλ.

Proof Let ω̃ be a lifting of ω to B
((

1 1
0 1

))
. We have the Jordan decomposition π(ω̃) =

π(ω̃)s + π(ω̃)n into semisimple and nilponent parts. The representation V is graded
as a representation of Y(gl2), so we can pick a basis in V compatible with the grading.
Then π(ω̃) is a lower triangular matrix in this basis. Then π(ω̃)n is a strictly lower
triangular matrix. Since the difference π(ω̃)−π(ω̃s) is strictly lower triangular in the
chosen basis, π(ω) = gr π(ω̃) = gr π(ω̃)s . Since π(ω̃)s and π(ω̃)n can be expressed
polynomially in π(ω̃), there are corresponding elements ωs and ωn in B

((
1 1
0 1

))
such

that π(ω̃)s = π(ω̃s), π(ω̃)n = π(ω̃n).
We have a new decomposition V = ⊕

λ Uλ into eigenspaces of π(ω̃s). We have
projectors P̃λ toUλ and Pλ toVλ⊗Wλ. These projectors can be expressed polynomially
in terms of π(ω̃s) and π(ω) correspondingly and we can use the same polynomials
for π(ω̃s) and π(ω) for a specific λ. Therefore gr P̃λ = Pλ (note that if we compute a
value of a polynomial on a lower triangular matrix, then an entry on the diagonal can
be computed by applying the polynomial to the corresponding diagonal entry of the
initial matrix).

Let v ∈ V be the cyclic vector for the action of B
((

1 1
0 1

))
on V . Then P̃λ(v) is cyclic

in Uλ for the action of B
((

1 1
0 1

))
. Therefore B

((
1 0
0 1

)) = (
gr B

((
1 0
0 1

)))
0 generates

vλ ⊗ Wλ = (Vλ ⊗ Wλ)
λ = Uλ

λ /Uλ−1
λ from Pλ(v).

��
Proposition 5 Let B be some algebra in the limit of the familyB and V as above. Then
there is a cyclic vector in V for the action of B.

Proof Algebra B is generated by B
((

1 0
0 1

))
and an element of sl2 we discussed above.

Then by Lemma 7 in each Wλ ⊗ Vλ for each λ we have a cyclic vector with respect
to B since any element of sl2 has a cyclic vector in Vλ for any λ. The sum of these
vectors will be cyclic with respect to B in V since the Casimir element ω acts on each
Vλ by a different constant. ��
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Combining Propositions 4 and 5 we obtain the following result (Theorem B).

Theorem 1 The representation L(a, b) of Y(gl2) such that, for any 1 ≤ i < j ≤ n,
S(ai , bi ) ∪ S(a j , b j ) is not a string, has a cyclic vector for the action of B(x) for any
x ∈ Z.

7 Unitarity of Representations

In this section we would like to discuss under which conditions L(a, b) is unitary as
a representation of Y(gl2). We will consider representations L(a, b) with a, b ∈ R

n .
The form that we discuss here is also discussed in Appendix C of [8].

Definition A representation V of Y(gl2) is called unitary if there is a positive definite
Hermitian form 〈·, ·〉 on V such that for any v,w ∈ V

〈
ti j (u)v,w

〉 = 〈
v, t j i (u)w

〉
.

This is a generalization of the notion of unitarity for gl2.

Lemma 8 For a, b ∈ R representations L(a, b) have a unitary structure.

Proof If we consider L(a, b) as a representation of gl2, there is a form 〈·, ·〉 on L(a, b)
such that for Ei j ∈ gl2 and any v,w ∈ L(a, b) we have

〈
Ei jv,w

〉 = 〈
v, E jiw

〉
. The

action of Y(gl2) on L(a, b) is defined by ti j (u) = δi j + u−1Ei j , hence
〈
ti j (u)v,w

〉 =〈
v, t j i (u)w

〉
holds for this form. ��

Suppose V is a representation of Y(gl2). Then the action of Y(gl2) in the repre-
sentation is defined by the image of T (u) = (ti j (u))1≤i, j≤2 in End(V ) ⊗ Mat2(u).
We want to define an action of Y(gl2) on the dual space of V . This representation
we will denote V∨. To define the action on V∨ we will use the transposition anti-
automorphism τ : T (u) 	→ T t (u) of Y(gl2). Note that it is not the antipode for the
comultiplication �!

