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Abstract
V. Arnold’s problem 1987–14 from his Problems book asks whether there exist bodies
with smooth boundaries in R

N (other than the ellipsoids in odd-dimensional spaces)
for which the volume of the segment cut by any hyperplane from the body depends
algebraically on the hyperplane. We present a series of very realistic candidates for
the role of such bodies, and prove that the corresponding volume functions are at least
algebroid, in particular their analytic continuations are finitely valued; to prove their
algebraicity it remains to check the condition of finite growth.
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Picard–Lefschetz theory · Integrability · Stratified Morse theory

Mathematics Subject Classification 44A99 · 4403

1 Introduction

Any compact body with regular boundary in RN defines a two-valued function on the
space of affine hyperplanes: its values are the volumes of two parts into which the
hyperplanes cut the body.

A body in R
N (and also the hypersurface bounding it) is called algebraically

integrable if this function is algebraic, i.e. there is a non-zero polynomial F in
N + 2 variables such that F(V , a1, . . . , aN , b) = 0 any time when V equals the
volume cut (to some side) from this body by the hyperplane defined by the equation
a1x1 + · · · + aN xN + b = 0.

Archimedes [2] has proved that spheres in R
3 are algebraically integrable; today,

it is easy to check this property also for all ellipsoids in odd-dimensional spaces.
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Newton ([10], Lemma XXVIII) has proved that bounded convex bodies with smooth
boundaries in R

2 never are algebraically integrable. V. Arnold asked (see [6], Prob-
lems 1987–14, 1988–13, and 1990–27, and also [5]) whether there exist algebraically
integrable bodies with smooth boundaries other than collections of ellipsoids in
odd-dimensional spaces. It was proved in [12] that there are no such bodies in even-
dimensional spaces. Themain obstruction to the integrability is themonodromy action
on homology groups related to hyperplane sections of our hypersurfaces: this action
controls the ramification of the analytic continuation of volume functions, and usually
provides infinitely many values of such a continuation at one and the same hyperplane.
This obstruction implies even a more strong assertion: the volume function of a body
with smooth boundary in R

N , N even, cannot be algebroid. It provides also many
strong restrictions on the local geometry of algebraically integrable bodies for odd
N (see [11]), which caused the conjecture that such bodies other than collections of
ellipsoids do not exist.

We present below a new series of bodies in all spaces of odd dimensions greater
than three, for which this obstruction vanishes: those are tubular neighborhoods of
standard even-dimensional spheres (and also any bodies affine equivalent to them). It
is extremely plausible that these bodies are algebraically integrable: we prove that the
analytic continuations of their volume functions are algebroid (in particular, finitely
valued), so it remains only to prove that they have finite order of growth at their singular
points.

1.1 Main Results

Let n be odd, m be even, and ε ∈ (0, 1). Consider the Euclidean space R
n+m ≡

R
n ⊕ R

m with orthogonal coordinates x1, . . . , xn in R
n and y1, . . . , ym in R

m , and
the hypersurface in it defined by equation

(√
x21 + · · · + x2n − 1

)2

+ y21 + · · · + y2m = ε2. (1)

Denote by P (respectively, by PC) the space of all affine hyperplanes in R
n+m

(respectively, inCn+m), andbyReg the subset inP consistingof hyperplanes transver-
sal to the hypersurface (1). Identifying any real hyperplane with its complexification,
we consider P as a subset of PC.

Theorem 1 For any ε ∈ (0, 1), there is a four-valued analytic function on the spacePC

such that one of volumes cut by hyperplanes from the body bounded by hypersurface
(1) in R

n+m coincides in any point X ∈ P with a sum of at most two (maybe zero)

values of this function. The monodromy group of this function is the Klein four-group
generated by permutations

(1234
2143

)
and

(1234
4321

)
of values.

Conjecture 1 This four-valued analytic function is in fact algebraic.

Remark 1 If n = 1 or m = 0, then (1) defines a reducible hypersurface, and hence
does not fit the Arnold’s question.
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Remark 2 Hypersurfaces defined by similar equations

(
x21 + · · · + x2n − 1

)2 + y21 + · · · + y2m = ε2 (2)

with odd n and arbitrary m were considered in [14] as boundaries of locally alge-
braically integrable bodies. The hypersurface (1) has a smaller monodromy group of
homology classes of hyperplane sections (which, in fact, controls the ramification of
volume function) than (2), because it has singular points in the imaginary domain;
these singularities “eat” parabolic points of the hypersurface, which cause a large part
of the corresponding monodromy group.

Remark 3 It is important that the second fundamental form of the hypersurface (1) in
R

n+m has only even inertia indices at all points where it is non-degenerate, cf. §3 in
[13].

Remark 4 Are there any other examples of this sort? Some natural candidates are pro-
vided by the iteration of the previous construction: we take a flag of odd-dimensional
spaces Rk ⊂ R

n ⊂ R
N and a tubular neighbourhood in R

N of the boundary of a
tubular neighbourhood in Rn of the standard sphere Sk−1 ⊂ R

k .

Remark 5 Even if Conjecture 1 will be proved, one of Arnold’s problems of this series
will remain unsolved: it asks whether there are extra convex algebraically integrable
bodies in R

N , see [6], problem 1990–27. Also, we do not have good examples for
N = 3.

Remark 6 See [1,7,9] for some related problems and results.

An obvious problem (whose solution would imply Conjecture 1) is to integrate
explicitly in radicals the volume function of the body (1).

1.2 A Detalization of Theorem 1

Denote by W the body in R
n+m bounded by hypersurface (1); denote its volume

by C0, and the corresponding two-valued volume function on P by VW . Denote by
P2 (respectively, by PC

2 ) the two-dimensional subspace in P (respectively, in PC)
consisting of all hyperplanes defined by equations of the form

px1 + qy1 + r = 0 (3)

with real (respectively, complex) coefficients p, q, and r ; also denote by Reg2 the
space P2 ∩ Reg.

