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Abstract
In the recent paper Bürgisser and Lerario (Journal für die reine und angewandte Math-
ematik (Crelles J), 2016) introduced a geometric framework for a probabilistic study
of real Schubert Problems. They denoted by δk,n the average number of projective k-
planes in RPn that intersect (k+ 1)(n− k) many random, independent and uniformly
distributed linear projective subspaces of dimension n − k − 1. They called δk,n the
expected degree of the real GrassmannianG(k, n) and, in the case k = 1, they proved
that:

δ1,n = 8

3π5/2
·
(

π2

4

)n
· n−1/2

(
1+O

(
n−1
))

.

Here we generalize this result and prove that for every fixed integer k > 0 and as
n →∞, we have

δk,n = ak · (bk)n · n− k(k+1)
4

(
1+O(n−1)

)

where ak and bk are some (explicit) constants, and ak involves an interesting integral
over the space of polynomials that have all real roots. For instance:

δ2,n = 9
√
3

2048
√
2π

· 8n · n−3/2
(
1+O

(
n−1
))

.

Moreoverwe prove that these numbers belong to the ring of periods intoduced byKont-
sevich and Zagier and give an explicit formula for δ1,n involving a one-dimensional
integral of certain combination of Elliptic functions.
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170 A. Lerario, L. Mathis

1 Introduction

1.1 Random Real Enumerative Geometry

In this paper we continue the study of real enumerative problems initiated in [9]. Our
goal is to answer questions such as

In average, how many lines intersect four random lines in RP3?

To be more precise, let G(1, 3) be the Grassmannian of lines in RP3. This is a
homogeneous space equipped with a transitive action of the orthogonal group O(4)
on it and there is a unique invariant probability measure defined on G(1, 3) invariant
under this action. We fix L ∈ G(1, 3) and define the Schubert variety:

�(L) := {� ∈ G(1, 3) | � ∩ L �= ∅} .

Then the answer to the previous question is given by the number:

δ1,3 := E# (g1 ·�(L) ∩ · · · ∩ g4 ·�(L))

where g1, . . . , g4 are independent, taken uniformly at random from O(4) (with the
normalized Haar measure).

One can generalize to higher dimensions. LetG(k, n) be theGrassmannian of linear
projective subspaces of dimension k inRPn . It is a homogeneous space with O(n+1)
acting transitively on it and with a unique O(n + 1)−invariant probability measure.
We fix L ∈ G(n − k − 1, n) and introduce the corresponding Schubert variety:

�(L) := {� ∈ G(k, n) | � ∩ L �= ∅} . (1)

We define

δk,n := E#
(
g1 ·�(L) ∩ · · · ∩ g(k+1)(n−k) ·�(L)

)
(2)

where g1, . . . , g(k+1)(n−k) are independent, taken uniformly at random from O(n+1)
(with the normalized Haar measure). This number equals the average number of k-
dimensional subspaces ofRPn meeting (k+1)(n−k) random subspaces of dimension
(n − k − 1).

1.2 Previously on Probabilistic Schubert Calculus

In the recent work [9], the first named author of the present paper together with Peter
Bürgisser established a formula1 for the number δk,n in (2), see [9, Corollary 5.2]:

δk,n = dk,n !
2dk,n

· |G(k, n)| · |C(k, n)|

1 Notice that, in the language of [9], δk,n = edeg(G(k + 1, n + 1)).
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Probabilistic Schubert Calculus: Asymptotics 171

where |G(k, n)| is the volume of the Grassmanniann and |C(k, n)| the volume of a
certain convex body in R(k+1)×(n−k), which the authors called the Segre zonoid. This
convex body is defined as follows: take random points p1, . . . , pm independently
and uniformly on Sk × Sn−k−1 ⊂ R

(k+1)(n−k) and consider the Minkowski sum
Km := 1

m ([0, p1] + · · · + [0, pm]). Then C(k, n) is the limit, with respect to the
Hausdorff metric, of Km asm →∞ (being a limit of zonotopes, C(k, n) is a zonoid),
see Definition 9.

If we see elements ofR(k+1)×(n−k) as matrices it turns out that this convex body, in
some senseonlydependson their singular values.Using this and assuming k+1 < n−k
one can construct a convex body in the space Rk+1 of singular values such that if we
call r its radial function, we have [9, Theorem 5.13]:

δk,n = βk,n

∫
Sk+

(
pk · (r)k+1

)(n−k)
qk dS

k (3)

where pk and qk are simple combinatorial functions of the coordinates on Rk+1, βk,n

is a known coefficient (whose explicit expression is given in (17)) and the domain of
integration is

Sk+ =
{
x ∈ R

k+1| ‖x‖ = 1, x1 ≥ · · · ≥ xk+1 ≥ 0
}

.

Equation (3) will be our starting point for computing both the asymptotic of δk,n and
the “exact” formula for δ1,3.

1.3 Main Results

Our first main result is the asymptotic of δk,n for any fixed k, as n goes to infinity,
generalizing [9, Theorem 6.8], which deals with the case k = 1.

Theorem 1 For every integer k > 0 and as n goes to infinity, we have

δk,n = ak · (bk)n · n− k(k+1)
4

(
1+O(n−1)

)

where

ak = �k
2

(k+1)(k−2)
4

π
k(k+2)

2

�
(
k(k+3)

4

)

�
(
k(k+1)+2

4

)
(
k + 1

k + 2

) k(k+3)
4
(

�
( k+1

2

)
�
( k+2

2

)
)k(k+1)

bk =
(

�
( k+2

2

)
�
( k+1

2

)√π

)(k+1)
.

(The number �k that appears in the expression of ak can be expressed as an integral
over the polynomials that have all roots in R, see Definition 10.)
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172 A. Lerario, L. Mathis

For instance �1 and �2 can be easily computed and the previous formula gives:

δ1,n = 8

3π5/2
·
(

π2

4

)n
· n−1/2

(
1+O

(
n−1
))

δ2,n = 9
√
3

2048
√
2π

· 8n · n−3/2
(
1+O

(
n−1
))

.

Similarly one can consider the same problem over the complex Grassmannian
GC(k, n) of k-dimensional complex subspaces of CPn . The Schubert cycles �C(LC)

are defined just as in (1). The compact Lie group with transitive action is now the
unitary group U (n + 1). We define

δCk,n := E#
(
g1 ·�C(LC) ∩ · · · ∩ g(k+1)(n−k) ·�C(LC)

)
(4)

where g1, . . . , g(k+1)(n−k) are independent, taken uniformly at random fromU (n+1)
(with the normalized Haar measure).

Remark 1 The expected value in (4) is an integer. Indeed the variable is almost surely
constant and computes the degree of the Grassmannian in the Plücker embedding (see
[9, Corollary 4.15]).

