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Abstract

We study a question on characterizing polynomials among rational functions of degree
> 1 onthe projective line over an algebraically closed field that is complete with respect
to a non-trivial and non-archimedean absolute value, from the viewpoint of dynamics
and potential theory on the Berkovich projective line.
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1 Introduction

Let K be an algebraically closed field that is complete with respect to a non-trivial and
non-archimedean absolute value | - |. The Berkovich projective line pl =p! (K) is, as
a topological augmentation of the (classical) projective line P! = PH(K) = K U{o0},
a compact, locally compact, uniquely arcwise connected, and Hausdorff topological
space. The set H! := p! \ P! is called the Berkovich upper half space in P'.

Let f € K(z) be a rational function of degree d > 1. For every n € N, set
f* = fo f"! where 0 := Idpi. The action of f on P! uniquely extends to a
continuous endomorphism on Pl, which is still open, surjective, and fiber-discrete,
and preserves both P! and H!. Let us define the Berkovich Julia set J(f) of f by the
set of all points S € P! such that for any open neighborhood U of S in P!,
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neN

where the set E(f) := {a € P! : #U,eny f " (@) < o0} is called the (classical)
exceptional set of f and is at most countable subset in P!. The local degree function
deg. f on P! also canonically extends to P!, and this extended local degree function
deg .(f) induces a canonical pullback operator f* from the space of all Radon mea-
sures on P! to itself (see Sect. 2.2 below). Corresponding to the construction of the
unique maximal entropy measure in complex dynamics (studied since Lyubich [20],
Freire-Lopes—Mafié [15], Mafi€ [23]), the f-canonical measure s on P! has been
constructed as the unique probability Radon measure v on P! such that

f*v=d-vonP' andthat v(E(f)) =0,

so in particular i 7 is invariant under f in that fiu s = 17 on P!. The support of 1t
coincides with J(f) and is the minimal non-empty and closed subset in P! backward
invariant under f [14]. The Berkovich Fatou set of f is defined by

F(f) =P\ J(f),

and each component of F( f) is called a Berkovich Fatou component of f. We note that
E(f) C F(f). A Berkovich Fatou component of f is mapped properly to a Berkovich
Fatou component of f under f, and the preimage of a Berkovich Fatou component of
f under f is the union of at most d Berkovich Fatou components of f.

Notation 1.1 For every z € F(f) N P!, let D, = D,(f) be the Berkovich Fatou
component of f containing z.

For any z € F(f) NP', the compact subset P! \ D, in P! is of logarithmic capacity
> 0 with pole z, or equivalently, there is the unique equilibrium mass distribution
v, pl\p, ON P!\ D, with pole z, which is in fact supported by dD. C J(f) (we will

recall some details on the logarithmic potential theory on P! in Sect. 2.4 below). If
f(00) = 00 € F(f), then v, P\ Do is invariant under f in that

1
f*(VOO’Pl\DOO) = Voo pl\p,, ON P

(see Lemma 4.7 below). If moreover f € K|[z] or equivalently f_1 (00) = {00}, then
00 € E(f), f~'(Dwo) = Dy, and we can see

Kf = Vo pl\p,, ON p!

(since Brolin [9] in complex dynamics). Let 85 be the Dirac measure on P! at S € P!.

Our aim is to study whether polynomials can be characterized among rational func-
tions of degree > 1 using potential theory in non-archimedean setting, corresponding
to the studies [19,21,22,25,29,30] in complex dynamics. Concretely, we study the
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following question on a characterization of polynomials among rational functions in
non-archimedean dynamics.

Question Let f € K(z) be a rational function of degree > 1, and suppose that
f(o0) = 00 € F(f) (soin particular f (Do) = Do) and that J(f) & H!. Then, are
the statements

(i) f € K[z] and (i) g = vy p1\pp on P!

equivalent?

The corresponding question in complex dynamics has been answered affirmatively
(Lopes[21]).

Here are a few comments on this Question. We already mentioned that (i) implies
(ii) (without assuming J(f) ¢ Hl). Itis not difficult to construct such f € K(z)\ K|[z]
of degree > 1 that f(Ds) = Doo, that f(00) # oo € F(f), thatJ(f) & H!, and that
If = Vo pl\p,, ON p! (e.g., Remark 6.5 below). On the other hand, if J(f) C H!,
then for any g € K (z) of the same degree as that of f which is close enough to f (in
the coefficients topology), both the Berkovich Julia set J(g) of g and the action of g on
J(g) are same as those of f (cf. [14, Sect. 5.3]). Since there is f € K[z] of degree > 1
satisfying J(f) C H' (e.g., such f that has a potentially good reduction, see below a
characterization of this condition), for any such f and any b € K,if 0 < |b| < 1,
then the small perturbation f;(z) := f(2)/(bz+ 1) € K(z) \ K[z]of f = f/l in
K () is of the same degree as that of f and satisfies that fj,(c0) = oo € F(fp), that
J(fp) =3(f) C H', and that g, = v pty g,y 00 P

Recall that f has a potentially good reduction if and only if there exists a point
S e H! such that

F7HS) = (Sk;

then J(f) = {S}(C H! so 0o € F(f)) and uy = Voo P\ Doy = s on P! (see also
Remark 3.2 below). We say f has no potentially good reductions if f does not have
a potentially good reduction.

We already mentioned that the total invariance f~'(Duo) = Doo of Do under f
is a necessary condition for f € K[z]. Our first result is the following more general
statement, under no potentially good reductions:

Theorem 1 Let K be an algebraically closed field that is complete with respect to a
non-trivial and non-archimedean absolute value. Let f € K (z) be a rational function
of degree > 1. If oo € F(f), f(Doo) = Do, by = Voo, P\ Dy, ON P!, and f has no
potentially good reductions, then

(Do) = Des.

Our second result is that even if we assume in addition J(f) C P!, the latter
statement (ii) does not necessarily imply the former (i) in Question.

