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Abstract
We study a question on characterizing polynomials among rational functions of degree
> 1on theprojective line over an algebraically closedfield that is completewith respect
to a non-trivial and non-archimedean absolute value, from the viewpoint of dynamics
and potential theory on the Berkovich projective line.
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1 Introduction

Let K be an algebraically closed field that is complete with respect to a non-trivial and
non-archimedean absolute value | · |. The Berkovich projective line P1 = P1(K ) is, as
a topological augmentation of the (classical) projective line P1 = P

1(K ) = K ∪{∞},
a compact, locally compact, uniquely arcwise connected, and Hausdorff topological
space. The set H1 := P1 \ P1 is called the Berkovich upper half space in P1.

Let f ∈ K (z) be a rational function of degree d > 1. For every n ∈ N, set
f n := f ◦ f n−1, where f 0 := IdP1 . The action of f on P

1 uniquely extends to a
continuous endomorphism on P1, which is still open, surjective, and fiber-discrete,
and preserves both P

1 and H1. Let us define the Berkovich Julia set J( f ) of f by the
set of all points S ∈ P1 such that for any open neighborhood U of S in P1,
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P1 \ E( f ) ⊂
⋃

n∈N
f n(U ),

where the set E( f ) := {a ∈ P
1 : #

⋃
n∈N f −n(a) < ∞} is called the (classical)

exceptional set of f and is at most countable subset in P
1. The local degree function

deg · f on P
1 also canonically extends to P1, and this extended local degree function

deg ·( f ) induces a canonical pullback operator f ∗ from the space of all Radon mea-
sures on P1 to itself (see Sect. 2.2 below). Corresponding to the construction of the
unique maximal entropy measure in complex dynamics (studied since Lyubich [20],
Freire–Lopes–Mañé [15], Mañé [23]), the f -canonical measure μ f on P1 has been
constructed as the unique probability Radon measure ν on P1 such that

f ∗ν = d · ν on P1 and that ν(E( f )) = 0,

so in particular μ f is invariant under f in that f∗μ f = μ f on P1. The support of μ f

coincides with J( f ) and is the minimal non-empty and closed subset in P1 backward
invariant under f [14]. The Berkovich Fatou set of f is defined by

F( f ) := P1 \ J( f ),

and each component of F( f ) is called a Berkovich Fatou component of f . We note that
E( f ) ⊂ F( f ). A Berkovich Fatou component of f is mapped properly to a Berkovich
Fatou component of f under f , and the preimage of a Berkovich Fatou component of
f under f is the union of at most d Berkovich Fatou components of f .

Notation 1.1 For every z ∈ F( f ) ∩ P
1, let Dz = Dz( f ) be the Berkovich Fatou

component of f containing z.

For any z ∈ F( f ) ∩P
1, the compact subset P1 \ Dz in P1 is of logarithmic capacity

> 0 with pole z, or equivalently, there is the unique equilibrium mass distribution
νz,P1\Dz

on P1 \ Dz with pole z, which is in fact supported by ∂Dz ⊂ J( f ) (we will

recall some details on the logarithmic potential theory on P1 in Sect. 2.4 below). If
f (∞) = ∞ ∈ F( f ), then ν∞,P1\D∞ is invariant under f in that

f∗(ν∞,P1\D∞) = ν∞,P1\D∞ on P1

(see Lemma 4.7 below). If moreover f ∈ K [z] or equivalently f −1(∞) = {∞}, then
∞ ∈ E( f ), f −1(D∞) = D∞, and we can see

μ f = ν∞,P1\D∞ on P1

(since Brolin [9] in complex dynamics). Let δS be the Dirac measure on P1 at S ∈ P1.
Our aim is to study whether polynomials can be characterized among rational func-

tions of degree > 1 using potential theory in non-archimedean setting, corresponding
to the studies [19,21,22,25,29,30] in complex dynamics. Concretely, we study the
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following question on a characterization of polynomials among rational functions in
non-archimedean dynamics.

Question Let f ∈ K (z) be a rational function of degree > 1, and suppose that
f (∞) = ∞ ∈ F( f ) (so in particular f (D∞) = D∞) and that J( f ) 	⊂ H1. Then, are
the statements

(i) f ∈ K [z] and (ii) μ f = ν∞,P1\D∞ on P1

equivalent?

The corresponding question in complex dynamics has been answered affirmatively
(Lopes[21]).

Here are a few comments on this Question. We already mentioned that (i) implies
(ii) (without assuming J( f ) 	⊂ H1). It is not difficult to construct such f ∈ K (z)\K [z]
of degree > 1 that f (D∞) = D∞, that f (∞) 	= ∞ ∈ F( f ), that J( f ) 	⊂ H1, and that
μ f = ν∞,P1\D∞ on P1 (e.g., Remark 6.5 below). On the other hand, if J( f ) ⊂ H1,
then for any g ∈ K (z) of the same degree as that of f which is close enough to f (in
the coefficients topology), both the Berkovich Julia set J(g) of g and the action of g on
J(g) are same as those of f (cf. [14, Sect. 5.3]). Since there is f ∈ K [z] of degree > 1
satisfying J( f ) ⊂ H1 (e.g., such f that has a potentially good reduction, see below a
characterization of this condition), for any such f and any b ∈ K , if 0 < |b| 
 1,
then the small perturbation fb(z) := f (z)/(bz + 1) ∈ K (z) \ K [z] of f = f /1 in
K (z) is of the same degree as that of f and satisfies that fb(∞) = ∞ ∈ F( fb), that
J( fb) = J( f ) ⊂ H1, and that μ fb = ν∞,P1\D∞( fb)

on P1.
Recall that f has a potentially good reduction if and only if there exists a point

S ∈ H1 such that

f −1(S) = {S};

then J( f ) = {S}(⊂ H1 so ∞ ∈ F( f )) and μ f = ν∞,P1\D∞ = δS on P1 (see also
Remark 3.2 below). We say f has no potentially good reductions if f does not have
a potentially good reduction.

We already mentioned that the total invariance f −1(D∞) = D∞ of D∞ under f
is a necessary condition for f ∈ K [z]. Our first result is the following more general
statement, under no potentially good reductions:

Theorem 1 Let K be an algebraically closed field that is complete with respect to a
non-trivial and non-archimedean absolute value. Let f ∈ K (z) be a rational function
of degree > 1. If ∞ ∈ F( f ), f (D∞) = D∞, μ f = ν∞,P1\D∞ on P1, and f has no
potentially good reductions, then

f −1(D∞) = D∞.

Our second result is that even if we assume in addition J( f ) ⊂ P
1, the latter

statement (ii) does not necessarily imply the former (i) in Question.
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Pick a prime number p. The p-adic norm | · |p on Q is normalized so that for any
m, � ∈ Z \ {0} not divisible by p and any r ∈ Z,

∣∣m
�
pr

∣∣
p = p−r . The completion

Qp of (Q, | · |p) is still a field, and the extended norm | · |p on Qp extends to an
algebraic closure Qp of Qp as a norm. The completion Cp of (Qp, | · |p) is still an
algebraically closed field, and the extended norm | · |p on Cp is a non-trivial and
non-archimedean absolute value onCp. The completion Zp of (Z, | · |p) is a complete
discrete valued local ring and has the unique maximal ideal pZp, and coincides with
the ring of Qp-integers {z ∈ Qp : |z|p ≤ 1}. In particular, the residual field of Qp is
Fp.

