RESEARCH CONTRIBUTION RESEARCH CONTRIBUTION

On a Characterization of Polynomials Among Rational Functions in Non-Archimedean Dynamics

Yûsuke Okuyama¹ · Małgorzata Stawiska[2](http://orcid.org/0000-0001-5704-7270)

Received: 16 January 2020 / Revised: 1 June 2020 / Accepted: 4 June 2020 / Published online: 13 August 2020 © Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2020

Abstract

We study a question on characterizing polynomials among rational functions of degree > 1 on the projective line over an algebraically closed field that is complete with respect to a non-trivial and non-archimedean absolute value, from the viewpoint of dynamics and potential theory on the Berkovich projective line.

Keywords Canonical measure · Equilibrium mass distribution · Non-archimedean dynamics · Potential theory

Mathematics Subject Classification Primary 37P50; Secondary 11S82 · 31C15

1 Introduction

Let *K* be an algebraically closed field that is complete with respect to a non-trivial and non-archimedean absolute value $|\cdot|$. The *Berkovich* projective line $P^1 = P^1(K)$ is, as a topological augmentation of the (classical) projective line $\mathbb{P}^1 = \mathbb{P}^1(K) = K \cup \{\infty\},\$ a compact, locally compact, uniquely arcwise connected, and Hausdorff topological space. The set $H^1 := P^1 \setminus \mathbb{P}^1$ is called the Berkovich upper half space in P^1 .

Let *f* ∈ *K*(*z*) be a rational function of degree $d > 1$. For every $n \text{ ∈ } N$, set $f^n := f \circ f^{n-1}$, where $f^0 := \text{Id}_{\mathbb{P}^1}$. The action of *f* on \mathbb{P}^1 uniquely extends to a continuous endomorphism on $P¹$, which is still open, surjective, and fiber-discrete, and preserves both \mathbb{P}^1 and H^1 . Let us define the *Berkovich* Julia set $J(f)$ of f by the set of all points $S \in P^1$ such that for any open neighborhood *U* of *S* in P^1 ,

B Yûsuke Okuyama okuyama@kit.ac.jp

> Małgorzata Stawiska stawiska@umich.edu

¹ Division of Mathematics, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan

² Mathematical Reviews, 416 Fourth St., Ann Arbor, MI 48103, USA

$$
\mathsf{P}^1 \setminus E(f) \subset \bigcup_{n \in \mathbb{N}} f^n(U),
$$

where the set $E(f) := \{a \in \mathbb{P}^1 : \# \bigcup_{n \in \mathbb{N}} f^{-n}(a) < \infty\}$ is called the (classical) exceptional set of f and is at most countable subset in \mathbb{P}^1 . The local degree function deg \overline{f} on \mathbb{P}^1 also canonically extends to P^1 , and this extended local degree function deg (f) induces a canonical pullback operator f^* from the space of all Radon measures on $P¹$ to itself (see Sect. [2.2](#page-5-0) below). Corresponding to the construction of the unique maximal entropy measure in complex dynamics (studied since Lyubich [\[20](#page-23-0)], Freire–Lopes–Mañé [\[15\]](#page-23-1), Mañé [\[23\]](#page-23-2)), the *f*-*canonical measure* μ_f on P^1 has been constructed as the unique probability Radon measure ν on P^1 such that

$$
f^* \nu = d \cdot \nu
$$
 on P^1 and that $\nu(E(f)) = 0$,

so in particular μ_f is invariant under *f* in that $f_*\mu_f = \mu_f$ on P^1 . The support of μ_f coincides with $J(f)$ and is the minimal non-empty and closed subset in $P¹$ backward invariant under *f* [\[14\]](#page-23-3). The *Berkovich* Fatou set of *f* is defined by

$$
F(f) := P^1 \setminus J(f),
$$

and each component of F(*f*) is called a *Berkovich Fatou component* of *f* . We note that $E(f) \subset F(f)$. A Berkovich Fatou component of f is mapped properly to a Berkovich Fatou component of *f* under *f* , and the preimage of a Berkovich Fatou component of *f* under *f* is the union of at most *d* Berkovich Fatou components of *f* .

