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Abstract
We show that if an expanding Thurston map is the quotient of a torus endomorphism,
then it has a parabolic orbifold and is a Lattès-type map.
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496 M. Bonk, D. Meyer

1 Introduction

The main purpose of this paper is to present an open problem about Thurston maps
that has mystified the authors while writing [1]. The general underlying question is
which properties of a Thurston map are of a purely topological nature, or whether
more geometric or even analytic structure is required to characterize a property. Our
problem is closely related to certain classes of maps, namely Lattès and Lattès-type
maps. We start with recalling some background about these classes.

Lattès maps are rational maps on the Riemann sphere ̂C = C ∪ {∞} that are
given as quotient maps of holomorphic torus endomorphisms. More precisely, a map
f : ̂C → ̂C is a Lattès maps if and only if there exist a (non-homeomorphic and
non-constant) holomorphic map A : T → T on a complex torus T and a non-constant
holomorphic map� : T → ̂C, such that we have the following commutative diagram:

T
A

�

T

�

̂C
f

̂C.

(1.1)

Here, a complex torus T is a Riemann surface whose underlying 2-manifold is a
2-dimensional torus.

It is then not hard to see that f is a holomorphic map and, hence, a rational map on
̂C. Moreover, one can show (see Theorem 2.5) that every Lattès map f is actually a
postcritically finite rational mapwith a parabolic orbifold (we explain this terminology
in Sect. 2). Verifying that a map f as in (1.1) has, indeed, a parabolic orbifold is the
difficult part in the proof of this statement. The argument uses the holomorphicity of
f in an essential way (see [1, p. 64] and [4]).
Thurston raised the question when a map that behaves as a rational map in a certain

topological way is actually “equivalent” to a rational map (see [3] and [1] for a sys-
tematic study of this point of view). In view of this, it is natural to consider topological
analogs of maps as in (1.1). This means that we consider maps f : S2 → S2 with the
property that there exists a torus endomorphism A : T 2 → T 2 (i.e., an unbranched
covering map) with topological degree deg(A) ≥ 2, as well as a branched covering
map � : T 2 → S2, such that we have the following commutative diagram:

T 2 A

�

T 2

�

S2 f
S2.

(1.2)

Here, S2 is a topological 2-sphere, and T 2 is a topological 2-torus. We use notation
different from (1.1) to indicate that these are topological objects and not Riemann
surfaces, meaning that the surfaces are not equipped with a conformal structure.
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Quotients of Torus Endomorphisms and Lattès-Type Maps 497

If a map f arises as in (1.2), then we call f a quotient of a torus endomorphism (see
Definition 2.6 for a precise statement). One can show that such a map f is actually a
Thurston map, i.e., a non-homeomorphic branched covering map with a finite set of
postcritical points (see Lemma 2.7). One should expect that these maps are closely
related to Lattès maps. In particular, one expects a positive answer to the following
question.

Problem 1.1 Does every quotient of a torus endomorphism have a parabolic orbifold?

Wehave repeatedly tried to tackle this problem and also consultedwith various experts,
but a convincing argument for a positive answer is elusive at this point. Accordingly,
it seems appropriate to present a partial answer and some facts related to Problem 1.1.
This is the main purpose of this paper.

To formulate our result, we first have to define Lattès-type maps. As this involves
somewhat technical terminology, we will introduce these maps in an informal way for
now, but will give a precise definition later in Sect. 2 (see Definition 2.8).

As a starting point, one notices (see the discussion at the beginning of Sect. 3) that
by a lifting argument for each map f : S2 → S2 as in (1.2), one has a commutative
diagram of the form:

R
2 A

�

R
2

�

S2 f
S2.

(1.3)

Here, � : R2 → S2 is a branched covering map and A : R2 → R
2 is an orientation-

preserving homeomorphism with a suitable equivariance property with respect to the
group G of deck transformations of �.

In the special situation of (1.3) when A is a (real) affine map on R
2 and G is a

crystallographic group, one calls f a Lattès-type map (see Definition 2.8). One can
show that each Lattès map is also a Lattès-type map. This immediately follows from
the characterization of Lattès maps as in condition (ii) of Theorem 2.5.

Moreover, each Lattès-type map is a quotient of a torus endomorphism with a
parabolic orbifold (see Proposition 2.9). In general, the converse implication is not
true, but our main result provides such a converse under the assumption that the
Thurston map f is expanding (see (2.3) for the precise definition).

Theorem 1.2 Let f : S2 → S2 be an expanding Thurston map. Then, the following
conditions are equivalent:

(i) f is the quotient of a torus endomorphism.
(ii) f has a parabolic orbifold.
(iii) f is a Lattès-type map.

Since every quotient f of a torus endomorphism is actually a Thurston map, the
previous statement gives an answer to Problem 1.1 if f is expanding.

As we already pointed out, the implication (iii)⇒(i) is known (by Proposition 2.9).
The most difficult part in the proof of Theorem 1.2 is to establish the implication
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498 M. Bonk, D. Meyer

(i)⇒(ii). Here, we cannot rely on holomorphicity as in the proof of the parabolicity
of the orbifold of Lattès maps as defined in (1.1). Instead, we will use a dynamical
argument based on the expansion properties of f and its associated maps (see the
considerations in Sect. 3 which lead to Proposition 3.7).

The proof of the implication (ii)⇒(iii) relies on the fact that an expanding Thurston
map f with parabolic orbifold cannot have periodic critical points, which in turn
implies that f is Thurston equivalent to a Lattès-type map g (see Proposition 2.10).
We will show that g is expanding (see the proof of Proposition 4.2). A standard result
(Theorem 2.4) then implies that f and g are, in fact, topologically conjugate. We can
then conclude that f itself is a Lattès-type map (see Lemma 4.1).

Onemay ask to what extent some of these implications are true without the assump-
tion that the Thurston map f is expanding. For (i)⇒(ii), this leads to the open
Problem 1.1. The implication (iii)⇒(i) is still true without expansion (see Propo-
sition 2.9). The relation between (ii) and (iii) is covered by the following statement:
Let f be a Thurston map. Then, f is Thurston equivalent to a Lattès-type map if and
only if f has a parabolic orbifold and no periodic critical points (see Proposition 2.10).
Note that Thurston maps with parabolic orbifolds and periodic critical points are also
easy to classify up to Thurston equivalence: essentially, these are power maps z �→ zn

and Chebyshev polynomials (see [1, Chapter 7]).
The paper is organized as follows. We review all the relevant background and

preliminaries in Sect. 2. The proof of the implications (i)⇒(ii) and (ii)⇒(iii) in The-
orem 1.2 are then given in Sects. 3 and 4. We wrap up the proof of Theorem 1.2 at the
end of Sect. 4.

Notation When an object A is defined to be another object B, we write A := B for
emphasis.

We denote byN = {1, 2, . . . } the set of natural numbers and byN0 = {0, 1, 2, . . . }
the set of natural numbers including 0. The sets of integers, real numbers, and complex
numbers are denoted byZ,R, andC, respectively.We let̂C := C∪{∞} be theRiemann
sphere. We also consider ̂N := N ∪ {∞}. If A ⊂ ̂N, then lcm(A) ∈ ̂N denotes the
least common multiple of the numbers in A.

Whenwe consider two objects A and B, and there is a natural identification between
them that is clear from the context, we write A ∼= B. For example, R2 ∼= C if we
identify a point (x, y) ∈ R

2 with x + yi ∈ C, where i is the imaginary unit.
The cardinality of a set X is denoted by #X and the identity map on X by idX . If

xn ∈ X for n ∈ N are points in X , we denote the sequence of these points by {xn}n∈N,
or just by {xn} if the index set N is understood.

If f : X → X is a map and n ∈ N, then:

f n := f ◦ · · · ◦ f
︸ ︷︷ ︸

n factors

is the nth iterate of f . We set f 0 := idX for convenience.
Let f : X → Y be a map between sets X and Y . If U ⊂ X , then f |U stands for

the restriction of f to U . If A ⊂ Y , then f −1(A) := {x ∈ X : f (x) ∈ A} is the
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Quotients of Torus Endomorphisms and Lattès-Type Maps 499

preimage of A in X . Similarly, f −1(y) := {x ∈ X : f (x) = y} is the preimage of a
point y ∈ Y .

