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Abstract
Discussed here is descent theory in the differential context where everything is
equipped with a differential operator. To answer a question personally posed by
A. Pianzola, we determine all twisted forms of the differential Lie algebras over C(t)
associated with complex simple Lie algebras. Hopf–Galois Theory, a ring-theoretic
counterpart of theory of torsors for group schemes, plays a role when we grasp the
above-mentioned twisted forms from torsors.

Keywords Differential algebra · Differential Lie algebra · Picard-Vessiot extension ·
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1 Introduction: Problem and Answer

Rings and algebras are supposed to be associative and containing 1, and their mor-
phisms are supposed to send 1 to 1. Moreover, rings, algebras and Hopf algebras are
assumed to be commutative, unless otherwise stated.

We let δ mean “differential” and use the symbol δ to indicate differential operators
in general. A δ-ring is thus a (commutative) ring R equipped with an additive operator
δ : R → R satisfying the Leibniz rule
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δ(xy) = (δx)y + x(δy)

for all x, y ∈ R. It is called a δ-field if the ring is a field. The rational function field
C(t) in one variable is regarded as a δ-field with respect to the standard operator such
that δt = 1 and δc = 0 for every c ∈ C. The field

CC(t) = { a ∈ C(t) | δa = 0 }

of constants is C. A δ-C(t)-Lie algebra is a Lie algebra g over C(t) which is equipped
with an additive operator δ : g → g such that

δ(aX) = (δa)X + a(δX), δ[X ,Y ] = [δX ,Y ] + [X , δY ]

for all a ∈ C(t) and X ,Y ∈ g. In the same way a δ-R-Lie algebra is defined for any
δ-ring R. Let g be a δ-C(t)-Lie algebra. Given a δ-ring map C(t) → R (that is, a
ring map preserving the δ-operator), the base extension g ⊗C(t) R of g is naturally a
δ-R-Lie algebra. A twisted form of g is a δ-C(t)-Lie algebra f such that

g ⊗C(t) R � f ⊗C(t) R as δ-R-Lie algebras

for some δ-ring map C(t) → R with R �= 0.
Let n ≥ 2. We can and do regard the C(t)-Lie algebra sln(C(t)) which consists of

all traceless matrices X = (
xi j

)
with xi j ∈ C(t), as a δ-C(t)-Lie algebra with respect

to the entry-wise δ-operator δ
(
xi j

) := (
δxi j

)
. A. Pianzola posed personally to the

first-named author, a problem which is specialized to the following.

Problem 1.1 Describe all twisted forms of the δ-C(t)-Lie algebra sln(C(t)).

Clearly, to generalize the problem, one can replace sln(C) with a complex simple
Lie algebra g0 (of finite dimension), and regard C(t)-Lie algebra

g0(C(t)) = g0 ⊗C C(t) (1.1)

as a δ-C(t)-Lie algebra with the δ operating on the tensor factor C(t). The notation
(1.1) is used since g0 is seen to give the functor R �→ g0 ⊗C R, and g0 ⊗C C(t) is
then its value. Pianzola’s problem is precisely the following one, which we are going
to solve.

Problem 1.2 Given a complex simple Lie algebra g0, describe all twisted forms of
g0(C(t)).

Our interest in this problem or in studying twisted forms of Lie algebras in the
differential context comes from differential Galois Theory, in which examples of
such twisted forms naturally arise. In fact, given a homogeneous linear differential
equation with coefficients in a differential field, say C(t), we have the Galois group
of the equation, G0, which is an affine algebraic C-group. In addition we naturally
have an affine algebraic “differential” C(t)-group G, called the intrinsic Galois group
(or Katz group); see [11]. One sees that the Lie algebra Lie(G) of G is a δ-C(t)-Lie
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Twisted Forms of Differential Lie Algebras overC(t) 109

algebra which is a twisted form of the δ-C(t)-Lie algebra Lie(G0) ⊗C C(t), where
Lie(G0) is the (complex) Lie algebra of G0.

Returning to the situation before, recall that the complex simple Lie algebras are
classified, labeled by their root systems

A� (� ≥ 1), B� (� ≥ 2), C� (� ≥ 3), D� (� ≥ 4), E6, E7, E8, F4, G2.

See [9, Chapter IV], for example. Let g0 be a complex simple Lie algebra, and let
Γ denote the automorphism group of the associated Dynkin diagram. Explicitly, the
group is

Γ =

⎧
⎪⎨

⎪⎩

{1} type A1, B� (� ≥ 2), C� (� ≥ 3), E7, E8, F4 or G2;
Z2 type A� (� ≥ 2), D� (� ≥ 5) or E6;
S3 type D4

(1.2)

according to the type of g0; see [15, Table 3 on Page 298]. Here and in what followsZn

denotes the cyclic group of order n. In addition, S3 denotes the symmetric group of
degree 3. The action by Γ naturally (up to conjugation) gives rise to automorphisms
of g0, which forms a group naturally identified with the group Out(g0) of outer-
automorphisms of g0.

Roughly speaking, our answer, Theorem 1.5, to the problem tells that all non-trivial
twisted forms are obtained by the Galois descent (see [12, Section 18]) for which Γ

(and its subgroups for type D4) act as Galois groups. To make a precise statement we
introduce below the notion of being quasi-isomorphic.

Lemma 1.3 If g = (g, δ) is a δ-R-Lie algebra, then for any element D ∈ g,

δ + ad(D) : g → g, X �→ δX + [D, X ]

is a δ-operator with which g is again a δ-R-Lie algebra.

Indeed, one sees, more generally, that for any R-linear derivation D : g → g,
(g, δ + D) is a δ-R-Lie algebra. Note that the inner derivation ad(D) above is R-
linear.

Definition 1.4 Let R be as above, We say that two δ-R-Lie algebras g = (g, δ) and
g′ = (g′, δ′) are quasi-isomorphic, if there is an element D ∈ g such that

(g, δ + ad(D)) � (g′, δ′) as δ-R-Lie algebras.

The condition is equivalent to saying that there is an element D′ ∈ g′ such that
(g, δ) � (g′, δ′ + ad(D′)), as is easily seen. It follows that the quasi-isomorphism
gives an equivalence relation among all δ-R-Lie algebras.

Theorem 1.5 Suppose that g0 is a complex simple Lie algebra, and let Γ be the
automorphism group of the associated Dynkin diagram. Then a δ-C(t)-Lie algebra is
a twisted form of g0(C(t)) if and only if it is quasi-isomorphic to one of those listed
below, according to the case Γ = {1}, Z2 or S3; see (1.2).
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(1) Case Γ = {1}: g0(C(t));
(2) Case Γ = Z2:

(i) g0(C(t));
(ii) g0(L)Γ , where L/C(t) is a quadratic field extension.

(3) Case Γ = S3:

(i) g0(C(t));
(ii) g0(L)Z2 , where L/C(t) is a quadratic field extension;
(iii) g0(L)Z3 , where L/C(t) is a cubic Galois extension;
(iv) g0(L)Γ , where L/C(t) is a Galois extension of fields with Galois group

Γ (= S3).

We should immediately add some explanations about the statement above. First,
any finite field extension L/C(t) uniquely turns into an extension of δ-fields, whence
g0(L) turns into a δ-L-Lie algebra. Second, in (ii) of (2) and (iv) of (3) above, the
group Γ is supposed to act diagonally on g0(L) = g0 ⊗C L , as outer-automorphisms
on g0, and as the Galois group on L . In addition, g0(L)Γ denotes the Γ -invariants in
g0(L), which is in fact a δ-C(t)-Lie algebra by Galois descent; see Sect. 4.3. Third,
in (ii) of (3), we choose arbitrarily an order 2 subgroup Z2 of Γ (= S3), and let it act
on g0 by restriction. The δ-C(t)-Lie algebra g0(L)Z2 which results in the same way as
above does not depend (up to isomorphism) on the choice since the order 2 subgroups
are conjugate to each other; on the other hand it may depend on L . Finally, in (iii) of
(3), we suppose that Z3 is the unique order 3 subgroup of Γ (= S3), and let it act
on g0 by restriction, again. We add the following remark: there exist infinitely many
quadratic and cubic Galois extensions over C(t), as is easily seen, while the existence
of a Galois extension overC(t)with Galois groupS3 will be ensured by Example 4.9.