Since � ◦ τ = τ ⊗ τ ◦ �opp, (V ⊗ W )∨ is naturally isomorphic to W∨ ⊗ V∨.
Let ϕ : V → V∨ be a map to the dual space. Denote the adjoint map ϕ∗ : V =

V∨∨ → V∨.

Lemma 9 A Hermitian form on V such that V is unitary with respect to this form is
equivalent to an antilinear isomorphism ϕ : V → V∨ and ϕ = ϕ∗.

Proof This is true since we define the action of Y(gl2) on V∨ with the transposition
autmorphism. ��

If we have positive definite Hermitian forms on V and W such that V and W are
unitary with respect to this form, we can construct a positive definite Hermitian form
on V ⊗ W that makes this representation unitary. The product of forms on V and W
gives us an isomorphism of representationsW ⊗V → W∨ ⊗V∨ = (V ⊗W )∨. If we
precompose it with a self-adjoint representation homomorphism V ⊗ W → W ⊗ V ,
we obtain a homomorphism V ⊗ W → (V ⊗ W )∨ that defines a Hermitian form on
V ⊗ W and makes the representation V ⊗ W unitary.
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To make this form on V ⊗ W positive definite, we will need the homomorphism
V ⊗ W → W ⊗ V → (V ⊗ W )∨ to be positive definite as a homomorphism to the
dual space.

For a = (a1, . . . , an) we denote aop = (an, . . . , a1).

Lemma 10 The product of Hermitian forms coming from gl2 action on L(ai , bi ) gives
an isomorphism of Y(gl2) representations L(a, b)∨  L(aop, bop).

Proof The duality does not change the highest weight of the representation, hence
L(a, b)∨  L(a, b) for the evaluation representation L(a, b), and puts the tensor
factors in the opposite order. ��

It follows that to define a Hermitian form on L(a, b), we need a homomorphism
L(a, b) → L(aop, bop) which is positive definite and self-adjoint.

First we will consider the case where all L(ai , bi ) are two-dimensional, and then
get to the general case using that every L(a, b) can be realized as a subquotient of

L(a, a − 1) ⊗ L(a − 1, a − 2) ⊗ · · · ⊗ L(b + 1, b).

In the preliminaries section we have introduced the map

σ R(a1, . . . , an) : L(a1, a1 − 1) ⊗ · · · ⊗ L(an, an − 1) → L(an, an − 1)

⊗ · · · ⊗ L(a1, a1 − 1)

σ R(a1, . . . , an) =
←∏

1≤l≤n−1

←∏

1≤k≤n−l

σ R
k,k+1(al − al+k)

Lemma 11 The map σ R(a1, . . . , an) is self-adjoint.

Proof The map σ R
12(a1 − a2) : L(a1, a1 − 1) ⊗ L(a2, a2 − 1) → L(a2, a2 − 1) ⊗

L(a1, a1 − 1) is self adjoint since it is a composition of a map with symmetric matrix
and the map exchanging the tensor factors.

If we have a composition of two operators φ1 ◦ φ2, the adjoint map (φ1 ◦ φ2)
∗ =

φ∗
2 ◦ φ∗

1 .
Hence the adjoint map of σ R(a1, . . . , an) is a map L(a, b) → L(aop, bop) that

is a product of n(n − 1) maps σ R
i j (u), and they realize the unique permutation of

the length n(n − 1) on n tensor factors, i.e., the permutation that puts the factors in
the opposite order. Also we know that we have the braid group relations on σ R

i j ’s.
From the Theorem 3.3.1 in [1] it follows that any two minimal presentations of an
element ofSn can be changed into each other using only braid group relations. Hence
σ R(a1, . . . , an) = σ R(a1, . . . , an)∗. ��

Therefore the composition of the maps σ R(a1, . . . , an) and the map defined by the
product of Hermitian forms gives aHermitian form on L(a1, a1−1)⊗· · ·⊗L(an, an−
1). In order for this form to be positive definite, we need the map σ R(a1, . . . , an) to
be positive definite. The map σ R(a1, . . . , an) is self-adjoint hence its eigenvalues are
real.
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Since σ R
i j (u) = Flipi j ◦ Ri j (u) we can rewrite

σ R(a1, . . . , an) =
←∏

1≤l≤n−1

←∏

1≤k≤n−l

σ R
k,k+1(al − al+k)

=
←∏

1≤l≤n−1

←∏

1≤k≤n−l

Fli pk,k+1 ◦
←∏

1≤l≤n−1

←∏

1≤k≤n−l

Rl,l+k(al − al+k).