If f : X → X is a map, then preimages of a set A ⊂ X or a point p ∈ X
under the nth iterate f n are denoted by f −n(A) := {x ∈ X : f n(x) ∈ A} and
f −n(p) := {x ∈ X : f n(x) = p}, respectively.
Let (X , d) be a metric space, and M ⊂ X . Then, we denote by:

diamd(M) := sup{d(x, y) : x, y ∈ M}

the diameter of M . We drop the subscript d here if the metric d is clear from the
context.

2 Background

In this section, we state some relevant definitions and collect some facts for the con-
venience of the reader. More details on all of these topics can be found in [1].

2.1 Branched CoveringMaps

We closely follow the presentation in [1, Section 2.1 and Section A.6]. A surface is a
connected and oriented topological 2-manifold. A surface X is a topological disk if it
is homeomorphic to the unit disk D := {z ∈ C : |z| < 1}.

Let X and Y be surfaces, and f : X → Y be a continuous map. Then, f is a
branched covering map if, for each point q ∈ Y , there exists a topological disk V ⊂ Y
with q ∈ V that is evenly covered by f in the following sense: for some index set
I �= ∅, we can write f −1(V ) as a disjoint union:

f −1(V ) =
⋃

i∈I

Ui

of open sets Ui ⊂ X , such that Ui contains precisely one point pi ∈ f −1(q). More-
over, we require that for each i ∈ I , there exists di ∈ N, and orientation-preserving
homeomorphisms ϕi : Ui → D and ψi : V → D with ϕi (pi ) = 0 and ψi (q) = 0,
such that:

(ψi ◦ f ◦ ϕ−1
i )(z) = zdi (2.1)

for all z ∈ D.
For given f , the number di is uniquely determined by p = pi and called the local

degree of f at p, denoted by deg( f , p). Our definition allows different local degrees
at points in the same fiber f −1(q).

Every branched covering map f : X → Y is surjective, open (images of open sets
are open), and discrete (the preimage set of every point is discrete in X , i.e., it has
no limit points in X ). Every (locally orientation-preserving) covering map (see [1,
Section A.5]) is also a branched covering map.
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500 M. Bonk, D. Meyer

A critical point of a branched covering map f : X → Y is a point p ∈ X with
deg( f , p) ≥ 2. A critical value is a point q ∈ Y , such that the fiber f −1(q) contains a
critical point of f . The set of critical points of f is discrete in X and the set of critical
values of f is discrete in Y . If f : X → Y is a branched covering map, then f is
an orientation-preserving local homeomorphism near each point p ∈ X that is not a
critical point of f .

If X is a compact surface and f : X → X is a branched covering map, then we
denote by deg( f ) ∈ N the topological degree of f (see [1, Section 2.1 and A.4] for
the precise definition and more discussion).

The following statement is useful if one has to deal with compositions of branched
covering maps (see [1, Lemma A.16]).

Lemma 2.1 (Compositions of branched covering maps) Let X, Y , and Z be surfaces,
and f : X → Z, g : Y → Z, and h : X → Y be continuous maps, such that f = g◦h.

(i) If g and h are branched covering maps, and Y and Z are compact, then f is also
a branched covering map.

(ii) If f and g are branched covering maps, then h is a branched covering map.
Similarly, if f and h are branched covering maps, then g is a branched covering
map.

Let X , Y , and Z be surfaces, and h : X → Y , g : Y → Z be branched covering
maps. If g ◦ h : X → Z is also a branched covering map, then we have:

deg(g ◦ h, x) = deg(g, h(x)) · deg(h, x) (2.2)

for all x ∈ X . We will use this multiplicativity of local degrees throughout, usually
without specific reference. For the proof, we refer to [1, Lemma A.17]. Note that there
slightly stronger assumptions were used, but the proof for (2.2) remains valid without
change.

2.2 ThurstonMaps

Throughout this paper, S2 denotes a topological 2-sphere. We assume that S2 is
equipped with a fixed orientation. To be able to use metric language, we also assume
that S2 carries a base metric that induces the given topology on S2.

Let f : S2 → S2 be a branched covering map. We denote by:

crit( f ) := {p ∈ S2 : deg( f , p) ≥ 2}

its (finite) set of critical points and by

post( f ) =
⋃

n≥1

{ f n(c) : c ∈ crit( f )}

its set of postcritical points. One can show that post( f n) = post( f ). If post( f ) is a
finite set and deg( f ) ≥ 2,we call f aThurston map.We also say that f is postcritically
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Quotients of Torus Endomorphisms and Lattès-Type Maps 501

finite. If, in addition, f is defined on ̂C and holomorphic, then f is a postcritically
finite rational map and we call f a rational Thurston map. A periodic point of f is a
point p ∈ S2 with f n(p) = p for some n ∈ N. For more details, see [1, Section 2.1].

2.3 Expansion

Let f : S2 → S2 be a Thurston map. We say that f is expanding if, for some Jordan
curve C ⊂ S2 with post( f ) ⊂ C, we have:

lim
n→∞mesh( f , n, C) = 0. (2.3)

Here, mesh( f , n, C) denotes the supremum of the diameters of components of
S2\ f −n(C). This condition is independent of the choice of the curve C and the base
metric on S2 (see [1, Section 6.1]).

If f : ̂C → ̂C is a rational Thurston map, then it is expanding if and only if f has
no periodic critical points. This is the case if and only if its Julia set is the whole sphere
̂C (see [1, Proposition 2.3]).

Every expanding Thurston map f : S2 → S2 has an associated visual metric on
S2 that induces the given topology. The metric � has an associated expansion factor
� > 1. We refer to [1, Chapter 8] for precise definitions. We will only need one fact
about visual metrics.

Lemma 2.2 Let f : S2 → S2 be an expanding Thurston map, and � be a visual metric
for f with expansion factor � > 1. Then, there exist constants δ� > 0 and C > 0,
such that for each path α : [0, 1] → S2 with diam�(α) < δ�, each n ∈ N, and each
path α̃ : [0, 1] → S2 with f n ◦ α̃ = α, we have:

diam�(̃α) ≤ C�−n .

This follows from [1,Lemma8.9] and the discussion after this lemma. In otherwords, if
we lift a path with sufficiently small diameter under f n , then the lifts shrink uniformly
at an exponential rate as n → ∞.

2.4 Thurston Equivalence

For Thurston maps, one often considers the following notion of equivalence (see [1,
Section 2.4] for more explanations).

Definition 2.3 Let f : S2 → S2 and ̂f : ̂S2 → ̂S2 be Thurston maps. Then, they are
called Thurston equivalent if there exist homeomorphisms h0, h1 : S2 → ̂S2 that are
isotopic relative to post( f ) and satisfy h0 ◦ f = ̂f ◦ h1.

Here, ̂S2 is another topological 2-sphere.
Two maps f : S2 → S2 and ̂f : ̂S2 → ̂S2 are called topologically conjugate if

there exists a homeomorphism h : S2 → ̂S2, such that h ◦ f = ̂f ◦ h. It easily follows
from the definitions that if two Thurston maps are topologically conjugate, then they
are Thurston equivalent. The converse is true if the maps are expanding.
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502 M. Bonk, D. Meyer

Theorem 2.4 Let f : S2 → S2 and ̂f : ̂S2 → ̂S2 be expanding Thurston maps that
are Thurston equivalent. Then, they are topologically conjugate.

This is [1, Theorem 11.1].

2.5 The Orbifold Associated with a ThurstonMap

We follow [1, Section 2.5]. Let f : S2 → S2 be a Thurston map. For a given p ∈ S2,
we set:

α f (p) = lcm{deg( f n, q) : q ∈ S2, n ∈ N, and f n(q) = p}.

Here, lcm(M) ∈ ̂N := N ∪ {∞} denotes the least common multiple of a set M ⊂ N.
Note that α f (p) = ∞ is possible. This is true if and only if p is contained in a

critical cycle of f , i.e., p is a fixed point and a critical point of f n for some n ∈ N.
It follows that α f is finite (i.e., it does not take the value ∞) if and only if f has
no periodic critical points. Note that, in general, an expanding Thurston map may
have periodic critical points (see [1, Example 12.21]), but not if it is rational (see [1,
Proposition 2.3]). One can also show that α f (p) = 1 if and only if p ∈ S2\ post( f )

(see [1, Proposition 2.9]).
The function α f : S2 → ̂N is called the ramification function of f and O f =

(S2, α f ) (i.e., the underlying 2-sphere equipped with this ramification function) the
orbifold associated with f . The Euler characteristic of O f is defined as:

χ(O f ) = 2 −
∑

p∈S2

(

1 − 1

α f (p)

)

.