Notation 1.1 For every $z \in F(f) \cap \mathbb{P}^1$, let $D_z = D_z(f)$ be the Berkovich Fatou component of *f* containing *z*.

For any $z \in F(f) \cap \mathbb{P}^1$, the compact subset $P^1 \setminus D_z$ in P^1 is of logarithmic capacity > 0 with pole *z*, or equivalently, there is the unique *equilibrium mass distribution* v_{z} $p_1\$ on P¹ \ D_z with pole *z*, which is in fact supported by $\partial D_z \subset J(f)$ (we will recall some details on the logarithmic potential theory on $P¹$ in Sect. [2.4](#page-6-0) below). If $f(\infty) = \infty \in F(f)$, then $v_{\infty, P^1 \setminus D_{\infty}}$ is invariant under *f* in that

$$
f_*(\nu_{\infty,\mathsf{P}^1\setminus D_\infty})=\nu_{\infty,\mathsf{P}^1\setminus D_\infty}\quad\text{on }\mathsf{P}^1
$$

(see Lemma [4.7](#page-16-0) below). If moreover $f \in K[z]$ or equivalently $f^{-1}(\infty) = {\infty}$, then \in *E*(*f*), $f^{-1}(D_{\infty}) = D_{\infty}$, and we can see

$$
\mu_f = \nu_{\infty, \mathsf{P}^1 \setminus D_{\infty}} \quad \text{on } \mathsf{P}^1
$$

(since Brolin [\[9\]](#page-22-0) in complex dynamics). Let δ_S be the Dirac measure on P¹ at $S \in P^1$.

Our aim is to study whether polynomials can be characterized among rational functions of degree > 1 using potential theory in non-archimedean setting, corresponding to the studies [\[19](#page-23-4)[,21](#page-23-5)[,22](#page-23-6)[,25](#page-23-7)[,29](#page-23-8)[,30](#page-23-9)] in complex dynamics. Concretely, we study the following question on a characterization of polynomials among rational functions in non-archimedean dynamics.

Question Let $f \in K(z)$ be a rational function of degree > 1, and suppose that *f* (∞) = ∞ ∈ F(*f*) (so in particular $f(D_\infty) = D_\infty$) and that $J(f) \not\subset H^1$. Then, are the statements

(i)
$$
f \in K[z]
$$
 and (ii) $\mu_f = \nu_{\infty, P^1 \setminus D_{\infty}} on P^1$

equivalent?

The corresponding question in complex dynamics has been answered affirmatively (Lopes[\[21\]](#page-23-5)).

Here are a few comments on this Question. We already mentioned that (i) implies (ii) (without assuming $J(f) \not\subset H^1$). It is not difficult to construct such $f \in K(z) \setminus K[z]$ of degree > 1 that $f(D_{\infty}) = D_{\infty}$, that $f(\infty) \neq \infty \in F(f)$, that $J(f) \not\subset H^1$, and that $\mu_f = \nu_{\infty, P^1 \setminus D_{\infty}}$ on P¹ (e.g., Remark [6.5](#page-22-1) below). On the other hand, if $J(f) \subset H^1$, then for any $g \in K(z)$ of the same degree as that of f which is close enough to f (in the coefficients topology), both the Berkovich Julia set J(*g*) of *g* and the action of *g* on $J(g)$ are *same* as those of *f* (cf. [\[14](#page-23-3), Sect. 5.3]). Since there is $f \in K[z]$ of degree > 1 satisfying $J(f)$ ⊂ H¹ (e.g., such *f* that has a potentially good reduction, see below a characterization of this condition), for any such *f* and any $b \in K$, if $0 < |b| \ll 1$, then the small perturbation $f_b(z) := f(z)/(bz + 1) \in K(z) \setminus K[z]$ of $f = f/1$ in *K*(*z*) is of the same degree as that of *f* and satisfies that $f_b(\infty) = \infty \in F(f_b)$, that $J(f_b) = J(f) \subset H^1$, and that $\mu_{f_b} = \nu_{\infty, P^1 \setminus D_\infty(f_b)}$ on P^1 .