The group O(n) × O(m) of independent rotations in Rn and Rm acts on the space
P . The volume function VW is constant on the orbits of this action. Any such orbit
contains points of the space P2. In particular, any hyperplane defined by equation

α1x1 + · · · + αn xn + γ1y1 + · · · + γm ym = β, (4)
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Fig. 1 Planar slice of W

where not all coefficientsα j are equal to 0, can be reduced by this group to a hyperplane
with equation

x1 = ay1 + c , (5)

where

a =
√

γ 2
1 + · · · + γ 2

m√
α2
1 + · · · + α2

n

, c = |β|√
α2
1 + · · · + α2

n

, (6)

cf. [14].
The space Reg2 consists of five connected components. Indeed, the coordinate

plane R
2 ⊂ R

n+m defined by conditions x2 = · · · = xn = y2 = · · · = ym = 0
intersects the boundary ∂W of the body W along two circles (x1 − 1)2 + y21 = ε2

and (x1 + 1)2 + y21 = ε2, see Fig. 1. For any hyperplane X ∈ Reg2, the line X ∩R
2

can

(1) not intersect these circles leaving them to one side of it,
(2l ) , (2r ) intersect transversally only the left-hand (respectively, right-hand) circle,
(3) not intersect these circles but separate them, or
(4) intersect both of them.

Correspondingly, the space Reg splits into four components filled in by (O(n) ×
O(m))-orbits of points from these components ofReg2; the components (2l ) and (2r )
of Reg2 define one and the same component (2) of Reg. Then Theorem 1 has the
following detalization.

Theorem 2 There is a four-valued analytic function Ψ on the space PC such that

1) its restriction to P is (O(n) × O(m))-invariant,
2) the sum of its four values is everywhere equal to C0;
3) any value of the volume function VW on any hyperplane X ∈ Reg coincides with

– a value of this function Ψ , or C0 less such a value, if X belongs to the domain
(2) of Reg,

– the sum of some two values of Ψ if X belongs to one of domains (3) or (4);

4) the monodromy group of this analytic function is isomorphic to Z2 ⊕ Z2 and is
generated by permutations

(1234
2143

)
and

(1234
4321

)
of values;

5) the restriction of this function Ψ to the subspace PC

2 splits into the product of two
two-valued algebroid functions, one of which has the form

Φ(V , a, c) ≡ V 2 − S(a, c)V + P(a, c) (7)
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in coordinates a, c (see (5)), where S and P are single-valued analytic functions
invariant under reflection a �→ −a, and the other one is equal to Φ(V ,−a,−c).

The restrictions of the volume function VW to domains (3) and (4) coincide there
with some two-valued analytic functions, whose two values can be obtained one from
the other by analytic continuation along paths lying inside these domains. On the
contrary, two leaves of the function VW in the domain (2) of Reg are not analytic
continuations of one another even through the complex space PC.

1.3 Scheme of the Proof of Theorem 2 (cf. [12])

Denote by A the hypersurface in Cn+m defined by Eq. (1) or by (obviously equivalent
to it) equation

(
x21 + · · · + x2n + y21 + · · · + y2m + (1 − ε2)

)2 − 4(x21 + · · · + x2n ) = 0 . (8)

Denote by RegC the subset in PC consisting of all complex hyperplanes in C
n+m

genericwith respect to A (that is, of hyperplaneswhose closures in the compactification
CP

n+m of Cn+m are transversal to the stratified variety consisting of the hypersurface
A and the “infinitely distant” planeCPn+m\Cn+m). Denote byRegC

2 the intersection
RegC ∩ PC

2 .
By Thom isotopy lemma (see, e.g. [8]), groups Hn+m(Cn+m, A∪X) are isomorphic

to one another for all X ∈ RegC; moreover, they form a covering over RegC with
canonical flat connection (Gauss–Manin connection, see, e.g. [3,11]). This connection
naturally defines the monodromy action π1(RegC, X) → Aut(H∗(Cn+m, A ∪ X)).
Integrals of the volume form

dx1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dym (9)

along the elements of all these homology groups are well defined and provide linear
functions Hn+m(Cn+m, A ∪ X;C) → C.

Let X0 be a distinguished point inRegC, and Ξ an element of the group

Hn+m(Cn+m, A ∪ X0) . (10)

The pair (X0, Ξ) defines an analytic function onRegC: the value of its continuation
along a path l in RegC connecting X0 with some point X ′ is equal to the integral
of the form (9) along the cycle in Hn+m(Cn+m, A ∪ X ′) obtained from Ξ by the
Gauss–Manin connection over our path l.

If X0 ∈ Reg and Ξ is the homology class of a part of the body W cut from it by
hyperplane X0, then in a neighbourhood of the point X0 in P , this function coincides
with the volume function; hence, the analytic continuations of these two functions
into the complex domain also coincide. The ramification of the analytic continuation
of the volume function is thus controlled by the monodromy action of the group
π1(RegC, X0) on the group (10).
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In particular, suppose that this hyperplane X0 belongs to Reg2 and is sufficiently
close to the hyperplane given by equation x1 = 1 (but is not equal to it, because
the latter hyperplane is not generic “at infinity”), so that the line X0 ∩ R

2 intersects
the right-hand circle of ∂W only, see Fig. 1. It is easy to see that the component of
W\X0 containing the piece of R2 ∩ W placed to the right from X0 in Fig. 1 is a
vanishing cycle in the group (10); it contracts to a point when we move the plane
X0 to the right parallel to itself until the tangency with ∂W . We prove below that the
orbit of this element of (10) under the action of the group π1(RegC, X0) consists
of four elements, and this orbit splits into two two-element orbits of the action of
the group π1(RegC

2 , X0). Therefore, the analytic continuation of the corresponding
volume function from a neighbourhood of X0 to entireRegC (respectively, toRegC

2 )
is four-valued (respectively, two-valued).

These two analytic continuations are exactly the functions Ψ and Φ promised in
Theorem2.The coefficients S(a, c) and P(a, c) in (7) are, respectively, the sumand the
product of both values of the second analytic continuation at the point X(a, c) ∈ RegC

2
defined by Eq. (5). By definition, these functions S and P are single-valued.