The theorem will be proved in the final Sect. 4, which contains as well, explicit
descriptions (see Sect. 4.6) of the non-trivial δ-C(t)-Lie algebras listed in (ii) of (2)
and (ii)–(iv) of (3). The preceding two sections provide preliminaries, some of which
are beyond what will be needed, but are of interest by themselves. Section 2 presents
descent theory in the differential context; Sect. 3 prepares technical tools mainly from
Hopf–Galois Theory, which is a ring-theoretic counterpart of theory of torsors for
group schemes. In particular, Schauenburg’s bi-Galois Theory [17] will play a role in
two stages (see Sects. 3.5, 4.3), when we grasp the twisted forms in question from
δ-torsors.

2 Descent Theory in Differential Context

Let R be a δ-ring. A δ-R-module is an R-moduleM equippedwith an additive operator
δ : M → M satisfying

δ(xm) = (δx)m + x(δm), x ∈ R, m ∈ M .

All δ-R-modules form a symmetric tensor category δ-R-Moduleswith respect to the
tensor product M1 ⊗R M2, the unit object R and the obvious symmetry
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M1 ⊗R M2 → M2 ⊗R M1, m1 ⊗ m2 �→ m2 ⊗ m1.

The δ-operator on M1 ⊗R M2 is given by

δ(m1 ⊗ m2) = δm1 ⊗ m2 + m1 ⊗ δm2.

The notion of δ-R-Lie algebra defined in the previous section is precisely a Lie
algebra in the category δ-R-Modules. In general, any linear object, such as algebra
or Hopf algebra, in δ-R-Modules is called a δ-R-object, so as δ-R-algebra or δ-
R-Hopf algebra; important is the fact that the structure is defined by morphisms of
δ-R-Modules between tensor powers of the object. Given a δ-R-algebra S, we have
the base-extension functor

⊗RS : δ-R-Modules → δ-S-Modules,

which induces base-extension functors for linear objects such as above.
We are concernedwith descent theory (see [22], for example) in differential context.

To make this clearer, let us fix a δ-R-object A. A δ-R-object B is called an S/R-form
of A, or a twisted form of A split by S, if S is a δ-R-algebra such that

(i) S is faithfully flat as an R-algebra, and
(ii) A ⊗R S � B ⊗R S as δ-S-objects.

A δ-R-object B is called a twisted form of A, if there exists a δ-R-algebra S which
satisfies (i) and (ii) above.

The δ-automorphism-group functor of A is the functor

Autδ(A) : δ-R-Algebras → Groups, T �→ Autδ-T (A ⊗R T ) (2.1)

from the category δ-R-Algebras of δ-R-algebras to the categoryGroups of groups,
which associates to each δ-R-algebra T , the automorphism-group Autδ-T (A ⊗R T )

of the δ-T -object A⊗R T . When constructing the 1st Amitsur cohomology (pointed)
set as in [22, Section 17.6], replace faithfully flat homomorphisms of rings and
automorphism-group functors with our R → S (satisfying (i) above) and Autδ(A),
respectively. The resulting differential analogue is denoted by

H1
δ (S/R,Autδ(A)). (2.2)

This is seen to classify the S/R-forms of A; to be more precise, there is a natural
bijection from H1

δ (S/R,Autδ(A)) to the set of all δ-R-isomorphism classes of the
S/R-forms. An important consequence is: if A′ is another δ-R-object of some distinct
kind, which has the δ-automorphism-group functor isomorphic to Autδ(A), then there
is a one-to-one correspondence (up to isomorphism) between the S/R-forms of A and
S/R-forms of A′.

We remark that for any functor G : δ-R-Algebras → Groups, the cohomology
set H1

δ (S/R,G) is defined just as the one in (2.2). The set will appear in what follows
(see (3.6)) only whenG is representable, and turns out, indeed, to be an automorphism-
group functor.
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Remark 2.1 We have used so far the base-on-right notation A ⊗R T which denotes
the extended base on the right; it seemingly looks nicer than the base-on-left notation
T ⊗R A. But we may and do (when it is natural) use the latter notation.

Remark 2.2 In this Remark the differential structure is ignored.

(1) We would like to clarify our use of the term (twisted) form. Consider a faithfully
flat homomorphism R → S of rings and an R-object A. If R and S are fields, it is
more conventional (as one of the refereesmentioned) for experts in representation
theory or physicists to speak of R-form of the S-object A ⊗ S. For example,
so3(R) is a real form of sl2(C). Our terminology is that so3(R) is a twisted
form, or a C/R-form of sl2(R). The terminology we have chosen, namely an
S/R-form or twisted form of the R-object A, is familiar in number theory and
algebraic geometry, and it is also the standard terminology in Grothendieck’s
descent theory. The base R is fixed, and the S can vary.

(2) The referee suggested the authors to add the articles [3–7,18,19] to theReferences.
Those articles classify real forms of loop algebras, which refer to the complex
Lie superalgebras of the form g0(C[t, t−1]), where g0 is a complex simple Lie
superalgebra of finite dimension.Moreover, they associatewith those forms affine
Kac–Moody superalgebras. Notable is Serganova’s method (see [19]) based on
the classification of real forms of the complexified Lie algebra of vector fields on
a circle.

(3) Pianzola introduced to the authors his [16]; it characterizes affine Kac–Moody
Lie algebras as twisted forms (in the étale sense) of the untwisted algebras. This
paper likely contains ideas which may be used to replace some of the argument
of Sect. 4.3 below by appealing to Galois cohomology.

3 Affine ı-K -Groups, Their Lie Algebras and Torsors

In this section K denotes a δ-field. We assume that the characteristic charK of K is
zero.

3.1 Affine ı-K-Groups and Their Lie Algebras

An affine δ-K-group scheme is by definition a representable functor

G : δ-K -Algebras → Groups (see (2.1));

this will be called an affine δ-K-group for short. Such a functor G is uniquely rep-
resented by a δ-K -Hopf algebra, say H , and is presented so as G = Specδ(H) or
Specδ-K (H). We say that G is algebraic, or it is an affine algebraic δ-K-group, if H
is finitely generated as a K -algebra. If one forgets δ, then G = Spec(H) is an affine
K -group, which has the Lie algebra

Lie(G) = Derε(H , K ). (3.1)
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Twisted Forms of Differential Lie Algebras overC(t) 113

Recall that this consists of all K -linear maps D : H → K that satisfy

D(ab) = D(a)ε(b) + ε(a)D(b), a, b ∈ H ,

where ε : H → K is the counit of H . This is in fact a δ-K -Lie algebra with respect
to the operator defined by

(δD)(a) := δ(Da) − D(δa), D ∈ Lie(G), a ∈ H .

Note that the canonical pairing H ⊗K Lie(G) → K is a morphism in δ-K -Modules.
We have dimK (Lie(G)) < ∞, if G is algebraic.

Remark 3.1 The notion of being “algebraic” defined above would be rather restricted
for those who would like to work intensively in differential algebra. It should be
distinguished from the more natural (for those above) notion of being “δ-algebraic”,
which will be discussed briefly in Sect. 3.3, being less crucial for our purpose though.

3.2 ı-K-Torsors and Galois ı-K-Algebras

An affine δ-K-scheme is by definition a representable set-valued functor

X : δ-K -Algebras → Sets.

It is uniquely represented by a δ-K -algebra, say A, being presented so as X =
Specδ(A); it is said to be algebraic if A is finitely generated as a K -algebra. The
category of affine δ-K -schemes, whose morphisms are natural transformations, has
direct products. The direct productX1×X2 of two affine δ-K -schemesXi = Specδ(Ai ),
i = 1, 2, is represented by A1 ⊗K A2. The notion of group object of the category
is naturally defined, and such an object is precisely an affine δ-K -group. Given an
affine δ-K -group G = Specδ(H), the notion of right (or left) G-equivariant objects is
defined, as well. Such an object is called a right (or left) G-equivariant δ-K-scheme.
Giving such a δ-K -scheme X = Specδ(A) is the same as giving a right (or left) H-
comodule δ-K-algebra; it is an object A in δ-K -Algebras equippedwith amorphism
A → A ⊗K H (or A → H ⊗K A) in the category which satisfy the co-associativity
and the counit property. Obviously, G itself is G-equivariant on both sides.