@ Springer



410 Y. Okuyama, M. Stawiska

Pick a prime number p. The p-adic norm | - |, on Q is normalized so that for any
m, £ € Z \ {0} not divisible by p and any r € Z, %p’]p = p~". The completion
Qp of (Q,] - |p) is still a field, and the extended norm | - |, on Q, extends to an
algebraic closure Q, of Q, as a norm. The completion C,, of (Q,, | - |,) is still an
algebraically closed field, and the extended norm | - |, on C,, is a non-trivial and
non-archimedean absolute value on C,. The completion Z, of (Z, | - |,) is a complete
discrete valued local ring and has the unique maximal ideal pZ,, and coincides with
the ring of Q ,-integers {z € Q, : |z|, < 1}. In particular, the residual field of Q,, is
Fp.

The following counterexample of the implication (ii)=>(i) in Question is suggested
to the authors by Juan Rivera-Letelier:

Theorem 2 Pick a prime number p, and set

7P —1 az+b

f@) = € Qlz] and A(z) := p——

€ PGL(2,7Z,).

If ¢ # 0 and (a, b, c,d) is close enough to (1,0,0,1) in (Z,,)4, then there is an
attracting fixed point za of f o Ain C, \ Z,, (so za € F(f o A)) such that

J(foA) =Z,=P(C,)\ D, (foA) and

1
V24.Z, = Voo,z, onP (Cp).

Then settingm (z) := 1/(z—z4) € PGL(2, C)), the rational function g 4 (z) := myo

(foA)omIZ1 € C,(2) is of degree p and satisfies go ¢ Cplz], ga(00) = 00 € F(ga),
J(ga) C P(C)), and

1
Hgs = Voo P\ Dao(sa) OM P (Cp)-

1.1 Organization of this Article

In Sects. 2 and 3, we prepare background material from potential theory and dynamics,
respectively. In Sect. 4, we make preparatory computations from potential theory and
give a proof of the invariance of Voo P\ Doy under f when f(oco) = oo € F(f). In
Sects. 5 and 6, we show Theorems 1 and 2, respectively.

2 Background from Potential Theory on P’
Let K be an algebraically closed field that is complete with respect to a non-trivial and

non-archimedean absolute value | - |; in general, a norm | - | on a field k is non-trivial
if |k| ¢ {0, 1}, and is non-archimedean if | - | satisfies the strong triangle inequality
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|x + y| < max{|x|, [y|} foranyx,y € k.

For the foundation of potential theory on pl = p! (K), see [5, Sects. 5, 8], [12, Sect.
7], [13, Sect. 3], [33], and the survey [18, Sects. 1-4], and the book [6, Sect. 13]. In
what follows, we adopt a presentation from [28, Sects. 2, 3].

Notation 2.1 Let
7 K2\ {(0,0)} > P! =P (K) = K U {00}

be the canonical projection such that

2(po. p1) = p1/po %fpo # 0,
if po =0,
following the convention on coordinate of P! from the book [16].
On K?Z, let ||(po, p1)|l be the maximum norm max{|po|, |p1|}. With the wedge
product (po, p1) A (go, q1) = pog1 — P1qo on K 2 the normalized chordal metric
[z, w] on P! is the function

2. w] = [p A ql (< 1)

“ipll - ligh T

on P! x P!, where p € 171(2), ¢ € w1 (w).

2.1 Berkovich Projective Line P’

A (K -closed) diskin K isasubsetin K writtenas {z € K : |[z—a| < r}forsomea € K
and some r > 0. By the strong triangle inequality, two decreasing infinite sequences
of disks in K either infinitely nest or are eventually disjoint. This alternative induces
the cofinal equivalence relation among decreasing (or more precisely, nesting and
non-increasing) infinite sequences of disks in K, and the set of all cofinal equivalence
classes S of decreasing infinite sequences (B;,) of disks in K together with co € P!
is, as a set, nothing but p! (7, p. 171); if Bs := (), Bx # ¥, then Bg is itself a disk
in K, and we also say S is represented by Bg. For example, the canonical (or Gauss)
point Seay in P! is represented by the the ring of K -integers

Ok ={zeK:|z] <1},

and each z € K is represented by the disk {z} in K. The above alternative between
two (decreasing infinite sequences of) disks in K also induces a canonical ordering
> on P! so that oo is the unique maximal element in (Pl, >) and that for every
S, S e P\ {oo} satisfying Bs, Bs # @, S = S’ iff Bs D Bs (the description of
> is a little complicated unless Bs, Bs' # ), and equips P! with a (profinite) tree
structure. The topology of P! coincides with the weak (or observer) topology on P! as
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a (profinite) tree, so that P! is compact and uniquely arcwise-connected, and contains
both P! and H! as dense subsets. For the details on the tree structure on Pl, see e.g.
[18, Sect. 2].

2.2 Action of Rational Functions on P’

Let h € K(z) be a rational function. The action of 4 on P! uniquely extends to
a continuous endomorphism on pl. Suppose in addition that degh > 0. Then the
extended action of & on P! is surjective and open, has discrete (so finite) fibers, and
preserves both P! and H', and the local degree function z deg, h on P! also
canonically extends to P! so that for every S € P!,

Z degg h = degh.
S'eh=1(S)

The action of 4 on P! induces the push-forward operator A, on the space of all con-
tinuous functions on P! to itself and, by duality, also the pullback operator #* on
the space of all Radon measures on P! to itself; for every continuous test function
¢ on Pl (h§)() = Ygep-1(,(degs h) - ¢(S') on P!, and for every S € P,
h*8s = ZS/eh—l(S) (degg h) - 85 on P!. For more details, see [5, Sect. 9], [14, Sect.
2.2].

2.3 Kernel Functions and the Laplacian on P’

The generalized Hsia kernel [S, S']can On P! with respect to Scapn 18 @ unique upper
semicontinuous and separately continuous extension of the chordal distance function
P! x P! 5 (z,7)) > [z, Z/] to P! x PL.

More generally, for every zo € P!, the generalized Hsia kernel

[S, S'lcan 1 1
P P
[S, S/]zo = 1[5, zolean - [8', z0]can on (P {zol) x (7 {zol)
+o0 on ({zo} x PHY U (P! x {zo})

on P! with respect to 7o is a unique upper semicontinuous and separately continuous
extension of the function (P \ {zo}) x (P! \ {z0}) 3 (z,2) + [z, 2'1/([z, z0]- [z, z0])
as a function P! x P! — [0, 4+o00]. In particular, the function

IS = S0 =[S, 8'low

on P! x P! extends the distance function K x K 3 (z,Z') > |z—2'| to (P'\{oo}) x (P\
{oo}), jointly upper semicontinuously and separately continuously, and the function

ISloo 1= |S — Oloo(= [S, Oloo) on P!
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extends the norm function K 3 z — |z| to P! \ {oo} continuously (see [13, Sect. 3.4],
[5, Sect. 4.4)).