For this number we derive the following asymptotic (to be compared with Theorem 1).

Proposition 2 (The asymptotic for the complex case)

δCk,n = aCk ·
(
bCk

)n · n− k(k+2)
2

(
1+O(n−1)

)

where

aCk =
�(1)�(2) · · ·�(k + 1)

(2π)k/2(k + 1)k(k+1)−1/2

bCk = (k + 1)(k+1) .

Remark 2 To derive the asymptotic formula of Theorem 1, we first notice that μ =
1√
k+1 (1, . . . , 1) is the only critical point of r (and pk) in the domain of integration

of (3), it is a maximum and is non degenerate. Thus if we can compute its Hessian Hk

at this point we could compute the asymptotic of (3) using Laplace’s method.
The difficulty lies in the fact that Hk is a symmetric bilinear form on TμSk ∼= R

k ,
thus wewould need to compute∼ k2 entries for large k. However here we are saved by
the symmetries of the convex body whose radial function is r . Indeed it is invariant by
permutation of coordinates in R

k+1. This implies that Hk commutes with this action
of the symmetric group Sk+1. Moreover TμSk = μ⊥ is an irreducible subspace for
this action. Thus by Schur’s Lemma Hk = λk · 1 for some λk ∈ R: in this way, for
each k > 0, we only need to compute one number! Still this computation is non trivial
(see Proposition 16).
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Probabilistic Schubert Calculus: Asymptotics 173

It is not difficult to prove (Corollary 1 below) that δk,n belongs to the ring of periods
introduced by Kontsevich and Zagier [5]. Other than this, the nature of these numbers
remains mysterious. In fact we do not even have an “exact” formula for the simplest
non trivial case δ1,3. Nevertheless we can present it as a one-dimensional integral (see
Proposition 24).

Theorem 3

δ1,n = −2π2n−2c(n)

∫ 1

0
L(u)n−1sinh(w(u))w′(u)du

where

c(n) = � (2n − 2)

� (n) � (n − 2)

L = F · G and w = log (F/G) with

F(u) :=
∫ π/2

0

u sin2(θ)√
cos2 θ + u2 sin2 θ

dθ

G(u) :=
∫ π/2

0

u sin2(θ)√
sin2 θ + u2 cos2 θ

dθ

Remark 3 One may want to numerically evaluate δk,n .2 For this purpose Eq. (3) is not
quite suitable because we do not know the radial function r explicitly.

On the contrary, in Theorem 3 everything is explicit. The functions F and G are
elliptic integrals and satisfy a rather simple linear differential equation with rational
coefficients. One could then use techniques such as the D-modules machinery (see for
Example [10]) to obtain numerical evaluation.

1.4 Structure of the Paper

In [9] is initiated the study of the numbers δk,n . We will first recall what is achieved
there as well as some preliminary background in Sect. 2. In Sect. 3.1 we compute the
asymptotic of δk,n as n goes to infinity; this is to be compared with the asymptotic in
the complex, case which is computed in Sect. 3.2. In Sect. 4 we prove that δk,n is a
period in the sense of Kontsevitch and Zagier. Finally in Sect. 5 we provide a formula
for δ1,n for every n ≥ 3, as a one dimensional integral of elliptic functions.

2 This is in fact the topic of a discussion on Mathoverflow: https://mathoverflow.net/questions/260607/
expected-number-of-lines-meeting-four-given-lines-or-what-is-1-72.
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174 A. Lerario, L. Mathis

2 Preliminaries

2.1 The Gamma Function

Definition 1 The Gamma Function is defined for all x > 0 by

�(x) =
∫ +∞

0
t x−1e−tdt

We will use the two following classical results. For a proof and more details see for
example [7].

Proposition 4 For all real numbers a and b

�(x + a)

�(x + b)
= xa−b

(
1+O

(
x−1
))

. (5)

Proposition 5 (Multiplication Theorem) For all x ≥ 0 and for all integer m we have

m−1∏
k=0

�

(
x + k

m

)
= (2π)

m−1
2 m

1
2−mx �(mx).

2.2 The Grassmannian

Definition 2 The real Grassmannian manifold is the homogeneous space

G(k, n) := O(n + 1)

O(n − k)× O(k + 1)

where O(m) is the orthogonal group of m × m orthogonal matrices. It is a smooth
manifold of dimension

dim(G(k, n)) = dk,n := (k + 1)(n − k).

Definition 3 The Plücker embedding is the embedding

G(k, n) → P(�k+1
R
n+1)

W �→ [a1 ∧ . . . ∧ ak+1
] (6)

where {a1, . . . , ak+1} is any basis for W.

We provide G(k, n) with the Riemannian structure induced by (6), recalling that the
scalar product on (k + 1)-vectors is given by:

〈u1 ∧ · · · ∧ uk+1, v1 ∧ · · · ∧ vk+1〉 = det
(〈ui , v j 〉

)
1≤i, j≤k+1 .
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Probabilistic Schubert Calculus: Asymptotics 175

Fig. 1 The support function

The volume of the Grassmannian with respect to the volume density associated to
the restriction of the Plücker metric is [9, Equation (2.11) and (2.14)]:

|G(k, n)| = |O(n + 1)|
|O(k + 1)| |O(n − k)| = π

(k+1)(n−k)
2

k+1∏
i=1

�
( i
2

)
�
( n−k+i

2

) (7)

Remark 4 From (2.2) we see that G(k, n) = G(n − k − 1, n). From now on we can
and will assume k + 1 ≤ n − k.

2.3 Convex Bodies

We will need a few elementary results from convex geometry.

Definition 4 A convex body, is a non empty compact convex subset of Rn. We denote
by Kn the set of convex bodies of Rn containing the origin.

Definition 5 The support function of K ∈ Kn is the function

hK : Rn → R

x �→ max{〈x, y〉 | y ∈ K }.

Definition 6 The support hyperplane H(K , u) of K ∈ Kn in the direction u ∈ Sn−1
is

H(K , u) := {x ∈ R
n | 〈x, u〉 = hK (u)

}
.

Intuitively, the support function, or more precisely its restriction to the sphere Sn−1,
associates to each direction u ∈ Sn−1 the distance to the hyperplane H(K , u), see
Fig. 1. It characterizes the body in the sense that hK1 = hK2 ⇐⇒ K1 = K2.
Moreover it has some nice properties making it very useful, see [4, Section 1.7.1] for
proofs and more details:

K1 = K2 ⇐⇒ hK1 = hK2 K1 ⊂ K2 ⇐⇒ hK1 ≤ hK2
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176 A. Lerario, L. Mathis

hK1+K2 = hK1 + hK2 hλK = λhK
x ∈ K ⇐⇒ 〈x, y〉 ≤ hK (y) ∀y ∈ R

n

The following result will be useful for us, see [4, Corollary 1.7.3].