The following counterexample of the implication (ii)⇒(i) in Question is suggested
to the authors by Juan Rivera-Letelier:

Theorem 2 Pick a prime number p, and set

f (z) := z p − 1

p
∈ Q[z] and A(z) := az + b

cz + d
∈ PGL(2,Zp).

If c 	= 0 and (a, b, c, d) is close enough to (1, 0, 0, 1) in (Zp)
4, then there is an

attracting fixed point zA of f ◦ A in Cp \ Zp (so zA ∈ F( f ◦ A)) such that

J( f ◦ A) = Zp = P1(Cp) \ DzA ( f ◦ A) and

νzA,Zp = ν∞,Zp on P1(Cp).

Then settingmA(z) := 1/(z−zA) ∈ PGL(2,Cp), the rational function gA(z) := mA◦
( f ◦ A)◦m−1

A ∈ Cp(z) is of degree p and satisfies gA /∈ Cp[z], gA(∞) = ∞ ∈ F(gA),
J(gA) ⊂ P

1(Cp), and

μgA = ν∞,P1(Cp)\D∞(gA) on P1(Cp).

1.1 Organization of this Article

In Sects. 2 and 3, we prepare backgroundmaterial from potential theory and dynamics,
respectively. In Sect. 4, we make preparatory computations from potential theory and
give a proof of the invariance of ν∞,P1\D∞ under f when f (∞) = ∞ ∈ F( f ). In
Sects. 5 and 6, we show Theorems 1 and 2, respectively.

2 Background from Potential Theory on P1

Let K be an algebraically closed field that is complete with respect to a non-trivial and
non-archimedean absolute value | · |; in general, a norm | · | on a field k is non-trivial
if |k| 	⊂ {0, 1}, and is non-archimedean if | · | satisfies the strong triangle inequality
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|x + y| ≤ max{|x |, |y|} for any x, y ∈ k.

For the foundation of potential theory on P1 = P1(K ), see [5, Sects. 5, 8] , [12, Sect.
7], [13, Sect. 3], [33], and the survey [18, Sects. 1–4], and the book [6, Sect. 13]. In
what follows, we adopt a presentation from [28, Sects. 2, 3].

Notation 2.1 Let

π : K 2 \ {(0, 0)} → P
1 = P

1(K ) = K ∪ {∞}

be the canonical projection such that

π(p0, p1) =
{
p1/p0 if p0 	= 0,

∞ if p0 = 0,

following the convention on coordinate of P1 from the book [16].
On K 2, let ‖(p0, p1)‖ be the maximum norm max{|p0|, |p1|}. With the wedge

product (p0, p1) ∧ (q0, q1) := p0q1 − p1q0 on K 2, the normalized chordal metric
[z, w] on P

1 is the function

[z, w] := |p ∧ q|
‖p‖ · ‖q‖ (≤ 1)

on P1 × P
1, where p ∈ π−1(z), q ∈ π−1(w).

2.1 Berkovich Projective Line P1

A (K -closed) disk in K is a subset in K written as {z ∈ K : |z−a| ≤ r} for some a ∈ K
and some r ≥ 0. By the strong triangle inequality, two decreasing infinite sequences
of disks in K either infinitely nest or are eventually disjoint. This alternative induces
the cofinal equivalence relation among decreasing (or more precisely, nesting and
non-increasing) infinite sequences of disks in K , and the set of all cofinal equivalence
classes S of decreasing infinite sequences (Bn) of disks in K together with ∞ ∈ P

1

is, as a set, nothing but P1 ([7, p. 17]); if BS := ⋂
n Bn 	= ∅, then BS is itself a disk

in K , and we also say S is represented by BS . For example, the canonical (or Gauss)
point Scan in P1 is represented by the the ring of K -integers

OK := {z ∈ K : |z| ≤ 1},

and each z ∈ K is represented by the disk {z} in K . The above alternative between
two (decreasing infinite sequences of) disks in K also induces a canonical ordering
� on P1 so that ∞ is the unique maximal element in (P1,�) and that for every
S,S ′ ∈ P1 \ {∞} satisfying BS , BS ′ 	= ∅, S � S ′ iff BS ⊃ BS ′ (the description of
� is a little complicated unless BS , BS ′ 	= ∅), and equips P1 with a (profinite) tree
structure. The topology of P1 coincides with the weak (or observer) topology on P1 as
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412 Y. Okuyama, M. Stawiska

a (profinite) tree, so that P1 is compact and uniquely arcwise-connected, and contains
both P

1 and H1 as dense subsets. For the details on the tree structure on P1, see e.g.
[18, Sect. 2].

2.2 Action of Rational Functions on P1

Let h ∈ K (z) be a rational function. The action of h on P
1 uniquely extends to

a continuous endomorphism on P1. Suppose in addition that deg h > 0. Then the
extended action of h on P1 is surjective and open, has discrete (so finite) fibers, and
preserves both P

1 and H1, and the local degree function z �→ degz h on P
1 also

canonically extends to P1 so that for every S ∈ P1,

∑

S ′∈h−1(S)

degS ′ h = deg h.

The action of h on P1 induces the push-forward operator h∗ on the space of all con-
tinuous functions on P1 to itself and, by duality, also the pullback operator h∗ on
the space of all Radon measures on P1 to itself; for every continuous test function
φ on P1, (h∗φ)(·) = ∑

S ′∈h−1(·)(degS ′ h) · φ(S ′) on P1, and for every S ∈ P1,

h∗δS = ∑
S ′∈h−1(S)(degS ′ h) · δS ′ on P1. For more details, see [5, Sect. 9], [14, Sect.

2.2].

2.3 Kernel Functions and the Laplacian on P1

The generalized Hsia kernel [S,S ′]can on P1 with respect to Scan is a unique upper
semicontinuous and separately continuous extension of the chordal distance function
P
1 × P

1 � (z, z′) �→ [z, z′] to P1 × P1.
More generally, for every z0 ∈ P

1, the generalized Hsia kernel

[S,S ′]z0 :=
⎧
⎨

⎩

[S,S ′]can
[S, z0]can · [S ′, z0]can on (P1 \ {z0}) × (P1 \ {z0})
+∞ on ({z0} × P1) ∪ (P1 × {z0})

on P1 with respect to z0 is a unique upper semicontinuous and separately continuous
extension of the function (P1 \{z0})× (P1 \{z0}) � (z, z′) �→ [z, z′]/([z, z0] · [z′, z0])
as a function P1 × P1 → [0,+∞]. In particular, the function

|S − S ′|∞ := [S,S ′]∞

onP1×P1 extends the distance function K×K � (z, z′) �→ |z−z′| to (P1\{∞})×(P1\
{∞}), jointly upper semicontinuously and separately continuously, and the function

|S|∞ := |S − 0|∞(= [S, 0]∞) on P1
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extends the norm function K � z �→ |z| to P1 \ {∞} continuously (see [13, Sect. 3.4],
[5, Sect. 4.4]).

Let �can be the Dirac measure δScan on P1 at Scan. The Laplacian 	 on P1 is
normalized so that for each S ′ ∈ P1,

	 log[·,S ′]can = δS ′ − �can

on P1, and then, for every z0 ∈ P
1 and every S ′ ∈ P1 \ {z0}, 	 log[·,S ′]z0 = δS ′ − δz0

on P1. For the details on the construction and properties of 	, see [5, Sect. 5], [12,
Sect. 7.7], [14, Sect. 2.4], [33, Sect. 3]; in [5,33], the opposite sign convention for 	

is adopted.