Let Qcan be the Dirac measure §s,,, on P! at Scan- The Laplacian A on P! is
normalized so that for each S’ € P! R

A IOg[‘v S/]can = 58’ — Qcan

on P!, and then, for every zo € P! and every S’ € P!\ {z0}, Alog[-, S'],, = 85 — 8z,
on P!. For the details on the construction and properties of A, see [5, Sect. 5], [12,
Sect. 7.7], [14, Sect. 2.4], [33, Sect. 3]; in [5,33], the opposite sign convention for A
is adopted.

2.4 Logarithmic Potential Theory on P!

For every z € P! and every positive Radon measure v on P! supported by P! \ {z}, the
logarithmic potential of v on P! with pole z is the function

DPzv(-) == /1 logl[-, S/]zv(s/) on Pl,
p

and the logarithmic energy of v with pole z is defined by
I, = /1 Pz vV € [—00, +00).
P

Then p; , : P! — [—o0, +00] is upper semicontinuous, and in fact is strongly upper
semicontinuous in that for every S € Pl,

lim sup p; ,(S) = p;.,(S) 2.1)
S-S

([5, Proposition 6.12]).
For every non-empty subset C in P! and every z € P!\ C, we say C is of logarithmic
capacity > 0 with pole z if

V.(C) :=supl;, > —o0,
Vv

where v ranges over all probability Radon measures on p! supported by C; otherwise,
we say C is of logarithmic capacity O with pole z. For every non-empty compact subset
C in P! of logarithmic capacity > 0 with pole z € P!\ C, there is a unique probability
Radon measure v on Pl, which is called the equilibrium mass distribution on C with
pole z and is denoted by v, ¢, such that suppv C C and that I; , = V,(C), and then
(1) v;,c(E) = O for any subset E in C of logarithmic capacity O with pole z, (ii) letting
D, be the component of P! \ C containing z, we have

1
suppv;.c C 0Dz, pruv.c = Lv.conP, poy > 1L, -onD; and
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Pew.c = lov.c on P\ (D, UE),

where E is a possibly empty Fy-subset in d D, of logarithmic capacity 0 with pole z,
(iii) if in addition p;,,_ . is continuous on p! \ {z}, then

suppv;.c = dD; and Pzyv.c = Iz, On p! \ D,
and (iv) for any probability Radon measure v’ supported by C, we have

inf p, v <1y, . < sup p; 2.2)
SeC SecC

(see [5, Sects. 6.2, 6.3]).
We list a few observations:

Observation 2.2 For every a € K \ {0} and every b € K, setting £(z) :==az+ b €
PGL(2, K), we have log |[€(S) — £(S) |00 = log|S — &'|so + log|al on K x K, and
in turn on P! x P!. In particular, for every non-empty compact subset C in p! \ {oo}
of logarithmic capacity > 0 with pole co, we have I, v, ) = Ioo,ve.c +10g |a] and

£4(Vso,c) = Veo,e(c) on P

Observation 2.3 Since the involution ¢(z) = 1/z € PGL(2, Ok) acts on (P!, [z, w])
isometrically, for any zo € P!, we have [(S), ((S)]iz) = [S, 8]y, on P! x P1,
and in turn on P! x P'. Hence for any non-empty compact subset C in P! and any
z € P\ C,if C is of logarithmic capacity > 0 with pole z, then V,(C) = Vi ((C))
and 1, (V;,c) = Vi(z),(C) ON pl.

Observation 2.4 For every z € P!, the strong triangle inequality [S,S”], <
max{[S, 8., (S, S"].} for S, S, S” € P! still holds (see [5, Proposition 4.10]).
Hence for every non-empty compact subset C in P!\ {oo} and every z € P!\ C so
close to oo that [z, 0o] < infscc[S, Z]can, We have [+, 00]can = [+, Z]can On C, which
yields [S, 8'loo =[S, 8]; on C x C, so if in addition C is of logarithmic capacity
> 0 with pole oo, then Vo (C) = V;(C) and veo,c = v;,c ON Pl

2.5 Potential Theory with a Continuous Weight on P!
A continuous weight g on P! is a continuous function on P! such that
u® = Ag+ Qcan

is a probability Radon measure on P!. Then u¢ has no atoms on P!, or more strongly,
w8 (E) = 0 for any subset E in P! of logarithmic capacity 0 with some (indeed any)
point in p! \ E.

For a continuous weight g on P!, the g-potential kernel on P! (the negative of
an Arakelov Green kernel function on P! relative to 8 [5, Sect. 8.10] ) is an upper
semicontinuous function

Dy(S,S') :=10g[S, Slean — g(S) — g(S') onP' x Pl (2.3)

@ Springer



On a Characterization of Polynomials... 415

For every Radon measure v on P!, the g-potential of v on P! is the function
Ugo() = / [ De( SH(S) on P,
P
and the g-energy of v is defined by

I, = /1 Ug v € [—00, +00).
P

The g-equilibrium energy V, of (the whole) P! is the supremum of the g-energy
functional v — I, ,, where v ranges over all probability Radon measures on P!. Then
V, € Rsince I, g, > —00. As in the logarithmic potential theory presented in the
previous subsection, there is a unique probability Radon measure v$ on P!, which is
called the g-equilibrium mass distribution on P!, such that I, ,c = V,. In fact

Ugve =V, onP' and v¢ =pué onP!

(see [5, Theorem 8.67, Proposition 8.70]).

A continuous weight g on P! is a normalized weight on P' if Ve = 0. For a
continuous weight g on PlLg =g+ V,/2 is the unique normalized weight on p!
satisfying u8 = ué.

3 Background from Dynamics on P’
For a potential-theoretic study of dynamics of a rational function of degree > 1 on

P! = PI(K), see [5, Sect. 10], [14, Sect. 3], [18, Sect. 5], and [6, Sect. 13]. In the
following, we adopt a presentation from [28, Sect. 8.1].