Recall that *f has a potentially good reduction* if and only if there exists a point $S \in H^1$ such that

$$
f^{-1}(\mathcal{S}) = \{\mathcal{S}\};
$$

then $J(f) = \{S\}(\subset H^1 \text{ so } \infty \in F(f))$ and $\mu_f = \nu_{\infty, P^1 \setminus D_{\infty}} = \delta_S \text{ on } P^1$ (see also Remark [3.2](#page-10-0) below). We say *f* has no potentially good reductions if *f* does not have a potentially good reduction.

We already mentioned that the total invariance $f^{-1}(D_\infty) = D_\infty$ of D_∞ under *f* is a necessary condition for $f \in K[z]$. Our first result is the following more general statement, under no potentially good reductions:

Theorem 1 *Let K be an algebraically closed field that is complete with respect to a non-trivial and non-archimedean absolute value. Let* $f \in K(z)$ *be a rational function of degree* > 1*. If* $\infty \in F(f)$ *,* $f(D_{\infty}) = D_{\infty}$ *,* $\mu_f = \nu_{\infty} p_1 \nu_{D_{\infty}}$ *on* P^1 *, and f has no potentially good reductions, then*

$$
f^{-1}(D_{\infty})=D_{\infty}.
$$

Our second result is that even if we assume in addition $J(f) \subset \mathbb{P}^1$, the latter statement (ii) does not necessarily imply the former (i) in Question.

Pick a prime number p. The p-adic norm $|\cdot|_p$ on $\mathbb Q$ is normalized so that for any *m*, $\ell \in \mathbb{Z} \setminus \{0\}$ not divisible by *p* and any $r \in \mathbb{Z}$, $\left| \frac{m}{\ell} p^r \right|_p = p^{-r}$. The completion \mathbb{Q}_p of $(\mathbb{Q}, |\cdot|_p)$ is still a field, and the extended norm $|\cdot|_p$ on \mathbb{Q}_p extends to an algebraic closure $\overline{\mathbb{Q}_p}$ of \mathbb{Q}_p as a norm. The completion \mathbb{C}_p of $(\overline{\mathbb{Q}_p}, |\cdot|_p)$ is still an algebraically closed field, and the extended norm $|\cdot|_p$ on \mathbb{C}_p is a non-trivial and non-archimedean absolute value on \mathbb{C}_p . The completion \mathbb{Z}_p of $(\mathbb{Z}, \lfloor \cdot \rfloor_p)$ is a complete discrete valued local ring and has the unique maximal ideal $p\mathbb{Z}_p$, and coincides with the ring of \mathbb{Q}_p -integers $\{z \in \mathbb{Q}_p : |z|_p \leq 1\}$. In particular, the residual field of \mathbb{Q}_p is \mathbb{F}_p .

The following counterexample of the implication $(ii) \Rightarrow (i)$ in Question is suggested to the authors by Juan Rivera-Letelier:

Theorem 2 *Pick a prime number p, and set*

$$
f(z) := \frac{z^p - 1}{p} \in \mathbb{Q}[z] \quad \text{and} \quad A(z) := \frac{az + b}{cz + d} \in \text{PGL}(2, \mathbb{Z}_p).
$$