Proposition 6 If hK is differentiable in x0 ∈ R
n, then

{∇hK (x0)} = {y} = ∂K ∩ H

(
K ,

x0
‖x0‖

)
.

We will also need another function representing convex bodies.

Definition 7 The radial function of K ∈ Kn is

r : Sn−1 → R+
u �→ sup {t ≥ 0 | tu ∈ K } .

In this paper we will be interested in a special class of convex bodies: these are zonoids
associated to a probability distribution in R

d . The correspondence between zonoids
and probability measures is studied in [3]. See for example [3, Theorem 3.1]. We
introduce the following definition.

Definition 8 (Vitale zonoid) Let v ∈ R
d be a random vector such that E‖v‖ < ∞.

We define the Vitale zonoid associated to v to be the convex body with the support
function h(u) = Eh[0,v](u).

There is a special case of this construction that will be relevant for us. Let Z ⊂ R
d

be a compact semialgebraic set, and sample v at random from the uniform distribution3

on Z . Then we will denote by CZ the Vitale zonoid associated to Z .

2.4 Laplace’s Method

Themain step for the computation of the formula (27) is to apply in amultidimensional
setting an asymptotic method for computing integrals, the so called Laplace’s method.
For a proof and more details on this result, one can see [6, Section II Theorem 1] .

Theorem 7 (Laplace’s method) We consider the integral depending on one parameter
λ > 0:

I (λ) :=
∫ t2

t1
e−λa(t)b(t)dt,

where a, b are functions [t1, t2] → R satisfying the conditions:

3 This means the following. First restrict the Riemannian metric from R
d to the set of smooth points of Z ,

and consider the corresponding volume density. The total volume of the set of smooth points with respect
to this density is finite, and we can normalize it to be equal to 1. In this way Z becomes a probability space
(singular points have probability zero).We call the resulting probability distribution the uniform distribution
on Z .
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Probabilistic Schubert Calculus: Asymptotics 177

(i) a is smooth in a neighborhood of t1 and there exists μ > 0 and a0 �= 0 such that
for t → t1:

a(t) = a(t1)+ a0(t − t1)
μ +O(|t − t1|μ+1).

(ii) b is smooth in a neighborhood of t1 and there exists ν ≥ 1 and b0 �= 0 such that
for t → t1:

b(t) = b0(t − t1)
ν−1 +O(|t − t1|ν).

(iii) t1 is a global minimum for a on [t1, t2], i.e. a(t) > a(t1) ∀t ∈]t1, t2[, moreover
for all ε > 0,

inf
t∈[t1+ε,t2[

{a(t)− a(t1)} > 0

(iv) The integral I (λ) converges absolutely for sufficiently large λ.

Then, as λ →∞, we have:

I (λ) = e−λa(t1) ·
�
(

ν
μ

)
λν/μ

· b0

μ · aν/μ
0

(
1+O(λ−(1+ν)/μ)

)
.

2.5 Main Characters

Definition 9 For k ≤ n positive integers, the Segre zonoid is the convex body C(k, n)

defined as follow. Take p1, . . . , pm uniformly and independently at random on Sk ×
Sn−k−1 ⊂ R

dk,n and construct the Minkowski sum Km := 1
m

∑m
i=1 [0, pi ]. Then as m

goes to infinity, Km converges (w.r.t the Haussdorff metric) almost surely and C(k, n)

is defined to be its limit.

The fact that this sequence of random compact sets converges almost surely follows
from a strong law of large number that one can find in [1]. In the language of the
previous section, C(k, n) is the Vitale zonoid associated to Sk × Sn−k−1.

Remark 5 There is an appropriate notion of tensor product for zonoids, see [8, Section
3]. In this sense the Segre zonoid is a tensor of balls.

If we think of Rdk,n as the space of (k + 1)× (n − k) matrices, it turns out that the
convex body C(k, n) depends only on the singular values of these matrices. We then
have [9, Theorem 5.13]

Proposition 8 The volume of the Segre zonoid is given by

|C(k, n)| = 2dk,n · π(k+1)(2n+4−k)

dk,n �
( k+1

2

)
�
( k
2

) · · ·� ( 12 ) �
( n−k

2

)
�
( n−k−1

2

) · · ·� ( n−2k2

) Ik(n)
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178 A. Lerario, L. Mathis

where

Ik(n) :=
∫
Sk+

(
pk · (r)(k+1)

)(n−k)
qk dS

k . (8)

With the functions of the coordinates x = (x1, . . . , xk+1) ∈ R
k+1

pk(x) :=
k+1∏
i=1

xi , qk(x) := pk(x)
−(k+1)∏

i< j

∣∣∣x2i − x2j

∣∣∣ , (9)

and where r is the radial function of the convex body inR(k+1) whose support function
is given by [9, Proposition 5.8]:

h(x) = 1

(2π)(k+2)/2

∫
Rk+1

√
x21ξ

2
1 + · · · + x2k+1ξ2k+1 e

−‖ξi ‖2
2 d ξ (10)

and the domain of integration is

Sk+ :=
{
x ∈ R

k+1 | ‖x‖ = 1, x1 ≥ · · · ≥ xk+1 ≥ 0
}

.

Let us recall the following [9, Lemma 5.10].

Proposition 9 The maximum of the radial function r is given by

R := r(μ) = max
u∈Sk

r(u) = 1√
π
√
k + 1

�
( k+2

2

)
�
( k+1

2

) .

Moreover μ is the global maximum on Sk+ and the same is true for the function pk
defined in (9).

Proof For the first part we refer to [9]. Consider pk as a function on the whole space
R
k+1. The i th component of the gradient ∇ pk at the point x is x1 . . . x̂i . . . xk+1 (the

product of all coordinates except xi ). This is normal to the sphere if and only if there
is λ ∈ R\{0} such that

∀i x1 . . . x̂i . . . xk+1 = λxi . (11)

We see that if one of the xi is zero then they all must vanish. Thus if x ∈ Sk we can
assume xi �= 0 ∀i and multiply both side of (11) by xi . We obtain that x is a critical
point of pk restricted to Sk (i.e. ∇ pk(x) is normal to Sk) if and only if xi = ±x j for
all 1 ≤ i, j ≤ k + 1 and μ is the only point with this property in Sk+. Moreover μ is a
maximum because ∇ pk(μ) is pointing outward of the sphere. ��

We will also need the following number.
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Probabilistic Schubert Calculus: Asymptotics 179

Definition 10 For each a = (a1, . . . , ak) ∈ R
k , consider the polynomial of degree

k + 1pa(X) := Xk+1 + a1Xk−1 − a2Xk−2 + · · · ± ak (note the absence of the term
of degree k). Let Rk :=

{
a ∈ R

k | all the roots of paarereal
}
. Then

�k :=
∫
Rk

ea1 da.