3.1 Canonical Measure and the Dynamical Green Function of fon P’

Let f € K(z) be a rational function of degree d > 1. We call F € (K[po, pila)*a
lift of f if

moF=fom

on K2 \ {(0, 0)}, where for each j € NU{0}, K[po, p1]; is the set of all homogeneous
polynomials in K[pg, p1] of degree j, as usual. A lift F = (Fp, F1) of f is unique
up to multiplication in K \ {0}. Setting doy := deg Fy(1, z) and d; := deg Fi(1, z)
and letting cg , cf € K \ {0} be the coefficients of the maximal degree terms of

Fo(1, 2), F1(1, z) € K|[z], respectively, the homogeneous resultant
Res F = (¢§)d=4 - (¢hyd=d . R(Fy(1, ), Fi(1,") € K

@ Springer
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of F does not vanish, where R(P, Q) € K is the usual resultant of (P, Q) € (K[z])?
(for the details on Res F, see e.g. [32, Sect. 2.4]).

Let F be a lift of f, and for every n € N U {0}, set F* = F o F"~! where
FO :=Idg>. Then for every n € N, F" is a lift of f”, and the function

Tpn :=log ||F"|| —d" -log|l - |

on K2\ {(0, 0)} descends to P! and in turn extends continuously to P!, satisfying the
equality ATpr = (f™")*Qcan — d" - Qcan ON P! (see, e.g., [26, Definition 2.8]). The
dynamical Green function of F on P! is the uniform limit g := lim,_, o Tfn /d" on
P!, which is a continuous weight on P'. The energy formula

_ log|Res F|
87 dd—-1)

is due to DeMarco [11] for archimedean K by a dynamical argument, and due to
Baker-Rumely [4] when f is defined over a number field; see Baker [2, Appendix
A] or the present authors [29, Appendix] for a simple and potential-theoretic proof of
this remarkable formula, for general K. The f-canonical measure is the probability
Radon measure

my = Agr + Qcan ON pl.

The measure u ¢ is independent of the choice of the lift " of f, has no atoms in P!,
and satisfies the f-balanced property f*uys =d - uy (soin particular fipr = py)
on P!, For more details, see [5, Sect. 10], [10, Sect. 2], [14, Sect. 3.1].

The dynamical Green function gy of f on P! is the unique normalized weight on
P! such that u8/ = 7. By the above energy formula on V,,. and

Res(cF) = c? .ResF for every ¢ € K \ {0},
there is a lift F of f normalized so that V,. = 0 or equivalently that gr = g on P!,
and such a normalized lift F of f is unique up to multiplication in {z € K : |z| = 1}.
By g = gr = lim, o0 TFn/d" on P! for a normalized lift F of f, for every

n € N, we have gpn = g = gy on P! and M = g oOn P'. We note that
grof=d-limyo Tpnt1/d" ™ —Tp =d-g; — Tr on P!, that s,

d-gr—grof=Tr 3.1

on P!, and in turn on P! by the density of P! in P! and the continuity of both sides on
P! (cf. [27, Proof of Lemma 2.4]).

3.2 Fundamental Properties of 1

Recall the definition of J(f) in Sect. 1. The characterization of 1y as the unique
probability Radon measure v on P! such that V(E(f)) = 0 and that f*v =d - v on
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Plisa consequence of the following equidistribution theorem: for every probability
Radon measure . on P, ifUW(E(f)) =0, then

ny*
lim S

n—oo dn

=y weakly on P'. (3.2)

This foundational result is due to Favre and Rivera-Letelier [14] (for a purely potential-
theoretic proof, see also Jonsson [18]) and is a non-archimedean counterpart to Brolin
[9], Lyubich [20], Freire et al. [15].

Remark 3.1 The classical Julia set J(f) N P! of f coincides with the set of all points
in P! at each of which the family (f" : (]P’l, [z, w]) — (IP’I, [z, w])) is not locally
equicontinuous (see, e.g., [5, Theorem 10.67] ).

neN

The equality supp iy = J(f) holds; the inclusion J(f) C supp u s follows from the
definition of J(f), the balanced property f*us =d -ty on P!, and suppur ¢ E(f)
(or more precisely, recalling that E( ) is an at most countable subset in P! and that
w1 has no atoms in PP!). The opposite inclusion supp x £ C J(f) follows from the
definition of J(f) and the above equidistribution theorem.

Remark 3.2 (see, e.g., [5, Corollary 10.33]) If 1/ has an atom in Pl, then f has a
potentially good reduction, so in particular J(f) is a singleton in H'.

Foreveryn € N, by suppuu s =J(f) and ptyn = g on P!, we also have J(f") =
J(f). For every m € PGL(2, K), we have mupy = [yopom-1 ON P!, m(J(f)) =
Jmo fom™Y), and m(F(f)) =F(mo fom™").

3.3 Root Divisors on P! and the Proximity Functions on P’
For any distinct i1, hy € K(z),let[h; = hy] be the effective (K -)divisor on P! defined

by all solutions to the equation /1 = h; in P! taking into account their multiplicities,
which is also regarded as the Radon measure

> (ordy[h1 = ha]) - 8y

welP!
on P!. The function P! 5 7z > [A1(2), ha(2)] between A and hy uniquely extends to

a continuous function S — [h1, h3]can(S) on p! (see, e.g., [26, Proposition 2.9]), so
that for every continuous weight g on P!, (the exp of) the function

D (1, h2)g(S) = log[h1, halean(S) — g(h1(S)) — g(ha(S)) on P! (3.3)

is a unique continuous extension of (the exp of) the function P! > z
@ (hi1(2), h2(2)).
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4 Potential-Theoretic Computations
Let f € K(z) be arational function of degree d > 1.