If $c \neq 0$ *and* (a, b, c, d) *is close enough to* $(1, 0, 0, 1)$ *in* $(\mathbb{Z}_p)^4$ *, then there is an attracting fixed point* z_A *of* $f \circ A$ *in* $\mathbb{C}_p \setminus \mathbb{Z}_p$ (*so* $z_A \in F(f \circ A)$) *such that*

$$
\begin{aligned} \mathsf{J}(f \circ A) &= \mathbb{Z}_p = \mathsf{P}^1(\mathbb{C}_p) \setminus D_{z_A}(f \circ A) \quad \text{and} \\ v_{z_A, \mathbb{Z}_p} &= v_{\infty, \mathbb{Z}_p} \quad \text{on } \mathsf{P}^1(\mathbb{C}_p). \end{aligned}
$$

Then setting $m_A(z) := 1/(z - z_A) \in \text{PGL}(2, \mathbb{C}_p)$, the rational function $g_A(z) := m_A \circ \phi$ $(f \circ A) \circ m_A^{-1} \in \mathbb{C}_p(z)$ *is of degree p and satisfies* $g_A \notin \mathbb{C}_p[z]$, $g_A(\infty) = \infty \in F(g_A)$, $J(g_A) \subset \mathbb{P}^1(\mathbb{C}_p)$, and

$$
\mu_{g_A} = \nu_{\infty, \mathsf{P}^1(\mathbb{C}_p) \setminus D_{\infty}(g_A)} \quad \text{on } \mathsf{P}^1(\mathbb{C}_p).
$$

1.1 Organization of this Article

In Sects. [2](#page-3-0) and [3,](#page-8-0) we prepare background material from potential theory and dynamics, respectively. In Sect. [4,](#page-11-0) we make preparatory computations from potential theory and give a proof of the invariance of $v_{\infty,P^1\setminus D_{\infty}}$ under *f* when $f(\infty) = \infty \in F(f)$. In Sects. [5](#page-18-0) and [6,](#page-19-0) we show Theorems [1](#page-2-0) and [2,](#page-3-1) respectively.

2 Background from Potential Theory on P1

Let *K* be an algebraically closed field that is complete with respect to a non-trivial and non-archimedean absolute value $|\cdot|$; in general, a norm $|\cdot|$ on a field k is non-trivial if $|k| \not\subset \{0, 1\}$, and is non-archimedean if $|\cdot|$ satisfies the strong triangle inequality

$$
|x + y| \le \max\{|x|, |y|\} \text{ for any } x, y \in k.
$$

For the foundation of potential theory on $P^1 = P^1(K)$, see [\[5](#page-22-2), Sects. 5, 8], [\[12](#page-23-10), Sect. 7], [\[13,](#page-23-11) Sect. 3], [\[33](#page-23-12)], and the survey [\[18](#page-23-13), Sects. 1–4], and the book [\[6](#page-22-3), Sect. 13]. In what follows, we adopt a presentation from [\[28](#page-23-14), Sects. 2, 3].

Notation 2.1 Let

$$
\pi: K^2 \setminus \{(0,0)\} \to \mathbb{P}^1 = \mathbb{P}^1(K) = K \cup \{\infty\}
$$

be the canonical projection such that

$$
\pi(p_0, p_1) = \begin{cases} p_1/p_0 & \text{if } p_0 \neq 0, \\ \infty & \text{if } p_0 = 0, \end{cases}
$$

following the convention on coordinate of \mathbb{P}^1 from the book [\[16](#page-23-15)].

On K^2 , let $\|(p_0, p_1)\|$ be the maximum norm max $\{|p_0|, |p_1|\}$. With the wedge product $(p_0, p_1) \wedge (q_0, q_1) := p_0 q_1 - p_1 q_0$ on K^2 , the normalized chordal metric $\left[z, w \right]$ on \mathbb{P}^1 is the function

$$
[z, w] := \frac{|p \wedge q|}{\|p\| \cdot \|q\|} (\le 1)
$$

on $\mathbb{P}^1 \times \mathbb{P}^1$, where $p \in \pi^{-1}(\mathbf{z}), q \in \pi^{-1}(w)$.