For a Thurston map f , we always have χ(O f ) ≤ 0 (see [1, Proposition 2.12]). We say
that f has a parabolic orbifold if χ(O f ) = 0 and a hyperbolic orbifold if χ(O f ) < 0.

2.6 Parabolic Orbifolds

To give a more precise classification of Thurston maps with parabolic orbifold, we
consider the postcritical points p1, . . . , pk , k ∈ N, of a Thurston map f labeled so
that:

α f (p1) ≤ α f (p2) ≤ · · · ≤ α f (pk).

The k-tuple (α f (p1), . . . , α f (pk)) is called the signature of O f .
The orbifold O f associated with a Thurston map f is parabolic, i.e., χ(O f ) = 0,

if and only if the signature of O f is in the following list:

(∞,∞), (2, 2,∞), (2, 4, 4), (2, 3, 6), (3, 3, 3), (2, 2, 2, 2) (2.4)

(see [1, Proposition 2.14]).

123



Quotients of Torus Endomorphisms and Lattès-Type Maps 503

It follows from the definition of the ramification function α f that deg( f , p)α f (p)

divides α f ( f (p)) for all p ∈ S2 (see [1, Proposition 2.8 (ii)]). One can show thatO f

is parabolic if and only if:

deg( f, p)α f (p) = α f ( f (p)) (2.5)

for all p ∈ S2 (see [1, Proposition 2.14]).

2.7 Lattès Maps

We follow the presentation in [1, Chapter 3]. The definition of a Lattès map is based
on the following fact (this is essentially well known; see [4] and [1, Theorem 3.1]).

Theorem 2.5 (Characterization of Lattès maps) Let f : ̂C → ̂C be a map. Then, the
following conditions are equivalent:

(i) f is a rational Thurston map that has a parabolic orbifold and no periodic critical
points.

(ii) There exist a crystallographic group G, a G-equivariant holomorphic map
A : C → C of the form A(z) = αz + β, where α, β ∈ C, |α| > 1, and a
holomorphic map � : C → ̂C induced by G, such that f ◦ � = � ◦ A.

(iii) There exist a complex torus T, a holomorphic torus endomorphism A : T → T

with deg(A) > 1, and a non-constant holomorphic map � : T → ̂C, such that
f ◦ � = � ◦ A.

Here, a crystallographic group G is a subgroup of the group of orientation-preserving
isometries ofC that acts properly discontinuously and cocompactly onC. In particular,
each element g ∈ G is a map of the form g : z ∈ C �→ αz + β, where α, β ∈ C with
|α| = 1. Note that this definition of a crystallographic group G is more restrictive than
usual, because we require that all elements g ∈ G preserve orientation on C. These
groups are completely classified (see [1, Theorem 3.7]).

A continuous map � : R2 → S2 is induced by a group G of homeomorphisms on
R
2 if, for u, v ∈ R

2, we have �(u) = �(v) if and only if there exists g ∈ G, such
that v = g(u). The reason for this terminology is that under some additional assump-
tions (for example, when � is surjective and open), there exists a homeomorphism
between S2 and the quotient space R

2/G, such that � corresponds to the quotient
map R

2 → R
2/G (see [1, Corollary A.23] for a precise statement along these lines).

In the literature, such maps � are sometimes called strongly G-automorphic.
Finally, if G is a group of homeomorphisms on R

2 and A : R2 → R
2 is a homeo-

morphism, then A is called G-equivariant if

A ◦ g ◦ A−1 ∈ G

for each g ∈ G.
A map f : ̂C → ̂C on the Riemann sphere ̂C is a Lattès map if one, hence each,

of the conditions in Theorem 2.5 is satisfied. Such a map is always expanding (see
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[1, Proposition 2.3]). Note that condition (iii) in this theorem was how we introduced
Lattès maps in the introduction.

In the following, for h ∈ R
2 ∼= C, we denote by τh : R2 → R

2 the translation
defined as:

τh(u) = u + h, for u ∈ R
2. (2.6)

The subgroup of all translations in a crystallographic G is denoted by G tr. One
can show that for each crystallographic G, there exists a rank-2 lattice � ⊂ R

2,
such that G tr = {τγ : γ ∈ �}. In particular, G tr also acts cocompactly and properly
discontinuously on R

2. Moreover, the quotient space T = C/G tr ∼= R
2/� is a torus

carrying a natural complex structure, and it is hence a complex torus.
If f is a Lattès map, then one can always find A, A, G, � as in Theorem 2.5, such

that we have the following commutative diagram (see [1, (3.10)]):

C
A

π

�

C

π

�T
A

�

T

�

̂C
f

̂C.

(2.7)

Here, π : C → C/G tr = T is the quotient map which is the universal covering map
of the torus T. As we will see, a topological analog of (2.7) will be the starting point
for the proof of Theorem 1.2.

2.8 Quotients of Torus Endomorphisms

We first record a precise definition for a quotient of a torus endomorphism. As before,
we will denote by T 2 a 2-dimensional topological torus. We call a branched covering
map A : T 2 → T 2 a torus endomorphism. It easily follows from the Riemann–
Hurwitz formula that A actually cannot have critical points, and so must be a (locally
orientation-preserving) covering map. We can now give a precise definition of the
most important concept in his paper.

Definition 2.6 (Quotients of torus endomorphisms) Let f : S2 → S2 be a map on a
2-sphere S2 that satisfies the following condition: there exists a torus endomorphism
A : T 2 → T 2 with deg(A) ≥ 2 and a branched covering map � : T 2 → S2, such that
f ◦ � = � ◦ A. Then f is called a quotient of a torus endomorphism.

In this case, we have a commutative diagram as in (1.2).
The following statement summarizes some facts about these maps (see [1, Lemmas

3.12 and 3.13]).
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Lemma 2.7 (Properties of quotients of torus endomorphisms) Let f : S2 → S2 be
a quotient of a torus endomorphism, and � : T 2 → S2 and A : T 2 → T 2 with
deg(A) ≥ 2 be as in Definition 2.6. Then, the following statements are true:

(i) The map f is a Thurston map without periodic critical points, and it satisfies
deg( f ) = deg(A) ≥ 2.

(ii) The set post( f ) is equal to the set of critical values of �, that is:

post( f ) = �(crit(�)).

(iii) f has a parabolic orbifold if and only if

deg(�, x) = deg(�, y)

for all x, y ∈ T 2 with �(x) = �(y).

This last parabolicity criterion will be important for us. The condition stipulates that

the local degree deg(�, ·) is constant on the fiber �
−1

(p) for each p ∈ S2.

2.9 Lattès-TypeMaps

A map L : R2 → R
2 is called R-linear if:

L(x + y) = L(x) + L(y) and L(λx) = λL(x)

for all x, y ∈ R
2 and λ ∈ R. In other words, an R-linear map L : R2 → R

2 is a
linear map on R

2 considered as a vector space over R. We write det(L) ∈ R for the
determinant of L .

A map A : R2 → R
2 is called affine if it can be represented in the form:

A(u) = L A(u) + a, u ∈ R
2,

where a ∈ R
2 and L A : R2 → R

2 is R-linear. The map L A is uniquely determined by
A and called the linear part of A.

We can now give a precise definition of a Lattès-type map.

Definition 2.8 (Lattès-type maps) Let f : S2 → S2 be a map, such that there exist
a crystallographic group G, an affine map A : R2 → R

2 with det(L A) > 1 that is
G-equivariant, and a branched covering map � : R2 → S2 induced by G, such that
f ◦ � = � ◦ A. Then, f is called a Lattès-type map.

Note that then we have a commutative diagram as in (1.3). It follows from condi-
tion (ii) in Theorem 2.5 that every Lattès map is also of Lattès-type

Lattès-type maps are natural non-holomorphic analogs of Lattès maps. In this con-
text, we usually write R2 instead of C for the plane, to emphasize that we do not rely
on a complex structure.
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If f : S2 → S2 is a Lattès-type map, G is a crystallographic group, and � : R2 →
S2 is induced by G as in Definition 2.8, then G is necessarily of non-torus type,
meaning that G is not isomorphic to the rank-2 lattice Z2. This implies that there is a
natural identification R

2/G ∼= S2 of the quotient space R2/G with the underlying 2-
sphere S2. Under this identification, � corresponds to the quotient map R2 → R

2/G
(see [1, Section 3.4]).