2.4 Logarithmic Potential Theory on P1

For every z ∈ P
1 and every positive Radon measure ν on P1 supported by P1 \ {z}, the

logarithmic potential of ν on P1 with pole z is the function

pz,ν(·) :=
∫

P1
log[·,S ′]zν(S ′) on P1,

and the logarithmic energy of ν with pole z is defined by

Iz,ν :=
∫

P1
pz,νν ∈ [−∞,+∞).

Then pz,ν : P1 → [−∞,+∞] is upper semicontinuous, and in fact is strongly upper
semicontinuous in that for every S ∈ P1,

lim sup
S ′→S

pz,ν(S ′) = pz,ν(S) (2.1)

([5, Proposition 6.12]).
For every non-empty subsetC in P1 and every z ∈ P

1\C , we sayC is of logarithmic
capacity > 0 with pole z if

Vz(C) := sup
ν

Iz,ν > −∞,

where ν ranges over all probability Radon measures on P1 supported by C ; otherwise,
we sayC is of logarithmic capacity 0with pole z. For every non-empty compact subset
C in P1 of logarithmic capacity> 0 with pole z ∈ P

1 \C , there is a unique probability
Radon measure ν on P1, which is called the equilibrium mass distribution on C with
pole z and is denoted by νz,C , such that supp ν ⊂ C and that Iz,ν = Vz(C), and then
(i) νz,C (E) = 0 for any subset E inC of logarithmic capacity 0 with pole z, (ii) letting
Dz be the component of P1 \ C containing z, we have

supp νz,C ⊂ ∂Dz, pz,νz,C ≥ Iz,νz,C on P1, pz,νz,C > Iz,νz,C on Dz, and

123



414 Y. Okuyama, M. Stawiska

pz,νz,C ≡ Iz,νz,C on P1 \ (Dz ∪ E),

where E is a possibly empty Fσ -subset in ∂Dz of logarithmic capacity 0 with pole z,
(iii) if in addition pz,νz,C is continuous on P1 \ {z}, then

supp νz,C = ∂Dz and pz,νz,C ≡ Iz,νz,C on P1 \ Dz,

and (iv) for any probability Radon measure ν′ supported by C , we have

inf
S∈C

pz,ν′ ≤ Iz,νz,C ≤ sup
S∈C

pz,ν′ (2.2)

(see [5, Sects. 6.2, 6.3]).
We list a few observations:

Observation 2.2 For every a ∈ K \ {0} and every b ∈ K , setting �(z) := az + b ∈
PGL(2, K ), we have log |�(S) − �(S ′)|∞ = log |S − S ′|∞ + log |a| on K × K , and
in turn on P1 × P1. In particular, for every non-empty compact subset C in P1 \ {∞}
of logarithmic capacity > 0 with pole ∞, we have I∞,ν∞,�(C)

= I∞,ν∞,C + log |a| and
�∗(ν∞,C ) = ν∞,�(C) on P1.

Observation 2.3 Since the involution ι(z) = 1/z ∈ PGL(2,OK ) acts on (P1, [z, w])
isometrically, for any z0 ∈ P

1, we have [ι(S), ι(S ′)]ι(z0) = [S,S ′]z0 on P
1 × P

1,
and in turn on P1 × P1. Hence for any non-empty compact subset C in P1 and any
z ∈ P1 \C , if C is of logarithmic capacity > 0 with pole z, then Vz(C) = Vι(z)(ι(C))

and ι∗(νz,C ) = νι(z),ι(C) on P1.

Observation 2.4 For every z ∈ P
1, the strong triangle inequality [S,S ′′]z ≤

max{[S,S ′]z, [S ′,S ′′]z} for S,S ′,S ′′ ∈ P1 still holds (see [5, Proposition 4.10]).
Hence for every non-empty compact subset C in P1 \ {∞} and every z ∈ P

1 \ C so
close to ∞ that [z,∞] < infS∈C [S, z]can, we have [·,∞]can = [·, z]can on C , which
yields [S,S ′]∞ = [S,S ′]z on C × C , so if in addition C is of logarithmic capacity
> 0 with pole ∞, then V∞(C) = Vz(C) and ν∞,C = νz,C on P1.

2.5 Potential Theory with a ContinuousWeight on P1

A continuous weight g on P1 is a continuous function on P1 such that

μg := 	g + �can

is a probability Radon measure on P1. Then μg has no atoms on P1, or more strongly,
μg(E) = 0 for any subset E in P1 of logarithmic capacity 0 with some (indeed any)
point in P1 \ E .

For a continuous weight g on P1, the g-potential kernel on P1 (the negative of
an Arakelov Green kernel function on P1 relative to μg [5, Sect. 8.10] ) is an upper
semicontinuous function

�g(S,S ′) := log[S,S ′]can − g(S) − g(S ′) on P1 × P1. (2.3)

123



On a Characterization of Polynomials... 415

For every Radon measure ν on P1, the g-potential of ν on P1 is the function

Ug,ν(·) :=
∫

P1
�g(·,S ′)ν(S ′) on P1,

and the g-energy of ν is defined by

Ig,ν :=
∫

P1
Ug,νν ∈ [−∞,+∞).

The g-equilibrium energy Vg of (the whole) P1 is the supremum of the g-energy
functional ν �→ Ig,ν , where ν ranges over all probability Radon measures on P1. Then
Vg ∈ R since Ig,�can > −∞. As in the logarithmic potential theory presented in the
previous subsection, there is a unique probability Radon measure νg on P1, which is
called the g-equilibrium mass distribution on P1, such that Ig,νg = Vg . In fact

Ug,νg ≡ Vg on P1 and νg = μg on P1

(see [5, Theorem 8.67, Proposition 8.70]).
A continuous weight g on P1 is a normalized weight on P1 if Vg = 0. For a

continuous weight g on P1, g := g + Vg/2 is the unique normalized weight on P1

satisfying μg = μg .

3 Background fromDynamics on P1

For a potential-theoretic study of dynamics of a rational function of degree > 1 on
P1 = P1(K ), see [5, Sect. 10], [14, Sect. 3], [18, Sect. 5], and [6, Sect. 13]. In the
following, we adopt a presentation from [28, Sect. 8.1].

3.1 Canonical Measure and the Dynamical Green Function of f on P1

Let f ∈ K (z) be a rational function of degree d > 1. We call F ∈ (K [p0, p1]d)2 a
lift of f if

π ◦ F = f ◦ π

on K 2 \{(0, 0)}, where for each j ∈ N∪{0}, K [p0, p1] j is the set of all homogeneous
polynomials in K [p0, p1] of degree j , as usual. A lift F = (F0, F1) of f is unique
up to multiplication in K \ {0}. Setting d0 := deg F0(1, z) and d1 := deg F1(1, z)
and letting cF0 , cF1 ∈ K \ {0} be the coefficients of the maximal degree terms of
F0(1, z), F1(1, z) ∈ K [z], respectively, the homogeneous resultant

Res F = (cF0 )d−d1 · (cF1 )d−d0 · R(
F0(1, ·), F1(1, ·)

) ∈ K
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416 Y. Okuyama, M. Stawiska

of F does not vanish, where R(P, Q) ∈ K is the usual resultant of (P, Q) ∈ (K [z])2
(for the details on Res F , see e.g. [32, Sect. 2.4]).