2.1 Berkovich Projective Line P¹

A (*K*-closed) *disk in K* is a subset in *K* written as $\{z \in K : |z-a| \le r\}$ for some $a \in K$ and some $r \geq 0$. By the strong triangle inequality, two decreasing infinite sequences of disks in *K* either *infinitely nest* or *are eventually disjoint*. This alternative induces the *cofinal* equivalence relation among decreasing (or more precisely, nesting and non-increasing) infinite sequences of disks in K , and the set of all cofinal equivalence classes *S* of decreasing infinite sequences (B_n) of disks in *K* together with $\infty \in \mathbb{P}^1$ is, as a set, nothing but P^1 ([\[7](#page-22-4), p. 17]); if $B_S := \bigcap_n B_n \neq \emptyset$, then B_S is itself a disk in *K*, and we also say *S* is represented by *BS*. For example, the *canonical (or Gauss) point* S_{can} in P^1 is represented by the the ring of *K*-integers

$$
\mathcal{O}_K := \{ z \in K : |z| \leq 1 \},\
$$

and each $z \in K$ is represented by the disk $\{z\}$ in *K*. The above alternative between two (decreasing infinite sequences of) disks in *K* also induces a canonical ordering \geq on P¹ so that ∞ is the unique maximal element in (P¹, \geq) and that for every *S*, *S*^{\prime} ∈ P¹ \ {∞} satisfying *B_S*, *B_S* $\prime \neq \emptyset$, *S* \geq *S*^{\prime} iff *B_S* \supset *B_S*^{\prime} (the description of \geq is a little complicated unless $B_{\mathcal{S}}, B_{\mathcal{S}'} \neq \emptyset$), and equips P^1 with a (profinite) tree structure. The topology of P^1 coincides with the weak (or observer) topology on P^1 as

a (profinite) tree, so that $P¹$ is compact and uniquely arcwise-connected, and contains both \mathbb{P}^1 and H^1 as dense subsets. For the details on the tree structure on P^1 , see e.g. [\[18](#page-23-13), Sect. 2].

2.2 Action of Rational Functions on P¹

Let $h \in K(z)$ be a rational function. The action of h on \mathbb{P}^1 uniquely extends to a continuous endomorphism on P^1 . Suppose in addition that deg $h > 0$. Then the extended action of h on $P¹$ is surjective and open, has discrete (so finite) fibers, and preserves both \mathbb{P}^1 and H^1 , and the *local degree* function $z \mapsto \deg_z h$ on \mathbb{P}^1 also canonically extends to P^1 so that for every $S \in P^1$,

$$
\sum_{S' \in h^{-1}(S)} \deg_{S'} h = \deg h.
$$

The action of *h* on $P¹$ induces the push-forward operator h_* on the space of all continuous functions on $P¹$ to itself and, by duality, also the pullback operator h^* on the space of all Radon measures on $P¹$ to itself; for every continuous test function ϕ on P^1 , $(h_*\phi)(\cdot) = \sum_{\mathcal{S}' \in h^{-1}(\cdot)} (\deg_{\mathcal{S}'} h) \cdot \phi(\mathcal{S}')$ on P^1 , and for every $\mathcal{S} \in P^1$, *S* $h^* \delta_S = \sum_{S' \in h^{-1}(S)} (\deg_{S'} h) \cdot \delta_{S'}$ on P^1 . For more details, see [\[5](#page-22-2), Sect. 9], [\[14,](#page-23-3) Sect. 2.2].

2.3 Kernel Functions and the Laplacian on P¹

The *generalized Hsia kernel* [S , S']_{can} on $P¹$ *with respect to* S_{can} is a unique upper semicontinuous and separately continuous extension of the chordal distance function $\mathbb{P}^1 \times \mathbb{P}^1 \ni (z, z') \mapsto [z, z']$ to $\mathsf{P}^1 \times \mathsf{P}^1$.