Let R be a δ-K -algebra. An affine δ-K -group or (equivariant or ordinary) δ-K -
scheme X = Specδ(A) has the base change XR = Specδ-R(A⊗K R); it is by definition
the functor T �→ X(T ) defined on δ-R-Algebras, where each T ∈ δ-R-Algebras
is regarded naturally as a δ-K -algebra. We can discuss twisted forms of X; it is the
same as discussing twisted forms of A.

LetG = Specδ(H)be an affine δ-K -group.A twisted formof the rightG-equivariant
δ-K -scheme G is called a right δ-K -torsor for G. To be explicit it is a right G-
equivariant δ-K -scheme X such that XR � GR as right G-equivariant δ-R-schemes
for some non-zero δ-K -algebra R. Such an X is uniquely represented by a right H -
comodule δ-K -algebra B which is a twisted form of H . Such a twisted form B is
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characterized as a right H-Galois δ-K-algebra [14, Section 8.1]; it is by definition a
non-zero right H -comodule δ-K -algebra B such that the δ-K -algebra map

ρ̃ : B ⊗K B → B ⊗K H , ρ̃(b ⊗ c) = bρ(c) (3.2)

is an isomorphism. Here and in what follows, ρ : B → B ⊗K H denotes the structure
map. Note that ρ̃ is a δ-B-algebra isomorphism (with the base-on-left notation, see
Remark 2.1), and B is split by B itself.

The analogous notions of left δ-K-torsors for G and of left H-Galois δ-K-algebras
are defined in the obvious manner, and those two are in one-to-one correspondence.

3.3 Affine ı-Algebraic ı-K-Groups

An δ-K -algebra A is said to be δ-finitely generated if it is generated as a K -
algebra by finitely many elements a1, . . . , an together with their iterated differentials
δr a1, . . . , δr an , r > 0. An extension L/K of δ-fields said to be δ-finitely generated,
if L is the quotient field of some δ-K -finitely generated δ-K -subalgebra of L .

An affine δ-group G = Specδ(H) is said to be δ-algebraic if the δ-K -Hopf algebra
H is δ-finitely generated as a δ-K -algebra; see Remark 3.1. Obviously, “algebraic”
implies “δ-algebraic”.

Lemma 3.2 Every right (or left) δ-K -torsor for an affine δ-K -group G is split by
some δ-K -field. It is split by a δ-finitely generated extension L/K of δ-fields, if G is
δ-algebraic.

Proof Suppose that B is a right H -Galois δ-K -algebra, as above. Choose arbitrarily
a maximal δ-stable ideal m of B, and construct R = B/m, a simple δ-K -ring. Since
charK = 0, R is an integral domain by [21, Lemma 1.17]. The quotient field L =
Q(R) of R uniquely turns into a δ-K -field. By applying L⊗B to ρ̃, it follows that B
is split by L , proving the first assertion. If H is δ-finitely generated, then B and R are
so. It follows that the L/K above is δ-finitely generated, proving the second. ��
Proposition 3.3 Suppose that A is δ-K -object of finite K -dimension. Then Autδ(A) is
an affine δ-algebraic δ-K -group, and every twisted form of A is split by some δ-finitely
generated extension L/K of δ-fields.

Proof We have only to prove that Autδ(A) is an affine δ-algebraic δ-K -group, since
the rest then follows from the preceding Lemma.

Choose a K -basis v1, . . . , vn of A. Let

F = K [xi j , x ′
i j , x

′′
i j , . . . , x

(r)
i j , . . .]

denote the free δ-K -algebra in indeterminates xi j , where 1 ≤ i, j ≤ n. Let

G = Fd (= F[1/d])

denote the localization by the determinant d = det X of the n×n matrix X = (
xi j

)
i, j

which has the indeterminates above as entries. This G has the δ-operator uniquely
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extending the one δx (r)
i j = x (r+1)

i j , r ≥ 0, on F . We have a G-linear bijection φ :
A ⊗K G → A ⊗K G determined by

φ(v j ⊗ 1) =
n∑

i=1

vi ⊗ xi j , 1 ≤ j ≤ n.

This is alternatively expressed as

φ(v1 ⊗ 1, . . . , vn ⊗ 1) = (v1, . . . , vn) ⊗ X

by matrix presentation; such presentation will be used in (3.3), (3.4) and (3.5), as well.
Let

H = G/a,

where a is the smallest δ-stable ideal ofG such that the base extensionφH : A⊗K H →
A⊗K H of φ along G → G/a = H is an endomorphism of the δ-H -object A⊗K H ;
obviously, it is necessarily an automorphism. This a is, in fact, given by the relations
which ensure that φH commutes with the structure maps of A (see [22, Section 7.6]),
and with the δ-operator. Explicitly, the latter relation for commuting with δ-operator
is

XD = DX + δX , (3.3)

where D ∈ Mn(K ) is the matrix determined by

δ(v1, . . . , vn) = (v1, . . . , vn)D. (3.4)

We see that H represents the functor Autδ(A) regarded to be set-valued. In fact, for
every R ∈ δ-K -Algebras, we have the natural bijection

Specδ(H)(R) → Autδ-R(A ⊗K R), f �→ the base extension of φH along f .

By Yoneda’s Lemma, H uniquely turns into a δ-K -Hopf algebra with respect to the
familiar Hopf-algebra structure

ΔX = X ⊗ X , εX = I , SX = X−1, (3.5)

where Δ, ε and S denote the coproduct, the counit and the antipode, respectively,
and it represents the group-valued functor Autδ(A). Since H is obviously δ-finitely
generated, the desired result follows. ��

For K as above, we choose and fix an extension U/K of δ-fields into which every
δ-finitely generated extension L/K of δ-fields can be embedded. There exists such an
extension; a universal extension [13, Chapter III, Section 7] over K is an example.

For an affine δ-algebraic δ-K -group G, we define H1
δ (K ,G) by

H1
δ (K ,G) := H1

δ (U/K ,G). (3.6)
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116 A. Masuoka, Y. Shimada

The δ-automorphism-group functor Autδ(G) : T �→ Autδ-T (GT ) of the right G-
equivariant δ-K -scheme G is naturally isomorphic to G itself; Autδ-T (GT ) consists of
the natural automorphisms of the functor GT : δ-T -Algebras → Groups. This
fact, combined with Lemma 3.2, shows that H1

δ (K ,G) classifies all right δ-K -torsors
for G.

For a δ-K -object A of finite K -dimension, we define

H1
δ (K ,Autδ(A)) := H1

δ (U/K ,Autδ(A)).

This classifies all twisted forms of A, as is seen from Proposition 3.3.

3.4 ı-K-Bi-torsors and Bi-Galois ı-K-Algebras

Let G = Specδ(H) be an affine δ-K -group. Suppose that X = Specδ(B) is a right
δ-K -torsor for G, or in other words, B = (B, ρ) is a right H -Galois δ-K -algebra.
Tracing the argument of [17] modified into our differential situation, we see that there
exists uniquely (up to isomorphism) a pair (H ′, λ) of a δ-K -Hopf algebra H ′ and a
left H ′-comodule δ-K -algebra structure λ : B → H ′ ⊗K B such that (i) (B, λ) is a
left H ′-Galois δ-K -algebra, and (ii) λ and ρ commute in the sense that

(λ ⊗ idH ) ◦ ρ = (idH ′ ⊗ ρ) ◦ λ. (3.7)

We say that B is an (H ′, H)-bi-Galois δ-K-algebra. Accordingly, we have uniquely
a pair of an affine δ-K -group G′ and its action on X from the left, such that (i) X is a
left δ-K -torsor for G′, and (ii) the actions on X by G′ and by G commute with each
other. We say that X is a δ-K-bi-torsor. We write

HB, GX (3.8)

for H ′, G′, respectively. If B (or equivalently, X) is trivial, or namely if B = H (or
X = G), then HB = H and GX = G. This, applied after base extension to B, shows
the following; see the proof of Proposition 3.5 below for detailed argument.

Proposition 3.4 HB and GX are B/K-forms of H and of G, respectively.

With K replaced by a non-zero δ-ring R, the results above remain true if the relevant
δ-R-Hopf algebra is flat over R. We remark that δ-R-torsors are then required, in
addition to the ρ̃ being isomorphic, to be faithfully flat over R.