In the following, we summarize some facts about these maps. Note first, that if
f is a Lattès-type map, and A is as in Definition 2.8 with its linear part L A, then
det(L A) = deg( f ) ≥ 2 (see [1, Lemma 3.16]). This is the underlying reason for the
requirement det(L A) > 1 in Definition 2.8.

Some of the relations betweenLattès-typemaps, quotients of torus endomorphisms,
and Thurston maps with parabolic orbifold are covered by the following two results.

Proposition 2.9 Every Lattès-type map f : S2 → S2 is a quotient of a torus endo-
morphism and, hence, a Thurston map. It has a parabolic orbifold and no periodic
critical points.

This is [1, Proposition 3.5].

Proposition 2.10 A Thurston map f : S2 → S2 is Thurston equivalent to a Lattès-type
map if and only if it has parabolic orbifold and no periodic critical points.

This is [1, Proposition 3.6]. Therefore, by (2.4), the signature of the orbifold of a
Lattès-type map is in the list:

(2, 4, 4), (2, 3, 6), (3, 3, 3), (2, 2, 2, 2). (2.8)

Only the last signature leads to maps that are genuinely different from Lattès maps.

Proposition 2.11 A Lattès-type map f : S2 → S2 whose orbifold has signature
(2, 4, 4), (2, 3, 6), or (3, 3, 3) is topologically conjugate to a Lattès map.

This is [1, Proposition 3.18]. A Lattès-type map with orbifold signature (2, 2, 2, 2) is
in general not topologically conjugate (or Thurston equivalent) to a Lattès map (see
[1, Theorem 3.22] and [3, Proposition 9.7]). These Lattès-type maps are examples of
nearly Euclidean Thurston maps; see [2] for the definition.

A Lattès-type map is not necessarily expanding as a Thurston map (see [1, Exam-
ple 6.15]). To record a criterion for this, we call an R-linear map L : R2 → R

2

expanding if |λ| > 1 for each of the (possibly complex) roots λ of the characteristic
polynomial PL(z) := det(L − z idR2) of L .

Proposition 2.12 Let f : S2 → S2 be a Lattès-type map and L be the linear part of
an affine map A as in Definition 2.8. Then, f is expanding (as a Thurston map) if and
only if L is expanding (as a linear map).

This is [1, Proposition 6.13].
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2.10 Lattices and Tori

We quickly review some facts about lattices and tori (see [1, Section A.8] for more
details).

A lattice � ⊂ R
2 is a non-trivial discrete subgroup of R2 (considered as a group

with vector addition). The rank of a lattice is the dimension of the subspace of R2

(considered as a real vector space) spanned by the elements in �. Here, we are only
interested in rank-2 lattices �, i.e., lattices � ⊂ R

2 that span R2.
If � ⊂ R

2 is a rank-2 lattice, then the quotient space R
2/� (equipped with the

quotient topology) is a 2-dimensional torus T 2, and the quotient map π : R2 → T 2 =
R
2/� is a coveringmap. The lattice translations τγ , γ ∈ �, are deck transformations of

the quotient map π and so π = π ◦ τγ for γ ∈ �. Actually, every deck transformation
of π has this form (see [1, Lemma A.25 (i)]). Conversely, we may assume that any
topological torus T 2 is given in the form T 2 = R

2/�with some rank-2 lattice� ⊂ R
2.

In the following lemma, we collect various statements that are used later.

Lemma 2.13 Let � ⊂ R
2 be a rank-2 lattice, T 2 = R

2/�, and π : R2 → T 2 = R
2/�

be the quotient map.

(i) If A : T 2 → T 2 is a torus endomorphism, then A can be lifted to a homeomorphism
on R

2, i.e., there exists a homeomorphism A : R2 → R
2, such that A ◦π = π ◦ A.

The homeomorphism A is orientation-preserving, and unique up to postcomposi-
tion with a translation τγ , γ ∈ �.

(ii) If A : T 2 → T 2 is a torus endomorphism, then there exists a unique invertible
R-linear map L : R2 → R

2 with L(�) ⊂ �, such that for every lift A as in (i), we
have:

A ◦ τγ ◦ A−1 = τL(γ ) = L ◦ τγ ◦ L−1

for all γ ∈ �.
(iii) If A : T 2 → T 2 is a torus endomorphism and L is the map as in (ii), then deg(A) =

det(L).

This is part of [1, Lemma A.25]. Note that there it was not explicitly stated that the
linear map L in (ii) is invertible. This was addressed in the proof though: one observes
that the inclusion L(�) ⊂ � and the relation A ◦ τγ ◦ A−1 = τL(γ ) for γ ∈ � imply
that the map γ ∈ � �→ L(γ ) ∈ � is injective. Therefore, L : � → � is an injective
group homomorphism. Since � is a rank-2 lattice, L must be invertible as an R-linear
map on R2.

One can identify � with the fundamental group of T 2. Then, the linear map L
is essentially the map on the fundamental group of T 2 induced by A. For a careful
explanation of this, see the discussion after [1, Lemma A.25].
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2.11 Lifts by Branched CoveringMaps

Since a Thurston map is a branched covering map, we need slight variants of the
standard lifting theorems for unbranched covering maps. We list a useful uniqueness
result (this is essentially [1, Lemma A.19 (i)]).

Lemma 2.14 Let X , Y , and Z be surfaces and f : X → Y be a branched covering map.
Suppose g1, g2 : Z → X are continuous and discrete maps, such that f ◦g1 = f ◦g2. If
there exists a point z0 ∈ Z, such that p := g1(z0) = g2(z0) and f (p) ∈ Y\ f (crit( f )),
then g1 = g2.

Note that g1 and g2 can be considered as lifts of the map h := f ◦ g1 = f ◦ g2
under f . Therefore, this is really a uniqueness statement for lifts under f .

The condition y := f (p) ∈ Y\ f (crit( f )) is the same as the requirement that y
is not a critical value of f , or equivalently, that the fiber f −1(y) contains no critical
point of f . We will apply it in the case when f : S2 → S2 is a Thurston map.
Then, this condition is satisfied if p ∈ S2\ f −1(post( f )), because this implies that
f (p) ∈ S2\ post( f ) ⊂ S2\ f (crit( f )).

3 Parabolicity of the Orbifold

In this section, we will prove the implication (i)⇒(ii) in Theorem 1.2. Throughout
the section, we assume that f : S2 → S2 is a given quotient of a torus endomorphism
that is expanding as a Thurston map (see Lemma 2.7 (i)). Then, there exists a torus
T 2, and maps A : T 2 → T 2 and � : T 2 → S2 as in (1.2). We can identify T 2 with
a quotient R2/�, where � ⊂ R

2 is a rank-2 lattice, and we obtain a quotient map
π : R2 → T 2 ∼= R

2/�. Themap A lifts to an orientation-preserving homeomorphism
A : R2 → R

2, such that π ◦ A = A ◦ π (this is standard and explicitly formulated in
Lemma 2.13 (i)). We define � = � ◦ π . This is a branched covering map, since π is
a covering map and � is a branched covering map (see Lemma 2.1 (i)). This leads to
the following commutative diagram:

R
2 A

π

�

R
2

π

�T 2 A

�

T 2

�

S2 f
S2.

(3.1)

We denote by G the group of all deck transformations of �, i.e., the group of all
homeomorphisms g : R2 → R

2, such that � ◦ g = �. Since � preserves orientation,
the same is true for each homeomorphism g ∈ G.

Recall that τh for h ∈ R
2 denotes the translation on R

2 given by τh(u) = u + h
for u ∈ R

2. Then, π ◦ τγ = π for γ ∈ �. This implies that all lattice translations τγ ,
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γ ∈ �, belong to G; indeed, for γ ∈ �, we have:

� ◦ τγ = � ◦ π ◦ τγ = � ◦ π = �,

as required.
Our goal is to show that f has a parabolic orbifold. To do so, we want to apply

Lemma 2.7 (iii). Essentially, we have to show that the group G of deck transformations
acts transitively on each fiber of �, i.e., on each of the sets �−1(p), p ∈ S2. This
means that we have to analyze some properties of the fixed map � in (3.1). Note that
the diagram (3.1) remains valid with the samemap�, if we replace A with A′ = τγ ◦ A
for any γ ∈ �. We can also replace f , A, A with iterates f n, A

n
, An , respectively.

