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Abstract
The mapping class group of an orientable closed surface with one marked point can be
identified, by theNielsen action,with a subgroup of the group of orientation-preserving
homeomorphisms of the circle. This inclusion pulls back the “discrete universal Euler
class” producing a non-zero class in the second integral cohomology of the mapping
class group. In this largely expository note, we determine the non-vanishing behavior
of the powers of this class. Our argument relies on restricting the cohomology classes
to torsion subgroups of the mapping class group.
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1 Introduction

Let �k
g denote the pure mapping class group of a closed orientable surface �g of

genus g ≥ 1 with k ≥ 0 marked points. Homological properties of the mapping class
group of surfaces of finite type have been studied for the last 40 years. For instance,
cohomology classes of mapping class groups correspond to characteristic classes of
surface bundles. Furthermore, for surfaces of genus g ≥ 2, the rational cohomology
of �k

g coincides with the cohomology of the moduli spaceMg,k of Riemann surfaces
of genus g with k marked points.
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Some of the first homological calculations for mapping class groups are due to
Harer. He computed H2(�

k
g; Z) for genus g ≥ 5 in [9] and proved a remarkable

homological stability theorem in [10], which was a key result in the proof of Mum-
ford’s conjecture for H∗(Mg; Q) by Madsen and Weiss [19]. Miller [21] and Morita
[23] constructed non-trivial cohomology classes in H∗(�k

g; Q), while Glover andMis-
lin [6] used torsion subgroups of the mapping class groups to detect torsion in their
cohomology. In the same spirit, we use torsion elements in the mapping class group
�1
g of a surface of genus g ≥ 1 with one marked point to show the non-vanishing of

some classes in H∗(�1
g; Z).

For g ≥ 2,Nielsen defined a faithful action of�1
g on the circleS

1 which identifies�1
g

with a subgroupof the groupHomeo+(S1)of orientation-preserving homeomorphisms
of the circle (see, for example, [8] and Sect. 4). This monomorphism ρ : �1

g ↪→
Homeo+(S1) pulls back the discrete universal Euler class E and its powers En to
�1
g producing classes ρ∗(En) =: En ∈ H2n(�1

g; Z) for each n ≥ 1. As we review
in Sect. 2, the nth cup product powers En are known to be non-trivial torsion free
cohomology classes in H2n(Homeo+(S1); Z), for n ≥ 1. In this note, we determine
the non-vanishing behavior of the powers En ∈ H2n(�1

g; Z) of the Euler class E for

�1
g .

Theorem A For g ≥ 1 and n ≥ 1, the cohomology classes En ∈ H2n(�1
g; Z) are

nonzero. Furthermore, when n ≥ g, the subgroup of H2n(�1
g; Z) generated by the

class En is a finite cyclic group of order a multiple of 4g(2g + 1).

For genus g = 1, Theorem A holds and more is known: the powers of the Euler
class for �1

1
∼= SL(2, Z) behave like the pull back of En to a finite cyclic subgroup

of Homeo+(S1) (see Proposition 3.1). The group SL(2, Z) acts faithfully on rays
starting at the origin in the Euclidean plane. The corresponding monomorphism ρ :
SL(2, Z) ↪→ Homeo+(S1) pulls back the class E to a generator x := ρ∗(E) in
H2(SL(2, Z); Z) of the cohomology ring

H∗(SL(2, Z); Z) ∼= Z[x]/〈12x〉.

Therefore, the Euler class for SL(2, Z) and all its powers are non-trivial torsion classes
of order 12. In contrast, for genus g ≥ 3 the Euler class E ∈ H2(�1

g; Z) is known to be
non-trivial of infinite order. This also follows from our Theorem A and the universal
coefficient theorem since the group �1

g is perfect.
We will observe, in Sects. 3 and 4, that the non-triviality of the classes En is

obtained by restricting the cohomology classes to a torsion subgroup of �1
g where the

corresponding cohomology classes are known to be non-trivial. Our torsion bound in
Theorem A comes from the order of specific torsion elements in �1

g . We end this note
with Sect. 5 where we comment on known related results. In particular, Theorems 5.3
and 5.4 give a partial understanding of the behavior of the powers of the “Euler classes”
for the pure mapping class groups with one or more marked points.