The number �k has another expression if we consider the point of view of roots.
For that purpose we introduce the square root of the discriminant:

√
� :=

∏
i< j

(xi − x j ) ∀x = (x1, . . . , xk+1) ∈ R
k+1.

We also set μ := 1√
k+1 (1, . . . , 1) ∈ Sk ⊂ R

k+1 and Fk := {x1 ≥ x2 ≥ · · · ≥ xk+1}.
Note that on Fk ,

√
� is non-negative so the notation makes sense.

Proposition 10 For every positive integer k,

�k = �

(
K + k

2

)
2

K+k−2
2√

k + 1

∫
Fk∩Sk∩μ⊥

√
� dSk−1,

where K = (k+12 ) and dSk−1 is the standard spherical measure of the unit sphere of
μ⊥.

Proof First by a spherical change of coordinates and by homogeneity of
√

� of degree
K , we have

∫
Fk∩μ⊥

e−
‖v‖2
2
√

� dv = �

(
K + k

2

)
2

K+k−2
2

∫
Fk∩Sk∩μ⊥

√
� dSk−1 (12)

where dv is the flat Lebesgue measure on μ⊥ induced by its embedding in Rk+1.
On the other hand, let us introduce the elementary symmetric polynomials σ1 =

x1+ · · · + xk+1, σ2 =∑i< j xi x j , . . ., σk+1 = x1 · · · xk+1. This is a diffeomorphism

on Fk whose Jacobian is precisely det
(

∂σ
∂x

) = √
�. In fact, det

(
∂σ
∂x

)
is a monic

polynomial of the same degree of
√

�; moreover, it is easy to see that for every i �= j
the polynomial (xi − x j ) divides det

(
∂σ
∂x

)
, therefore they are equal.

Now consider a new orthonormal basis in R
k+1 with first unit vector given by μ.

Let x̃ be the coordinates in this new basis and let v = (x̃2, . . . , x̃k+1). Observe that
x̃1 = 〈x, μ〉 = σ1/

√
k + 1. Thus we obtain the Jacobian matrix

∂ x̃

∂σ
=

⎛
⎜⎜⎜⎝

1√
k+1 0 · · · 0

∂v
∂σ1

∂v
∂σ≥2

⎞
⎟⎟⎟⎠ .
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180 A. Lerario, L. Mathis

This implies that det
(

∂ x̃
∂σ

)
= 1√

k+1 det
(

∂v
∂σ≥2

)
. On the other hand x̃ is an orthogonal

transformation of x so det
(

∂ x̃
∂σ

)
= det

(
∂x
∂σ

) = 1/
√

�. Altogether this gives

det

(
∂v

∂σ≥2

)
= √

k + 1/
√

� (13)

Moreover we see that (σ1)2 = ‖x‖2 + 2σ2. Restricted to v ∈ μ⊥ = {σ1 = 0} this
gives −‖v‖2

2 = σ2 .
Next we let ai := σi+1 for 1 ≤ i ≤ k and apply the change of variable v → a to

the left-hand side of (12). By (13) the Jacobian is
√

� dv = √
k + 1 da. This gives

∫
Fk∩μ⊥

e−
‖v‖2
2
√

� dv = √
k + 1�k

��

3 Asymptotics

Fix an integer k > 0. Given L ∈ G(n − k − 1, n), consider the a corresponding
Schubert variety in the Grassmannian G(k, n):

�(L) := {� ∈ G(k, n) | � ∩ L �= ∅} . (14)

It is a singular subvariety4 of the Grassmannian of codimension 1 and its volume is
computed in [9, Theorem 4.2].

Recall that we are interested in the computation of the numbers

δk,n := E#
{
g1 ·�(L) ∩ · · · ∩ g(k+1)(n−k) ·�(L)

}

for which the following formula is established in [9, Corollary 5.2]:

δk,n = dk,n !
2dk,n

· |G(k, n)| · |C(k, n)|. (15)

Here C(k, n) is the convex body defined in Definition 9 (where dk,n = (k+ 1)(n− k)
is the dimension of the Grassmanian G(k, n)).

Using Proposition 8 and [9, Equation (2.11)] we get

δk,n = βk,n Ik(n) (16)

4 As a Young Diagram, it corresponds to a single square in the upper left corner.
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with Ik(n) defined in (8) and

βk,n := (2π)k+1
(π

2

)dk,n �
(
dk,n
)

�( n+12 )�( n2 ) · · ·�( n−2k2 )
. (17)

3.1 Asymptotic of ık,n as n → ∞

In this section we compute the asymptotics of δk,n as n goes to∞.
In order to compute these asymptotics wewill apply Laplace’sMethod (Theorem 7)

to Eq. (8) using the fact that the global maximum of pk · (r)(k+1) is reached at μ

(Proposition 9). There are two major obstacles that arise. First: we don’t know the
radial function r explicitly. Second: one needs to compute the Hessian of pk · (r)(k+1)
at the point μ.

To solve the first problem, the key is Proposition 6 that will allow us to express r
in terms of the support function, see Eq. (18) below.

To deal with the second difficulty, we will prove that the Hessian of pk · (r)(k+1)
is a multiple of the identity. To do so we use the fact that the convex body defined
by r is invariant under the action of the symmetric group acting by permutation of
coordinates. This will imply that the Hessian at μ is a morphism of representations on
an irreducible subspace and we can use Schur’s Lemma (see Proposition 12 below).

Let us denote by D(k) the convex body defined by r and by ∂D(k) its boundary.
Using Proposition 6, we have the following commutative diagram:

Sk ∂D(k) Sk
R+

∇h

ψ

π

‖·‖

r

whereπ(x) = x
‖x‖ andψ = π◦∇h. Thus assuming thatψ is a local diffeomorphism

near μ, we can write

r(x)2 = ‖(∇h)
(
ψ−1(x)

)
‖2. (18)

Here ∇h is the gradient of the function on the whole space Rk+1 which is restricted
to the sphere only afterward, but for the sake of simplicity we omit the restriction in
the notation of the function.

Thus if we can compute the Taylor polynomial of ∇h at μ, we would at the same
time get the Taylor polynomial of r using the following Lemma.

Lemma 11 Let f1 : Rp → R
q , f2 : Rn → R

p and f3 : Rm → R
n be C2-functions.