More generally, for every $z_0 \in \mathbb{P}^1$, the *generalized Hsia kernel*

$$
[\mathcal{S},\mathcal{S}']_{z_0}:= \begin{cases} \frac{[\mathcal{S},\mathcal{S}']_{can}}{[\mathcal{S},z_0]_{can}\cdot [\mathcal{S}',z_0]_{can}} &\text{on } (P^1\setminus\{z_0\})\times (P^1\setminus\{z_0\}) \\ +\infty &\text{on } (\{z_0\}\times P^1)\cup (P^1\times\{z_0\}) \end{cases}
$$

on $P¹$ *with respect to* $z₀$ is a unique upper semicontinuous and separately continuous extension of the function $(\mathbb{P}^1 \setminus \{z_0\}) \times (\mathbb{P}^1 \setminus \{z_0\}) \ni (z, z') \mapsto [z, z'] / ([z, z_0] \cdot [z', z_0])$ as a function $P^1 \times P^1 \to [0, +\infty]$. In particular, the function

$$
|\mathcal{S}-\mathcal{S}'|_{\infty}:=[\mathcal{S},\mathcal{S}']_{\infty}
$$

on $P^1 \times P^1$ extends the distance function $K \times K \ni (z, z') \mapsto |z-z'|$ to $(P^1 \setminus {\{\infty\}}) \times (P^1 \setminus {\{\infty\}})$ {∞}), jointly upper semicontinuously and separately continuously, and the function

$$
|\mathcal{S}|_{\infty} := |\mathcal{S} - 0|_{\infty} (= [\mathcal{S}, 0]_{\infty}) \text{ on } \mathsf{P}^1
$$

extends the norm function $K \ni z \mapsto |z|$ to $P^1 \setminus \{\infty\}$ continuously (see [\[13](#page-23-11), Sect. 3.4], [\[5](#page-22-2), Sect. 4.4]).

Let Ω_{can} be the Dirac measure $\delta_{S_{\text{can}}}$ on P¹ at S_{can} . The Laplacian Δ on P¹ is normalized so that for each $S' \in P^1$,

$$
\Delta \log[\cdot, \mathcal{S}']_{\text{can}} = \delta_{\mathcal{S}'} - \Omega_{\text{can}}
$$

on P^1 , and then, for every $z_0 \in \mathbb{P}^1$ and every $S' \in P^1 \setminus \{z_0\}$, $\Delta \log[\cdot, S']_{z_0} = \delta_{S'} - \delta_{z_0}$ on P^1 . For the details on the construction and properties of Δ , see [\[5](#page-22-2), Sect. 5], [\[12,](#page-23-10) Sect. 7.7], [\[14](#page-23-3), Sect. 2.4], [\[33,](#page-23-12) Sect. 3]; in [\[5](#page-22-2)[,33\]](#page-23-12), the opposite sign convention for Δ is adopted.

2.4 Logarithmic Potential Theory on P¹

For every $z \in \mathbb{P}^1$ and every positive Radon measure ν on P^1 supported by $\mathsf{P}^1 \setminus \{z\}$, the *logarithmic potential* of ν on P^1 with pole *z* is the function

$$
p_{z,\nu}(\cdot) := \int_{\mathsf{P}^1} \log[\cdot, \mathcal{S}']_z \nu(\mathcal{S}') \text{ on } \mathsf{P}^1,
$$

and the *logarithmic energy* of ν with pole *z* is defined by

$$
I_{z,\nu}:=\int_{\mathsf{P}^1}p_{z,\nu}\nu\in[-\infty,+\infty).
$$

Then $p_{z,v}$: $P^1 \rightarrow [-\infty, +\infty]$ is upper semicontinuous, and in fact is *strongly* upper semicontinuous in that for every $S \in \mathsf{P}^1$,

$$
\limsup_{\mathcal{S}' \to \mathcal{S}} p_{z,\nu}(\mathcal{S}') = p_{z,\nu}(\mathcal{S}) \tag{2.1}
$$