If a hyperplane X with Eq. (5) intersects only the right-hand (respectively, left-
hand) circle of ∂W ∩ R

2 then the volume of one of parts cut by it from the body
W is equal to one of roots of the polynomial Φ(·, a, c) (respectively, Φ(·,−a,−c)).
If X separates two circles of ∂W ∩ R

2 then any part of W cut by X is equal to
the sum of both elements of the same orbit of the action of π1(RegC

2 , X0) on the
π1(RegC, X0)-orbit of the vanishing cycle, and hence its volume is equal to S(a, c)
or to C0 − S(a, c) ≡ S(−a,−c). A rotation of X inside this component of Reg
permutes the half-spaces of Rn+m separated by X , and hence permutes also these two
leaves of the function VW . If X intersects both these circles, then any of these two
parts is equal to the sum of two elements of the π1(RegC, X0)-orbit of our vanishing
cycle which belong to different π1(RegC

2 , X0)-orbits, so that the volume function at
X is equal to the sum of one root of Φ(·, a, c) and one root of Φ(·,−a,−c). The
basic element of π1(RegC

2 , X0) permutes these elements within any of two pairs, and
hence also moves one of the leaves of VW in the domain (4) of Reg to the other.

All these facts will be proved in Sects. 2–4.

1.4 On Functions S and P

The functions S(a, c) and P(a, c) defined in this way are regular in C
2 outside the

divisor given by equation

a2 + 1 = 0 , (11)

as follows from the next proposition.

Proposition 1 Let D be a compact subset in the space C
2 of hyperplanes (5), and be

separated from the divisor (11). Then
1) there is a constant C = C(D) such that for any hyperplane X ∈ D, the function

‖(x, y)‖2 ≡ |x1|2 + · · · + |xn|2 + |y1|2 + · · · + |ym |2
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is regular on the stratified variety A ∪ X everywhere outside the ball BC ⊂ C
n+m in

which this function takes the values ≤ C;
2) the functions |S| and |P| are bounded on D.

Proof. Statement 1) follows immediately from equation (8).
We can assume that D is convex: otherwise, we cover it by finitely many convex

compact sets and prove our estimates for any of these sets separately. By considerations
of stratifiedMorse theory, all homology classes in Hn+m(Cn+m, A∪X), X ∈ D, which
can be obtained byGauss–Manin connection from our vanishing cycle, can be realized
by compact cycles contained in BC and depending continuously on X . Therefore, the
integrals of the form (9) along all of them are uniformly bounded. �
Conjecture 2 These functions S and P are rational; they have poles of orders, respec-
tively, ≤ (n + m − 1)/2 and ≤ (n + m) on the variety (11), and poles of orders
n + m and 2(n + m) on the divisor {c = ∞}, and no other singularities in PC

2 . In
particular, single-valued entire analytic functions S(a, c) × (a2 + 1)(n+m−1)/2 and
P(a, c) × (a2 + 1)n+m grow only polynomially in C

2; hence, they are polynomials,
and function (7) is algebraic.

This conjecture obviously implies Conjecture 1.

2 Geometry and Topology of Variety (1)

Lemma 1 1. The singular locus singA of variety A is distinguished by the system of
equations

x1 = · · · = xn = 0, y21 + · · · + y2m + 1 − ε2 = 0 , (12)

in particular it is a smooth (m − 1)-dimensional complex manifold.
2. Let D be a small 2(n + 1)-dimensional open disc in C

n+m transversal to the
manifold singA (e.g. a fiber of its tubular neighbourhood). Then the variety A ∩ D is
diffeomorphic to the zero set of a non-degenerate quadratic form in C

n+1, i.e. to the
variety defined by equation

z21 + · · · + z2n+1 = 0 . (13)

Proof is immediate. �
Corollary 1 In conditions of Lemma 1, the group Hi (A ∩ D, A ∩ ∂ D) is equal to Z if
i is equal to n + 1 or n, and is trivial for all other i . �

Corollary 2 The complex link (see [8]) of singA is homotopically equivalent to Sn. �

Lemma 2 Hn+m−1(A) � Z
2 . This group is generated by

1) the fundamental cycle of the manifold ∂W ≡ A ∩ R
n+m, and

2) the set of points (x1, . . . , xn, y1, . . . , ym) ∈ A such that all x j are real, x21 +
· · ·+ x2n ≤ (1−ε)2, the real parts of all y j are equal to 0, and y21 +· · ·+ y2m ≥ ε2−1.

The group Hn+m−2(A) is trivial.
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Proof. Two described cycles are independent in Hn+m−1(A) since they bound relative
cycles in Hn+m(Cn+m, A) whose volumes (i.e. the integrals of the form (9) along
them) are not equal to zero and are incomparable for generic ε. Indeed, the volume of
the tube W tends to zero when ε tends to 0, and the volume of the second cycle tends
to a real non-zero constant (whose sign is equal to (−1)m/2); therefore, the ratios of
these two numbers run a continuum of values.

Denote by X1 the (non-generic) hyperplane {x1 = 0} in Cn+m . Consider the exact
sequence of the pair (A, A ∩ X1):

Hn+m−1(A ∩ X1) → Hn+m−1(A) → Hn+m−1(A, A ∩ X1) → (14)

Hn+m−2(A ∩ X1) → Hn+m−2(A) → Hn+m−2(A, A ∩ X1) . (15)

The left-hand group in (14) is trivial as A ∩ X1 is a (n + m − 2)-dimensional Stein
space. The restriction of the real function |x1| to the non-singular variety A\X1 has
exactly four Morse critical points with coordinates x1 = ±1±ε, x2 = · · · = xn =
y1 = · · · = ym = 0; their Morse indices are equal to n + m − 1. Therefore, the
concluding group Hn+m−2(A, A ∩ X1) in (15) is trivial, and the concluding group
Hn+m−1(A, A ∩ X1) in (14) is isomorphic to Z

4 and is generated by intersections
of the above-described two cycles with half-spaces where x1 ≤ 0 or x1 ≥ 0. The
boundaries of two generators lying in the half-space {x1 ≥ 0} are the cycles in A ∩ X1
which are independent in Hn+m−2(A ∩ X1) by exactly the same reasons by which
two cycles discussed in the present lemma are independent in Hn+m−1(A). So the
rank of the arrow connecting (14) and (15) is equal to 2, and its kernel (isomorphic
to Hn+m−1(A)) is two dimensional, i.e. Hn+m−1(A) � Z

2. The space A ∩ X1 is
analogous to A in the space X1 ≡ C

n+m−1 instead of Cn+m , which implies the
equality Hn+m−2(A ∩ X1) � Z

2. Two generators of this group belong to the image
of the boundary map of our exact sequence; hence, both arrows in (15) are trivial, and
Hn+m−2(A) � 0. �

Denote by Å the regular part A\singA of variety A.
Let Y be a generic hyperplane in C

n+m tangent to the manifold singA at some its
point s. Let B be a small ball centered at s, and Ỹ ∈ RegC be a hyperplane parallel to
Y and very close to it.