The second derivative of their composition at 0 ∈ R
m is given by:

D2
0( f1 ◦ f2 ◦ f3)(x, x) = D f2( f3(0)) f1 ·

[
D f3(0) f2 · D2

0 h(x, x)+ D2
f3(0) f2 (D0 f3 · x,D0 f3 · x)

]

+D2
f2( f3(0)) f1

(
D f3(0) f2 · D0 f3 · x,D f3(0) f2 · D0 f3 · x

) ∀x ∈ R
m .
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Proof Let f and g be C2-functions between real vector spaces that can be composed.
We get the Taylor series:

g(x) = g(0)+ D0 g · x + 1

2
D2
0 g(x, x)+O(‖x‖3).

Writing the Taylor series of f (g(x)) = f
(
g(0)+ D0 g · x + D2

0 g(x, x)+O(‖x‖3))
at g(0) and putting together the terms of second order we get

D2
0( f ◦ g)(x, x) = Dg(0) f · D2

0 g(x, x)+ D2
g(0) f (D0 g · x,D0 g · x).

Replacing f by f1 and g by f2 ◦ f3, we get the result. ��
In particular if f : Rm → R and g : Rn → R

m , then

D2
a

(
( f ◦ g)2) (x, x) = 2 f (g(a)) ·

[
Dg(a) f · D2

a g(x, x)+ D2
g(a) f (Da g · x,Da g · x)

]

+2 (Dg(a) f · Da g · x
)2 ∀x ∈ R

m . (19)

From now on we will work in exponential coordinates at μ. That is to a point
x ∈ TμSk = μ⊥ corresponds the point cos ‖x‖ μ+ sin ‖x‖ x

‖x‖ ∈ Sk . In particular in

these coordinates μ = 0. Thus in these coordinates, ψ and ∂h
∂xi
|Sk can be considered

as functions on R
k ∼= μ⊥.

We would like to replace g by ψ−1 and f by ∂h
∂xi
|Sk in (19) and sum over i ∈

{1, . . . , k + 1} to get D2
μ(r2). The difficulty is that we need to compute all the entries

of the Hessian matrix which are approximately k2. This increasing complexity could
have made the computation impossible, but as we pointed out before, it turns out that
this matrix is a multiple of the identity.

Proposition 12 If f : μ⊥ → R is C2 in a neighborhood of 0 and invariant under the
standard action ofSk+1 onRk+1 then its Hessian at 0 is a multiple of the identity, i.e.
there exist C f ∈ R such that

D2
0 f (x, x) = C f ‖x‖2 ∀x ∈ μ⊥.

Proof First note that μ ∈ R
k+1 is fixed under the standard action of Sk+1 (that is by

permutations of coordinates). Thus the action decomposes in R
k+1 = Rμ⊕ μ⊥ and

the action on μ⊥ is well-defined. Moreover the invariant subspace μ⊥ is irreducible.
Now, let P ∈ Sk+1 be a permutation. Since f is C2 we have

f (x) = f (0)+ D0 f · x + 1

2
xT Hx +O

(
‖x‖3

)

f (Px) = f (0)+ D0 f · Px + 1

2
(Px)T H(Px)+O

(
‖x‖3

)

where we wrote the quadratic form D2
0 f in the matrix form: D2

0 f (x, x) = xT Hx for
a certain symmetric matrix H .
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By comparing the terms of order 2 we get PT H P = H . Moreover Sk+1 acts by
orthogonal matrices implying that H commutes with this action. In other words H is
a morphism of representations from μ⊥ onto itself. Since μ⊥ is irreducible it follows
from Schur’s Lemma [2, Section 1.2] that H is a (possibly complex) multiple of the
identity. Since H is symmetric all its eigenvalues are real. Thus it is a real multiple of
the identity. ��
Remark 6 By (10), h is Sk+1-invariant, thus r2 is Sk+1-invariant as well and the
computation of its Hessian is reduced to the computation of the coefficient Cr2 of
Proposition 12.

We let hi := ∂h
∂xi
|Sk . We recall that, by Proposition 9, the point μ ∈ Sk is a point of

maximumof r . In particular the tangent plane to ∂D(k) atμ equals {μ}⊥.Consequently
the support hyperplane H(D(K ), μ) is μ+ {μ}⊥ and, by Proposition 6, ∇h(μ) = μ.
Thus ψ(μ) = μ.

Remark 7 Furthermore ψ = π ◦∇h is alsoSk+1-invariant and is a function from μ⊥
onto itself in the exponential coordinates atμ. Mimicking the proof of Proposition 12,
we get that if the differential of ψ at μ has at least one real eigenvalue Cψ . Then for
all x ∈ μ⊥, we have Dμ ψ · x = Cψ x .

Before stating our next results, wewrite h in amore convenient form using a change
of variables (spherical coordinates) in (10).

h(x) = 2k

π(k+2)/2�

(
k + 2

2

)∫
Skpos

√√√√k+1∑
j=1

x2j ξ
2
j dS

k(ξ) (20)

with Skpos = Sk ∩ {xi ≥ 0 ∀i = 1, . . . , k + 1} (note that Skpos �= Sk+).

Definition 11 For m ∈ N, we denote by G(m) the numbers:

G(m) :=
∫
Skpos

ξm1 dSk(ξ).

These numbers satisfy the following simple identities.

Proposition 13 (i) G(m) = πk/2

2k
�
(
m+1
2

)

�
(
k+m+1

2

) ;
(ii) G(4)

G(2) = 3
k+3 ;

(iii) G(6)
G(2) = 15

(k+3)(k+5) ;

(iv)

∫
Skpos

ξ21 ξ22 dS
k (ξ)

G(2) = 1
k+3 ;

(v)

∫
Skpos

ξ41 ξ22 dS
k (ξ)

G(2) = 3
(k+3)(k+5) .
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Proof Observe first that, for any p > 0,

∫ +∞

0
t pe−

t2
2 dt = 2

p−1
2 �

(
p + 1

2

)
. (21)

which is obtained by the change of variable u = t2
2 and the definition of the Gamma

function. We prove the first two items, other items are proven in a similar way.

(i) Using a polar change of variables and Eq. (21) we get

∫
R
k+1
pos

ξm1 e−
||ξ ||2
2 dξ = �

(
k + m + 1

2

)
2

k+m−1
2 G(m).

where R
k+1
pos = {xi ≥ 0 ∀i = 1, . . . , k + 1} is the positive orthant. On the other

hand using Fubini, we get

∫
R
k+1
pos

ξm1 e−
||ξ ||2
2 dξ =

(∫ +∞

0
e−

t2
2

)k (∫ +∞

0
tme−

t2
2

)
=
(π

2

) k
2
2

m−1
2 �

(
m + 1

2

)
.

Equaling the right-hand sides of these two equalities gives the result.

(ii) Using (i). we have G(4)
G(2) =

�
(
5
2

)

�
(
3
2

) �
(
k+3
2

)

�
(
k+5
2

) . But �
(
k+5
2

)
= k+3

2 �
( k+3

2

)
and

�
(
5
2

)

�
(
3
2

) =
3/2.