Lemma 4.1 (Riesz’s decomposition for the pullback of an atom) For every S € P!,
Dy, (f(),8) = Ug, prss() onP. .1

Proof Fix a lift F of f normalized so that gr = g on Pl.Fixw e P' and W €
7~ (w). Choose a sequence (qj)?=1 in K2 \ {(0,0)} such that F(pg, p1) AW €

K[po. pila factors as F(po, p1) A W = ]9, ((po. p1) A q;) in K[po. p1]. This
together with (3.1) and the definition of TF implies

D, (fomw)— Ugf’f*gw om
= (log|[F(-) A W| —log||F|| —log [W]| — (g o f)((-)) — g (w))

d
— (log|- Agjl —log|l - | — logllg;ll — gf o — g ((q;)))
Jj=1
d
= (log|[F() AW| =Y log|- Agjl) — (g7 0 /() +d - gfom)
j=1
—(log || F|| —d -log | - I
d
—(gr(w) +1log W) + Y (g5(r(g)) +loglig;l)
j=1
d
= —(g/(w) +log W) + Y (g7(m(g))) +1loglig;ll) =: C on K*\ {0},
j=1

SO d>gf(f(~), w) — Ugf,f*aw(') = C on P!, and in turn on p! by the density of P! in
P! and the continuity of (the exp of) both sides on P!. Integrating both sides against
puy over P, since [oi Uy, oo, ity = [p1 Ugyu, (f*8w) = 0 (by Uy, = 0) and
Semf = pu g, we have

C = /F:‘ G (fO)ywpy =Ugy, fups (W) = Ugy i, (w) =0.

This completes the proof of (4.1) in the case S = w € P!,

Fix Sy € H!. By the density of P! in P!, we can choose a sequence (w,) in P!
tending to Sp as n — oo. Then lim,,_, o f*8y, = f*8s, weakly on P! and, for every
n € N, applying (4.1)to S = w,, € P!, we have CI>gf(f(-), wy) = Ug/,f*ﬁwn () on
P'. Hence, for each S’ € H', by the continuity of both ., (f(S),) and Dy, S, )
on Pl, we have
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(bgf (f(S/)’ SO) = nli>ngo q)gf(f(s/)s wn) = nll)ngo Ugf’f*tswn (8/) = Ugf»f*SSO (8/)

This completes the proof of (4.1) by the density of H' in P! and the continuity of (the
exp of) both @, (f(-), Sp) and Ugy, f*ss, (-) on P O

The following computation is an application of Lemma 4.1. We include a proof of
it although it will not be used in this article.

Lemma 4.2 (Riesz’s decomposition for the fixed points divisor on P')
(f Mdp1)g, = Uy, [r=1d,] onP. (4.2)

Proof Fix a lift F of f normalized so that gr = g on P!, Choose a sequence
(qu)d+l in K2\ {(0,0)} so that (F A Idp1)(po, p1) € K[po. p1las1 factors as (F A

Idp1)(po, p1) = ]_[j=1 ((po. p1) A gj)in K[pg, p1], which with (3.1) implies
d+1
O(f, Idpt)g, — Ugy 1f=1d,1 = Z(gf(ﬂ(qj')) +logllgjll) =: C
j=1
on P!, and in turn on P! by the density of P! in P! and the continuity of (the exp of) both

sides on P!. Integrating both sides against s over P!, since Jpi Ugs lf=ldp b f =

Jor Ugp s Lf =1dpi] = 0 (by Uy, i, = 0), we have C = [o1 @(f, Idpi)g, 1z, 50
that we first have

®(f. Idpi)g, = gf,[f:mplﬁ/ ®(f,Idpi)g, s onP'.
Pl

Fix z9 € P!\ (supp[ f = Idp1]). Using the above equality twice, by fi[f = Idpi] =
[f = Idpi] on P! and (4.1), we have

By, (f 20), 20) — /P () i
=Ug; 1f=1d,11(20) = Ug;, f.1f=1d,,1(20) = /Pl @y (20, ) ful f =1dp D()
- /P @y o, FODLS = 1dpi 1) = /P gy oy f = 1dpi]
— [ Uertrman () = [ (00100, = [ 00 Mg ) (5752

= [ @ e (750 —d - [ @7
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and moreover, [p1 (f, Idpi)g, (f*829) = Ugy, frs,, (z0) = Py, (f(20). 20) by (4.1).
Hence (d — 1) fo1r ®(f,Idp1)g, s = 0, and in turn since d > 1,

/p' CD(f,Id]pl)gfufzo. 4.3)

This completes the proof. O

From now on, we focus on the case where co € F(f). We adopt the following
convention when no confusion would be caused:

Convention For every probability Radon measure v supported by P! \ {oo}, we denote
Poov and I, by p, and I, respectively, for simplicity.

Since supp i r = J(f) C P!\ Dqo, the equality (4.5) below implies that P! \ Dy,
is of logarithmic capacity > 0 with pole co.

Lemma 4.3 Suppose that oo € F(f). Then

Ly |
pr = gf — 10g[', Oo]can + 7 onP s (44)
IMf = —2-gr(c0) > —00, and 4.5)
cpgf(., 00) = —Pus t Iﬂf onPL. (4.6)

Proof Suppose co € F(f). Then we have supp s = J(f) C P!\ Dy and

0= Vg.f = /PIXPI q)gf(ﬂf X Mf) = Il/-f _2'/’;1(gf _IOg['aoo]can),ufa

so that 1,,, =2 [p1(gs — log[-, 00]can) 4 s, Which with

0="Ugu; = pu; — (g —log[-, 00Jcan) — /Pl(gf — log[-, 00]can)pt s on P!

yields (4.4). By (4.4) and log[z, oo] = log[z, 0] — log |z| on P! \ {o0}, we have

gf(00) = lim ((py,(z) — log|z|) + log[z, 0]) — fay _ Ty
f 72— 00 M ) D) ) )

so that (4.5) holds. By (4.4) and (4.5), we have ®g (-, 00) = log[-, ®0Jcan — & —
gr(00) = (=pu; +1u;/2) + 1y /2 = —pu; + Iy on P!, s0 (4.6) also holds. O

Let F = (Fy, F1) € (K[po, pila)* be a normalized lift of f, and ¢, cf €
K \ {0} be the coefficients of the maximal degree terms of Fy(1, z), F1(1,z) € K|[z],
respectively. No matter whether co € F(f), by the equality [z, oo] = 1/]|(1, )] on
P! and the definition of Tr, we have

Tr = —log[ f (), 00lean + log | Fo(1, )0 + d - lOg[-, 00]can
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on P!\ ({oo} U f~1(c0)), and in turn on p! \ ({oo} U £~ 1(o0)) by the density of P!
in P! and the continuity of both sides on p! \ ({oo} U £~ 1(00)). By (3.1), this equality
is rewritten as

d-(gy —log[-, o0]can) — (gf o f —1og[f(-), ®]can) = log [Fo(1, )|oo (4.7)

on P!\ ({oo} U f~(00)).