Lemma 3 Both groups participating in the map

Hn+m−1(A ∩ B, A ∩ B ∩ Ỹ ) → Hn+m−1(A ∩ B, ( Å ∪ Ỹ ) ∩ B) (16)

from the exact sequence of the triple (A ∩ B, ( Å ∪ Ỹ )∩ B, A ∩ B ∩ Ỹ ) are isomorphic
to Z, and this map is an isomorphism.

Proof. The space of choices of initial data participating in our lemma (consisting of the
point s ∈ singA, generic tangent plane Y , ball B, and neighbouring plane Ỹ ∈ RegC)
is irreducible; therefore, it is enough to consider an arbitrary such collection of them.
So we take for s the point with coordinates y1 = i

√
1 − ε2, y2 = · · · = ym = 0,

choose the radius ρ of the ball B much smaller than ε, and define Ỹ by the equation
y1 = i(

√
1 − ε2 − ζ ), where ζ is a positive constant much smaller than ρ. We will
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Fig. 2 Fibration of A close to the singular stratum

show that both groups (16) are then generated by one and the same relative cycle,
namely by the part of cycle 2) from Lemma 2 placed in the domain, where Im y1 ∈[√

1 − ε2 − ζ,
√
1 − ε2

]
.

The left-hand group in (16) appears as follows. The group H̃∗(A ∩ B) is trivial,
as A ∩ B is homeomorphic to the cone over the point s. The group H∗(A ∩ B ∩ Ỹ )

can be reduced by a kind of (m − 1)-fold suspension to the similar homology group
in the transversal slice of singA, see [8]. Let us remind a realization of this reduction
following [11], §II.4 (see Fig. 2). Fiber the ball B into its sections by a family of
parallel (n +1)-dimensional complex planes transversal to singA, along any of which
the coordinates y2, . . . , ym take some fixed values. Some of these planes are non-
generic with respect to the hypersurface A ∩ Ỹ : this happens when the intersection
point of such a plane and the variety singA belongs to Ỹ . By the usual complex Morse
lemma (applied to the restriction of the function y1 to singA), the variety singA∩Ỹ ∩ B
parameterizing the non-generic planes contains a sphere Sm−2 as a deformation retract.
This sphere can be spanned by a (m−1)-dimensional discΨ m−1,whose interior points
lie in singA ∩ B\Ỹ ; the class of this disc in Hm−1(singA ∩ B, singA ∩ B ∩ Ỹ ) is not
equal to zero.

Let Υ be a generic complex (n + 1)-dimensional plane from our family, which is
transversal to singA at a point of Ψ m−1, and Ξ be an i-dimensional cycle in A ∩ B ∩
Υ ∩ Ỹ . Then we can span an (i + m − 1)-dimensional cycle in the variety A ∩ B ∩ Ỹ
extending this cycle by the local triviality into all similar slices of this variety by
the planes of this family intersecting singA in interior points of the disc Ψ m−1 and
contracting them over the boundary points of this disc. This suspension operation
defines an isomorphism Hi (A ∩ B ∩ Υ ∩ Ỹ ) → Hi+m−1(A ∩ B ∩ Ỹ ).

In our case, by Lemma 1 the variety A ∩ B ∩ Υ ∩ Ỹ is homeomorphic to a generic
hyperplane section of the cone (13), hence is homotopy equivalent to Sn−1. This sphere
Sn−1 can be realized by the intersection of A ∩ Υ ∩ Ỹ with cycle 2 from Lemma 2.
Therefore, Hn+m−2(A ∩ B ∩ Ỹ ) � Z, and the equality of the first group in (16) to Z

follows by the exact sequence of the pair (A ∩ B, A ∩ B ∩ Ỹ ). By the construction, a
generator of this group is realized by the corresponding part of cycle 2 of Lemma 2.
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Considering the second group (16), we can replace the set Å by the complement in
A of a small closed tubular neighbourhood T of the singular locus singA; so we study
the relative homology group

H∗(A ∩ B, ((A\T ) ∪ (A ∩ Ỹ )) ∩ B) ≡ H∗(A ∩ T ∩ B, A ∩ (∂T ∪ Ỹ ) ∩ B).

(17)

By Lemma 1, the variety A ∩ T ∩ B is homeomorphic to the direct product of the
(2m −2)-dimensional disc singA∩ B and the variety A∩ D considered in Corollary 1.
We can arrange the fibration of the tubular neighbourhood of singA in B in such a
way that each fiber either completely belongs to Ỹ or does not intersect it. Then our
homeomorphism turns the pair (A ∩ T ∩ B, A ∩ (∂T ∪ Ỹ ) ∩ B) from (17) to the pair

((singA ∩ B) × (A ∩ D), ((singA ∩ Ỹ ∩ B) × (A ∩ D)) ∪ ((singA ∩ B) × (A ∩ ∂ D))).

The corresponding relative homology group (i.e. the right-hand group in (17)) is,
therefore, isomorphic to Z by Corollary 1 and Künneth formula for the direct product
of pairs (singA ∩ B, singA ∩ Ỹ ∩ B) and (A ∩ D, A ∩ ∂ D). A generator of this group
is again realized by cycle 2 from Lemma 2 (intersected with the neighbourhood T ).

�

Lemma 4 For any affine complex hyperplane X ∈ RegC in C
n+m, we have isomor-

phisms

Hn+m(Cn+m, A ∪ X) � Hn+m−1(A ∪ X) � Hn+m−1(A, A ∩ X) . (18)

All these groups are isomorphic to Z
6.

Proof. The isomorphisms (18) follow from exact sequences of pairs.
By Thom isotopy theorem, all homology groups in (18) form coverings over the

path-connected space RegC, so it is sufficient to calculate these groups for single
hyperplane X given by equation x1 + y1 = 0. We will assume that ε in (1) is small
enough, in particular ε < 1/

√
2.