��

Remark 8 Observe that the coefficient in front of the integral in (20) is R√
k+1

1
G(2) .

Proposition 14 The operator Dμ ψ has a real eigenvalue Cψ = k+1
k+3 . Thus (by

Remark 7) Dμ ψ is a non zero multiple of the identity. In particular, ψ is a local
diffeomorphism near μ.

Proof First of all, in (20) we integrate a bounded function over a compact domain,
thus in computing hi we can interchange integration and derivation and get

hi (x) = R√
k + 1

1

G(2)

∫
Skpos

xi ξ2i√∑k+1
j=1 x2j ξ2j

dSk(ξ).

Let γ be the geodesic on the sphere starting at μ with the initial velocity γ̇0 =√
k√

k+1 (1,− 1
k , . . . ,− 1

k ). γ : R→ Sk is given by

γ (t) = 1√
k + 1

(
cos t +√

k sin t, cos t − sin t√
k

, . . . , cos t − sin t√
k

)
. (22)
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Along this particular geodesic,

h1(γ (t)) = R

G(2)
√
k + 1

∫
Skpos

(cos t +√k sin t) ξ21√
ξ21 (cos t +√k sin t)2 + (1− ξ21 )(cos t − sin t√

k
)2

dSk(ξ),

which we can expand as:

h1(γ (t)) = R

G(2)
√
k + 1

∫
Skpos

[
ξ21 + t

k + 1√
k

(ξ21 − ξ41 )

]
dSk(ξ)+O(t2)

= R

G(2)
√
k + 1

[
G(2)+ t

k + 1√
k

(G(2)− G(4))

]
+O(t2). (23)

Using Proposition 13, we get

h1(γ (t)) = R√
k + 1

[
1+ t

√
k
k + 1

k + 3

]
+O(t2). (24)

Similarly for j ≥ 2, we get

h j (γ (t)) = R√
k + 1

[
1− t

1√
k

k + 1

k + 3

]
+O(t2). (25)

Moreover

ψi (γ (t)) = hi (γ (t))√
(h1(γ (t)))2 + k (h2(γ (t)))2

.

Taking once again the linear Taylor polynomial in t we get

ψ1(γ (t)) = 1√
k
+ t

√
k√

k + 1
· k + 1

k + 3
+O(t2)

ψ2(γ (t)) = 1√
k
− t

1√
k
√
k + 1

· k + 1

k + 3
+O(t2).

Recalling that Dμ ψ · γ̇0 = d
d t |t=0ψ(γ (t)) we find that γ̇0 is an eigenvector with the

eigenvalue k+1
k+3 . ��

Remark 9 By (24) and (25) we note that Dμ(∇h) · γ̇0 =∑k+1
i=1 Dμ hi · γ̇0 = 0. Thus

γ̇0 is an eigenvector of Dμ(∇h) with the eigenvalue 0 and by the same argument as in
remark 7, Dμ(∇h) = 0, i.e. μ is a critical point of ∇h.
Proposition 15 In the above notation,

D2
μ(r2)(x, x) = 2

C2
ψ

(
k+1∑
i=1

(
Dμ hi · x

)2 + R√
k + 1

k+1∑
i=1

D2
μ hi (x, x)

)
∀x ∈ μ⊥.
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Proof Take f = hi and g = ψ−1 in Eq. (19). Sum over i ∈ {1, . . . , k + 1} and use
Remark 9. ��

We are finally ready to compute the Hessian of r2.

Proposition 16 For all x ∈ μ⊥, we have

D2
μ(r2)(x, x) = −4 R2

k + 1
||x ||2.

Proof Once again we use the geodesic γ defined by (22) and compute D2
μ(r2)(γ̇0, γ̇0)

using Proposition 15. With the help of (24) and (25), we get

k+1∑
i=1

(
Dμ hi · γ̇0

)2 = (Dμ h1 · γ̇0
)2 + k

(
Dμ h2 · γ̇0

)2 = R2 (k + 1)2

(k + 3)2
.

Tocompute the secondderivative ofhi weneed to take theTaylor series of equation (23)
up todegree2.The secondorder term forh1 is t2

2
k+1
k

[
2ξ21 − ξ41 (3k + 5)+ ξ61 3(k + 1)

]
whichonce integrated andusingProposition13, givesD2

μ h1(γ̇0, γ̇0)= − R√
k+1

(k+1)(7k−1)
(k+3)(k+5) .

Similarly, one gets D2
μ h2(γ̇0, γ̇0) = R√

k+1
(k+1)

k

(
−1+ 9 (k+1)

(k+3)(k+5)
)
. Combining

those, we obtain

k+1∑
i=1

D2
μ hi (γ̇0, γ̇0) = D2

μ h1(γ̇0, γ̇0)+ k D2
μ h2(γ̇0, γ̇0) = − R√

k + 1

(k + 1)2

(k + 3)
.

The result follows from Proposition 15, Remark 6 and the fact that ‖γ̇0‖ = 1. ��
Remark 10 The Hessians of the various intermediate functions (such as the hi ’s)
depend on the choice of local coordinates and make sense only if we consider them
as functions on μ⊥. However since μ is a critical point of r2, its Hessian at this point
is well-defined and does not depend on the choice of local coordinates.

Finally, we write (8) in Riemannian polar coordinates:

Ik(n) =
∫
S̃k−1+

∫ l(v)

0
e
−(n−k)

(
− k+1

2 log(r2)−log(p)
)
q
√
det g ρk−1 dρ dSk−1(v)

where g is the spherical metric of Sk on μ⊥, the angular domainis given by S̃k−1+ :=
π ◦ exp−1μ (Sk+) = μ⊥ ∩ Sk ∩ Fk and l(v) is the time needed to reach the boundary of

the domain Sk+ starting at μ with velocity v.
In order to apply Theorem 7we need to use the Taylor series of the various functions

appearing in the integrand. A simple (but rather tedious) computation leads to:

Ik(n) = 2K

(k + 1)
K−(k+1)2

2

∫
S̃k−1+

∏
i< j

|xi − x j |
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×
∫ l(v)

0
e
−(n−k)

(
− k+1

2 log
(

R2
k+1
)
+ρ2(k+2)+O(ρ3)

)
(ρK+k−1 +O(ρK+k)) dρ dSk−1

where K = (k+12 ) = k(k+1)
2 .

Lemma 17 For all v ∈ S̃k−1+ , l(v) ≥ tan−1(1/
√
k).