We will make such replacements whenever this is convenient.
The map A induces an invertible linear map L : R2 → R

2, such that L(�) ⊂ �

and:

A ◦ τγ ◦ A−1 = τL(γ ) = L ◦ τγ ◦ L−1 (3.2)

for all γ ∈ � (see Lemma 2.13 (ii)). As we mentioned, this map L can be viewed as
the homomorphism induced by A on the fundamental group on T 2 (see the discussion
after Lemma 2.13). If we use (3.2) repeatedly, then we see that:

An ◦ τγ ◦ A−n = τLn(γ ) = Ln ◦ τγ ◦ L−n (3.3)

for all n ∈ N and γ ∈ �.
If x ∈ R

2 and γ ∈ �, then (3.2) implies that:

|A(x + γ ) − L(x + γ )| = |(A ◦ τγ )(x) − L(x) − L(γ )|
= |(τL(γ ) ◦ A)(x) − L(x) − L(γ )|
= |A(x) − L(x)|.

Since the lattice translations τγ , γ ∈ �, act cocompactly on R
2, it follows that there

exists a constant C0 ≥ 0, such that:

|A(x) − L(x)| ≤ C0 for x ∈ R
2. (3.4)

Therefore, the maps A and L agree “coarsely” on large scales.
Before we go into more details, we outline the ensuing argument. Since f is an

expanding Thurston map, we first want to translate this expansion property of f into
expansion properties for the above maps A and L . In particular, L is an expanding
linear map (Corollary 3.3). As we already mentioned, to prove that f has a parabolic
orbifold (see Proposition 3.7), we have to show that G acts transitively on the fibers
�−1(p), p ∈ S2 (see Lemma 3.6). In [4], one can find related considerations for Lattès
maps. There, the holomorphicity of the underlying maps is crucially used. Here, we
will instead give a dynamical argument relying on the expansion property of A. We
now proceed to establishing the details.

123



510 M. Bonk, D. Meyer

3.1 Expansion Properties

We start with expansion properties of A. Actually, it is easier to formulate and prove
contraction properties of A−1. In the following, all metric notions on R

2 refer to the
Euclidean metric and all metric notions on S2 to a fixed visual metric � for f with
expansion factor � > 1.

Lemma 3.1 Let � : R2 → S2 be a map as (3.1). Then, the following statements are
true:

(i) For each ε > 0, there exists δ > 0, such that for all x, y ∈ R
2, we have:

|x − y| < δ ⇒ �(�(x), (�(y)) < ε.

(ii) For each ε > 0, there exists δ > 0, such that for each connected set K ⊂ R
2, we

have:

diam�(�(K )) < δ ⇒ diam(K ) < ε.

The statement and its proof are a small modification of the similar statement [1,
Lemma 6.14].

Proof (i) The assertion is that � is uniformly continuous on R
2. Essentially, this

follows from the fact that the group G of deck transformations of � contains the
subgroup G ′ := {τγ : γ ∈ �} of all lattice translations and that this subgroup G ′ acts
isometrically and cocompactly on R2.
In particular, we can find a compact fundamental domain F ⊂ R

2 for the action of G ′
on R

2. Now, suppose x, y ∈ R
2 and |x − y| is small. Then, there exists g ∈ G ′, such

that g(x) ∈ F . If |x − y| is small enough, as we may assume, then g(x), g(y) ∈ U ,
where U is a fixed compact neighborhood of F . Since � is uniformly continuous on
U , and |g(x) − g(y)| = |x − y|, it follows that:

�(�(x),�(y)) = �(�(g(x)),�(g(y))

is small only depending on |x − y|. The uniform continuity of � follows.

(ii) We argue by contradiction and assume that the statement is false. Then, there
exist connected sets Kn ⊂ R

2, such that diam�(�(Kn)) → 0 as n → ∞, but
diam(Kn) ≥ ε0 for n ∈ N, where ε0 > 0.

We pick a point xn ∈ Kn for n ∈ N. If we replace each set Kn with its image
K ′

n = gn(Kn) for suitable gn ∈ G ′, where again G ′ := {τγ : γ ∈ �} and pass to a
subsequence if necessary, then we may assume that the sequence {xn} converges, say
xn → x ∈ R

2 as n → ∞. Note that diam(K ′
n) = diam(Kn) and �(K ′

n) = �(Kn).
Let p := �(x). Since � : R2 → S2 is a branched covering map, the set �−1(p) is

discrete in R2 and consists of isolated points. In particular, x ∈ �−1(p) is an isolated
point of�−1(p), and so, there exists a constantm > 0, such that |y−x | ≥ m whenever
x, y ∈ �−1(p) and x �= y.
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Pick a constant c with 0 < c < min{ε0/2, m}. The set Kn is connected, and
has diameter diam(Kn) ≥ ε0 > 2c. Hence, Kn cannot be contained in the disk
{z ∈ R

2 : |z − xn| < c}, and so, it meets the circle {z ∈ R
2 : |z − xn| = c}. It follows

that there exists a point yn ∈ Kn with |xn −yn| = c. By passing to another subsequence
if necessary, we may assume that the sequence {yn} converges, say yn → y ∈ R

2 as
n → ∞. Then |x − y| = c < m. Note that �(xn),�(yn) ∈ �(Kn) for n ∈ N, and
diam�(�(Kn)) → 0 as n → ∞. Therefore:

p = �(x) = lim
n→∞ �(xn) = lim

n→∞ �(yn) = �(y),

and x, y ∈ �−1(p). Since |x − y| = c > 0, we have x �= y. Then, x and y are two
distinct points in �−1(p) with |x − y| = c < m. This contradicts the choice of m,
and the statement follows. ��

After this preparation, we now turn to the contraction properties of the map A−1.

Lemma 3.2 Let the map A : R2 → R
2 be as in (3.1). If ε1, ε2 > 0, then there exists

n0 ∈ N, such that:

|A−n(x) − A−n(y)| ≤ ε1|x − y| + ε2

for all x, y ∈ R
2 and n ∈ N with n ≥ n0.

The lemma essentially says that high iterates of A−1 shrink distances that are not
too small by an arbitrarily small factor. Conversely, by applying the statement to
x = An(u) and y = An(v) for u, v ∈ R

2, we see that sufficiently high iterates of A
expand distances that are not too small by an arbitrarily large factor.

Proof Let � be the visual metric for f on S2 that we fixed earlier and � > 1 be
the corresponding expansion factor. We also fix constants δ� > 0 and C > 0 as in
Lemma 2.2. Then, by Lemma 3.1 (i), we can find δ > 0 with the following property:
if β is a path in R2 with diam(β) < δ and α = � ◦ β, then diam�(α) < δ�.

Now, suppose that β is a path in R
2 with diam(β) < δ. Then, the corresponding

path α = � ◦ β satisfies diam�(α) < δ�. For n ∈ N, we also consider the paths
˜βn := A−n ◦β in R2, and α̃n := � ◦ ˜βn = � ◦ A−n ◦β in S2. From (3.1), we obtain:

f n ◦ α̃n = f n ◦ � ◦ A−n ◦ β = � ◦ An ◦ A−n ◦ β = � ◦ β = α.

Therefore, α̃n is a lift of α under f n . The relations between the paths are summarized
in the following commutative diagram:

˜βn (in R2)
An

�

β (in R2)

�

α̃n (in S2)
f n

α (in S2).

(3.5)
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Since diam�(α) < δ�, by the definition of C and δ�, we have:

diam�(̃αn) ≤ C�−n . (3.6)

Let ε1, ε2 > 0 be arbitrary, and ˜δ := min{ε1δ, ε2} > 0, where δ > 0 is chosen
as above. Then, by Lemma 3.1, we can choose ˜δ� > 0, such that diam(˜βn) < ˜δ

whenever diam�(̃αn) < ˜δ� in (3.5). Note that the constants δ, δ�,˜δ�,˜δ serve to control
the diameters of β, α, α̃n, ˜βn , respectively.