3.5 Interpretation of H1
ı(K,G) → H1

ı(K,Autı(g))

Let G = Specδ(H) be an affine algebraic δ-K -group, and set g := Lie(G). Then g is
a δ-K -Lie algebra of finite K -dimension, whence the δ-automorphism-group functor
Autδ(g) is an affine δ-algebraic δ-K -group by Proposition 3.3. We see that the left
adjoint action by G on g gives rise to a morphism of affine δ-algebraic δ-K -groups

Ad : G → Autδ(g),
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which induces naturally a map between the cohomology sets

Ad∗ : H1
δ (K ,G) → H1

δ (K ,Autδ(g)). (3.9)

Given a right δ-K -torsor X for G, we define

gX := Lie(GX). (3.10)

This is a twisted form of g = Lie(G), since GX is a twisted form of G; see Proposi-
tion 3.4.

Proposition 3.5 Ad∗ is interpreted in terms of twisted forms so as

[a right δ-K -torsor X for G] �→ [gX], (3.11)

where [ ] indicates isomorphism classes.

Proof In this proof we write ⊗ for ⊗K , and use the base-on-left notation for base
extensions; see Remark 2.1.

Suppose that X = Specδ(B) is a right δ-K -torsor for G, or in other words, B =
(B, ρ) is a right H -Galois δ-K -algebra.

Let γ ∈ G(B ⊗ B). This gives the automorphism

�γ : (B ⊗ B) ⊗ H
�−→ (B ⊗ B) ⊗ H

of the right ((B ⊗ B) ⊗ H)-Galois δ-(B ⊗ B)-algebra (B ⊗ B) ⊗ H defined by

�γ ((b ⊗ c) ⊗ h) = (b ⊗ c)γ (h(1)) ⊗ h(2), b, c ∈ B, h ∈ H .

Here and in what follows, we let

Δ(h) = h(1) ⊗ h(2), (Δ ⊗ id) ◦ Δ(h) = h(1) ⊗ h(2) ⊗ h(3)

denote the coproduct on H . The right co-adjoint action

Coad(γ ) : (B ⊗ B) ⊗ H
�−→ (B ⊗ B) ⊗ H

by γ is defined by

Coad(γ )((b ⊗ c) ⊗ h) = (b ⊗ c)γ (h(1))γ
−1(h(3)) ⊗ h(2).

This is an automorphism of the δ-(B ⊗ B)-Hopf algebra (B ⊗ B) ⊗ H . Note that
�γ turns into an isomorphism of left ((B ⊗ B) ⊗ H)-Galois δ-(B ⊗ B)-algebras, if
one twists through Coad(γ ) the obvious co-action by (B ⊗ B) ⊗ H on the domain.
Explicitly, this means that

(Coad(γ ) ⊗B⊗B �γ ) ◦ Δ(B⊗B)⊗H = Δ(B⊗B)⊗H ◦ �γ on (B ⊗ B) ⊗ H , (3.12)
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where Δ(B⊗B)⊗H denotes the coproduct on (B ⊗ B) ⊗ H .
Suppose that the γ above is a cocycle for computing H1

δ (B/K ,G) which gives the
B/K -form B through ρ̃. This means that the commutative diagram

(B ⊗ B) ⊗ B

(B ⊗ B) ⊗ H (B ⊗ B) ⊗ H

d1ρ̃ d2ρ̃

�γ

of right ((B ⊗ B) ⊗ H)-Galois δ-(B ⊗ B)-algebras, where di , i = 1, 2, denote the
base extensions along

B → B ⊗ B, b �→ 1 ⊗ b, b ⊗ 1.

Recall that B is an (HB, H)-bi-Galois δ-K -algebra. By [17, Theorem 3.5], the
Hopf algebra HB consists of the elements

∑
i bi ⊗ ci in B ⊗ B such that

∑

i

(bi )(0) ⊗ (ci )(0) ⊗ (bi )(1)(ci )(1) =
∑

i

bi ⊗ ci ⊗ 1 in (B ⊗ B) ⊗ H , (3.13)

where ρ(b) = b(0) ⊗ b(1). Moreover,

μ : B ⊗ HB → B ⊗ B, μ(b ⊗ z) = bz (3.14)

is an isomorphism of left (B ⊗ HB)-Galois δ-B-algebras. Define

ν := ρ̃ ◦ μ : B ⊗ HB → B ⊗ H .

Recall from Sect. 3.4 uniqueness of the pair (H ′, λ), and apply it first over B,
and next over B ⊗ B. Then one sees the following. First, there uniquely exists an
isomorphism θ : B ⊗ HB → B ⊗ H of δ-B-Hopf algebras such that

(θ ⊗ ν) ◦ ΔB⊗HB = ΔB⊗H ◦ ν,

whereΔB⊗HB andΔB⊗H denote the coproducts on the δ-B-Hopf algebras. In fact, this
θ is the unique isomorphism between the two δ-B-Hopf-algebras that is compatible
with their co-actions on B ⊗ B. (Notice that this θ ensures Proposition 3.4.) Next, the
last commutative diagram, with ((B ⊗ B) ⊗ H)(−) applied (see (3.8)), induces the
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commutative diagram

(B ⊗ B) ⊗ HB

(B ⊗ B) ⊗ H (B ⊗ B) ⊗ H

d1θ d2θ

Coad(γ )

of δ-(B ⊗ B)-Hopf algebras; notice from (3.12) that �γ induces Coad(γ ).
Notice from (3.1) that gX = Derε(HB, K ). Then one sees that θ induces an iso-

morphism

θ∗ : B ⊗ g
�−→ B ⊗ gX

of δ-B-Lie algebras. Moreover, the last commutative diagram induces by duality the
commutative diagram

(B ⊗ B) ⊗ gX

(B ⊗ B) ⊗ g (B ⊗ B) ⊗ g

d1(θ∗) d2(θ∗)

Ad(γ −1)

of δ-(B⊗ B)-Lie algebras, where the horizontal arrow indicates the left adjoint action
by γ −1. We may reverse the direction of the arrow, changing the label into the left
adjoint action Ad(γ ) by γ . The result shows that Ad(γ ), regarded as a cocycle for
computing H1

δ (B/K ,Autδ(g)), gives the twisted form gX of g which is split by B,
indeed.

Recall from (3.6) the definition H1(K ,G) := H1(U/K ,G). Letψ is an element of
H1(K ,G). Then this arises from a cocycle γ such as above, which gives a δ-K -torsor
X = Specδ(B) for G, through a δ-K -algebra map j : K → U . Thus, ψ is represented
by the cocycle given as the composite

H
γ−→ B ⊗ B

j⊗ j−→ U ⊗ U .

This cocycle is seen to give the U/K -form B of the right H -comodule δ-K -algebra
H . The argument in the preceding paragraphs shows that Ad∗(ψ) is represented by
the base extension of the automorphism Ad(γ ) along the δ-K -algebra map j ⊗ j .
This base extension is seen to be a cocycle which gives the U/K -form gX of g. This
completes the proof. ��

Let G = Specδ(H) be an affine algebraic δ-K -group with g = Lie(G), as above.
Recall from (3.1) that g = Derε(H , K ).
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Proposition 3.6 Regard H merely as the trivial right H-Galois K -algebra, forgetting
δ on it.

(1) Given an element D ∈ g, define

δD : H → H , δD(h) = δh + D(h(1))h(2), (3.15)

where δ denotes the original operator on H. Then this is a δ-operator with which
H is made into a right H-Galois δ-K -algebra. Conversely, such a δ-operator
uniquely arises in this way.

(2) Given an element D ∈ g, let XD denote the right δ-K -torsor for G which is
represented by the right H-Galois δ-K -algebra (H , δD) obtained above. Then
the twisted form gXD of g is the K -Lie algebra g equippedwith the new δ-operator

δ + ad(D) : g → g, z �→ δz + [D, z],

where δ denotes the original operator on g. Thus gXD is quasi-isomorphic to the
original g; see Definition 1.4.

Proof (1) Suppose that δ1 is a desired operator, or namely, (H , δ1) is a right H -Galois
δ-K -algebra. Then one sees that δ1 − δ : H → H is a K -linear derivation and
is at the same time a right H -comodule map. It follows that δ1 is necessarily of
the form δD with D ∈ g uniquely determined. Such δD is seen to be a desired
operator for any D, indeed.