Lemma 4.4 (Pullback formula for p, , under f) If oo € F(f), then
1 = il
og|Fo(1. Moo =d - pyy = puy o f = (d =)=, 4.8)
on P! \ ({oo} U £~ 1(00)); moreover, for every S’ € p! \ {00, f(c0)},
Pus(SH —f Pus(f*8s) +(d — DIy,
Pi\foo} '

f*és
d

I,
=—/ log | Fo(1, oo T8 4 (d — 1)L, 4.9)
p! 2

and similarly
* F [l/-f
Puy(f000) —(d — Dy, = —logley | — (d — 1)—~. (4.10)
P\ (oo} 2

Proof Suppose oo € F(f). Then for every S’ € P!\ {c0, f(c0)}, by (4.7) and (4.4),
we have (4.8). Integrating both sides in (4.8) against f*8s//d over P!, we have 4.9).
Similarly, integrating both sides in (4.8) against u s over P!, also by fiu s =y and
Iy, = fpl Pusif, we have

10g|c(1):|—|-f pllf(f*(soo)Z/ 10g|F0(13')|OOMf

P!\ {c0} p!
=d-I d- gy
=d- 1y, — Pl(pufOf)Mf—( -1 > =(d - )2,

so (4.10) also holds. O

If f(00) = oo, then F (0, 1) = (0, cf), so that by the homogeneity of F, for every
neN, F"(0,1) = (0, (cF)@=D/@=D) and that

T 1 F", 1 1 F
gr(00) = tim 1700y RENO Dy, 1y = 8L

n—00 dn n—o00 d d—1
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Lemma4.5 If f(oco) = oo € F(f), then

2
Iy = == loglef @.11)
and, for every S’ € P!,
Pup(S) ifS # o,
(f*8s) —(d— DI, = F 4.12
/Pl\{oo} Puy (f7ds) — ( ) Wy log C_lF if S = oo. ( )
o

Proof Suppose that f(c0) = oo € F(f). Then by the above computation of g s (c0)
and (4.5), we have (4.11). Moreover, for every S’ € p! \ {oo}, using (4.6) twice and
(4.1) (and the assumption f(00) = 00), we compute

_p/Lf (8,) + I,u.f = CDgf(OO, 8/) = (Dgf(f(oo)’ S/)

- /P (D (00, ) (1) = — /P Py (88 +d -y

s0 (4.12) holds for &’ € P! \ {oo}. Finally, (4.12) for &’ = oo holds by (4.10) and
(4.11). O

Let us now focus on vee = Voo P\ Doy when oo € F(f). Then f(oco0) € F(f) and,
since supp Voo C 0D C J(f) = supp 1t s, we have

Supp(feveo) C f((f)) =J(f) = suppps C P!\ De.
Lemma 4.6 Suppose that oo € F(f). Then for every S’ € P!\ {c0, f(00)},
P v (S — /Pl Pooe (f*8s) +d - I, — /I;I(Pf*voo)ﬂf
=y, (S) — /P Py (F85) + (@ = D, (4.13)
and, if in addition v is invariant under f in that fivso = Voo OR P!, then
Pune (S = /Pl Puo (f*8s) +(d = 1) - I
= p,(S) - /P iy (785 + (@ = D, @.14)

Proof Suppose that oo € F(f). Then for every S’ € P!\ {c0, f(c0)}, using (4.4)
repeatedly and (4.1), we have

Prn() = [ 10818 — Il fivo) = [ 1081 = FOluerc
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! I
=/ (q)g/-(f(~),8’)+(pw.(f(.) _%)_i_(pw_(s/)_%))voo

pl
— /le (/F:1 <I>gf(.,8)(f*8$/)(8))voo =+ /pl(pﬂf o f)voo + p,uf(S/) . qu
I I
- /;1 (/Pl (10g IS = loo = (pl‘f(S) - %) - (pltf ) - %))(f*Bs/)(S))voo
+ ﬁ] (puf o f)Voo + puf(S/) — Il/-f
= /1 Puo (f*85) + /l(pﬂ_f of —d-pu)veo
P P

+ Puf(S/) — /1 pr(f*(SS/) +(d — 1)11”'
P
Moreover, by Fubini’s theorem and p, = I, on p! \ Doo, We also have

/;l(puf of —d-puveo

= f Pus(fivoo) —d / PugVoo = f (P oIt f —d - Ty,
p! p! p!

which completes the proof of (4.13).

If in addition f,veo = Voo on P!, then by the identity p,. = I, on P!\ (D UE),
where E is an F;-subset in d Do, of logarithmic capacity 0 with pole co, and by the
vanishing u ¢ (E) = 0 (from (4.5)), we also have

[ s = [ iy =t (@.15)

which completes the proof of (4.14). O

Lemma 4.7 (Invariance of vy, under f) If f(oo) = oo € F(f), then fiVoo = Voo OR
P! and, for every S’ € P!,

Puse(S) If S # 00,

F 4.16
log ifS = oo. (4-16)

/Pl\{ }Puoo(f*SS/) —(d- 1)1\)30 = c
00

F
i)

Proof Suppose that f (00) = oo € F(f). Then forevery S’ € P\ {o0}, by (4.13) and
(4.12), we have

P (S) = fp P (f*8s) —d - Lo+ fp (P @13)
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We claim that
P = [ (s on @.17)

for, by the equality (4.13’) and p,, > I, on P! (and Fubini’s theorem and (4.4)),
we have

P = [ (it = =00 onP\ fc0)

so that p v, = fo1 pus(fevoo) pyp-a.e.on P!. Hence the claim follows by the strong

upper semicontinuity (2.1) of p ¢, on PlandJ(f) = supp u 7> alsorecalling Remark
3.2

Once the identity (4.17) is at our disposal, using also the maximum principle for
the subharmonic function p,,  and the latter inequality in (2.2), we have

pf*voo E/ (pf*l)oo)'u’f = Suppf*”oo = sup pf*voo = Ivoo Ol’lJ(f),
P! 1) P\ Do

and integrating both sides of this inequality against fyv.o, we have Iy, > I, or
equivalently

feVoo = Vo ON pl.