Further work. In work in progress, we use the non-vanishing result Theorem A as a
starting point to address the more subtle problem of computing the order of the classes
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En for n ≥ g and showing that for n < g the powers En are torsion free cohomology
classes. In [13], the order of En at the threshold dimension n = g was computed by the
first author to be 2g(2g+ 1). The difference with the bound obtained in Theorem A is
explained in our current work. It arises due to the fact that the computation in [13] was
obtained not for the Nielsen action, but for an action that we refer to as the “projective
action”.

We briefly and informally describe our current research. The approach is similar
but more directly geometric than that of [13], and the aim is to provide an elementary,
and unified description of the behavior of the powers of the Euler class for the pure
mapping class groups with one or more marked points. The group �1

g acts naturally
on the infinite simplex with vertex points of the circle. The action of �1

g on the circle
gives rise to a bi-simplicial set which realizes B�1

g, and an associated double-chain
complex which computes its homology. That is the setting for our computations. The
elements S and T , described in Sect. 4, allow us to construct in the bi-complex, a 2n-
chain, dual to En, for n ≤ g. We seek to determine how this 2n-chain transitions from
its behavior for n < g, where it extends to a cycle (which we know to be non-trivial
by Theorem A), to one at the threshold n = g where that fails.

2 The Universal Euler Class and Its Powers

Consider the group Homeo+(S1) of orientation-preserving homeomorphisms and the

group of lifts ˜Homeo+(S1) with respect to the universal cover π : R → S
1. There

is an epimorphism p : ˜Homeo+(S1) → Homeo+(S1) with kernel isomorphic to Z

generated by T : R → R the integral translation T (x) = x+1. This defines a non-split
central extension of Homeo+(S1)

0 → Z → ˜Homeo+(S1)
p−→ Homeo+(S1) → 1, (1)

which is universal, in the sense of [22, Sect. 5], with kernel isomorphic to the Schur
multiplier H2(Homeo+(S1); Z). The central extension (1) corresponds to a non-trivial
generator E in H2(Homeo+(S1); Z) ∼= Z that we refer as the discrete universal Euler
class.

To better understand the powers En of the discrete universal Euler class, let us
recall the following classical result due to Mather [20] and Thurston [24]. Given M an
orientable manifold, we distinguish the group of orientation-preserving homeomor-
phisms of M with the discrete topology Homeo+(M)δ from the topological group
Homeo+(M)τ with the compact-open topology.

Theorem 2.1 (Thurston–Mather) Let M be any orientable manifold. The identity map
id : Homeo+(M)δ → Homeo+(M)τ induces a continuous function between classi-
fying spaces

η : BHomeo+(M)δ → BHomeo+(M)τ
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which is a homology equivalence.

The subgroup of rotations SO(2, R) is canonically identified with S
1 and the inclu-

sion S
1 ↪→ Homeo+(S1)τ is a homotopy equivalence; see, for example, [5, Prop. 4.2].

Then BHomeo+(S1)τ 
 BS
1 
 CP

∞ and its cohomology ring is given by

H∗(BHomeo+(S1)τ ; Z) ∼= Z[x],

where x is a generator of H2(BHomeo+(S1)τ ; Z) ∼= Z. Hence, for the circle S
1, the

Thurston–Mather theorem and the universal coefficient theorem imply the following
result.

Corollary 2.2 The cohomology ring of the discrete groupHomeo+(S1) is a polynomial
ring generated by the universal Euler class E ∈ H2(Homeo+(S1); Z), i.e.

H∗(Homeo+(S1); Z) = H∗(BHomeo+(S1)δ; Z) ∼= Z[E].

Therefore, all the powers En are non-trivial torsion-free cohomology classes. See
also Sect. 5 in [13] for a different proof.

3 Torsion and Non-triviality of the Powers of the Euler Class

We observe next that, when restricted to a finite cyclic subgroup Z /k Z, the powers of
the universal discrete Euler class pull back to non-trivial torsion classes. Recall that
the cohomology ring of Z /k Z is known to be

H∗(Z /k Z; Z) ∼= Z[x]/〈kx〉, where x is a generator of H2(Z /k Z; Z) ∼= Z /k Z .

Proposition 3.1 For any monomorphism φ : Z/kZ ↪→ Homeo+ S
1, the pull-back

of the discrete universal Euler class φ∗(E) ∈ H2(Z/kZ; Z) is a generator of the
cohomology ring H∗(Z/kZ; Z). In particular, all the powers (φ∗(E))n = φ∗(En) are
non-trivial torsion classes in H2n(Z/kZ; Z) of order k.