Therefore it suffices to check that all eigenvalues of

R(a1, . . . , an) =
←∏

1≤l≤n−1

←∏

1≤k≤n−l

Rl,l+k(al − al+k)

are positive.

Lemma 12 The eigenvalues of

R(a1, . . . , an) : L(a1, a1 − 1)

⊗ · · · ⊗ L(an, an − 1) → L(a1, a1 − 1) ⊗ · · · ⊗ L(an, an − 1)

are positive if |ai − a j | > 1 for any i, j .

Proof Recall that Rkl = 1 + (ak − al)−1Pkl where Pkl permutes the k’th and l’th
coordinates (as defined in preliminaries). All eigenvalues of Pkl are 1 or −1 so Rkl

has zero eigenvalues only if |ai − a j | = 1. Now

R(a1, . . . , an) =
←∏

1≤l≤n−1

←∏

1≤k≤n−l

Rl,l+k(al − al+k).

Denote ai j = 1
ai−a j

. The determinant

det

⎛

⎝
←∏

1≤l≤n−1

←∏

1≤k≤n−l

Rl,l+k(al − al+k)

⎞

⎠ =
n−1∏

l=1

n−l∏

k=1

det Rl,l+k(al − al+k)

is a polynomial in ai j whose only roots are ai j = 1 and ai j = −1 and if all ai j = 0
then all eigenvalues are positive. Hence by continuity whenever all |ai j | < 1, all
eigenvalues of R(a1, . . . , an) are positive. ��

Now we can do it in the general case. Let

N<(a, b) = L(b + 1, b) ⊗ L(b + 2, b + 1) ⊗ · · · ⊗ L(a, a − 1)
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and

N>(a, b) = L(a, a − 1) ⊗ L(a − 1, a − 2) ⊗ · · · ⊗ L(b + 1, b).

Let us write an operator

τ : N<(a1, b1) ⊗ · · · ⊗ N<(an, bn) → N>(an, bn) ⊗ · · · ⊗ N>(a1, b1).

This operator will be a composition of a map

τ1 : N<(a1, b1) ⊗ · · · ⊗ N<(an, bn) → N<(an, bn) ⊗ · · · ⊗ N<(a1, b1)

and a map

τ2 : N<(an, bn) ⊗ · · · ⊗ N<(a1, b1) → N>(an, bn) ⊗ · · · ⊗ N>(a1, b1).

Denote: ki = ai − bi
ri = k1 + · · · + ki−1
qi = ki+1 + · · · + kn
a(s) = a j and k(s) = s − r j if r j ≤ s < r j+1.

Define

τ1,i =
←∏

1≤ j≤ki

←∏

0≤s≤n−ri+1−1

σt+s,t+s+1(bi + t − a(s + ri+1) + k(s + ri+1)).

Note that τ1,i pulls N<(ai , bi ) through N<(ai+1, bi+1) ⊗ · · · ⊗ N<(an, bn).
Then τ1 = ∏←

1≤i≤n−1 τ1,i .
Define

τ2,i =
←∏

1≤ j≤ki−1

←∏

1≤s≤ki− j

σs+qi ,s+qi+1(s).

Then τ2 = ∏←
1≤i≤n τ2,i .

Define τ = τ2τ1.

Theorem 2 Suppose ai , bi ∈ R for 1 ≤ i ≤ n and a1 > b1 > · · · > an > bn. Then we
can define a Hermitian form on L(a, b) such that the representation becomes unitary
with this form.

Proof As we have discussed above, to define a unitary form on L(a, b), we need an
isomorphism of Y(gl2) representations L(a, b) → L(aop, bop) that is self-adjoint
with respect to the product form defined on L(a, b) and has positive eigenvalues.