Proof Sk+ is the (geodesically) convex hull on Sk ⊂ R
k+1 of the points α1 :=

(1, 0, . . . , 0), α2 := 1√
2
(1, 1, 0, . . . , 0), . . . , αk+1 = μ. The closest of these

points to μ (except μ itself) is αk . The cosine of the angle between αk and μ is

given by their scalar product 〈αk, μ〉 =
√
k√

k+1 . The result follows from the formula

tan(cos−1(x)) =
√
1−x2
x . ��

Thus the upper bound l(v) does not really matter for the asymptotics. Moreover the
outermost integral is the integral of a bounded function over a compact domain and
we can interchange it with the limit. We apply Theorem 7 with λ = (n − k), μ = 2
and ν = K + k. Using Proposition 10, we find

Ik(n) = �
( K+k

2

)
�
( K+1

2

) 2
K−1
2 �k

(k + 1)
K−(k+1)2

2 (k + 2)
K+k
2

×
(

R√
k + 1

)(n−k)(k+1) 1

n
K+k
2

(
1+O((n − k)−

K+k+1
2 )
)

. (26)

We are now (finally) ready to state the main theorem of this section.

Theorem 18 For every fixed integer k > 0 and as n goes to infinity, we have

δk,n = ak · (bk)n · n− k(k+1)
4

(
1+O(n−1)

)
(27)

where

ak = �k
2

k(k−3)
4

π
k(k+2)

2

√
k + 1

(
k + 1

k + 2

) k(k+3)
4
(

�
( k+1

2

)
�
( k+2

2

)
)k(k+1)

bk =
(

�
( k+2

2

)
�
( k+1

2

)√π

)(k+1)
. (28)

Proof We use (16) and (17). We need to compute the asymptotics of

βk,n := π(k+1)(n−k)+(k+1)

2(k+1)(n−k−1)
� ((k + 1)(n − k))

�( n+12 )�( n2 ) · · ·�( n−2k2 )
.
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Using Proposition 5, we get

� ((k + 1)(n − k)) = (k + 1)(k+1)(n−k)−1/2

(2π)k/2

k∏
l=0

�

(
n − k + l

k + 1

)

and the denominator

k∏
l=0

�

(
n + 1− 2l

2

)
�

(
n − 2l

2

)
= π

k+1
2

2(k+1)(n−k−1)
k∏

l=0
� (n − 2l) .

Moreover using (5) we have:

k∏
l=0

�
(
n − k + l

k+1
)

� (n − 2l)
=

k∏
l=0

n−k+
l

k+1+2l
(
1+O(n−1)

)
= nk/2

(
1+O(n−1)

)
.

Thus

βk,n = (π(k + 1))(k+1)(n−k)

(2π)k/2
√
k + 1

nk/2
(
1+O(n−1)

)
.

Reintroducing it carefully into δk,n = βk,n · Ik(n) and using (26) and Proposition 9
we get the result. ��

We notice the structure of formula (27): it consists of a factor ak that does not
depend on n, another factor (bk)n that grows exponentially fast and a rational factor
n−k(k+1)/4. The last two are easily computable for any k > 0. Unfortunately the
expression for ak in (28) still depends on the constant �k for which we were not able
to find a closed formula for an arbitrary k. However some particular values can be
computed explicitly.

Proposition 19 We have �1 = 1 and �2 =
√

π
3 .

Proof We use directly the Definition 10.
For k = 1, the polynomial X2 + a has real roots if and only if a ≤ 0. Thus

�1 =
∫ +∞
0 e−t dt = 1.

For k = 2, the polynomial X3 + aX − b has all real roots if and only if the
discriminant � = −4a3 − 27b2 is positive. For fixed a = −t , this means b2 ≤ 4

27 t3

i.e. b ∈
[
− 2

3
√
3
t3/2,+ 2

3
√
3
t3/2
]
. Thus

�2 = 4

3
√
3

∫ +∞

0
t3/2e−t dt = 4

3
√
3
�

(
5

2

)
= 4

3
√
3

3
√

π

4
.

��
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This allows us to write the first three asymptotic values of δk,n

δ0,n = 1 ;

δ1,n = 8

3π5/2
·
(

π2

4

)n
· n−1/2

(
1+O

(
n−1
))

;

δ2,n = 9
√
3

2048
√
2π

· 8n · n−3/2
(
1+O

(
n−1
))

.

3.2 Asymptotics in the Complex Case

One can state the same problem for the complex Grassmannian of subspaces in CPn .
Recall from the introduction (Eq. (4)) that we denote by δCk,n the number of complex

k-subspaces ofCPn meeting (k+1)(n−k) generic subspaces of dimension n−k−1.
A closed formula for δCk,n is known for every k, n (see [9, Corollary 4.15]):

δCk,n =
�(1)�(2) · · ·�(k + 1)

�(n − k + 1)�(n − k + 2) · · ·�(n + 1)
(k + 1)(n − k)� ((k + 1)(n − k))

(29)

We can compute its asymptotics.

Proposition 20 For every fixed k, as n →∞ we have

δCk,n = aCk ·
(
bCk

)n · n− k(k+2)
2

(
1+O(n−1)

)

where

aCk =
�(1)�(2) · · ·�(k + 1)

(2π)k/2(k + 1)k(k+1)−1/2

bCk = (k + 1)(k+1) .

Proof Using the Multiplication Theorem (Proposition 5) we get

� ((k + 1)(n − k)) = (k + 1)(k+1)(n−k)−1/2

(2π)k/2

k∏
i=0

�

(
n − k + i

k + 1

)

When reintroduced in Eq. (29) this gives

δCk,n = aCk (bCk )n(n − k)
k∏

i=0

�
(
n − k + i

k+1
)

� (n − k + i + 1)
(30)
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Using Proposition 4 we deduce that

k∏
i=0

�
(
n − k + i

k+1
)

� (n − k + i + 1)
=

k∏
i=0

(n − k)−ik/(k+1)−1
(
1+O(n−1)

)

= n−k(k+2)/2−1
(
1+O(n−1)

)
,

which, once reintroduced in (30), gives the result. ��

4 Periods

We start with the following elementary fact.

Proposition 21 For any positive integer n > 0, δ0,n = 1.

Proof Let us look back at the definition of the Schubert variety in (14). In the
case k = 0, we fix L ∈ G(n − 1, n) i.e. a hyperplane in RPn . Then �(L) =
{p ∈ RPn | p ∈ L} = L . Thus δ0,n is the average number of points in the intersection
of n random hyperplanes of RPn which is 1. ��

Recall that a real number is called a period if it is the volume of a semialgebraic
subset of Euclidean space given by polynomial inequalities with rational coefficients.
Let us show that δk,n is a period. In order to prove it, we first need the following
Lemma.