Then (4.16) holds for every S’ € p! \ {oo} by (4.14) and (4.12). Finally, integrating
both sides in (4.8) against v, over P!, by (4.15) and Fubini’s theorem, we compute

log |cf'| + Puse (f*800) = | log|Fo(1, )|ooVeo
P\{o0) P!
L,
=d- I, — Pl(pr ° fIVoo — (d — 1)7
L, I,
=d-I,, —/ Praw )i —(d—1D=L =d - DI, —(@d—1)-=L,
p! 2 2

which with (4.11) yields (4.16) for S’ = oo. O
Remark 4.8 All the computations in this Section are also valid for K = C.

Remark 4.9 The f-invariance of v, in Lemma 4.7 is a non-archimedean counterpart
to Maiié and da Rocha [22, p. 253, before Corollary 1]. Their argument was based
on solving Dirichlet problem using the Poisson kernel on Dy, U 0 Dy. A similar
machinery has been only partly developed in the potential theory on P! (see [3, Sects.
7.3,7.6]).
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5 Proof of Theorem 1

Let f € K(z) be a rational function of degree d > 1, and F = (Fp, F1) €
(K[po, p]]d)2 be a normalized lift of f. When oo € F(f), let us still denote
Vph\ Dy = Voo P'\Da by v for simplicity. If @y = v on P!, then not only
Pus = Pvee > luyy = Iu; on Dy but, by the continuity of p,, on P!\ {oo} (by
(4.4)), also py; = pvy, = lvy, = Iy, 00 p! \ Deo-

Suppose that co € F(f), f(Doo) = Doo (50 Doy C f_l(Doo)), and (= Voo ON
P!'. Then by (4.8) and Puy =1y, on P!\ Dy, we have

I
log | Fo(1, )|eo = (d — 1)% =1y onP'\ f1(Du). (5.1)

Let Sp be the point in H! represented by the disk {z € K : |z]| < ey in K.
Suppose also that F~ N (Do) \ Do # @. Then deg Fp(1, z) > 0. The subset

Uso := 1S € PL - [Fo(1, 8)|oo > €}

in P! is the component of p! \ (Fo(1, )" '(Sp) containing oo, and dUs =
(Fo(1, )~ 1(Sp). By (5.1), we have Uso C f~ (Do), and in turn

Ux C Deo.

For every w € f~1(00) \ {00} = (Fo(1,) 1 0) C {S € P! : |Fo(1,S)|ee < €l0},
let Dy, (resp. U,,) be the component of f~!(Dy.) (resp. the component of {S € p .
|Fo(1,8)|se < €'0}) containing w. Then U, is the component of P\ (Fo(1, )~ (Sp)
containing w, and dU,, is a singleton in (Fo(1, -)) "' (Sp) = dUs. For every w €
f71(00) N Dog, Dy = D

We claim that d Do, is a singleton say {Soo} in H! and, moreover, that for every
w € f1(00) \ Doo (5 ¥ under the assumption that f~!1(Ds) \ Doo # 9),

9Dy = 0Doo(= {Soo})s

indeed, for every w € f -1 (00) \ Do, we not only have D,, C U, (since otherwise,
we musthave @ # D, NUs C Dy N Do S0 Dy, = Do, Which contradicts w ¢ Do)
but also Uy, C Dy, (by (5.1)), so that U, = D,,. This together with dU,, C dUs, and
Ux C Dy yields

oDy =0U,, C 0D«

(since otherwise, we must have @ = Uy, N Dy = Dy, N Dy s0 Dy, = Doy, Which
contradicts w ¢ Dyo). Hence the claim holds since f(0U,,) = f(0Dy) = 0D is a
singleton in H'.
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Once the claim is at our disposal, we compute

[ (Soh=r"'0D) | 9Dy

we f~1(o0)

=( U m)u( U 9Dw) =Sk UiSx) = (Sl

we f~1(00)NDog we f1(00)\ Do

so f has a potential good reduction. O

6 Proof of Theorem 2
Pick a prime number p, and let us denote | - |, by | - | for simplicity. Set

P — 7 az+b
d A(z) =
€ Q[z] an () p—

f(z) = € PGL(2, Z)).
If |c| < 1, then |ad — bc| = |ad| = 1, so that |a| = |d| = 1.

LetJ(f o A) and F(f o A) denote the Berkovich Julia and Fatou sets in p! (Cp) of
f o A as an element of C,(z) of degree p, respectively.

6.1 Computing J(fo A)

The fact that J( f) coincides with the classical Julia set of f (see Remark 3.1), which is
Zp,is well known (seee.g., [17, Example 4.11], [6, Example 5.30]). In this subsection,
more general facts will be established.

Lemma 6.1 If|c| < 1, then (f o A)~'(Z,) = Z,.

Proof We first claim that for every z € Z, p - f(z) = z — z = 0 modulo pZ;
indeed, when is obvious if z = 0 modulo pZ, and is the case by Fermat’s Little
Theorem when z # 0 modulo pZ. By this claim, we have f(Z) C Z (cf. [34]), and
in turn f(Z,) C Z, by the continuity of the action of f on QQ, and the density of
Z in Z,. Next, we claim that f~'(Z,) C Z, or equivalently that for every w € Z,,
f‘l(w) C Zp;indeed, setting W (X) := X? — X — pw € Z,[X] of degree p, we have
already seen that the reduction WX)=XP—Xe€ F,[X] of W modulo pZ, has p
distinctroots 0, ..., p — 1 in F,,. Hence by Hensel’s lemma (see, €.g., [24, Corollary
1 in Sect. 5.1], [8, Sect. 3.3.4, Proposition 3]), W (X) also has p distinct roots in Z,
and has no other roots in @, so the claim holds. We have seen that f~!1(Z p) =ZLyp.