Let F be a lift of f , and for every n ∈ N ∪ {0}, set Fn = F ◦ Fn−1 where
F0 := IdK 2 . Then for every n ∈ N, Fn is a lift of f n , and the function

TFn := log ‖Fn‖ − dn · log ‖ · ‖

on K 2 \ {(0, 0)} descends to P1 and in turn extends continuously to P1, satisfying the
equality 	TFn = ( f n)∗�can − dn · �can on P1 (see, e.g., [26, Definition 2.8]). The
dynamical Green function of F on P1 is the uniform limit gF := limn→∞ TFn/dn on
P1, which is a continuous weight on P1. The energy formula

VgF = − log |Res F |
d(d − 1)

is due to DeMarco [11] for archimedean K by a dynamical argument, and due to
Baker–Rumely [4] when f is defined over a number field; see Baker [2, Appendix
A] or the present authors [29, Appendix] for a simple and potential-theoretic proof of
this remarkable formula, for general K . The f -canonical measure is the probability
Radon measure

μ f := 	gF + �can on P1.

The measure μ f is independent of the choice of the lift F of f , has no atoms in P
1,

and satisfies the f -balanced property f ∗μ f = d · μ f (so in particular f∗μ f = μ f )
on P1. For more details, see [5, Sect. 10], [10, Sect. 2], [14, Sect. 3.1].

The dynamical Green function g f of f on P1 is the unique normalized weight on
P1 such that μg f = μ f . By the above energy formula on VgF and

Res(cF) = c2d · Res F for every c ∈ K \ {0},

there is a lift F of f normalized so that VgF = 0 or equivalently that gF = g f on P1,
and such a normalized lift F of f is unique up to multiplication in {z ∈ K : |z| = 1}.
By g f = gF = limn→∞ TFn/dn on P1 for a normalized lift F of f , for every
n ∈ N, we have gFn = g f n = g f on P1 and μ f n = μ f on P1. We note that
g f ◦ f = d · limn→∞ TFn+1/dn+1 − TF = d · g f − TF on P

1, that is,

d · g f − g f ◦ f = TF (3.1)

on P1, and in turn on P1 by the density of P1 in P1 and the continuity of both sides on
P1 (cf. [27, Proof of Lemma 2.4]).

3.2 Fundamental Properties of�f

Recall the definition of J( f ) in Sect. 1. The characterization of μ f as the unique
probability Radon measure ν on P1 such that ν(E( f )) = 0 and that f ∗ν = d · ν on
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P1 is a consequence of the following equidistribution theorem: for every probability
Radon measure μ on P1, if μ(E( f )) = 0, then

lim
n→∞

( f n)∗μ
dn

= μ f weakly on P1. (3.2)

This foundational result is due to Favre andRivera-Letelier [14] (for a purely potential-
theoretic proof, see also Jonsson [18]) and is a non-archimedean counterpart to Brolin
[9], Lyubich [20], Freire et al. [15].

Remark 3.1 The classical Julia set J( f ) ∩ P
1 of f coincides with the set of all points

in P1 at each of which the family
(
f n : (P1, [z, w]) → (P1, [z, w]))n∈N is not locally

equicontinuous (see, e.g., [5, Theorem 10.67] ).

The equality suppμ f = J( f ) holds; the inclusion J( f ) ⊂ suppμ f follows from the
definition of J( f ), the balanced property f ∗μ f = d ·μ f on P1, and suppμ f 	⊂ E( f )
(or more precisely, recalling that E( f ) is an at most countable subset in P

1 and that
μ f has no atoms in P

1). The opposite inclusion suppμ f ⊂ J( f ) follows from the
definition of J( f ) and the above equidistribution theorem.

Remark 3.2 (see, e.g., [5, Corollary 10.33]) If μ f has an atom in P1, then f has a
potentially good reduction, so in particular J( f ) is a singleton in H1.

For every n ∈ N, by suppμ f = J( f ) and μ f n = μ f on P1, we also have J( f n) =
J( f ). For every m ∈ PGL(2, K ), we have m∗μ f = μm◦ f ◦m−1 on P1, m(J( f )) =
J(m ◦ f ◦ m−1), and m(F( f )) = F(m ◦ f ◦ m−1).

3.3 Root Divisors on P1 and the Proximity Functions on P1

For any distinct h1, h2 ∈ K (z), let [h1 = h2] be the effective (K -)divisor onP1 defined
by all solutions to the equation h1 = h2 in P1 taking into account their multiplicities,
which is also regarded as the Radon measure

∑

w∈P1
(ordw[h1 = h2]) · δw

on P1. The function P
1 � z �→ [h1(z), h2(z)] between h1 and h2 uniquely extends to

a continuous function S �→ [h1, h2]can(S) on P1 (see, e.g., [26, Proposition 2.9]), so
that for every continuous weight g on P1, (the exp of) the function

�(h1, h2)g(S) := log[h1, h2]can(S) − g(h1(S)) − g(h2(S)) on P1 (3.3)

is a unique continuous extension of (the exp of) the function P
1 � z �→

�g(h1(z), h2(z)).
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4 Potential-Theoretic Computations

Let f ∈ K (z) be a rational function of degree d > 1.

Lemma 4.1 (Riesz’s decomposition for the pullback of an atom) For every S ∈ P1,

�g f ( f (·),S) = Ug f , f ∗δS (·) on P1. (4.1)

Proof Fix a lift F of f normalized so that gF = g f on P1. Fix w ∈ P
1 and W ∈

π−1(w). Choose a sequence (q j )
d
j=1 in K 2 \ {(0, 0)} such that F(p0, p1) ∧ W ∈

K [p0, p1]d factors as F(p0, p1) ∧ W = ∏d
j=1((p0, p1) ∧ q j ) in K [p0, p1]. This

together with (3.1) and the definition of TF implies

�g f ( f ◦ π,w) −Ug f , f ∗δw ◦ π

= (
log |F(·) ∧ W | − log ‖F‖ − log ‖W‖ − (g f ◦ f )(π(·)) − g f (w)

)

−
d∑

j=1

(
log | · ∧q j | − log ‖ · ‖ − log ‖q j‖ − g f ◦ π − g f (π(q j ))

)

= (
log |F(·) ∧ W | −

d∑

j=1

log | · ∧q j |
) − (

(g f ◦ f )(π(·)) + d · g f ◦ π
)

−(log ‖F‖ − d · log ‖ · ‖)

−(g f (w) + log ‖W‖) +
d∑

j=1

(g f (π(q j )) + log ‖q j‖)

≡ −(g f (w) + log ‖W‖) +
d∑

j=1

(g f (π(q j )) + log ‖q j‖) =: C on K 2 \ {0},

so �g f ( f (·), w) − Ug f , f ∗δw (·) ≡ C on P
1, and in turn on P1 by the density of P1 in

P1 and the continuity of (the exp of) both sides on P1. Integrating both sides against
μ f over P1, since

∫
P1 Ug f , f ∗δwμ f = ∫

P1 Ug f ,μ f ( f
∗δw) = 0 (by Ug f ,μ f ≡ 0) and

f∗μ f = μ f , we have

C =
∫

P1
�g f ( f (·), w)μ f = Ug f , f∗μ f (w) = Ug f ,μ f (w) = 0.

This completes the proof of (4.1) in the case S = w ∈ P
1.