The restriction of the function x1 + y1 to the stratified variety A has six critical
points. Four of them areMorse critical points placed in Å, namely those are real points
with (x1, y1) = ±(1, 0)±(ε/

√
2, ε/

√
2), x2 = · · · = xn = y2 = · · · = yn = 0 (the

signs ± are independent). In addition, we have two critical points {x1 = · · · = xn =
y2 = · · · = ym = 0, y1 = ±i

√
1 − ε2} of the restriction of function x1 + y1 to

the singular locus (12); they are Morse critical points of this function x1 + y1 on the
stratified variety A in the sense of [8], §1.4.

Let B j , j = 1, . . . , 6, be small balls in C
n+m around these six critical points.

Consider a graph in C1 consisting of closed paths connecting the non-critical value 0
with all critical values of the map x1 + y1 : A → C

1 as in Fig. 3. Denote these critical
values by z j , and denote by z̃ j some points of this graph which are very close to its
endpoints z j ; let Ỹ j ∈ RegC be six hyperplanes given by equations x1 + y1 = z̃ j .
Denote by ‡ the pre-image in A of this graph under the map x1 + y1, and by ‡̆ the
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Fig. 3 Vanishing cycles for the
model pair (A, A ∩ X)

pre-image of the same graph less the union of tiny segments (z̃ j , z j ] at the ends of its
legs.

The space ‡ is a deformation retract of A, and A ∩ X is a deformation retract of ‡̆.
This implies the first isomorphism of the sequence

H∗(A, A ∩ X) � H∗(‡, ‡̆) �
6⊕

j=1

H∗(A ∩ (x1 + y1)
−1([z̃ j , z j ]), A ∩ Ỹ j ) �

�
6⊕

j=1

H∗(A ∩ B j , A ∩ Ỹ j ∩ B j ); (19)

here the second equality is excision, and the third one follows from the local triviality
of the restrictions of the map x1 + y1 to the sets (A\B j ) ∩ (x1 + y1)−1([z̃ j , z j ]).

All six summands in (19) are isomorphic toZ in dimension n+m −1 and are trivial
in all other dimensions. For four summands related to non-vertical legs of the graph
of Fig. 3, this follows from the usual Morse lemma (and the corresponding generators
of the group Hn+m−1(A, A ∩ X) are standard Lefschetz thimbles, see [11]); for two
vertical legs, the same follows from Lemma 3. �

Corollary 3 For any X ∈ RegC, the group Hn+m−2(A ∩ X ,Q) is isomorphic to Q
4.

Proof. This follows immediately from Lemmas 2 and 4 and exact sequence of the pair
(A, X). �

Denote by r H∗(A, A ∩ X) the subgroup in H∗(A, A ∩ X) represented by relative
cycles avoiding the singular locus of A, i.e. the image of the obvious map H∗( Å, Å ∩
X) → H∗(A, A ∩ X).

Lemma 5 For any X ∈ RegC, the group r Hn+m−1(A, A ∩ X) is isomorphic to Z
4.

For X considered in the proof of Lemma 4, this group is generated by four Lefschetz
thimbles defined by non-vertical paths in Fig. 3.

Proof. The groups r H∗(A, A ∩ X) for all generic X are isomorphic to one another,
so let us take X from the proof of Lemma 4. By Lemma 3 (and the exact sequence of
triple mentioned in its statement), the image of the group Hn+m−1( Å, Å ∩ X) in the
group (19) can be at most four-dimensional since it does not contain non-zero linear
combinations of the summands corresponding to two critical points from singA. Four
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other generators of this sum can be realized by standard Lefschetz thimbles and hence
belong to the image of this group. �

3 Monodromy Action

Fundamental groups π1(RegC, X) and π1(RegC

2 , X) act by monodromy operators
on all groups (18) and on the subgroup r H∗(A, A ∩ X) of the last of them; this action
commutes with isomorphisms (18), cf. [12].

Theorem 3 The image of the group π1(RegC, X) in the group of automorphisms of
the lattice r H∗(A, A ∩ X) ∼ Z

4 under the monodromy representation is the Klein
four-group Z2 ⊕ Z2. For some concordant choice of orientations of basic Lefschetz
thimbles generating this lattice, the automorphisms defined by this monodromy action
preserve the set of these basic elements and act on it by permutations

(1234
2143

)
and

(1234
4321

)
and their compositions. The similar image of π1(RegC

2 , X) is isomorphic to Z2 and
is generated by only the first of these permutations.

A proof of this theorem takes the rest of this section.
Since the spaces PC and PC

2 are simply connected, these fundamental groups are
generated by “pinches”, i.e. the loops going first from the distinguished point X to
a smooth piece of the discriminant set Σ ≡ PC\RegC of non-generic hyperplanes,
then running a small circle around this piece, and coming back to X along the first
part of the loop.

The discriminant variety Σ consists of four irreducible components Σ j , j =
1, . . . , 4, formed, respectively, by hyperplanes

(Σ1) tangent to the variety A at its non-singular finite points,
(Σ2) tangent to the variety singA at its finite points,
(Σ3) defined by equation (4) with

α2
1 + · · · + α2

n + γ 2
1 + · · · + γ 2

m = 0 (20)

(i.e. asymptotic to the smooth part of A: the closures in CP
n+m of these hyperplanes

are tangent to the intersection of the closure of A and the “infinitely distant” hyperplane
CP

n+m−1∞ ≡ CP
n+m\Cn+m), and

(Σ4) defined by equation (4) with

γ 2
1 + · · · + γ 2

m = 0 (21)

(i.e. asymptotic with respect to singA).

Let us study the action of pinches embracing these components on the group
r Hn+m−1(A, A ∩ X).