Choose n0 ∈ N, such that C�−n < ˜δ� for n ≥ n0. Then:

diam(˜βn) < ˜δ = min{ε1δ, ε2} (3.7)

for all n ∈ N with n ≥ n0.
Now, suppose x, y ∈ R

2 are arbitrary, and let S be the line segment joining x
and y. Then, S can be broken up into N ∈ N line segments of diameter < δ, where
N ≤ |x − y|/δ+1.We can apply the previous considerations for each of these smaller
(parametrized) line segments in the role of β. By what we have seen, for n ≥ n0, each
of these smaller line segments has an image under A−n of diameter< ˜δ by (3.7). Since
the concatenation of these N image paths is the path A−n(S) connecting A−n(x) and
A−n(y), we conclude that:

|A−n(x) − A−n(y)| ≤ diam(A−n(S)) ≤ N˜δ

≤ (|x − y|/δ + 1)min{ε1δ, ε2} ≤ ε1|x − y| + ε2

for n ≥ n0, as desired. ��
Recall that an R-linear map L : R2 → R

2 is called expanding if |λ| > 1 for
each of the (possibly complex) roots λ of the characteristic polynomial PL(z) =
det(L − z idR2) of L .

Corollary 3.3 Suppose the linear map L : R2 → R
2 is as in (3.2). Then, L is expanding.

Proof We argue by contradiction and assume that L is not expanding. Choosing ε1 =
ε2 = 1/2 in Lemma 3.2, we can find a number n ∈ N, such that:

|An(u) − An(v)| ≥ 2|u − v| − 1 (3.8)

for all u, v ∈ R
2. In other words, An expands large distances roughly by the factor 2.

Let λ1, λ2 ∈ C be the two (possibly identical) roots of the characteristic polynomial
P(z) = det(L − z idR2) of L . We may assume that |λ1| ≤ |λ2|. Since P has real
coefficients, we have λ2 = λ1 if λ1 is not real. Moreover, λ1λ2 = det(L) = deg(A) =
deg( f ) ≥ 2 (see Lemma 2.13 (iii) and Lemma 2.7 (i)). Therefore, the only possibility
that L can fail to be expanding is if λ1 is real and |λ1| ≤ 1. Then, there exists e ∈ R

2,
e �= 0, such that L(e) = λ1e.

Let � = {te : t ∈ R} be the line spanned by e. If u, v ∈ � are arbitrary, then:

|Ln(u) − Ln(v)| = |λ1|n|u − v| ≤ |u − v|. (3.9)
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If � is the lattice chosen as in the beginning of this section, then (3.3) shows that:

An(x + γ ) − Ln(x + γ ) = (An ◦ τγ )(x) − Ln(x) − Ln(γ )

= (τLn(γ ) ◦ An)(x) − Ln(x) − Ln(γ )

= An(x) + Ln(γ ) − Ln(x) − Ln(γ )

= An(x) − Ln(x)

for all x ∈ R
2. Since the lattice translations τγ , γ ∈ �, act cocompactly on R

2, this
implies that there exists a constant C ≥ 0, such that:

|An(u) − Ln(u)| ≤ C

for all u ∈ R
2. Combining this with (3.9), we see that:

|An(u) − An(v)| ≤ |Ln(u) − Ln(v)| + 2C ≤ |u − v| + 2C

for all u, v ∈ �. Therefore, themap An expands distances along � by atmost an additive
term. This is irreconcilable with (3.8), and we get a contradiction. The statement
follows. ��

We record the following consequence.

Corollary 3.4 Suppose that the map A as in (3.1) has a fixed point x ∈ R
2. Then, if U

is any open neighborhood of x, we have:

⋃

n∈N0

An(U ) = R
2.

Moreover, if U is bounded in addition, then U ⊂ An(U ) for all sufficiently large
n ∈ N.

Proof Let U be a neighborhood of x . Then, there exists ε > 0, such that B :=
{z ∈ R

2 : |z − x | < ε} ⊂ U . If y ∈ R
2 is arbitrary, then Lemma 3.2 implies that

|A−n(y) − x | = |A−n(y) − A−n(x)| is arbitrarily small for n ∈ N sufficiently large.
Hence, there exist n ∈ N, such that A−n(y) ∈ B ⊂ U , and so, y ∈ An(U ). It follows
that R2 = ⋃

n∈N0
An(U ).

If U is bounded, then there exists R > 0, such that U ⊂ B ′ := {z ∈ R
2 : |z − x | <

R}. Applying Lemma 3.2 for ε1 = ε/(2R) and ε2 = ε/2, we see that:

A−n(U ) ⊂ A−n(B ′) ⊂ B ⊂ U

for all sufficiently large n ∈ N. Hence, U ⊂ An(U ) for all large n. ��
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3.2 Transitive Action on Fibers

Next, we will show that the group G of deck transformations of the map � as in (3.1)
acts transitively on each fiber �−1(p), p ∈ S2. We first show that this is true in a
special case.

Lemma 3.5 Let p ∈ S2\ f −1(post( f )), x, y ∈ �−1(p), and define x̄ = π(x), ȳ =
π(y) ∈ T 2. Suppose x̄ is a fixed point of A. If ȳ is also a fixed point of A or if x̄ = A(ȳ),
then there exists g ∈ G, such that g(x) = y.

Proof Let the points p ∈ S2, x, y ∈ R
2, x̄, ȳ ∈ T 2 be given as in the statement. In

particular, we assume that A(x̄) = x̄ . Note that:

π(A(x)) = (π ◦ A)(x) = (A ◦ π)(x) = A(x) = x,

and so x, A(x) ∈ π−1(x̄). This means that γ0 := x − A(x) ∈ �. Define A0(u) =
A(u)+γ0 = (τγ0 ◦ A)(u), u ∈ R

2. Note that then A0(x) = A(x)+γ0 = x , and so A0
has the fixed point x . Recall from the discussion following (3.1) that we may replace
A in this diagram with A0 (while all the other maps remain the same). In other words,
we are reduced to the case when A(x) = x in addition to our other hypotheses.

We now consider the cases A(ȳ) = ȳ and A(ȳ) = x̄ separately.

Case I: A(ȳ) = x̄ .
This is the easy case. Note that:

π(A(y)) = (π ◦ A)(y) = (A ◦ π)(y) = A(y) = x,

and so, A(x), A(y) ∈ π−1(x̄). This implies thatwe canfindγ ∈ �with A(y)−A(x) =
γ . Then:

y = A−1(A(x) + γ ).

Thus, g := A−1 ◦ τγ ◦ A is a homeomorphism on R2 with g(x) = y.
We want to show that g ∈ G, meaning that we need to verify that � ◦ g = �. We

know that τγ ∈ G. Using f ◦ � = � ◦ A from (3.1), we obtain:

f ◦ � ◦ g = � ◦ A ◦ g = � ◦ τγ ◦ A

= � ◦ A = f ◦ �.

We now apply Lemma 2.14 for the branched covering maps � and � ◦ g. Note that
(�◦g)(x) = �(y) = �(x) = p and p ∈ S2\ f −1(post( f )). It follows that� = �◦g.
We proved the statement in Case I.

Case II: x̄ and ȳ are fixed points of A.

This case is much harder, since there is no translation τγ with γ ∈ � that maps
A(x) to A(y). To construct a deck transformation of � as in the statement, we first
show that we can obtain a local one.
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Claim 1 There is a homeomorphism g̃ : U → V between bounded and connected
open neighborhoods U and V of x and y, respectively, with � ◦ g̃ = � on U .

To prove this, we note that our assumption p ∈ S2\ f −1(post( f )) ⊂ S2\ post( f )

implies that �, and hence, also � has no critical point over p, because post( f ) =
�(crit(�)) (see Lemma 2.7 (ii)). In particular, � is a local homeomorphism near
both points x, y ∈ �−1(p). This implies that there exist bounded and connected open
neighborhoodsU ⊂ R

2 of x , V ⊂ R
2 of y, andW ⊂ S2 of p, such that�|U : U → W

and�|V : V → W are homeomorphisms.Defining g̃ := (�|V )−1◦(�|U ) onU gives
the desired map, proving Claim 1.

Now, the idea is to extend g̃ to a deck transformation onR2 using the dynamics of A
near its fixed point x . By Corollary 3.4, we know that U ⊂ An(U ) for all sufficiently
large n ∈ N. Replacing A with such an iterate An (and, consequently, f with f n , and
A with A

n
), we may assume that U ⊂ A(U ). Note, we then still have A(x) = x and

A(y) = y for the new map A. We make the assumption U ⊂ A(U ) from now on.
We know that A(y) = y, but, in general, the point y will not be a fixed point of A.