Fix S0 ∈ H1. By the density of P1 in P1, we can choose a sequence (wn) in P
1

tending to S0 as n → ∞. Then limn→∞ f ∗δwn = f ∗δS0 weakly on P
1 and, for every

n ∈ N, applying (4.1) to S = wn ∈ P
1, we have �g f ( f (·), wn) = Ug f , f ∗δwn

(·) on
P1. Hence, for each S ′ ∈ H1, by the continuity of both �g f ( f (S ′), ·) and �g f (S ′, ·)
on P1, we have
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�g f ( f (S ′),S0) = lim
n→∞ �g f ( f (S ′), wn) = lim

n→∞Ug f , f ∗δwn
(S ′) = Ug f , f ∗δS0

(S ′).

This completes the proof of (4.1) by the density of H1 in P1 and the continuity of (the
exp of) both �g f ( f (·),S0) and Ug f , f ∗δS0

(·) on P1. ��

The following computation is an application of Lemma 4.1. We include a proof of
it although it will not be used in this article.

Lemma 4.2 (Riesz’s decomposition for the fixed points divisor on P
1)

�( f , IdP1)g f = Ug f ,[ f =Id
P1 ] on P1. (4.2)

Proof Fix a lift F of f normalized so that gF = g f on P1. Choose a sequence
(q j )

d+1
j=1 in K 2 \ {(0, 0)} so that (F ∧ IdP1)(p0, p1) ∈ K [p0, p1]d+1 factors as (F ∧

IdP1)(p0, p1) = ∏d+1
j=1((p0, p1) ∧ q j ) in K [p0, p1], which with (3.1) implies

�( f , IdP1)g f −Ug f ,[ f=Id
P1 ] ≡

d+1∑

j=1

(g f (π(q j )) + log ‖q j‖) =: C

onP1, and in turn on P1 by the density ofP1 in P1 and the continuity of (the exp of) both
sides on P1. Integrating both sides against μ f over P1, since

∫
P1 Ug f ,[ f =Id

P1 ]μ f =∫
P1 Ug f ,μ f [ f = IdP1 ] = 0 (by Ug f ,μ f ≡ 0), we have C = ∫

P1 �( f , IdP1)g f μ f , so
that we first have

�( f , IdP1)g f = Ug f ,[ f =Id
P1 ] +

∫

P1
�( f , IdP1)g f μ f on P1.

Fix z0 ∈ P
1\(supp[ f = IdP1 ]). Using the above equality twice, by f∗[ f = IdP1 ] =

[ f = IdP1 ] on P1 and (4.1), we have

�g f ( f (z0), z0) −
∫

P1
�( f , IdP1)g f μ f

=Ug f ,[ f =Id
P1 ](z0) = Ug f , f∗[ f =Id

P1 ](z0) =
∫

P1
�g f (z0, ·)( f∗[ f = IdP1 ])(·)

=
∫

P1
�g f (z0, f (·))[ f = IdP1 ](·) =

∫

P1
Ug f , f ∗δz0 [ f = IdP1]

=
∫

P1
Ug f ,[ f=Id

P1 ]( f ∗δz0) =
∫

P1

(
�( f , IdP1)g f −

∫

P1
�( f , IdP1)g f μ f

)
( f ∗δz0)

=
∫

P1
�( f , IdP1)g f ( f

∗δz0) − d ·
∫

P1
�( f , IdP1)g f μ f ,
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and moreover,
∫
P1 �( f , IdP1)g f ( f

∗δz0) = Ug f , f ∗δz0 (z0) = �g f ( f (z0), z0) by (4.1).
Hence (d − 1)

∫
P1 �( f , IdP1)g f μ f = 0, and in turn since d > 1,

∫

P1
�( f , IdP1)g f μ f = 0. (4.3)

This completes the proof. ��
From now on, we focus on the case where ∞ ∈ F( f ). We adopt the following

convention when no confusion would be caused:

Convention For every probability Radonmeasure ν supported by P1\{∞}, we denote
p∞,ν and I∞,ν by pν and Iν , respectively, for simplicity.

Since suppμ f = J( f ) ⊂ P1 \ D∞, the equality (4.5) below implies that P1 \ D∞
is of logarithmic capacity > 0 with pole ∞.

Lemma 4.3 Suppose that ∞ ∈ F( f ). Then

pμ f = g f − log[·,∞]can + Iμ f

2
on P1, (4.4)

Iμ f = −2 · g f (∞) > −∞, and (4.5)

�g f (·,∞) = −pμ f + Iμ f on P1. (4.6)

Proof Suppose ∞ ∈ F( f ). Then we have suppμ f = J( f ) ⊂ P1 \ D∞ and

0 = Vg f =
∫

P1×P1
�g f (μ f × μ f ) = Iμ f − 2 ·

∫

P1
(g f − log[·,∞]can)μ f ,

so that Iμ f = 2 · ∫
P1(g f − log[·,∞]can)μ f , which with

0 ≡ Ug f ,μ f = pμ f − (g f − log[·,∞]can) −
∫

P1
(g f − log[·,∞]can)μ f on P1

yields (4.4). By (4.4) and log[z,∞] = log[z, 0] − log |z| on P
1 \ {∞}, we have

g f (∞) = lim
z→∞

(
(pμ f (z) − log |z|) + log[z, 0]) − Iμ f

2
= − Iμ f

2
,

so that (4.5) holds. By (4.4) and (4.5), we have �g f (·,∞) = log[·,∞]can − g f −
g f (∞) = (−pμ f + Iμ f /2) + Iμ f /2 = −pμ f + Iμ f on P1, so (4.6) also holds. ��

Let F = (F0, F1) ∈ (K [p0, p1]d)2 be a normalized lift of f , and cF0 , cF1 ∈
K \ {0} be the coefficients of the maximal degree terms of F0(1, z), F1(1, z) ∈ K [z],
respectively. No matter whether ∞ ∈ F( f ), by the equality [z,∞] = 1/‖(1, z)‖ on
P
1 and the definition of TF , we have

TF = − log[ f (·),∞]can + log |F0(1, ·)|∞ + d · log[·,∞]can
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on P1 \ ({∞} ∪ f −1(∞)), and in turn on P1 \ ({∞} ∪ f −1(∞)) by the density of P1

in P1 and the continuity of both sides on P1 \ ({∞}∪ f −1(∞)). By (3.1), this equality
is rewritten as

d · (g f − log[·,∞]can) − (g f ◦ f − log[ f (·),∞]can) = log |F0(1, ·)|∞ (4.7)

on P1 \ ({∞} ∪ f −1(∞)).