Lemma 22 Let S ⊂ R
d be a compact semialgebraic set with defining polynomials

over Q and let α : S → R be an algebraic function with coefficients in Q. Denoting
by volS the volume density on the set sm(S) of smooth points of S associated with the
Riemannian metric induced by the ambient space Rd , then

∫
S
α · volS belongs to the ring of periods.

where by definition
∫
S α · volS =

∫
sm(S)

α · volS.
Proof We preliminary decompose S into smaller pieces, each with defining polyno-
mials with rational coefficients. To this end, observe that:

S =
a⋃

i=1

b⋂
j=1

({ fi, j = 0} ∩ {gi, j < 0}) ,

with fi, j , gi, j ∈ Q[x1, . . . , xd ]. Removing all the inequalities from the previous
description, assuming that each fi, j is irreducible, keeping only the fi, j ’s whose zero
set is s-dimensional, and relabeling these with fi, j = fk , k ∈ {1, . . . , γ }, we can
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set Yk = { fk = fi, j = 0}. Next we see that there exists a semialgebraic set �1 of
dimension dim(�1) < s such that:

S\�1 ⊆
γ⋃

k=1
Yk .

By construction each Yk has dimension s; for every k = 1, . . . , γ , denote by Xk the
set of singular points of Yk and consider �2 = �1 ∪

(⋃γ

k=1 Xk
)
. Then S\�2 (which

coincides with S up to a set of dimension strictly less than s) is contained in

S\�2 ⊂
γ⋃

k=1
sm(Yk).

Because for every k = 1, . . . , γ Yk is smooth, there exist 1 ≤ i1 < · · · < is ≤ d such
that the critical points of the projection projspan{ei1 ,...,eis } restricted to Yk form a set Ck

of codimension one in Yk . Define

�3 := �1 ∪�2 ∪
(

γ⋃
k=1

Ck

)
.

�3 is a set of dimension at most s − 1. Set Lk = span{ei1 , . . . , eis } and pk =
projspan{ei1 ,...,eis }|Yk . We now decompose S\�3 into disjoint pieces Sk = S ∩�c

3:

S\�3 =
γ∐

k=1
Sk .

Since dim(�3) < s, we have:

∫
S
α · volS =

γ∑
k=1

∫
Sk

α · volS .

Summing up: the desired integral can be written as a sum of integrals over semial-
gebraic sets S1, . . . , Sγ , each of dimension s, each defined by polynomial equalities
and inequalities with rational coefficients and with the property that there exists a map
pk : Sk → Lk " R

s (defined over Q) which is a diffeomorphism onto its image.
For each k = 1, . . . , γ , consider the inverse of the projection τk : pk(Sk) → Sk ,

which is also a diffeomorphism. τk is semialgebraic and defined overQ. In particular,

∫
S
α · volS =

γ∑
k=1

∫
Sk

α · volS

=
γ∑

k=1

∫
pL (Sk )

α(τk(y)) ·
√
det
(
Jτk(y)Jτk(x)T

)
dy.
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Each summand in the latter formula is an integral of an algebraic function defined over
Q and the domain of integration is a full-dimensional semialgebraic set in L " R

s

defined over Q. In particular, each summand is a period, and therefore the whole
integral is a period. ��
Lemma 23 Let Z ⊂ R

d be a compact semialgebraic set with defining polynomials
over Q and let CZ be the Vitale zonoid associated to Z. Then vol(CZ ) belongs to the
ring of periods.

Proof Apply the previous Lemma with the choice of S = Z × · · · × Z ⊂ R
d×d and

α(z1, . . . , zd) =
√
det
([z1, . . . , zd ][z1, . . . , zd ]T ).

Corollary 1 Each δk,n belongs to the ring of periods.

Proof We use Eqs. (15) and (7). Since periods form a ring and values of the Gamma
function at rational points are periods this proves the statement. ��

5 A Line Integral for ı1,n

In the case of δ1,n we can prove the following formula (the idea of the proof is due to
Erik Lundberg).

Proposition 24 In the above notation,

δ1,n = −2π2n−2c(n)

∫ 1

0
L(u)n−1 d

du
(cosh (w(u))) du

where

c(n) = � (2n − 2)

� (n) � (n − 2)
= n(n − 2)

2
δC1,n,

L = F · G and w = log(F/G) with

F(u) :=
∫ π/2

0

u sin2(θ)√
cos2 θ + u2 sin2 θ

dθ,

G(u) :=
∫ π/2

0

sin2(θ)√
sin2 θ + u2 cos2 θ

dθ.

Proof From [9, Equation (6.12)], we have

δ1,n = π2n−2c(n)

∫ π/4

0

(
r(θ)2 cos θ sin θ

)n−1 (cos θ)2 − (sin θ)2

(cos θ sin θ)2
dθ (31)

Here c(n) = �(2n−2)
�(n)�(n−2) .

123



Probabilistic Schubert Calculus: Asymptotics 193

Moreover from (18) we have r(θ)2 = |∇h(cos t, sin t)|2, where

tan θ = hy(cos t, sin t)

hx (cos t, sin t)
(32)

and h is given by (10) and can be reduced to:

h(x, y) = 1

π

∫ π/2

0

√
x2 cos2(θ)+ y2 sin2(θ) dθ. (33)

Let p(t) = hy(cos t, sin t) and q(t) = hx (cos t, sin t). Then we get cos2 θ =
q(t)2

q(t)2+p(t)2
, sin2 θ = p(t)2

q(t)2+p(t)2
and r(θ)2 = p(t)2 + q(t)2. If we change the variable

of integration in (31) to t , then the integrand becomes

(
(q2 + p2)

pq

p2 + q2

)n−1 q2 − p2

p2 + q2
(q2 + p2)2

q2 p2
d

dt

(
p(t)

q(t)

)
q(t)2

q(t)2 + p(t)2
dt

where we have used (32) to determine dθ = d
dt

(
p(t)
q(t)

)
q(t)2

q(t)2+p(t)2
dt . So (31) becomes

δ1,n = π2n−2c(n)

∫ π/2

0
(p(t)q(t))n−3 (q(t)2 − p(t)2)q(t)2

d

dt

(
p(t)

q(t)

)
dt

Next we make the change of variables u = tan t . It is not difficult to see that p(t) =
F(u(t)) andq(t) = G(u(t))using (33) and the definitionof F andG in the proposition.
The integral becomes:

δ1,n = π2n−2c(n)

∫ 1

0
(F(u)G(u))n−3 (G(u)2 − F(u)2)G(u)2

d

du

(
F(u)

G(u)

)
du.

Nowwe let L = F ·G and H = F/G. The integrand becomes Ln−1(1/H−H)H ′/H .
The last factor suggests to use the notation w := log(H). We obtain

δ1,n = −2π2n−2c(n)

∫ 1

0
L(u)n−1 sinh(w(u))

d

du
w(u)du
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