Proof Consider first the finite cyclic group Z/kZ acting faithfully on the circle by a
rotation of angle 2π/k. Then the pull back of the universal central extension (1) of
Homeo+(S1) is the non-split central extension

0 → Z
×k−→ Z → Z /k Z → 1

of Z /k Z by Z which corresponds to φ∗(E) and is a generator of H2(Z/kZ; Z) ∼=
Z /k Z; see for example, [18, Ch. IV.7]. The pull back of the powers En correspond to
generators of H2n(Z/kZ; Z) ∼= Z/k Z by functoriality of the cup product.

Up to conjugacy, the rotation group SO(2, R) is the only maximal compact sub-
group of Homeo+(S1); see, for instance, [5, Prop. 4.1]. As a consequence, any finite
subgroup of Homeo+(S1) is conjugate to a cyclic group of rotations, and the propo-
sition is then true for any monomorphism φ : Z/kZ ↪→ Homeo+ S

1. �
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Corollary 3.2 Let � be a discrete group acting faithfully on S
1 by orientation-

preserving homeomorphisms. Suppose that � has a torsion element of order k.

(a) For all n ≥ 1, the pull back of En is a non-trivial class in H2n(�; Z).
(b) If the pull back of En is a torsion class, it must have order a multiple of k.

Proof By hypothesis, we have monomorphisms

Z /k Z
ι

↪−→ �
ψ

↪−→ Homeo+(S1).

By Proposition 3.1, for any n ≥ 1 the pull back

(ψ ◦ ι)∗(En) = ι∗
(
ψ∗(En)

) = ι∗
(
(ψ∗(E))n

)

is a non-trivial class in H2n(Z/kZ; Z) of order k. Therefore, the class (ψ∗(E))n is a
non-trivial class in H2n(�; Z). If (ψ∗(E))n is a torsion class, then it must have order
a multiple of k since ι∗ takes it to a torsion class of order k. �


4 Powers of the Euler Class for Mapping Class Groups

Let �g denote the closed orientable surface of genus g ≥ 1 and z ∈ �g . The mapping
class group �1

g with one marked point is the group of orientation-preserving homeo-
morphisms of �g modulo isotopy, where the point z is required to stay fixed under
isotopies.

Consider the presentation of the fundamental group

π1(�g, z) = 〈a1, a2, . . . , a2g| a1 · · · a2g · a−1
1 · · · a−1

2g = 1〉.

The Dehn–Nielsen–Baer theorem identifies �1
g with an index 2 subgroup of the

automorphism group Aut
(
π1(�g, z)

)
(see, for example, [4, Ch. 8]). Under this iden-

tification, the automorphisms of π1(�g, z)

S :
a1 �→ a2
a1 �→ a3

...

a2g �→ a−1
1

T :
a1 �→ a2
a1 �→ a3

...

a2g �→ a−1
2g · · · a−1

2 a−1
1

represent torsion elements of �1
g or order 4g and 2g + 1, respectively. Geometrically

they are related to the 4g-gon and 2(2g + 1)-gon symmetries of the surface �g .
For g = 1, the Dehn–Nielsen–Baer theorem implies �1

1
∼= SL(2, Z) and we have

that

S =
(
0 −1
1 0

)
and T =

(
0 −1
1 −1

)
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of orders 4 and 3, respectively.
For g ≥ 2, Nielsen defined a faithful action of �1

g on S
1 by orientation-preserving

homeomorphisms that we briefly describe next; see [8] and [4] for a more detailed
discussion. Fixing a hyperbolic metric on �g , its universal cover can be identified
with the hyperbolic disk D

2, which has a natural compactification to a closed disc.
Let z̃ ∈ D

2 be a distinguished lift of the marked point z ∈ �g . For f ∈ Homeo+(�g)

fixing the marked point z let f̃ denote the unique lift of f to D
2 that fixes z̃. It can be

shown that the action of f̃ on D
2 extends to a homeomorphism of the boundary circle,

which depends only on the isotopy class of f . This procedure gives a well-defined
monomorphism

ρ : �1
g ↪→ Homeo+(S1),

which is the Nielsen action of �1
g on S

1.
For genus g ≥ 2, the Gromov boundary of π1(�g, z) is a topological circle S

1,
on which the group of automorphisms Aut(π1(�g, z)) acts faithfully by homeomor-
phisms.With the Dehn–Nielsen–Baer identification, this boundary action is conjugate
to the geometric action that we just described.