3.1 61: Standard Picard–Lefschetz Operator

Proposition 2 The pinches in RegC going around smooth pieces of the component
Σ1 act trivially on the group r Hn+m−1(A, A ∩ X).
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Fig. 4 Vanishing cycles and their complex conjugates

Proof. Let s be a regular point of A, at which the second fundamental form of A is non-
degenerate; let Y ∈ Σ1 be the hyperplane tangent to A at this point. We assume that
Y is not tangent to A at any other points and does not belong to any other components
of Σ (which is true for almost all points s ∈ A). Then Σ is smooth at the point Y .
Let L : C

n+m → C be a linear (generally non-homogeneous) function such that
Y is defined by the equation L = 0. Let B be a small ball centered at s. Consider
the one-parametric family of parallel hyperplanes Xλ, λ ∈ C

1, defined by equations
L(x, y) = λ. For all λ with sufficiently small |λ| �= 0, these hyperplanes belong to
RegC. Let λ0 �= 0 be such a value of the parameter λ with very small |λ0|. We need
to calculate the monodromy action on r Hn+m−1(A, A ∩ Xλ0) defined by the circle in
RegC consisting of all hyperplanes Xλ with λ = eitλ0, t ∈ [0, 2π ]. This action is
described by the Picard–Lefschetz formula (22) formulated in the following terms.

The group Hn+m−1(A ∩ B, A ∩ B ∩ Xλ0) is isomorphic to Z and is generated by
the vanishing relative cycle Δ(λ0), see, e.g. [11]. The boundary map Hn+m−1(A ∩
B, A ∩ B ∩ Xλ0) → Hn+m−2(A ∩ B ∩ Xλ0) is an isomorphism, and the latter group
is generated by the absolute cycle ∂Δ(λ0).

Further, let Δ be any element of the group Hn+m−1(A, A ∩ Xλ0), and ∂Δ be its
boundary in Hn+m−2(A ∩ Xλ0). Then the monodromy operator in question sends our
class Δ to

Δ + (−1)(n+m)(n+m−1)/2〈∂Δ, ∂Δ(λ0)〉Δ(λ0) , (22)

where 〈·, ·〉 is the intersection index in Å ∩ Xλ0 . Therefore, it remains to prove the
following lemma.

Lemma 6 For X ∈ RegC, any two elements of r Hn+m−1(A, A ∩ X) can be repre-
sented by relative cycles Δ,Δ′ ⊂ Å such that 〈∂Δ, ∂Δ′〉 = 0.

Proof. It is sufficient to prove this for hyperplane X used in the proof of Lemma 4,
and for basic Lefschetz thimbles issuing from the four critical points of the function
x1 + y1 : Å → C, see Figs. 3 and 4. All these critical points are real, and Morse
indices of their restrictions to the real part ∂W of A are even. Let ξ j , j ∈ {1, . . . , 4},
be critical values±1±√

2ε of this restriction ordered by their increase. Consider some
such value ξ j , and let ξ ′ be a non-critical real value of this restriction which is very
close to ξ j . Let Xξ ′ be the hyperplane in C

n+m defined by equation x1 + y1 = ξ ′.
The vanishing relative cycle in ( Å, Å ∩ Xξ ′) corresponding to the critical point with
value ξ j is located in a small ball B around this critical point and generates the
group Hn+m−1( Å ∩ B, Å ∩ Xξ ∩ B). This vanishing cycle Δ j (ξ

′) can be chosen to
be invariant under the complex conjugation; moreover, since the Morse index of the
function (x1 + y1)|∂W is even, this conjugation preserves the orientation of this cycle
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and homology class of its boundary in Hn+m−2( Å ∩ Xξ ′). By isotopy considerations,
this invariance holds also for all cycles Δ j (ξ̃ ) in similar groups Hn+m−2( Å ∩ X ξ̃ ),

where ξ̃ belong to the same interval of real non-critical values as ξ ′, and Δ j (ξ̃ ) are
obtained from our vanishing cycle Δ j (ξ

′) by the Gauss–Manin connection over this
interval.

On the other hand, the complex conjugation changes the orientation of the 2(n+m−
2)-dimensional manifold Å∩ X ξ̃ ; therefore, the intersection index of any two invariant
cycles is opposite to itself, and hence is equal to 0. In particular, 〈∂Δi (ξ), ∂Δi+1(ξ)〉 =
0, if ξ is a non-critical value in the interval bounded by the critical values ξi and ξi+1,
and Δ j (ξ), j = i or i + 1, is the Lefschetz thimble in ( Å, Xξ ) defined by the segment
connecting ξ with the corresponding endpoint of this interval.

We obtain immediately the equality 〈∂Δ2, ∂Δ3〉 = 0, where Δ2, Δ3 are the Lef-
schetz thimbles in ( Å, Å ∩ X) defined by segments in Fig. 4 connecting 0 and critical
values ±(1 − √

2ε).
Moreover, the intersection index does not change if we deform continuously in C1

the pattern consisting of the non-critical value ξ ′ and two paths connecting it to the
neighbouring (fixed) critical values in such a way that all this construction has no
additional meetings with the set of critical values during this movement. For instance,
the union of two solid paths in Fig. 4 connecting the critical values ξ1 and ξ2 to the non-
critical value 0 can be obtained by such a deformation from two parts of the segment
[ξ1, ξ2] ⊂ R

1 connecting the same critical values to some point of this segment. This
implies equality 〈∂Δ1, ∂Δ2〉 = 0 and, analogously, 〈∂Δ3, ∂Δ4〉 = 0.

Further, denote by Δ̃1 and Δ̃4 Lefschetz thimbles in ( Å, Å∩ X)which are complex
conjugate to Δ1 and Δ4, respectively, and therefore, can be defined by the pointed
paths in Fig. 4. The cycles ∂Δ1+∂Δ̃1 and ∂Δ4+∂Δ̃4 are invariant under the complex
conjugation; therefore, we have

〈∂Δ1 + ∂Δ̃1, ∂Δ3〉 = 0, 〈∂Δ2, ∂Δ4 + ∂Δ̃4〉 = 0,

〈∂Δ1 + ∂Δ̃1, ∂Δ4 + ∂Δ̃4〉 = 0.

By Picard–Lefschetz formula, ∂Δ̃1 is equal to ∂Δ1±〈∂Δ1, ∂Δ2〉∂Δ2, and hence (by
the equality 〈∂Δ1, ∂Δ2〉 = 0 proved in the previous paragraph) to ∂Δ1. In a similar
way, ∂Δ̃4 = ∂Δ4. Therefore, the previous three equalities reduce to 〈∂Δ1, ∂Δ3〉 = 0,
〈∂Δ2, ∂Δ4〉 = 0, and 〈∂Δ1, ∂Δ4〉 = 0.