We have:

π(A(y)) = (π ◦ A)(y) = (A ◦ π)(y) = A(y) = y,

and so, y, A(y) ∈ π−1(y). It follows that A(y) = y + γ for some γ ∈ �. Therefore,
if we define Ã(u) = A(u) − γ = (τ−γ ◦ A)(u) for u ∈ R

2, then Ã(y) = y.
Define U n = An(U ) for n ∈ N0. The sets U n are connected open sets containing

x . We have U n ⊂ U n+1 for n ∈ N0, and
⋃

n∈N0
U n = R

2. The last fact follows from
Corollary 3.4.

We now define homeomorphisms gn mapping U n into R
2 recursively, by setting

g0 := g̃ on U 0 = U , and

gn+1 := Ã ◦ gn ◦ A−1 on U n+1

for n ∈ N0. Note that this makes sense, because A−1(U n+1) = U n . This definition
implies that:

τγ ◦ gn+1 ◦ A = A ◦ gn on U n

for all n ∈ N0.
One verifies by induction that � ◦ gn = � on U n for all n ∈ N. Indeed, this is true

for n = 0 by definition of g0 = g̃. If it is true for n ∈ N0, then it is also true for n + 1,
because:

� ◦ gn+1 = � ◦ τ−γ ◦ A ◦ gn ◦ A−1

= � ◦ A ◦ gn ◦ A−1

= f ◦ � ◦ gn ◦ A−1 = f ◦ � ◦ A−1

= � ◦ A ◦ A−1 = �.
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By induction, one also shows that gn(x) = y for alln ∈ N0. Indeed, g0(x) = g̃(x) = y,
and if this is true for n ∈ N0, then it is also true for n + 1, because:

gn+1(x) = ( Ã ◦ gn ◦ A−1)(x)

= ( Ã ◦ gn)(x) = Ã(y) = y.

Claim 2 We have gn+1|U n = gn for all n ∈ N0.
To see this, we want to apply Lemma 2.14 to the branched covering map� : R2 →

S2, and the maps gn and gn+1|Un . We know that:

� ◦ gn = � = � ◦ (gn+1|Un)

on the connected open set Un . Moreover, gn(x) = y = gn+1(x) and the point y which
lies in the fiber over p = �(y) not containing any critical point of�. Claim 2 follows.

Therefore, each homeomorphism gn extends the previous one. Since the sets U n ,
n ∈ N0, exhaust R2, there exists a unique map g : R2 → R

2, such that g|U n = gn

for all n ∈ N0. It is clear that g is continuous and injective, because the maps gn have
these properties. Moreover, it is clear that g(x) = y and � = � ◦ g on R

2.
To finish the proof in the Case II at hand, it remains to show that g : R2 → R

2 is
surjective. To do this, let us shift our attention to the images g(U n).

Claim 3 We have g(U n) = gn(U n) = Ãn(V ) for all n ∈ N0.
Recall that V = g̃(U )was the neighborhood of y defined in Claim 1. Thus, Claim 3

is true for n = 0, since

g(U 0) = g0(U
0) = g̃(U ) = V = Ã0(V ).

Moreover, if it is true for n ∈ N0, then it is also true for n + 1, because:

g(U n+1) = gn+1(U
n+1) = gn+1(A(U n))

= ( Ã ◦ gn ◦ A−1)(A(U n)) = ( Ã ◦ gn)(U
n)

= Ã( Ãn(V )) = Ãn+1(V ),

proving Claim 3.
Recall that in (3.1), we can replace A with Ã = τ−γ ◦ A. Since the map Ã has the

fixed point y, we can apply Corollary 3.4 to Ã; so the images of the neighborhood
V of y under iterates of Ã will exhaust R2, i.e., we have

⋃

n∈N Ãn(V ) = R
2. Using

Claim 3, we conclude that g is surjective. This finishes the proof of Case II. The
statement follows. ��

We now show transitivity of the action of G on the fibers of �.

Lemma 3.6 Let p ∈ S2 and x, y ∈ �−1(p). Then, there exists g ∈ G, such that
g(x) = y.

123



Quotients of Torus Endomorphisms and Lattès-Type Maps 517

Proof We will first show the existence of a point p0 ∈ S2\ post( f ) for which G acts
transitively on the fiber �−1(p0), and then deal with the general case.

The periodic points of f are dense in S2 (see [1, Corollary 9.2]); in particular, we
can find a periodic point p0 ∈ S2\ post( f ). By replacing f with suitable iterates f n

(and A with A
n
), we may assume that p0 is a fixed point of f . Note that then we still

have p0 ∈ S2\ post( f ), because the postcritical sets of a Thurston map and any of its
iterates agree.

Since p0 is a fixed point of f , the map A sends the set �
−1

(p0) into itself. It

follows that each point in �
−1

(p0) is either a periodic point of A or is mapped to a
periodic point of A under all sufficiently high iterates of A. If we again replace f and
A with carefully chosen iterates, we can reduce ourselves to the following situation:

p0 ∈ S2\ post( f ) is a fixed point of f , the set �
−1

(p0) contains at least one fixed

point of A, and each point in �
−1

(p0) is either a fixed point of A or mapped to a fixed
point by A. Moreover, since p0 is a fixed point of f , and p0 ∈ S2\ post( f ), we have

p0 ∈ S2\ f −1(post( f )). We pick a fixed point x̄ ∈ �
−1

(p0) of A, and a point x ∈ R
2

with π(x) = x̄ . Then, x ∈ �−1(p0).

Now, let y ∈ �−1(p0) be arbitrary. Then, ȳ := π(y) ∈ �
−1

(p0). By our choices,
ȳ is a fixed point of A or z := A(y) is a fixed point of A. In the first case, there exists
g ∈ G, such that g(x) = y by the first part of Lemma 3.5.

In the second case, z is a fixed point of A. Pick z ∈ R
2, such that π(z) = z.

Then, z ∈ �
−1

(p0), and again, there exists g1 ∈ G with g1(x) = z. Moreover, by
Lemma 3.5, there exists g2 ∈ G, such that g2(z) = y. Then, g := g2 ◦ g1 ∈ G and
g(x) = y.

We see that x can be sent to any point in �−1(p0) by a suitable element g in the
group G; it follows that G acts transitively on �−1(p0).

Now, let p ∈ S2 and x, y ∈ �−1(p) be arbitrary. Then, we can find a path
α : [0, 1] → S2 with α(0) = p and α(1) = p0, so that α((0, 1]) ⊂ S2\ post( f ).
Therefore, α lies in S2\ post( f )with the possible exception of its initial point p. Since
x, y ∈ �−1(p), we can lift the path α under the branched covering map � : R2 → S2

to paths β1, β2 : [0, 1] → R
2, such that:

� ◦ β1 = � ◦ β2 = α,

β1(0) = x , and β2(0) = y (see [1, Lemma A.18]).
Let x ′ = β1(1) and y′ = β2(1). Then:

�(x ′) = �(β1(1)) = α(1) = p0,

and so, x ′ ∈ �−1(p0). Similarly, y′ ∈ �−1(p0).
By the first part of the proof, there exists g ∈ G, such that g(x ′) = y′. Let β3 :=

g ◦ β1. Then:

β3(1) = g(β1(1)) = g(x ′) = y′ = β2(1),
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and

� ◦ β3 = � ◦ g ◦ β1 = � ◦ β1 = α.

Therefore, β3 is a lift of α under�with the same endpoint as β2. Since� is a covering
map over S2\ post( f ) andα|(0, 1] ⊂ S2\ post( f ), it follows thatβ2|(0, 1] = β3|(0, 1]
(see [1, Lemma A.6 (i)]). Hence, β3(0) = β2(0) by continuity, and so:

g(x) = g(β1(0)) = β3(0) = β2(0) = y.

This shows that G acts transitively on the fiber �−1(p). ��
We are now ready to prove the implication (i)⇒(ii) in Theorem 1.2.

Proposition 3.7 Suppose f : S2 → S2 is an expanding Thurston map that is a quotient
of a torus endomorphism. Then, f has a parabolic orbifold.

Proof We can use all the previous considerations for the maps as in (3.1) and the deck
transformation group G of �.

Let p ∈ S2 be arbitrary, and x̄, ȳ ∈ �
−1

(p). Then, there exist points x, y ∈ R
2, such

that π(x) = x̄ and π(y) = ȳ. Then, �(x) = (� ◦ π)(x) = �(x̄) = p = �(y). By
Lemma3.6, there exists g ∈ G, such that g(x) = y. Since g is a homeomorphism,π is a
local homeomorphism, and bothmaps preserve orientation,we have deg(g, x) = 1 and
deg(π, x) = deg(π, y) = 1. Since local degrees aremultiplicative under compositions
(see (2.2)), we conclude:

deg(�, ȳ) = deg(�, ȳ) · deg(π, y) = deg(�, y)

= deg(�, y) · deg(g, x) = deg(� ◦ g, x)

= deg(�, x) = deg(�, x̄).