Lemma 4.4 (Pullback formula for pμ f under f ) If ∞ ∈ F( f ), then

log |F0(1, ·)|∞ = d · pμ f − pμ f ◦ f − (d − 1)
Iμ f

2
(4.8)

on P1 \ ({∞} ∪ f −1(∞)); moreover, for every S ′ ∈ P1 \ {∞, f (∞)},

pμ f (S ′) −
∫

P1\{∞}
pμ f ( f

∗δS ′) + (d − 1)Iμ f

= −
∫

P1
log |F0(1, ·)|∞ f ∗δS ′

d
+ (d − 1)

Iμ f

2
, (4.9)

and similarly

∫

P1\{∞}
pμ f ( f

∗δ∞) − (d − 1)Iμ f = − log |cF0 | − (d − 1)
Iμ f

2
. (4.10)

Proof Suppose ∞ ∈ F( f ). Then for every S ′ ∈ P1 \ {∞, f (∞)}, by (4.7) and (4.4),
we have (4.8). Integrating both sides in (4.8) against f ∗δS ′/d over P1, we have (4.9).
Similarly, integrating both sides in (4.8) against μ f over P1, also by f∗μ f = μ f and
Iμ f := ∫

P1 pμ f μ f , we have

log |cF0 | +
∫

P1\{∞}
pμ f ( f

∗δ∞) =
∫

P1
log |F0(1, ·)|∞μ f

= d · Iμ f −
∫

P1
(pμ f ◦ f )μ f − (d − 1)

Iμ f

2
= (d − 1)

Iμ f

2
,

so (4.10) also holds. ��
If f (∞) = ∞, then F(0, 1) = (0, cF1 ), so that by the homogeneity of F , for every

n ∈ N, Fn(0, 1) = (0, (cF1 )(d
n−1)/(d−1)) and that

g f (∞) = lim
n→∞

TFn (∞)

dn
= lim

n→∞
log ‖Fn(0, 1)‖

dn
− log ‖(0, 1)‖ = log |cF1 |

d − 1
.
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Lemma 4.5 If f (∞) = ∞ ∈ F( f ), then

Iμ f = − 2

d − 1
log |cF1 | (4.11)

and, for every S ′ ∈ P1,

∫

P1\{∞}
pμ f ( f

∗δS ′) − (d − 1)Iμ f =

⎧
⎪⎨

⎪⎩

pμ f (S ′) if S ′ 	= ∞,

log

∣∣∣∣
cF1
cF0

∣∣∣∣ if S ′ = ∞.
(4.12)

Proof Suppose that f (∞) = ∞ ∈ F( f ). Then by the above computation of g f (∞)

and (4.5), we have (4.11). Moreover, for every S ′ ∈ P1 \ {∞}, using (4.6) twice and
(4.1) (and the assumption f (∞) = ∞), we compute

−pμ f (S ′) + Iμ f = �g f (∞,S ′) = �g f ( f (∞),S ′)

=
∫

P1
�g f (∞, ·)( f ∗δS ′) = −

∫

P1
pμ f ( f

∗δS ′) + d · Iμ f ,

so (4.12) holds for S ′ ∈ P1 \ {∞}. Finally, (4.12) for S ′ = ∞ holds by (4.10) and
(4.11). ��

Let us now focus on ν∞ = ν∞,P1\D∞ when ∞ ∈ F( f ). Then f (∞) ∈ F( f ) and,
since supp ν∞ ⊂ ∂D∞ ⊂ J( f ) = suppμ f , we have

supp( f∗ν∞) ⊂ f (J( f )) = J( f ) = suppμ f ⊂ P1 \ D∞.

Lemma 4.6 Suppose that ∞ ∈ F( f ). Then for every S ′ ∈ P1 \ {∞, f (∞)},

p f∗ν∞(S ′) −
∫

P1
pν∞( f ∗δS ′) + d · Iν∞ −

∫

P1
(p f∗ν∞)μ f

= pμ f (S ′) −
∫

P1
pμ f ( f

∗δS ′) + (d − 1)Iμ f (4.13)

and, if in addition ν∞ is invariant under f in that f∗ν∞ = ν∞ on P1, then

pν∞(S ′) −
∫

P1
pν∞( f ∗δS ′) + (d − 1) · Iν∞

= pμ f (S ′) −
∫

P1
pμ f ( f

∗δS ′) + (d − 1)Iμ f . (4.14)

Proof Suppose that ∞ ∈ F( f ). Then for every S ′ ∈ P1 \ {∞, f (∞)}, using (4.4)
repeatedly and (4.1), we have

p f∗ν∞(S ′) =
∫

P1
log |S ′ − ·|∞( f∗ν∞) =

∫

P1
log |S ′ − f (·)|∞ν∞
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=
∫

P1

(
�g f ( f (·),S ′) + (

pμ f ( f (·)) − Iμ f

2

) + (
pμ f (S ′) − Iμ f

2

))
ν∞

=
∫

P1

(∫

P1
�g f (·,S)( f ∗δS ′)(S)

)
ν∞ +

∫

P1
(pμ f ◦ f )ν∞ + pμ f (S ′) − Iμ f

=
∫

P1

(∫

P1

(
log |S − ·|∞ − (

pμ f (S) − Iμ f

2

) − (
pμ f (·) − Iμ f

2

))
( f ∗δS ′)(S)

)
ν∞

+
∫

P1
(pμ f ◦ f )ν∞ + pμ f (S ′) − Iμ f

=
∫

P1
pν∞( f ∗δS ′) +

∫

P1
(pμ f ◦ f − d · pμ f )ν∞

+ pμ f (S ′) −
∫

P1
pμ f ( f

∗δS ′) + (d − 1)Iμ f .

Moreover, by Fubini’s theorem and pν∞ ≡ Iν∞ on P1 \ D∞, we also have

∫

P1
(pμ f ◦ f − d · pμ f )ν∞

=
∫

P1
pμ f ( f∗ν∞) − d ·

∫

P1
pμ f ν∞ =

∫

P1
(p f∗ν∞)μ f − d · Iν∞ ,

which completes the proof of (4.13).
If in addition f∗ν∞ = ν∞ on P1, then by the identity pν∞ ≡ Iν∞ on P1 \ (D∞ ∪ E),

where E is an Fσ -subset in ∂D∞ of logarithmic capacity 0 with pole ∞, and by the
vanishing μ f (E) = 0 (from (4.5)), we also have

∫

P1
(p f∗ν∞)μ f =

∫

P1
(pν∞)μ f = Iν∞ , (4.15)

which completes the proof of (4.14). ��

Lemma 4.7 (Invariance of ν∞ under f ) If f (∞) = ∞ ∈ F( f ), then f∗ν∞ = ν∞ on
P1 and, for every S ′ ∈ P1,

∫

P1\{∞}
pν∞( f ∗δS ′) − (d − 1)Iν∞ =

⎧
⎪⎨

⎪⎩

pν∞(S ′) if S ′ 	= ∞,

log

∣∣∣∣
cF1
cF0

∣∣∣∣ if S ′ = ∞.
(4.16)

Proof Suppose that f (∞) = ∞ ∈ F( f ). Then for every S ′ ∈ P1 \ {∞}, by (4.13) and
(4.12), we have

p f∗ν∞(S ′) =
∫

P1
pν∞( f ∗δS ′) − d · Iν∞ +

∫

P1
(p f∗ν∞)μ f . (4.13′)
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We claim that

p f∗ν∞ ≡
∫

P1
(p f∗ν∞)μ f on J( f ); (4.17)

for, by the equality (4.13’) and pν∞ ≥ Iν∞ on P1 (and Fubini’s theorem and (4.4)),
we have

p f∗ν∞ ≥
∫

P1
(p f∗ν∞)μ f > −∞ on P1 \ {∞},

so that p f∗ν∞ ≡ ∫
P1 pμ f ( f∗ν∞) μ f -a.e. on P1. Hence the claim follows by the strong

upper semicontinuity (2.1) of p f∗ν∞ on P1 and J( f ) = suppμ f , also recalling Remark
3.2.