(2) Let H ′ = H (H ,δD). Then gXD = Derε(H ′, K ). Using the uniqueness of the δ-K -
Hopf algebra H ′ in general, which was discussed in Sect. 3.4, we see that the
present H ′ is the K -Hopf algebra H equipped with the δ-operator

H → H , h �→ δh + D(h(1))h(2) − h(1)D(h(2)).

This implies the desired result. ��
A simple consequence of the proposition above is the following.

Corollary 3.7 Let g be a δ-K -Lie algebra of finite K -dimension. Once the Lie algebra
Lie(G) of some affine algebraic δ-K -group G is shown to be a twisted form of g, then
every δ-K -Lie algebra quasi-isomorphic to Lie(G) is a twisted form of g, as well.

3.6 Differential ı-K-Objects Arising from C-Linear Objects

Let K be a δ-field of characteristic zero. Let

C = CK (= { x ∈ K | δx = 0 })

denote the field of constants in K , which is necessarily of characteristic zero. In this
subsection we let ⊗ denote the tensor product ⊗C over C .
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Let A0 be a C-linear object. We can and do regard the base extension A0 ⊗ K as a
δ-K -object with respect to the operator δ0 defined by

δ0 : A0 ⊗ K → A0 ⊗ K , a ⊗ x �→ a ⊗ δx .

For every δ-K -algebra R, A0 ⊗ R is similarly a δ-R-object, and is a base extension of
the δ-K -object A0 ⊗ K above.

Proposition 3.8 If the automorphism-group functor Aut(A0) of A0 happens to be an
affine C-group, represented by a C-Hopf algebra H0, then the δ-automorphism-group
functor Autδ(A0 ⊗ K ) of the δ-K -object (A0 ⊗ K , δ0) is an affine δ-K -group, repre-
sented by the δ-K -Hopf algebra H0 ⊗ K.

Proof Let R ∈ δ-K -Algebras. One sees that every automorphism of the δ-R-object
A0 ⊗ R restricts to an automorphism of A0 ⊗CR over the C-algebra CR of constants
in R, and so it is uniquely presented as the base extension of the restriction. This
shows Autδ-R(A0 ⊗ R) = AutCR (A0 ⊗ CR); this last is naturally isomorphic to
SpecC (H0)(CR) = Specδ-K (H0 ⊗ K )(R). This proves the proposition. ��

We remark that the proposition follows from the proof of Proposition 3.3 if
(dimK (A0 ⊗ K ) =) dimC A0 < ∞. For the relation (3.3) turns into δX = O since
D = O .

Corollary 3.9 If dimC A0 < ∞, then Autδ(A0 ⊗ K ) is an affine algebraic δ-K -group.

Proof This follows from the proposition above, since Aut(A0) is an affine algebraic
C-group under the assumption; see [22, Section 7.6]. ��

The following result would be worth presenting, though it is not essentially used in
this paper.

Proposition 3.10 Assume dimC A0 < ∞, and that the field C is algebraically closed.
Then every twisted form of the δ-K -object (A0 ⊗ K , δ0) is split by some (finitely
generated) Picard-Vessiot extension L over K .

Proof By the preceding results the first assumption implies Aut(A0) = SpecC (H0)

and Autδ(A0 ⊗ K ) = Specδ-K (H0 ⊗ K ), where H0 is a finitely generated C-Hopf
algebra.

Let B be a right (H0 ⊗ K )-Galois δ-K -algebra, and regard it as a twisted form
of the right (H0 ⊗ K )-comodule δ-K -algebra H0 ⊗ K . We should prove that this
twisted form B is split by some L/K as above. It suffices to prove that there exists a
δ-K -algebra map from B to such an L , since B is split by B, itself.

We have the δ-B-algebra isomorphism

ρ̃ : B ⊗K B
�−→ B ⊗K (H0 ⊗ K ) = B ⊗ H0

as in (3.2). Choose a simple quotient δ-K -algebra R of B, as in the proof of Lemma 3.2.
Then R is an integral domain by [21, Lemma 1.17], as before. This is finitely generated
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as a K -algebra since B is such. The quotient field L = Q(R) of R uniquely turns
into a δ-field, which is necessarily a finitely generated extension over K . The second
assumption above, combined with [2, Lemma 4.2], implies that the field CL of con-
stants in L equalsC . This L/K will be proved to be a desired Picard–Vessiot extension
by [2, Definition 1.8 and Theorem 3.11], if one sees that the canonical δ-R-algebra
map R ⊗CR⊗K R → R ⊗K R which arises from the embedding CR⊗K R ↪→ R ⊗K R
of the constants into R⊗K R is surjective. (By [2, Proposition 6.7] this canonical map
is injective, though this fact is not needed here.) Indeed, the desired surjectivity is seen
from the commutative diagram

B ⊗ H0 B ⊗K B

R ⊗ CR⊗K R R ⊗K R.

�
ρ̃−1

Here the vertical arrow on the left-hand side naturally arises from the composite of
ρ̃−1|H0 : H0 → B ⊗K B with the natural surjection B ⊗K B → R ⊗K R, which
clearly takes values in CR⊗K R . ��

4 Proof of the Theorem and Computations

Throughout in this section we let K := C(t), and write ⊗ for ⊗K .
Suppose that we are in the situation of Sect. 1. Let g0 be a complex simple Lie

algebra, and let g = g0(K ) denote the δ-K -Lie algebra as in (1.1).

4.1 Two Key Facts

One key fact for us is the following description of the automorphism-group scheme
Aut(g0) of g0. Recall that the finite group Γ = Out(g0) of outer-automorphisms of g0
is explicitly given by (1.2); this Γ will be identified with the associated, finite constant
group scheme. Let G◦

0 be the adjoint simple C-group associated with g0. A natural
action by Γ on G◦

0 constitutes an affine algebraic C-group

G0 = G◦
0 � Γ

of semi-direct product, so that

Lie(G0) = Lie(G◦
0) = g0,

and the adjoint action by G0 on g0 gives an isomorphism

Ad : G0
�−→ Aut(g0) (4.1)

123



Twisted Forms of Differential Lie Algebras overC(t) 123

of affine algebraic C-groups. By restriction this Ad induces the identity Γ = Out(g0).
Note that G◦

0 is the connected component of G0 containing the identity element. See
[15, Chapter 4, Section 4, 1◦].

Suppose G0 = SpecC(H0), and define

G = Specδ-K (H0 ⊗C K ).

Then one sees g = Lie(G). Moreover, it follows from (4.1) and Proposition 3.8 that
the adjoint action by G on g gives an isomorphism

Ad : G �−→ Autδ(g)

of affine algebraic δ-K -groups. This together with Proposition 3.5 prove the following.

Proposition 4.1 Every form of the δ-K -Lie algebra g uniquely arises, as described by
(3.11), from a right δ-K -torsor for G.

Another key fact is the cohomology vanishing of the (non-differential) Amitsur 1st
cohomology due to Steinberg (see Serre [20, III, 2.3, Theorem 1′]),

H1(K , F) = 0, (4.2)

where F is a connected affine algebraic K -group. This is proved more generally when
K is replaced by a perfect field, say K ′, of dimension ≤ 1 [20, Definition on Page
78], and in addition, F is assumed to be smooth if charK ′ > 0; note that every affine
algebraic K -group is necessarily smooth since charK = 0. One sees that K (= C(t))
is a (C1)-field by Tsen’s Theorem, whence K is of dimension ≤ 1 by [20, Corollary
on Page 80].

4.2 Proof of Theorem 1.5, Part 1: Case 0 = {1}

In this case, G, regarded as an affine K -group, is connected. By (4.2) applied to this
G, it follows that every right δ-K -torsor for G, regarded as a right K -torsor, is trivial.
Propositions 3.6 and 4.1 conclude the proof.