Finally, all self-intersection indices 〈∂Δ j , ∂Δ j 〉 of odd-dimensional cycles are triv-
ial. �

3.2 62: Tangents to the Singular Locus

Let Y be a generic hyperplane in C
n+m tangent to singA at some point s, so that its

linear (generally, non-homogeneous) equation L = 0 defines a Morse function on the
stratified variety A in the sense of [8], and Y does not belong to other local branches of
Σ . Let Yξ , ξ ∈ C, be the family of hyperplanes parallel to Y ≡ Y0, which are defined
by the equations L(x, y) = ξ . Let B be a small ball inCn+m centered at s. Let ξ0 �= 0
be a number such that |ξ0| is much smaller than the radius of the ball B. We consider
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the monodromy operator acting on the group

Hn+m−1(A, A ∩ Yξ0) (23)

and defined by the Gauss–Manin connection over the circle in RegC consisting of
hyperplanes Yξ , where ξ runs the circle eitξ0, t ∈ [0, 2π ].
Proposition 3 This operator acts trivially on the subgroup r Hn+m−1(A, A ∩ Yξ0).

Proof. The family of varieties A∩Yξ\B forms a trivial fiber bundle over the disc inC
consisting of values ξ with |ξ | ≤ |ξ0|; therefore, this monodromy operator adds to any
element Δ of the group (23) some element (depending linearly on Δ) which can be
realizedby a chain inside B.Moreover, ifΔ ∈ r Hn+m−1(A, A∩Yξ0) then this chain can
be realized inside Å∩ B, and hence its homology class in Hn+m−1(A∩ B, A∩ B ∩Yξ0)

belongs to the image of the homomorphism

Hn+m−1( Å ∩ B, Å ∩ B ∩ Yξ0) → Hn+m−1(A ∩ B, A ∩ B ∩ Yξ0) (24)

of the exact sequence of the triple (A ∩ B, ( Å ∪ Yξ0) ∩ B, A ∩ B ∩ Yξ0). This image
is trivial by Lemma 3. �

3.3 63 and 64: Asymptotic Hyperplanes

The space PC augmented with the point corresponding to the “infinitely distant”
hyperplane in CPn+m is itself isomorphic to the (n + m)-dimensional complex pro-
jective space. Any generic two-dimensional projective subspace in it intersects the
varieties Σ3 and Σ4 (distinguished by conditions (20) and (21)) along two degree
2 complex curves in general position, in particular these curves have exactly four
transversal intersection points. (If m > 2, then both these curves are non-singular, and
in the case m = 2 the second of them splits into two lines). By Zariski theorem, the
fundamental group of the complement of the union of these curves in this 2-subspace
(and hence also of the complement of variety Σ3 ∪ Σ4 in entire PC) is isomorphic to
Z
2, in particular is commutative. Therefore (and since components Σ1 and Σ2 do not

contribute to the monodromy action, as is shown in two previous subsections), we can
calculate independently the action on r Hn+m−1(A, A ∩ X) of loops embracing these
components, and not take care on the choice of the distinguished point inRegC. We
will do it for some two loops, whose linking numbers with varieties Σ3 and Σ4 are
equal to (1, 0) and (1, 1).

The first of these loopswill be realized inside the subspacePC

2 ⊂ PC (see Sect. 1.2).
This subspace meets the discriminant variety Σ4 at the points of its singular part only;
the complement of this variety in this subspace is simply connected, so that all loops
inRegC

2 have zero linking number with Σ4. They generate a subgroup isomorphic to
Z in the lattice π1(PC\(Σ3 ∪ Σ4)) � Z

2, and the linking numbers with Σ3 separate
the points of this subgroup.

This subspace intersects the setΣ3 along two lines consisting of hyperplanes given
by equations x1 = ±iy1 + β with arbitrary β. The space PC

2 \Σ3 can be projected to
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Fig. 5 A loop of third type

CP
1\{i,−i} by sending any plane with Eq. (3) to the number p/q. A generator of the

fundamental group of this space is provided by any loop along which these numbers
run the real axis RP1 ⊂ CP

1, or by any loop sufficiently close to it.
To realize such a loop, let us draw a path on the surface ∂W , connecting two critical

points of the restriction of function x1 + y1 to A inside the plane R
2 defined by

conditions

x2 = · · · = xn = y2 = · · · = ym = 0, (25)

see Fig. 5; the coordinates x1 and y1 of the points of this path move as x1(τ ) =
1 + ε cos τ, y1(τ ) = ε sin τ , τ ∈ [π/4, 5π/4]. The tangent planes of A at all these
points can be defined by equations with real coefficients, in particular are distant
from the set Σ3. Let us deform this path slightly inside A ∩ C

2 (where C
2 is the

complexification of the plane R2 distinguished by (25)) in such a way that the tangent
hyperplanes of A at all points η(τ), τ ∈ [π/4, 5π/4], of the obtained path are non-
singular points of Σ ; in particular all these points η(τ) are non-parabolic points of A,
i.e. the second fundamental form of A is non-degenerate at all of them.

(There are exactly three such points of the initial real path in ∂W , where we need
to move slightly to the complex domain. One of them corresponds to τ = π/2, where
the second fundamental form of ∂W degenerates, the second to τ = π/2 + arcsin ε,
where an extra tangency with A at a distant point occurs, and the third one to τ = π ,
where the tangent plane belongs to Σ4.)

After that, let us pave a path in RegC
2 consisting of hyperplanes X(τ ) which are

parallel to the tangent hyperplanes of A at the corresponding points η(τ) of our path,
and are extremely close to these tangent hyperplanes. For any point η(τ) ∈ A ∩C

2 of
the first path and a small ball Bτ around this point, we have Hn+m−1(A∩ Bτ , A∩ Bτ ∩
X(τ )) � Z. Denote by δ(τ ) the vanishing relative cycles generating these groups and
supplied with some orientations depending continuously on τ .
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Gauss–Manin connection over our path moves these vanishing cycles ones into the
others, in particular it moves the vanishing cycle δ(π/4) related with the starting point
to the vanishing cycle δ(5π/4) related with the final one.