Therefore, the local degree of � in each fiber �
−1

(p), p ∈ S2, is constant. Now,
Lemma 2.7 (iii) implies that f has a parabolic orbifold. ��

4 From Parabolic Orbifolds to Lattès-TypeMaps

In this section, we will prove the implication (ii)⇒(iii) in Theorem 1.2. We first
establish an auxiliary fact that helps us in identifying Lattès-type maps.

Lemma 4.1 Let f : S2 → S2 be a map that is topologically conjugate to a Lattès-type
map. Then, f itself is Lattès-type map.

As we will see, the proof is fairly straightforward. There is a subtlety though
that arises from the fact that, by definition, a branched covering map is orientation-
preserving (see (2.1)), but a homeomorphism as in the definition of topological
conjugacy may actually reverse orientation. To address this, we have to compensate
by complex conjugation on C in a suitable way.
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In the following, we denote by σ : C → C, σ(z) = z for z ∈ C, complex con-
jugation on C. Note that this is an R-linear orientation-reversing isometry on C with
σ−1 = σ .

Proof of Lemma 4.1 Suppose f : S2 → S2 is a map that is topological conjugate to a
Lattès-type map ̂f : ̂S2 → ̂S2. Here, ̂S2 is another topologically 2-sphere. Both S2

and ̂S2 carry some fixed orientations.
According to Definition 2.8, there exists a crystallographic group ̂G acting on

C ∼= R
2, an ̂G-equivariant (real) affine map ̂A : C → C, and a branched covering map

̂� : C → ̂S2 induced by ̂G with ̂f ◦ ̂� = ̂� ◦ ̂A. Moreover, the linear part L
̂A of ̂A

satisfies det(L
̂A) > 1.

Since f and ̂f are topologically conjugate, there exists a homeomorphism h : ̂S2 →
S2, such that f ◦ h = h ◦ ̂f . We now have to distinguish two cases according to
whether the homeomorphism h : ̂S2 → S2 preserves or reverses orientation. We will
treat the latter, slightly more difficult case in detail, and then comment on the small
modifications for the former case.

Therefore, we now assume that h : ̂S2 → S2 is orientation-reversing. We define
� := h ◦ ̂� ◦ σ . Then, � : C → S2 is a branched covering map, as easily follows
from the definitions and the fact that ̂� : C → ̂S2 is a branched covering map. Here,
it is important that in the definition of �, we compensate postcomposition of ̂� with
the orientation-reversing homeomorphism h by precomposition with the orientation-
reversing homeomorphism σ to make � orientation-preserving.

We conjugate everything else by σ . More precisely, we define G := {σ ◦ g ◦ σ :
g ∈ ̂G}. It is clear that G is a crystallographic group on C and � is induced by G.
Moreover, we let A := σ ◦ ̂A ◦ σ . Then, A is a (real) affine map on C ∼= R

2 that
is G-equivariant. For the linear part L A of A, we have L A = σ ◦ L

̂A ◦ σ , and so,
det(L A) = det(L

̂A) > 1.
We can summarize the relations of all themaps considered in the following diagram,

which is obviously commutative:

C
A

σ

�

C

σ

�

C
̂A

̂�

C

̂�

̂S2
̂f

h

̂S2

h

S2 f
S2.

It follows that f is a Lattès-type map.
If h is orientation-preserving, the map σ is not needed in the previous argument.

Formally, we can just replace σ with the identity map on C. Therefore, f is also a
Lattès-type map in this case. The statement follows. ��

123



520 M. Bonk, D. Meyer

After this preparation, we now prove the implication (ii)⇒(iii) in Theorem 1.2.

Proposition 4.2 Let f : S2 → S2 be an expanding Thurston map with a parabolic
orbifold. Then, f is a Lattès-type map.

Proof Let f be as in the statement, and α = α f be the ramification function of f .
Since f has a parabolic orbifold O f = (̂C, α), the signature of O f is in the list (see
(2.4)):

(∞,∞), (2, 2,∞), (2, 4, 4), (2, 3, 6), (3, 3, 3), (2, 2, 2, 2).

The fact that f , or equivalently f 2, is expanding (see [1, Lemma 6.5]), rules out
the signatures (∞,∞) and (2, 2,∞). Indeed, if a Thurston map f has one of these
signatures, then f or f 2 is a Thurston polynomial (i.e., there is a point that is com-
pletely invariant under the map); see the discussion after [1, Lemma 7.4]. However, no
Thurston polynomial is expanding (see [1, Lemma 6.8]). This means that α does not
attain the value ∞; so f has no periodic critical points (see [1, Proposition 2.2 (ii)])
and the signature of O f is among:

(2, 4, 4), (2, 3, 6), (3, 3, 3), (2, 2, 2, 2).

In the first three cases, f has precisely three postcritical points, and is, hence,
Thurston equivalent to a rational Thurston map R : ̂C → ̂C (see [1, Theorem 7.2 and
Lemma 2.5]). Since f and R are Thurston equivalent, the orbifolds of f and R have
the same signatures (see [1, Proposition 2.15]), namely (2, 4, 4), (2, 3, 6), or (3, 3, 3).
In particular, R has a parabolic orbifold.

Moreover, the ramification function of R only takes finite values which again
implies that R has no periodic critical points. Hence, R is expanding (see [1, Propo-
sition 2.3]) and actually a Lattès map (see Theorem 2.5). Since f and R are Thurston
equivalent, and both Thurston maps are expanding, it follows that f and R are topo-
logically conjugate (see Theorem 2.4). Now, Lemma 4.1 implies that f is a Lattès-type
map (note that the Lattès map R is also of Lattès-type).

It remains to consider the case where the signature of O f is equal to (2, 2, 2, 2).
We know that f is Thurston equivalent to a Lattès-type map ̂f : ̂S2 → ̂S2 (see Propo-
sition 2.10). The proof of Proposition 2.10 (see [1, pp. 74–77]) shows that f is a
quotient of a torus endomorphism and that the affine map ̂A for ̂f as in Definition 2.8
can be chosen, so that its linear part L

̂A is equal to the map L as in (3.2). It follows that
L

̂A = L is expanding as a linear map (see Lemma 3.3). This, in turn, implies that ̂f is
expanding as a Thurston map (see Proposition 2.12). Now, we can again conclude that
f and ̂f are topologically conjugate, and hence f is a Lattès-type map by Lemma 4.1.

��
We can now wrap up the proof of Theorem 1.2.

Proof of Theorem 1.2 The implications (i)⇒(ii) and (ii)⇒(iii) were proved in Propo-
sitions 3.7 and 4.2, respectively. The implication (iii)⇒(i) was explicitly stated in
Proposition 2.9. ��

123



Quotients of Torus Endomorphisms and Lattès-Type Maps 521

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bonk, M., Meyer, D.: Expanding Thurston Maps. American Mathematical Society, Providence (2017)
2. Cannon, J.W., Floyd, W.J., Parry, W.R., Pilgrim, K.M.: Nearly Euclidean Thurston maps. Conform.

Geom. Dyn. 16, 209–255 (2012)
3. Douady, A., Hubbard, J.H.: A proof of Thurston’s topological characterization of rational functions.

Acta Math. 171, 263–297 (1993)
4. Milnor, J.: On Lattès maps. In: Dynamics on the Riemann Sphere. Eur. Math. Soc., Zürich, pp. 9–43

(2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	Quotients of Torus Endomorphisms and Lattès-Type Maps
	Abstract
	1 Introduction
	2 Background
	2.1 Branched Covering Maps
	2.2 Thurston Maps
	2.3 Expansion
	2.4 Thurston Equivalence
	2.5 The Orbifold Associated with a Thurston Map
	2.6 Parabolic Orbifolds
	2.7 Lattès Maps
	2.8 Quotients of Torus Endomorphisms
	2.9 Lattès-Type Maps
	2.10  Lattices and Tori
	2.11  Lifts by Branched Covering Maps

	3 Parabolicity of the Orbifold
	3.1 Expansion Properties
	3.2 Transitive Action on Fibers

	4 From Parabolic Orbifolds to Lattès-Type Maps
	References