Once the identity (4.17) is at our disposal, using also the maximum principle for
the subharmonic function p f∗ν∞ and the latter inequality in (2.2), we have

p f∗ν∞ ≡
∫

P1
(p f∗ν∞)μ f = sup

J( f )
p f∗ν∞ ≥ sup

P1\D∞
p f∗ν∞ ≥ Iν∞ on J( f ),

and integrating both sides of this inequality against f∗ν∞, we have I f∗ν∞ ≥ Iν∞ or
equivalently

f∗ν∞ = ν∞ on P1.

Then (4.16) holds for every S ′ ∈ P1 \ {∞} by (4.14) and (4.12). Finally, integrating
both sides in (4.8) against ν∞ over P1, by (4.15) and Fubini’s theorem, we compute

log |cF0 | +
∫

P1\{∞}
pν∞( f ∗δ∞) =

∫

P1
log |F0(1, ·)|∞ν∞

= d · Iν∞ −
∫

P1
(pμ f ◦ f )ν∞ − (d − 1)

Iμ f

2

= d · Iν∞ −
∫

P1
(p f∗ν∞)μ f − (d − 1)

Iμ f

2
= (d − 1)Iν∞ − (d − 1)

Iμ f

2
,

which with (4.11) yields (4.16) for S ′ = ∞. ��
Remark 4.8 All the computations in this Section are also valid for K = C.

Remark 4.9 The f -invariance of ν∞ in Lemma 4.7 is a non-archimedean counterpart
to Mañé and da Rocha [22, p. 253, before Corollary 1]. Their argument was based
on solving Dirichlet problem using the Poisson kernel on D∞ ∪ ∂D∞. A similar
machinery has been only partly developed in the potential theory on P1 (see [5, Sects.
7.3, 7.6]).
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5 Proof of Theorem 1

Let f ∈ K (z) be a rational function of degree d > 1, and F = (F0, F1) ∈
(K [p0, p1]d)2 be a normalized lift of f . When ∞ ∈ F( f ), let us still denote
νP1\D∞ = ν∞,P1\D∞ by ν∞ for simplicity. If μ f = ν∞ on P1, then not only

pμ f = pν∞ > Iν∞ = Iμ f on D∞ but, by the continuity of pμ f on P1 \ {∞} (by
(4.4)), also pμ f = pν∞ ≡ Iν∞ = Iμ f on P

1 \ D∞.
Suppose that ∞ ∈ F( f ), f (D∞) = D∞ (so D∞ ⊂ f −1(D∞)), and μ f = ν∞ on

P1. Then by (4.8) and pμ f ≡ Iμ f on P
1 \ D∞, we have

log |F0(1, ·)|∞ ≡ (d − 1)
Iμ f

2
=: I0 on P1 \ f −1(D∞). (5.1)

Let S0 be the point in H1 represented by the disk {z ∈ K : |z| ≤ eI0} in K .
Suppose also that f −1(D∞) \ D∞ 	= ∅. Then deg F0(1, z) > 0. The subset

U∞ := {S ∈ P1 : |F0(1,S)|∞ > eI0}

in P1 is the component of P1 \ (F0(1, ·))−1(S0) containing ∞, and ∂U∞ =
(F0(1, ·))−1(S0). By (5.1), we have U∞ ⊂ f −1(D∞), and in turn

U∞ ⊂ D∞.

For every w ∈ f −1(∞) \ {∞} = (F0(1, ·))−1(0) ⊂ {S ∈ P1 : |F0(1,S)|∞ < eI0},
let Dw (resp. Uw) be the component of f −1(D∞) (resp. the component of {S ∈ P1 :
|F0(1,S)|∞ < eI0}) containingw. ThenUw is the component of P1\(F0(1, ·))−1(S0)

containing w, and ∂Uw is a singleton in (F0(1, ·))−1(S0) = ∂U∞. For every w ∈
f −1(∞) ∩ D∞, Dw = D∞.
We claim that ∂D∞ is a singleton say {S∞} in H1 and, moreover, that for every

w ∈ f −1(∞) \ D∞( 	= ∅ under the assumption that f −1(D∞) \ D∞ 	= ∅),

∂Dw = ∂D∞(= {S∞});

indeed, for every w ∈ f −1(∞) \ D∞, we not only have Dw ⊂ Uw (since otherwise,
we must have ∅ 	= Dw ∩U∞ ⊂ Dw ∩D∞ so Dw = D∞, which contradictsw /∈ D∞)
but alsoUw ⊂ Dw (by (5.1)), so thatUw = Dw. This together with ∂Uw ⊂ ∂U∞ and
U∞ ⊂ D∞ yields

∂Dw = ∂Uw ⊂ ∂D∞

(since otherwise, we must have ∅ 	= Uw ∩ D∞ = Dw ∩ D∞ so Dw = D∞, which
contradicts w /∈ D∞). Hence the claim holds since f (∂Uw) = f (∂Dw) = ∂D∞ is a
singleton in H1.
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Once the claim is at our disposal, we compute

f −1({S∞}) = f −1(∂D∞) ⊂
⋃

w∈ f −1(∞)

∂Dw

=
( ⋃

w∈ f −1(∞)∩D∞

∂Dw

)
∪

( ⋃

w∈ f −1(∞)\D∞

∂Dw

)
= {S∞} ∪ {S∞} = {S∞},

so f has a potential good reduction. ��

6 Proof of Theorem 2

Pick a prime number p, and let us denote | · |p by | · | for simplicity. Set

f (z) := z p − z

p
∈ Q[z] and A(z) := az + b

cz + d
∈ PGL(2,Zp).

If |c| < 1, then |ad − bc| = |ad| = 1, so that |a| = |d| = 1.
Let J( f ◦ A) and F( f ◦ A) denote the Berkovich Julia and Fatou sets in P1(Cp) of

f ◦ A as an element of Cp(z) of degree p, respectively.

6.1 Computing J(f ◦ A)

The fact that J( f ) coincides with the classical Julia set of f (see Remark 3.1), which is
Zp, is well known (see e.g., [17, Example 4.11], [6, Example 5.30]). In this subsection,
more general facts will be established.

Lemma 6.1 If |c| < 1, then ( f ◦ A)−1(Zp) = Zp.

Proof We first claim that for every z ∈ Z, p · f (z) = z p − z ≡ 0 modulo pZ;
indeed, when is obvious if z = 0 modulo pZ, and is the case by Fermat’s Little
Theorem when z 	= 0 modulo pZ. By this claim, we have f (Z) ⊂ Z (cf. [34]), and
in turn f (Zp) ⊂ Zp by the continuity of the action of f on Qp and the density of
Z in Zp. Next, we claim that f −1(Zp) ⊂ Zp or equivalently that for every w ∈ Zp,
f −1(w) ⊂ Zp; indeed, settingW (X) := X p−X− pw ∈ Zp[X ] of degree p, we have
already seen that the reduction W (X) = X p − X ∈ Fp[X ] of W modulo pZp has p
distinct roots 0, . . . , p − 1 in Fp. Hence by Hensel’s lemma (see, e.g., [24, Corollary
1 in Sect. 5.1], [8, Sect. 3.3.4, Proposition 3]), W (X) also has p distinct roots in Zp,
and has no other roots in Qp, so the claim holds. We have seen that f −1(Zp) = Zp.