4.3 Galois Descent

To proceed to Parts 2 and 3, suppose that we are now in Case Γ �= {1}.
Note that Γ , regarded as a finite constant C-group scheme, is represented by the

dual (CΓ )∗ of the group algebra CΓ ; this (CΓ )∗ is the separable part π0(H0) of H0
[22, Page 49], that is, the largest separable subalgebra (in fact, Hopf subalgebra) of
the C-Hopf algebra H0. Suppose G◦

0 = SpecC(J0), and define

H := H0 ⊗C K , J := J0 ⊗C K , Z := (CΓ )∗ ⊗C K (= (KΓ )∗),
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which are naturally δ-K -Hopf algebras, such that G = Specδ(H), in particular. One
sees that Z ⊂ H is a δ-K -Hopf subalgebra, and

J = H/(Z+), (4.3)

where (Z+) is the ideal (in fact, δ-stable Hopf ideal) generated by the augmentation
ideal Z+ = Ker(ε : Z → K ) of Z , that is, the kernel of the counit. Since Γ acts
innerly on G◦

0 (⊂ G0) from the right, it acts from the left on J as δ-K -Hopf-algebra
automorphisms. The action gives rise by adjoint to the co-action J → J ⊗ Z by
Z = (KΓ )∗, so that the associated smash coproduct Z �< J (see [14, Definition
10.6.1]) coincides with H . Here one should recall G0 = Γ � G◦

0 (= G◦
0 � Γ ).

Choose arbitrarily a right δ-K -torsor X = Specδ(B) for G = Specδ(H). In view
of Proposition 4.1 we wish to describe the δ-K -Lie algebra gX (= Lie(GX)). Let
H ′ := HB , or in other words, suppose GX = Specδ(H

′), so that B is an (H ′, H)-bi-
Galois δ-K -algebra. We are going to prove the following.

Proposition 4.2 There is a finite-dimensional δ-K -Hopf subalgebra Z ′ of H ′ such that

(i) Z ′ is separable as a K -algebra;
(ii) the associated quotient δ-K -Hopf algebra

J ′ := H ′/(Z ′+) (cf. (4.3)) (4.4)

has the trivial separable part, π0(J ′) = K, or in other words, it includes no
non-trivial separable K -subalgebra.

This implies that the affine K -group Spec(H ′) includes Spec(J ′) as the connected
component containing the identity element, and thereby concludes

gX = the Lie algebra of the affine δ-K -group Specδ(J
′) (4.5)

as δ-K -Lie algebras. Therefore, we aim first to prove the proposition above, and then
to describe the gX above.

Let ρ : B → B ⊗ H denote the structure map on B, and define

R := ρ−1(B ⊗ Z).

Then this R is a right δ-K -Galois algebra for Z , or in other words, Specδ(R) is a right
δ-K -torsor for the finite constant δ-K -group scheme ΓK given by Γ ; it arises from the
the right δ-K -torsor X = Specδ(B) for G through the restriction map H1

δ (K ,G) →
H1

δ (K , ΓK )which is defined in the differential situation, as well, just as in the ordinary
situation. Note that R is naturally a δ-K -algebra of finite K -dimension, and is aGalois
K -algebrawithGalois groupΓ in the classical sense that the K -algebramap R�Γ →
EndK (R)which arises from the natural module-action on R by the semi-direct product
R�Γ is an isomorphism.Note that R�Γ is naturally a non-commutative δ-K -algebra
with Γ (= {1} × Γ ) included in constants. A δ-(R � Γ )-module is thus an R-module
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M equipped with an additive operator δ and a Γ -action of K -linear automorphisms,
such that

δ(γm) = γ (δm), δ(am) = (δa)m + a(δm), γ (am) = (γ a)(γm),

where γ ∈ Γ , a ∈ R and m ∈ M . We call this a (δ, Γ )-R-module, to treat δ and
Γ on an equality, and let (δ, Γ )-R-Modules denote the category of those modules.
The classical Galois Descent Theorem (see [12, Section 18]) tells us that the functor
M �→ MΓ , Γ -invariants in M , gives the category equivalence

(δ, Γ )-R-Modules
≈−→ δ-K -Modules,

whose quasi-inverse is given by the base-extension functor⊗K R. In fact, this is a sym-
metric tensor equivalence, so that there is induced the category equivalence between
their (commutative-)algebra objects, or between any other kind of linear objects. The
category on the left-hand side has the tensor product ⊗R , the unit object R and the
obvious symmetry, while the category on the right-hand side has the tensor prod-
uct ⊗K , the unit object K and the obvious symmetry. A commutative algebra in
(δ, Γ )-R-Moduleswill be called a (δ, Γ )-R-algebra; it descends to a δ-K -algebra by
the category equivalence above. Similarly, a (δ, Γ )-R-Hopf or Lie algebra is defined,
and it descends to a δ-K -object.

We have the commutative diagram

B ⊗ B B ⊗ H

R ⊗ R R ⊗ Z

R

�
ρ̃

�

mult idR⊗ ε

of δ-K -algebras, where the upper horizontal arrow indicates the isomorphism ρ̃ (see
(3.2)) associated with the structure map ρ : B → B ⊗ H on B, and the lower
one is the analogous isomorphism for the right Z -Galois δ-K -algebra R. In addition,
mult : R ⊗ R → R indicates the multiplication x ⊗ y �→ xy. By the base extensions
along the two diagonal arrows mult : R ⊗ R → R and idR ⊗ ε : R ⊗ H → R, the ρ̃

induces the isomorphism

B ⊗R B
�−→ B ⊗ J = B ⊗R (J ⊗ R). (4.6)

Recall that Γ acts on J as δ-K -Hopf algebra automorphisms. Then one sees that
J ⊗ R is a (δ, Γ )-R-Hopf algebra, and hence descends to a δ-K -Hopf algebra
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J := (J ⊗ R)Γ .

The composite

B → B ⊗ H → B ⊗ J = B ⊗R (J ⊗ R)

of the structure map on B with the natural surjection onto B ⊗R (J ⊗ R) is a (δ, Γ )-
R-algebra map, and hence descends to a δ-K -algebra map BΓ → BΓ ⊗ J , which
we call �.

Lemma 4.3 BΓ is a right J -Galois δ-K -algebra by the � above.

Proof One sees that � satisfies the co-associativity and the counit property since the
last composite does. One sees that (4.6) is an isomorphism of (δ, Γ )-R-algebras, and
descends to �̃ : BΓ ⊗ BΓ → BΓ ⊗ J , which is, therefore, an isomorphism. ��

Recall H ′ = HB . Define Z ′ := Z R , so that R is a (Z ′, Z)-bi-Galois δ-K -algebra.

Lemma 4.4 Z ′ is a finite-dimensional δ-K -Hopf subalgebra of H ′ which has the prop-
erty (i) of Proposition 4.2, that is, Z ′ is separable as a K -algebra.

Proof By (3.13) we have Z ′ ⊂ H ′. This inclusion is compatible with the Hopf-algebra
structure maps, as is seen from the construction of HB given in [17, Theorem 3.5]. To
verify this here only for the coproduct, recall from (3.14) that H ′ ⊂ B ⊗ B gives rise
to a left B-linear isomorphism B ⊗ H ′ = B ⊗ B. Therefore, we have

H ′ ⊗ H ′ ⊂ B ⊗ H ′ ⊗ H ′ = B ⊗ B ⊗ H ′ = B ⊗ B ⊗ B.

The construction cited above tells us that the coproduct on H ′ is the restriction of

B ⊗ B → B ⊗ B ⊗ B, b ⊗ c �→ b ⊗ 1 ⊗ c.

This, combinedwith the analogous restriction of R⊗R → R⊗R⊗R to the coproduct
Z ′ → Z⊗Z ′, shows the desired compatibility, as is verified by a commutative diagram
in cube.

The K -algebras Z , R and Z ′ turn to be mutually isomorphic after base extension
to some algebraically closed field. It follows that Z ′ is finite-dimensional separable,
since Z is. ��

Define J ′ := H ′/(Z ′+), as in (4.4). The proof of Proposition 4.2 completes by
proving the next lemma. The following proposition describes the δ-K -Lie algebra gX;
see (3.10).

Lemma 4.5 BΓ is a (J ′,J )-bi-Galois δ-K -algebra, and J ′ has the property (ii) of
Proposition 4.2, that is, π0(J ′) = K.
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Proof The same argument as proving Lemma 4.3 shows that BΓ is a left J ′-Galois
δ-K -algebra. Here one should notice that Γ acts (or Z co-acts) trivially on H ′, and
hence on J ′. Indeed, BΓ is bi-Galois, since the structure maps

H ′ ⊗ B ← B → B ⊗ H

on B commute with each other (see (3.7)), and hence those on BΓ do.
Note that π0(J ) (= π0(J0) ⊗C K ) equals K . This is equivalent to saying that the

K -algebra J contains no non-trivial idempotent even after base extension to some (or
any) algebraically closed field. It follows that J and J ′ have the same property, since
J and J , as well as J and J ′, are mutually isomorphic after base extension such as
above. ��

Since g0(R) = g0 ⊗C R, on which Γ acts diagonally, is a (δ, Γ )-R-Lie algebra, it
descends to g0(R)Γ , a δ-K -Lie algebra. Our aim of this subsection is achieved by the
following.