Consider two paths in RegC
2 connecting the hyperplanes X(π/4) and X(5π/4)

with the hyperplane X0 = {x1 + y1 = 0} and consisting of hyperplanes defined by
equations x1 + y1 = λ, where λ runs the solid paths in the right-hand part of Fig. 4.
Deforming our two vanishing relative cycles δ(π/4) and δ(5π/4) by the local triviality
of the fiber bundle of pairs (A, A∩X) over these paths, we obtain exactly the Lefschetz
thimbles Δ4 and Δ3, respectively. Therefore, the loop in RegC

2 consisting of these
two paths (passed in appropriate directions) and our path {X(τ )}, τ ∈ [π/4, 5π/4],
moves the class Δ4 ∈ r Hn+m−1(A, A ∩ X0) into Δ3.

This loop is a generator of the group π1(PC\Σ3, X0). A different realization of
the same generator is provided by the union of the same two paths (passed in opposite
directions) and the family of escorting hyperplanes X(τ ) similar to the one considered
above but corresponding to τ ∈ [5π/4, 9π/4]. By the same considerations as above
the latter family moves the vanishing cycle δ(5π/4) to δ(π/4) or −δ(π/4), and hence
the entire loop moves the class Δ3 to Δ4 (or, respectively, to −Δ4).

It remains to prove that the correct choice of the sign is+. This property is equivalent
to the assertion that the transportation of vanishing cycles δ(·) along entire circle,
composed of two paths {η(τ)}, τ ∈ [π/4, 5π/4] and τ ∈ [5π/4, 9π/4], moves the
homology class of the vanishing cycle δ(τ ) to itself and not to minus itself. We can
start proving this from an arbitrary point of the circle.

To do it, notice that we may simplify our paths {η(τ)} and {X(τ )}, not moving
into the complex domain at the points τ = π and 2π : indeed, in these cases the
degeneration of the topological type of the pair (A, A ∩ X(τ )) happens far away from
the support of our cycles δ(τ ), and the transportation of the cycles δ(τ ) along these
straightened paths gives the same result. Further, we can realize this family of cycles
δ(τ ), τ ∈ [0, 2π ], in such a way that for any two points τ, τ ′ with τ + τ ′ = 2π the
corresponding cycles δ(τ ) and δ(τ ′) will be symmetric to one another with respect to
the involution in C

n+m multiplying the coordinate y1 by −1. Indeed, we can choose
both cycles corresponding to τ = π and τ = 0 ≡ 2π to be symmetric to themselves,
then realize arbitrarily the family of cycles δ(τ ) connecting them over τ ∈ [0, π ], and
realize the family for τ ∈ [π, 2π ] by cycles symmetric to the corresponding cycles
of the previous family. Then the transportation of the cycle δ(π) over the half-circles
τ ∈ [0, π ] and [π, 2π ] give the same results, which is equivalent to our assertion.

So, our generator of the group π1(PC\Σ3, X0) permutes basic classes Δ3 and Δ4
of the group r Hn+m−1(A, A∩ X0). In absolutely the same way, it permutes the classes
Δ1 and Δ2; so it realizes the first permutation indicated in Theorem 3.

The second loop inRegC is provided by the family of hyperplanes defined by real
equations

(x1 + y1) cos γ + (x2 + y2) sin γ = 0 , γ ∈ [0, π ] .

It continuously permutes four critical points of the restrictions of functions±(x1+ y1)
to the hypersurface ∂W , and also permutes the corresponding Lefschetz thimbles
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Δ2 ↔ Δ3 and Δ1 ↔ Δ4. The linking numbers of this loop with varieties (20) and
(21) are equal to 1. �

4 Lefschetz Thimbles and Integration Contours

Lemma 7 If the restriction of a linear function R
n+m → R to ∂W is Morse, then it

has exactly four critical points.

Indeed, the number of its critical points cannot be smaller than four by the Morse
inequality, and cannot be bigger because even the restriction of the complexification
of a generic linear function to Å has no more than four critical points. �

By Lemma 5, for any X ∈ RegC the subgroup r Hn+m−1(A, A ∩ X) ⊂
Hn+m−1(A, A ∩ X) is isomorphic to Z

4 and is generated by the classes Δ j of four
Lefschetz thimbles associated with the critical points of the restriction to the smooth
part of A of the linear function L vanishing on the hyperplane X .

By Lemma 6, the homology classes of these thimbles (defined up to a choice of
their orientations) do not depend on the paths connecting the critical values of L| Å
with 0. Also, we can choose their orientations in concordant way so that they consti-
tute one orbit of the group π1(RegC, X). (This choice of π1(RegC, X)-concordant
orientations is unique up to a simultaneous change of all of them).

Denote by Ξ j ∈ Hn+m(Cn+m, A ∪ X), the preimages of these basic classes Δ j

under the composite isomorphism (18).
Suppose now that the hyperplane X is real, X ∈ RegC, and the linear function

L : (Cn+m,Rn+m) → (C,R) vanishing on X is Morse on ∂W . Let us fix some
orientation of the space Rn+m .

Proposition 4 (see, e.g. [12]) The homology class in Hn+m(Cn+m, A ∪ X) of the
cycle W ∩ L−1((−∞, 0]) (respectively, W ∩ L−1([0,+∞))) oriented by the chosen
orientation of R

n+m is equal to the sum of cycles Ξ j , defined by the paths connecting
0 with all negative (respectively, positive) critical values and taken with appropriate
coefficients equal to 1 or −1. �

Proposition 5 For some π1(RegC, X)-concordant choice of orientations of cycles
Δ j , all four coefficients, with which the cycles Ξ j participate in the two sums men-
tioned in Proposition 4, are equal to +1.

Indeed, the sum of these two sums is equal to the class of the body ∂W , and hence
does not depend on the hyperplane X . Therefore, it is invariant under the action of
the group π1(RegC, X). This is possible only if all coefficients are equal to one
another. We can make all of them to be equal to +1 by the choice of one of two sets
of concordant orientations. �

Now define the four-valued analytic functionΨ on the spacePC, whose four values
at any point X ∈ RegC are equal to the integrals of the form (9) along all cycles Ξ j .
This function satisfies conditions 1–5 of Theorem 2, and the last statement of this
theorem follows from them and Proposition 4. �
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