Suppose now that |c¢| < 1. Then for every z € Z,, we have |cz| < 1 = |d|,
so that |A(z)| = |az + b|/|lcz +d| = |az + b] < 1. Hence A(Z,) C Z,, and
similarly A_I(Zp) C Z, since A N7 = dz - b)/(—cz +a) € PGL(2,Z,) and
| — ¢l = |e| < 1. Now we conclude that (f 0 A)~Y(Z,) = A~Y(Z,) = Z,. o

Lemmaé6.2 If |b| < 1 and |c| K 1, then f o A has an attracting fixed point 74 in
PI(CP) \ Zp, which tends to oo as (a, b,c,d) — (1,0,0,1) in (Zp)4. Moreover, if
in addition ¢ # 0, then zy € C, \ Z,, and (f o A)"N(za) # {za)
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Proof Since f~!(c0) = {oo} and deg f = p > 1, the former assertion holds also
noting that (Idpl(cp))/ = 1 # 0 and applying an implicit function theorem to the
equation (f o A)(z) = znear (z,a, b, ¢,d) = (00, 1,0,0, 1) in P! (Cp) x (Z,,)4 (see,
e.g., [1, (10.8)]). Moreover, since f'(z) = zP~! — p~land f"(z) = (p — DzP~2,
the point A~ (0c0) = —d/c is the unique point z € P! (Cp) such that deg (f o A) =
p(=deg(f o A)), and on the other hand, if in addition ¢ # 0, then the point A~ (00)
is # oo and is not fixed by f o A. Hence the latter assertion holds also noting that
(f o A)(00) # o< if in addition ¢ # 0. O

Consequently, if |b| < 1 and |c| <« 1, then
J(foA)=2Z,=PYC,)\ D, (f o A); (6.1)
indeed, by Lemma 6.1 (and (3.2)), if |[c| < 1, then J(f o A) C Z,. If in addition
|b] < 1 and |c| <« 1, then by Lemma 6.2 (and Z, C C,), we have F(f o A) =
D,,(f o A), which is an (immediate) attractive basin of f (see [31, Théoréme de

Classification]) associated with z4 € P! (Cp)\ Zp, and in turn have J(f 0 A) = Z
since (f o A)(Zp) C Z), by Lemma 6.1.

6.2 Computing Energies and Measures
Since
Res(p'/? - (2. 20 f(z1/20))) = (/D7 - (777 - (p~HP 0. = 1,
the pair
F(zo,21) == p'/* - (2. 2} £ (21/20)) € (Qlz0, 211p)*
is a normalized lift of f. Noting that | Res(azo+bz1, czo+dz1)| = |ad —bc| = 1 and

using a formula for the homogeneous resultant of the composition of homogeneous
polynomial maps (see, e.g., [32, Exercise 2.12]), we also have |Res(F(az()+bz1 ,cz0+

dz1)| = |(Res F)' - (Res(azo + bz, czo +dz1))P’| = 1, so that

Fa(z0,21) == F(azo + bz1, cz0 + dz1)
dz))P — bzy)P~! d
= 2, ((azo 4 bayyp, (0 d2) (azo: 2P~ (ezo + z1)>

€ (Qplzo, Zl]p)2

is a normalized lift of f o A. For every n € N, write

(F )Vl _ ( Igng)’ F(n)) c (QP[Z01Zl]p’1)2~
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Lemma 6.3 If|b| < 1 and |c| < 1, then

<\ /log [(F4)/ (0, DIl log|I(Fa)’ =10, D] log p
gch(oo)<: Z( p/ - pi~! )> T2p-1)

=1

1

Proof Suppose that |[b| < 1 and |c| < 1(, and recall |p| = p~' < 1). Then for every

(z0,21) € Cy,, if |z0] < |z1], then
lczo +dzi| = |dz1] = |z1| > max{|azol, [bz1]} > lazo + bz1]
SO

1 1
|Ff(x,z)(zo,Z1)| <|F} )(ZO’ZM and
|Fato, 20ll = 1F{!) o, 201 = p"lezo +dzi|”
= P Pldzl” = p il = p PN, I

Hence inductively, for every n € N, we have |F1g"())(0, D < |F/§"’)1 (0, 1)], and more-
over

i(log I(Fa)/ 0. DIl log [(Fa)/~' (0, 1>||> Z 2logp

= p’ p/!

_ (110 )(1/1?)(1 — 1/ (1 Io ) 1
= (5logp 1/ Sloer)—
asn — oo0. O
Lemma 6.4 If (a, b, c,d) is close enough to (1,0, 0, 1) in (Z,,)4, then
K foA = Voo, Z, = Vz4,2, ON p! ((Cp)
Proof If |b| <« 1 and |c| < 1, then by (6.1) and Z,, C C,,, we have
00 € F(foA) =D, (f oA) =P (C,\Z).

Then by (4.5) and Lemma 6.3, we have

log p =
IOOaHfoAZ_Z ( ( _1)>=10gpp—l’

and in particular, recalling veo,z, = ®s on PL(C,), also Ioovez, = loouy; =

—1
log pr=T (for a non-dynamical and more direct computation of Ioo,voo,z,,’ see [3]).
Now the first equality holds by the uniqueness of the equilibrium mass distribution
on the non-polar compact subset Z, in Pl(C p)- The second equality holds since z4
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tends to oo as (a,b,c,d) — (1,0,0,1) in (Zp)4 (by Lemma 6.2), also recalling
Observation 2.4. O

Remark 6.5 If 0 < |c|] <« 1 and |b| < 1, then (f o A)(c0) # 00 € F(f o A),

(foA)(Doo(f 0 A) = Doo(f 0 A),J(fo A) ¢ H! (indeed J(f o A) C Cp), and
_ 1

K foA = Vo pl\p ON P

6.3 Conclusion

If || € 1and 0 < |c| K 1, then setting m 4 (z) := ZJZA e PGL(2, C,), the rational
function

gA Z=mAO(fOA)OmXI e Cp(2)

is of degree p and satisfies g4 (00) = 00, |g/,(00)| < 1, ggl(oo) # {00}, and oo €
ma(D;,(f o A)) = Dso(g4a). If moreover (a, b, c, d) is close enough to (1, 0,0, 1)
in (Z p)4, then also recalling Observations 2.2 and 2.3, we have

Mgp = (MA)si foa = (MA)xVoo 7, = (MA)xVzy.7,

1
= (mA)eV2, P\D. , (foh) = Yoo \Dao(ga) 0P (Cp)-
Now the proof of Theorem 2 is complete. O
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