Proposition 4.6 The δ-K -Lie algebra gX is quasi-isomorphic to g0(R)Γ .

Proof Recall (4.5) and the result of Proposition 4.2 that BΓ is a (J ′,J )-bi-Galois
δ-K -algebra. By Steinberg’s Cohomology-Vanishing (4.2) applied to the connected
affine K -group Spec(J ), we see that the right J -Galois K -algebra BΓ is isomorphic
to J . This together with Proposition 3.6 prove the desired result. ��

We add an important consequence.

Corollary 4.7 The twisted forms of g0(K ) are precisely the δ-K -Lie algebras quasi-
isomorphic to g0(R)Γ , where R ranges over all right (KΓ )∗-Galois δ-K -algebras.

Proof By Propositions 4.1 and 4.6, every twisted form is quasi-isomorphic to some
g0(R)Γ . Conversely, any g0(R)Γ is clearly a twisted form, whence any one that is
quasi-isomorphic to g0(R)Γ is, as well, by (4.5) and Corollary 3.7. ��

Before proceeding we make the following remark: given an integer n ≥ 2, let
Λn = K×/(K×)n denote the quotient group of the multiplicative group K× by the
subgroup of all n-th powers. This is an infinite group, as is easily seen. Removing the
identity element, let Λ+

n = Λn\{1}. Needed here is the set only in n = 2, 3. The set
Λ+

2 parametrizes the quadratic field extensions over K , while the set Λ+
3 modulo the

equivalence relation x ∼ x±1 parametrizes the cubic Galois field extensions over K .
Therefore, these two classes of field extensions both consist of infinitely many ones.

4.4 Proof of Theorem 1.5, Part 2: Case 0 = Z2

In this case, the right (KΓ )∗-Galois δ-K -algebras R are precisely

(i) the trivial one (KΓ )∗ (equipped with the obvious δ-operator), and
(ii) the quadratic field extensions over K (equipped with the δ-operator uniquely

extending the one on K ).
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By Corollary 4.7 it remains to show that for R = (KΓ )∗ in (i), we have g0(R)Γ �
g0(K ). Let Map(Γ , g0(K )) denote the Γ -set of all maps Γ → g0(K ), equipped with
the action

γ f : γ ′ �→ f (γ ′γ ),

where γ, γ ′ ∈ Γ and f ∈ Map(Γ , g0(K )). Regard this naturally as the direct product
of #Γ -copies of the δ-K -Lie algebra g0(K ). Then we see that associating to x ⊗ a ∈
g0 ⊗C (KΓ )∗, the map γ �→ γ x ⊗ a(γ ) gives a Γ -equivariant isomorphism

g0(R)
�−→ Map(Γ , g0(K ))

of δ-K -Lie algebras, whose restriction to the Γ -invariants is the desired g0(R)Γ �
g0(K ). This completes the proof.

4.5 Proof of Theorem 1.5, Part 3: Case 0 = S3

In this case, let R be a right (KΓ )∗-Galois δ-K -algebra. In view of Corollary 4.7 we
wish to show that g0(R)Γ is such as in Part 3 of the theorem. This is obvious when R
is either trivial or a Galois field extension L/K with Γ = Gal(L/K ); notice from the
preceding case that g0(R)Γ = g0(K ) if R is trivial. We may thus exclude these two
cases.

To describe R, note that R is artinian as a ring, and Γ -simple in the sense that it
does not include any non-trivial Γ -stable ideal. Since the action by Γ on R commutes
with the δ-operator, R is a module algebra over the C-Hopf algebra CΓ ⊗C C[δ],
which is artinian simple or AS in the sense of [2, Definition 11.6]; see the original [1,
Definition 2.6] as an alternate. This C-Hopf algebra is the group algebra CΓ tensored
with the polynomial algebra C[δ] in which δ is primitive. Choose arbitrary a maximal
(or equally, minimal) ideal m of R, and let Γ ′ be the subgroup of Γ consisting of all
elements that stabilize m. By [2, Proposition 11.5] we have

(a) Γ ′ � Z2 or (b) Γ ′ � Z3,

with the extremal cases being excluded. Moreover, there exists a δ-K -field L such
that R is naturally isomorphic to the (δ, Γ )-K -algebra Map(Γ ′\Γ , L) consisting
of all maps from the set of right cosets Γ ′\Γ to L . This Map(Γ ′\Γ , L) is naturally
isomorphic to the direct product of [Γ : Γ ′]-copies of L , as δ-K -algebra, and possesses
the Γ -action presented below. Suppose that Z2 is an arbitrarily chosen subgroup of Γ

of order 2, andZ3 is the unique subgroup ofΓ of order 3, so that we haveΓ = Z3�Z2.
Case (a).Wemay suppose Γ ′ = Z2 (see [2, Proposition 11.5 (1)]) and Γ ′\Γ = Z3.

If γ ∈ Γ , γ ′ ∈ Z3 and f ∈ Map(Z3, L), then we have

γ f : γ ′ �→
{
f (γ γ ′), if γ ∈ Z3

γ f (γ ′−1), if 0 �= γ ∈ Z2.
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Case (b). We have Γ ′ = Z3, and we may suppose Γ ′\Γ = Z2. If γ ∈ Γ , γ ′ ∈ Z2
and f ∈ Map(Z2, L), then we have

γ f : γ ′ �→

⎧
⎪⎨

⎪⎩

f (γ γ ′), if γ ∈ Z2;
γ f (γ ′), if γ ∈ Z3, γ ′ = 0 in Z2;
γ −1 f (γ ′), if γ ∈ Z3, γ ′ �= 0 in Z2.

In either case, since R is right (KΓ )∗-Galois,Γ ′ must act non-trivially on L , so that
L/K is aGalois field extensionwithΓ ′ = Gal(L/K ). Conversely, if L/K is such, then
R is seen to be a right (KΓ )∗-Galois δ-K -algebra, being split by L . Moreover, g0(R)

is naturally isomorphic to the (δ, Γ )-R-Lie algebraMap(Γ ′\Γ , g0(L)) equipped with
the obviously induced structure. We see

g0(R)Γ � Map(Γ ′\Γ , g0(L))Γ = (
Map(Γ ′\Γ , g0(L))Z3

)Z2

=
{

{all constant maps Z3 → g0(L)}Z2 in Case (a)

Map(Z2, g0(L)Z3)Z2 in Case (b)

= g0(L)Γ
′
,

which completes the proof.

4.6 Explicit Non-trivial Forms

Let us describe explicitly (up to quasi-isomorphism) the non-trivial twisted forms of
g0(K ) listed in (ii) of Part 2 and (ii)–(iv) of Part 3 of the theorem, separately for four
types. For all those, quadratic field extensions are needed. Such an extension L/K is
of the form

L = K (
√

α) = {a + b
√

α | a, b ∈ K },

where α ∈ K×\(K×)2. The generator of Gal(L/K ) (= Z2) sends each element
x = a + b

√
α to

x := a − b
√

α. (4.7)

We will use this symbol x , regardless of α.

4.6.1 Type A� (� ≥ 2)

We have g0 = sln(C), where n = � + 1 ≥ 3. The order 2 outer-automorphism is
conjugate to X �→ −t X . For a quadratic extension field L = K (

√
α) over K as

above, the generator of Γ (= Z2) may supposed to act on g0(L) by X = (
xi j

)
i, j �→

−t X = ( − x ji
)
i, j ; see [9, Chapter IX, Theorem 5]. We see

g0(L)Γ = on(K ) ⊕ √
α
(
Symn(K ) ∩ sln(K )

)
,
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where Symn(K ) (resp., on(K )) denotes the K -subspace of gln(L) consisting of all
matrices X with entries in K that are symmetric (resp., skew-symmetric, t X = −X ).