First note that τ is self-adjoint by the fact that σi j is self-adjoint and Lemma 11.
Also note that the eigenvalues of τ are non-negative since it can be presented as a limit
of R(a1, . . . , am) as in Lemma 12 with a1 > a2 > · · · > am and ai − ai+1 > 1 such
that for some i’s ai − ai+1 → 1 or ai − ai+1 → −1.
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Now we want to show that there is a commutative diagram:

N<(a1, b1) ⊗ · · · ⊗ N<(an, bn) N>(an, bn) ⊗ · · · ⊗ N>(a1, b1)

L(a1, b1) ⊗ · · · ⊗ L(an, bn) L(an, bn) ⊗ · · · ⊗ L(a1, b1)

p

τ

τ ′

and the map τ ′ is the isomorphism we need.
From Proposition 1 it follows that

N<(an, bn) ⊗ · · · ⊗ N<(a1, b1)/ ker τ2,i
 N<(an, bn) ⊗ · · · ⊗ L(ai , bi ) ⊗ · · · ⊗ N<(a1, b1),

hence

N<(an, bn) ⊗ · · · ⊗ N<(a1, b1)/ ker τ2  L(an, bn) ⊗ · · · ⊗ L(a1, b1).

From thiswe can see that τ factors through L(aop, bop). Since τ1 is an isomorphism,
τ is surjective onto L(aop, bop).

By Lemma 11, we can write τ as a map that first permutes the factors of N<(ai , bi )
and then permutes N<(ai , bi )’s. The first map is surjective onto L(a, b) and the second
is an isomorphism. Hence τ factors through L(a, b).

Since dim L(a, b) = dim L(aop, bop), it follows that the restriction of τ gives an
isomorphism L(a, b) → L(aop, bop).

The map τ = σ R(a1, a1 − 1, . . . , b1 + 1, a2, . . . , b2 + 1, . . . , an, . . . , bn + 1).
Hence by Lemma 11, τ is self-adjoint and hence has real eigenvalues. We can view τ

as a limit of maps σ R(a′
1, . . . , a

′
n′) for n′ = ∑n

i=1(ai − bi ) such that |a′
i − a′

j | > 1 for
any i, j . From Lemma 12 it follows that the eigenvalues of τ are real non-negative.
Hence the restriction of τ that gives the isomorphism L(a, b) → L(aop, bop) has real
positive eigenvalues. ��

8 Simple Spectrum and Covering

In this section, we consider the closure of the subfamily of B corresponding to real
diagonalmatrices. In the closure therewill be one limit algebra, generated by B

((
1 0
0 1

))

and t (1)11 − t (1)22 . This subfamily of B corresponds to a subvariety Z ′ ⊂ Z which is
isomorphic to RP1 (closure of the subvariety of real diagonal matrices up to scale).

Theorem 3 For any x ∈ Z ′, B(x) has simple spectrum in L(a, b) such that ai , bi ∈ R

for any i , and for any 1 ≤ i < j ≤ n, S(ai , bi ) ∪ S(a j , b j ) is not a string.

Proof By Theorem 2 we have a Hermitian form on L(a, b) and the generators of B(x)
act by self-adjoint operators with respect to this form. Hence the elements of B(x)
can be all diagonalized in the same basis. By Theorem 1 we have a cyclic vector in
L(a, b) with respect to B(x). Hence B(x) has simple spectrum in L(a, b). ��
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If an algebraA acts on a vector space V with simple spectrum, there are n distinct
algebra maps ψ1, . . . , ψn : A → C such that for each i the eigenspace

Ei = {v ∈ V | a · v = ψi (a)v, for all a ∈ A}

is one-dimensional. Then V = E1 ⊕ · · · ⊕ En and we call EA(V ) := {E1, . . . , En}
the set of eigenlines for the action of A on V .

From the condition that, for any 1 ≤ i < j ≤ n, S(ai , bi )∪ S(a j , b j ) is not a string
and they are real, it follows that the set of allowed (a1, b1, . . . , an, bn) is a contractible
subset X ⊂ R

2n .

Corollary 1 Consider EB(x)(L(a, b)). For each value of the parameters (x, a1, b1, . . . ,
an, bn) ∈ RP1 × X it is a set of dim L(a, b) elements that depends smoothly on the
parameters. Hence we get an n-fold covering of RP1 × X.

In the following works we would like to generalize this result to the case of Y (gln).
Also we would like to study the monodromy action of the fundamental group of the
base space on this covering.
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