The Euler class for �1
g is defined as E := ρ∗(E) ∈ H2(�1

g; Z), the pull back of
the discrete universal Euler class under the standard action. This cohomology class
corresponds to the central extension

1 → Z → �g,1 → �1
g → 1,

where �g,1 denotes the mapping class group of an orientable surface �g,1 of genus
g with one boundary component (find more details in [4, Ch 5.5] and [7]). The epi-
morphism above is induced from the inclusion �g,1 
 �g − Nε(z) ↪→ �1

g , where
Nε(z) = {x ∈ �1

g : d(x, z) < ε} for a small ε > 0. The kernel is generated by a Dehn
twist around the boundary component, which is the simple loop ∂Nε(z) around the
marked point z.

Proof of TheoremA The mapping classes S and T generate torsion cyclic subgroups in
�1
g of order k = 4g and k = 2g+1, respectively. For g = 1, the group �1

1
∼= SL(2, Z)

acts faithfully on rays starting at the origin in the Euclidean plane, and for genus g ≥ 2
the Nielsen action is faithful. It follows from Corollary 3.2 a) that the powers En are
non-trivial for all n ≥ 1. For n ≥ g, the powers En are known to vanish over the
rationals (Theorem 5.3); hence, the classes En are torsion and by Corollary 3.2 b)
must have order a common multiple of k = 4g and k = 2g + 1. �

Remark We can apply Corollary 3.2 a) to any finite cyclic subgroup of �1

g . The order
of a finite cyclic subgroup of �1

g is known to be at most 4g+2 and this upper bound is
attained for g ≥ 2 (see, for example [4, Cor. 7.6]). Since 4g and 2g + 1 are relatively
prime, the subgroups generated by S and T that we consider in the proof of TheoremA
give us the largest lower bound 4g(2g + 1) for torsion that we could find with these
elements.
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If other torsion elements of �1
g are known, one can try to look for a better lower

bound. For instance, if g = p − 1 with p a prime number, then �1
g has p-torsion [16,

Thm 2.7] and from Corollary 3.2 b), we obtain that the cohomology classes En have
order a common multiple of 4g, 2g + 1 and g + 1, when n ≥ g.

5 Related Results

For g ≥ 0 and k ≥ 1, consider z1, z2, ..., zk ∈ �g . The pure mapping class group
�k
g of �g is the group of orientation-preserving homeomorphisms of �g , modulo

isotopy, where the points zi are required to stay fixed under isotopies. For g ≥ 2 and
k ≥ 0, the moduli spaceMg,k of genus g Riemann surfaces with k marked points is a
rational model for the classifying space B�k

g; therefore, H
∗(Mg,k; Q) ∼= H∗(�k

g; Q).
For k = 0, we use the notation �g and Mg . Research in the last 40 years has been
motivated by the following general problem:

Problem 5.1 Compute the groups Hi (�k
g; K) for all g, k and i and understand the ring

structure of H∗(�k
g; K), for coefficients K = Q and Z.

We comment briefly on some of the most remarkable results towards the answer
of Problem 5.1. Harer proved in [10] that the cohomology groups Hi (�k

g; Z) are
independent of the genus g and k in degrees small relative to i . The range where this
happens is called the “stable range” and has been improved over the years. Mumford
conjectured, andMadsen andWeiss proved in [19], that in low cohomological degrees
H∗(Mg; Q) is a polynomial algebra in classes κi of degree 2i , giving a complete
picture of the cohomology ring H∗(Mg; Q) in the stable range. Outside of the stable
range, a few of the cohomology groups are known, even rationally. For instance, there
are complete computations for genus g ≤ 4 and for low cohomology degrees; see, for
example, [1] for computations of the cohomology ring of �2.

The study of the cohomology groups and their ring structure in the “unstable range”
is an active area of research. The κ-classes mentioned before are examples of tauto-
logical classes of Mg,k , cohomology classes “naturally coming from geometry”. An
important direction of research is given by the Faber conjectures [3] which describe
the structure of the ring generated by the tautological classes.
The “Euler classes” for the pure mapping class group. For k ≥ 1, once the marked
points z1, ..., zk are fixed in �g we will distinguish the �1

gs by writing �
zi
g for the

mapping class group with the single marked point zi . For 1 ≤ i ≤ k, each �
zi
g is a

distinct quotient group of �k
g: two elements of �k

g determine the same element of �
zi
g

if they are isotopic by an isotopy which keeps zi fixed. Let pi : �k
g → �

zi
g denote the

quotient homomorphism. As already mentioned in Sect. 4, the �
zi
g can be identified

with a subgroup of Homeo+(S1). The composite

ρi : �k
g

pi−→ �zi
g ↪→ Homeo+(S1) (2)
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pulls back the powers En producing the classes En
i ∈ H2n(�k

g; Z) for all 1 ≤ i ≤ k
and n ≥ 1. In trying to contribute to a partial answer to Problem 5.1, our work focuses
on the following problem:

Problem 5.2 Understand the behavior of the “Euler classes” Ei and their powers En
i ∈

H2n(�k
g; Z) for k ≥ 1 and n ≥ 1.

Our Theorem A and Theorems 5.3 and 5.4 below partially answer this problem.
Harer computed in [9] the second integral homology group of �k

g for g ≥ 5. It
is known that H2(�

k
g,r ; Z) ∼= H2(�g,r+k; Z) ⊕ Z

k for g ≥ 3 and r , k ≥ 0 [14,
Prop. 1.4]. The summand Z

k of H2(�k
g; Z) is generated by the cohomology classes

E1,E2 . . . ,Ek .
For k ≥ 1, the class Ei ∈ H2(�k

g; Q) corresponds to the restriction of the ψi -class

to Mg,k from its Deligne–Mumford compactification Mg,k . The class ψi is the first
Chern class of the cotangent bundle bundle over Mg,k associated with the marked
point zi ; see for example [7]. The ψ-classes are also tautological classes ofMg,k .

From the algebro-geometric perspective, a result by Ionel [11, Thm 0.1] establishes
that any monomial in the tautological classes of degree at least g vanishes when
restricted to H∗(Mg,k; Q) when g ≥ 2 and k ≥ 1. As a particular case, we have the
following vanishing result over the rationals (which also follows from the work of
Looijenga [15] for k = 1).

Theorem 5.3 (Vanishing over Q [11]) For any 1 ≤ i ≤ k, the powers En
i ∈

H2n(�k
g; Q) vanish for n ≥ g.

Vanishing results in [12] and [13] for n ≥ g apply to the nth power of the Euler
class of �1

g considered as an element of Hom(H2n(�
1
g; Z); Z) under the universal

coefficient theorem, agreeing with the results in Theorem 5.3 for k = 1.
For genus g ≥ 2 and k ≥ 1, from Morita’s result [23, Thm 7.5], it follows that

En
1,E

n
2, . . .E

n
k generate a summand of H2n(�k

g; Q) isomorphic to Q
k for 2n ≤ g/3.

This range has been improved to 2n ≤ g/2 in [2, Cor 1.2]. Hence, there is a non-
vanishing result for g ≥ 2:

Theorem 5.4 (Non-vanishing and independence [2,23])For any 1 ≤ i ≤ k, the powers
En
i ∈ H2n(�k

g; Z) are non-trivial torsion-free independent classes for n ≤ g/4.

For k = 1, Theorem A improves on Theorem 5.4 by showing non-vanishing of En

for all n ≥ 1. For g ≥ 1, k ≥ 2 and 1 ≤ i ≤ k the composite ρi described in (2) has
torsion-free kernel and any torsion subgroup contained in �k

g injects in Homeo+(S1)

through ρi . Hence, the strategy used in the proof of Theorem A can be used to show
non-vanishing of the classes En

i , as long as the pure mapping class group �k
g has non-

trivial torsion subgroups. The lower bound for the order of En
i , when n ≥ g, depends

on the order of these torsion subgroups.
For genus g = 1, 2, 3 and k ≥ 1, Lu [17, Sect. 1] investigated the p-torsion in

�k
g , for p a prime number. From her computations, then non-vanishing of the classes

En
i and specific lower bounds for their order, when n ≥ g and g = 2, 3, can be

obtained as long as k < 2g + 3. On the other hand, from [16, Thm 2.7], the pure
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mapping class group �2
g contains p-torsion if and only if �1

g has p-torsion. Therefore,
the cohomology classes En

1,E
n
2 ∈ H2n(�2

g; Z) have order a multiple of 2g(4g + 1).
In contrast, from [17, Lemma 1.1(i)] it follows that the group �k

g is torsion free for
k ≥ 2g + 3. As a consequence, the torsion in cohomology disappears in high degree
and the integral classes En

i eventually vanish.
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