4.6.2 Type D� (� ≥ 5)

Let m = 2�. We have g0 = om(C), which consists of all skew-symmetric m × m
complex matrices. The order 2 outer-automorphism is conjugate to X �→ DXD,
where D = diag(−1, 1, . . . , 1); see [9, Chapter IX, Theorem 6]. For a quadratic
extension field L = K (

√
α) over K as above, we see

g0(L)Γ =
{(

0 −√
α t X√

α X Y

) ∣∣∣
∣ X ∈ Km−1, Y ∈ om−1(K )

}
, (4.8)

where by writing X ∈ Km−1, we mean that X is an (m − 1)-columned vector with
entries in K .

4.6.3 Type E6

Here we follow Jacobson [10, Section 7] for the construction. Let J be the exceptional
central simple Jordan algebra over C, and let J+ denote the subspace of J which
consists of the elements a with trace zero, T (a) = 0. We have the general linear
complex Lie algebra gl(J) on the C-vector space J. Given an element a ∈ J+, we
have an element Ra ∈ gl(J) given by Ra(x) = xa (= ax), x ∈ J. Let RJ+ be the
subspace of gl(J) which consists of all Ra , a ∈ J+. The complex simple Lie algebra
g0 of type E6 is the Lie subalgebra of gl(J) generated by RJ+ . We have

g0 = RJ+ ⊕ f0,

where we set f0 := [RJ+ , RJ+]; this is a Lie subalgebra of g0 such that [RJ+ , f0] =
RJ+ , and is in fact the complex simple Lie algebra of type E6. The order 2 outer-
automorphism of g0 is conjugate to X �→ −X∗, where X∗ denotes the operator
adjoint to X with respect to the trace form (a, b) �→ T (ab). More explicitly this is
given by

X �→
{

−X if X ∈ RJ+;
X if X ∈ f0.

Therefore, we have

g0(L)Γ = (RJ+ ⊗C K
√

α) ⊕ f0(K ).

4.6.4 Type D4

The complex Lie algebra g0 is the Lie algebra o8(C) of skew-symmetric 8×8 complex
matrices. We follow É. Cartan [8] for the explicit description of outer-automorphisms.
We discuss for each group action, separately as in Part 3 of the theorem.
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(ii) Action by Z2. The argument above for D� (� ≥ 5) works for � = 4, as well, so
that g0(L)Z2 is given by the right-hand side of (4.8) with m = 8.

(iii) Action byZ3. Choose a generator σ of the group. The relevant Galois extension
is a cubic one, and it is of the form L = K ( 3

√
β), whereβ ∈ K×\(K×)3. The generator

σ acts on L so that 3
√

β �→ ω 3
√

β, where ω is a primitive 3rd root of 1.
We suppose that the rows and the columns of matrices in g0 (= o8(C)) are indexed

by the eight integers 0, 1, . . . , 7. Given a matrix X = (
xi j

)
0≤i, j≤7 in g0, we define

seven vectors in C
4 by

Xi = t(x0,i , xi+1,i+5, xi+4,i+6, xi+2,i+3
)
, i = 1, 2, . . . , 7, (4.9)

where the index i + p greater than 7 is understood to be i + p− 7; e.g., the third entry
xi+4,i+6 in i = 3 in understood to be x7,2 (= −x2,7). Then every matrix X as above is
uniquely determined by these seven vectors. This holds when g0 is replaced by its base
extension. We will use in (4.13)–(4.15) the notation Xi for the seven vectors which
are associated as above with a matrix X in such a base extension.

The action by Z3 on g0 is (up to conjugation) such that σ acts on the vectors above
as the C-linear automorphisms given by the matrix

S = 1

2

⎛

⎜⎜
⎝

−1 −1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞

⎟⎟
⎠ , (4.10)

which is seen to have 1, 1, ω and ω2 as eigen-values; see [8, Section 4]. Set
√−3 :=

1 + 2ω, a square root of −3. Then we have the eigen-vectors

v
(1)
1 =

⎛

⎜⎜
⎝

0
1

−1
0

⎞

⎟⎟
⎠ , v

(2)
1 =

⎛

⎜⎜
⎝

0
1
0

−1

⎞

⎟⎟
⎠ , vω =

⎛

⎜⎜
⎝

√−3
1
1
1

⎞

⎟⎟
⎠ , vω2 =

⎛

⎜⎜
⎝

−√−3
1
1
1

⎞

⎟⎟
⎠ (4.11)

of S which are associated with 1, 1, ω and ω2, respectively; these form a basis of C
4.

Let L4 denote the L-vector space of all 4-columned vectors with entries in L . Define
a 4-dimensional K -subspace of L4 by

ΞL/K = Kv
(1)
1 + Kv

(2)
1 + K 3

√
β vω2 + K ( 3

√
β)2vω. (4.12)

We see now easily

g0(L)Γ = { X ∈ g0(L) | Xi ∈ ΞL/K , 1 ≤ i ≤ 7 }. (4.13)

(iv) Action by Γ (= S3). The relevant Galois extension is described by the follow-
ing.
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Lemma 4.8 A Galois extension field over K with Galois group Γ (= S3) is the same
as a field L of the form L = K (

√
α, 3

√
β), where

(a) α ∈ K×\(K×)2, so that K (
√

α)/K is a quadratic field extension,
(b) β ∈ M×\(M×)3, where M = K (

√
α), and

(c) ββ ∈ (K×)3, where β is such as given by (4.7).

For such an L, we have

(x) an order 3 element σ and an order 2 element τ of Γ , which necessarily generate
Γ , satisfying στ = τσ 2,

(y) a primitive 3rd root ω of 1, and
(z) an element γ of K× such that γ 3 = ββ (see (c) above),

with which the action by Γ is presented as

σ : √
α �→ √

α, 3
√

β �→ ω 3
√

β; τ : √
α �→ −√

α (= √
α), 3

√
β �→ γ

3
√

β
.

Proof Given β such as in (b), we have a cubic extension M( 3
√

β)/M . One sees that
ββ ∈ (M×)3 if and only if M( 3

√
β) = M(

3
√

β). If γ ∈ M× and γ 3 = ββ, then
γ / 3

√
β is a 3rd root of β. A point is only to see that 3

√
β �→ γ / 3

√
β gives an involution

which extends M → M, x �→ x if and only if γ ∈ K×. ��
Example 4.9 Recall K = C(t). One can prove that

α = 1 − t3 and β = 1 +
√
1 − t3

satisfy the conditions above. Indeed, a point is to prove β /∈ (M×)3, reducing it to
show directly that there is no triple of polynomials a, b, c in C[t] with c monic, such
that

a3 + 3ab2α = c3, 3a2b + b3α = c3.

The result shows that there exists a Galois extension L/K with Gal(L/K ) = S3.

Let L = K (
√

α, 3
√

β), M = K (
√

α), σ , τ , ω and γ be as in Lemma 4.8. Recall
from the proof of the lemma that γ / 3

√
β is a 3rd root of β, and denote it by 3

√
β, so

that one has

τ( 3
√

β) = 3
√

β, τ

(
3
√

β

)
= 3

√
β.

The action by Γ on g0 (= o8(C)) is (up to conjugation) such that the generators
σ and τ act on the seven vectors in (4.9) as the K -linear automorphisms given by
the matrix S in (4.10) and the diagonal matrix D = diag(−1, 1, 1, 1), respectively.
The latter action by τ on g0 coincides with the above mentioned outer-automorphism
X �→ DXD for type D�, when � = 4.
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Note L = M( 3
√

β), and apply the previous result for the action by Z3 to the action
by 〈σ 〉 (on L/M). Then, by using the M-subspace ΞL/M of L4 defined by (4.12)
(modified into the present situation), we have

g0(L)〈σ 〉 = { X ∈ g0(L) | Xi ∈ ΞL/M , 1 ≤ i ≤ 7 }. (4.14)

By using the vectors given in (4.11) we define a 4-dimensional K -subspace of L4 by

ΘL/K = Kv
(1)
1 + Kv

(2)
1 + K

(
3
√

β vω2 + 3
√

β vω

)

+ K
√

α

(
3
√

β vω2 − 3
√

β vω

)
.

We see now easily

g0(L)Γ = (g0(L)〈σ 〉)〈τ 〉 = { X ∈ g0(L) | Xi ∈ ΘL/K , 1 ≤ i ≤ 7 }. (4.15)
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