Suppose now that |c| < 1. Then for every z ∈ Zp, we have |cz| < 1 = |d|,
so that |A(z)| = |az + b|/|cz + d| = |az + b| ≤ 1. Hence A(Zp) ⊂ Zp, and
similarly A−1(Zp) ⊂ Zp since A−1(z) = (dz − b)/(−cz + a) ∈ PGL(2,Zp) and
| − c| = |c| < 1. Now we conclude that ( f ◦ A)−1(Zp) = A−1(Zp) = Zp. ��
Lemma 6.2 If |b| 
 1 and |c| 
 1, then f ◦ A has an attracting fixed point zA in
P
1(Cp) \ Zp, which tends to ∞ as (a, b, c, d) → (1, 0, 0, 1) in (Zp)

4. Moreover, if
in addition c 	= 0, then zA ∈ Cp \ Zp and ( f ◦ A)−1(zA) 	= {zA}.
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Proof Since f −1(∞) = {∞} and deg f = p > 1, the former assertion holds also
noting that (IdP1(Cp)

)′ ≡ 1 	= 0 and applying an implicit function theorem to the

equation ( f ◦ A)(z) = z near (z, a, b, c, d) = (∞, 1, 0, 0, 1) in P1(Cp)× (Zp)
4 (see,

e.g., [1, (10.8)]). Moreover, since f ′(z) = z p−1 − p−1 and f ′′(z) = (p − 1)z p−2,
the point A−1(∞) = −d/c is the unique point z ∈ P

1(Cp) such that degz( f ◦ A) =
p(= deg( f ◦ A)), and on the other hand, if in addition c 	= 0, then the point A−1(∞)

is 	= ∞ and is not fixed by f ◦ A. Hence the latter assertion holds also noting that
( f ◦ A)(∞) 	= ∞ if in addition c 	= 0. ��

Consequently, if |b| 
 1 and |c| 
 1, then

J( f ◦ A) = Zp = P1(Cp) \ DzA( f ◦ A); (6.1)

indeed, by Lemma 6.1 (and (3.2)), if |c| < 1, then J( f ◦ A) ⊂ Zp. If in addition
|b| 
 1 and |c| 
 1, then by Lemma 6.2 (and Zp ⊂ Cp), we have F( f ◦ A) =
DzA( f ◦ A), which is an (immediate) attractive basin of f (see [31, Théorème de
Classification]) associated with zA ∈ P

1(Cp) \ Zp, and in turn have J( f ◦ A) = Zp

since ( f ◦ A)(Zp) ⊂ Zp by Lemma 6.1.

6.2 Computing Energies andMeasures

Since

Res
(
p1/2 · (

z p0 , z p0 f (z1/z0)
)) = (p1/2)2p · (1p−p · (p−1)p−0 · 1) = 1,

the pair

F(z0, z1) := p1/2 · (
z p0 , z p0 f (z1/z0)

) ∈ (Q[z0, z1]p)2

is a normalized lift of f . Noting that |Res(az0+bz1, cz0+dz1)| = |ad−bc| = 1 and
using a formula for the homogeneous resultant of the composition of homogeneous
polynomialmaps (see, e.g., [32, Exercise 2.12]), we also have

∣∣Res
(
F(az0+bz1, cz0+

dz1)
)∣∣ = ∣∣(Res F)1 · (Res(az0 + bz1, cz0 + dz1))p

2 ∣∣ = 1, so that

FA(z0, z1) := F(az0 + bz1, cz0 + dz1)

= p1/2 ·
(

(az0 + bz1)
p,

(cz0 + dz1)p − (az0 + bz1)p−1(cz0 + dz1)

p

)

∈ (Qp[z0, z1]p)2

is a normalized lift of f ◦ A. For every n ∈ N, write

(FA)n = (
F (n)
A,0, F

(n)
A,1

) ∈ (Qp[z0, z1]pn )2.
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Lemma 6.3 If |b| < 1 and |c| < 1, then

g f ◦A(∞)

(
=

∞∑

j=1

( log ‖(FA) j (0, 1)‖
p j

− log ‖(FA) j−1(0, 1)‖
p j−1

))
= log p

2(p − 1)
.

Proof Suppose that |b| < 1 and |c| < 1(, and recall |p| = p−1 < 1). Then for every
(z0, z1) ∈ C

2
p, if |z0| < |z1|, then

|cz0 + dz1| = |dz1| = |z1| > max{|az0|, |bz1|} ≥ |az0 + bz1|

so

|F (1)
A,0(z0, z1)| < |F (1)

A,1(z0, z1)| and

‖FA(z0, z1)‖ = |F (1)
A,1(z0, z1)| = p1/2|cz0 + dz1|p

= p1/2|dz1|p = p1/2|z1|p = p1/2‖(z0, z1)‖p.

Hence inductively, for every n ∈ N, we have |F (n)
A,0(0, 1)| < |F (n)

A,1(0, 1)|, and more-
over

n∑

j=1

( log ‖(FA) j (0, 1)‖
p j

− log ‖(FA) j−1(0, 1)‖
p j−1

)
=

n∑

j=1

1
2 log p

p j

=
(1
2
log p

) (1/p)(1 − 1/pn)

1 − 1/p
→

(1
2
log p

) 1

p − 1

as n → ∞. ��
Lemma 6.4 If (a, b, c, d) is close enough to (1, 0, 0, 1) in (Zp)

4, then

μ f ◦A = ν∞,Zp = νzA,Zp on P1(Cp).

Proof If |b| 
 1 and |c| 
 1, then by (6.1) and Zp ⊂ Cp, we have

∞ ∈ F( f ◦ A) = DzA( f ◦ A) = P1(Cp) \ Zp.

Then by (4.5) and Lemma 6.3, we have

I∞,μ f ◦A = −2 ·
(

log p

2(p − 1)

)
= log p

−1
p−1 ,

and in particular, recalling ν∞,Zp = μ f on P1(Cp), also I∞,ν∞,Zp
= I∞,μ f =

log p
−1
p−1 (for a non-dynamical and more direct computation of I∞,ν∞,Zp

, see [3]).
Now the first equality holds by the uniqueness of the equilibrium mass distribution
on the non-polar compact subset Zp in P1(Cp). The second equality holds since zA
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tends to ∞ as (a, b, c, d) → (1, 0, 0, 1) in (Zp)
4 (by Lemma 6.2), also recalling

Observation 2.4. ��
Remark 6.5 If 0 < |c| 
 1 and |b| 
 1, then ( f ◦ A)(∞) 	= ∞ ∈ F( f ◦ A),
( f ◦ A)(D∞( f ◦ A)) = D∞( f ◦ A), J( f ◦ A) 	⊂ H1 (indeed J( f ◦ A) ⊂ Cp), and
μ f ◦A = ν∞,P1\D∞ on P1.

6.3 Conclusion

If |b| 
 1 and 0 < |c| 
 1, then setting mA(z) := 1
z−zA

∈ PGL(2,Cp), the rational
function

gA := mA ◦ ( f ◦ A) ◦ m−1
A ∈ Cp(z)

is of degree p and satisfies gA(∞) = ∞, |g′
A(∞)| < 1, g−1

A (∞) 	= {∞}, and ∞ ∈
mA(DzA( f ◦ A)) = D∞(gA). If moreover (a, b, c, d) is close enough to (1, 0, 0, 1)
in (Zp)

4, then also recalling Observations 2.2 and 2.3, we have

μgA = (mA)∗μ f ◦A = (mA)∗ν∞,Zp = (mA)∗νzA,Zp

= (mA)∗νzA,P1\DzA ( f ◦A) = ν∞,P1\D∞(gA) on P1(Cp).

Now the proof of Theorem 2 is complete. ��
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