 $([5, Proposition 6.12]).$ $([5, Proposition 6.12]).$ $([5, Proposition 6.12]).$

For every non-empty subset *C* in P^1 and every $z \in \mathbb{P}^1 \setminus C$, we say *C* is *of logarithmic capacity* > 0 *with pole z* if

$$
V_z(C) := \sup_{\nu} I_{z,\nu} > -\infty,
$$

where *v* ranges over all probability Radon measures on P^1 supported by *C*; otherwise, we say *C* is *of logarithmic capacity* 0 *with pole z*. For every non-empty compact subset *C* in P¹ of logarithmic capacity > 0 with pole $z \in \mathbb{P}^1 \setminus C$, there is a *unique* probability Radon measure ν on P1, which is called the *equilibrium mass distribution on C with pole z* and is denoted by $v_{z,C}$, such that supp $v \subset C$ and that $I_{z,v} = V_z(C)$, and then (i) $v_{z,C}(E) = 0$ for any subset *E* in *C* of logarithmic capacity 0 with pole *z*, (ii) letting D_z be the component of $P^1 \setminus C$ containing *z*, we have

$$
\text{supp}\,\nu_{z,C}\subset\partial D_z,\quad p_{z,\nu_{z,C}}\geq I_{z,\nu_{z,C}}\text{ on }\mathsf{P}^1,\quad p_{z,\nu_{z,C}}\gt I_{z,\nu_{z,C}}\text{ on }D_z,\quad\text{and}
$$

$$
p_{z,v_{z,C}} \equiv I_{z,v_{z,C}} \text{ on } \mathsf{P}^1 \setminus (D_z \cup E),
$$

where *E* is a possibly empty F_{σ} -subset in ∂D_{σ} of logarithmic capacity 0 with pole *z*, (iii) if in addition $p_{z,v_z,c}$ is continuous on $P^1 \setminus \{z\}$, then

$$
\text{supp } \nu_{z,C} = \partial D_z \quad \text{and} \quad p_{z,\nu_{z,C}} \equiv I_{z,\nu_{z,C}} \text{ on } \mathsf{P}^1 \setminus D_z,
$$

and (iv) for any probability Radon measure v' supported by *C*, we have

$$
\inf_{S \in C} p_{z,v'} \le I_{z,v_{z,C}} \le \sup_{S \in C} p_{z,v'} \tag{2.2}
$$

(see [\[5,](#page-22-2) Sects. 6.2, 6.3]).

We list a few observations:

Observation 2.2 For every $a \in K \setminus \{0\}$ and every $b \in K$, setting $\ell(z) := az + b \in$ $PGL(2, K)$, we have $\log |\ell(S) - \ell(S')|_{\infty} = \log |S - S'|_{\infty} + \log |a|$ on $K \times K$, and in turn on $P^1 \times P^1$. In particular, for every non-empty compact subset *C* in $P^1 \setminus \{\infty\}$ of logarithmic capacity > 0 with pole ∞ , we have $I_{\infty,\nu_{\infty,\ell(C)}} = I_{\infty,\nu_{\infty,C}} + \log |a|$ and $\ell_*(v_{\infty,C}) = v_{\infty,\ell(C)}$ on P^1 .

Observation 2.3 Since the involution $\iota(z) = 1/z \in \text{PGL}(2, \mathcal{O}_K)$ acts on $(\mathbb{P}^1, [z, w])$ isometrically, for any $z_0 \in \mathbb{P}^1$, we have $[\iota(\mathcal{S}), \iota(\mathcal{S}')]_{\iota(z_0)} = [\mathcal{S}, \mathcal{S}']_{z_0}$ on $\mathbb{P}^1 \times \mathbb{P}^1$, and in turn on $P^1 \times P^1$. Hence for any non-empty compact subset *C* in P^1 and any $z \in P^1 \setminus C$, if *C* is of logarithmic capacity > 0 with pole *z*, then $V_z(C) = V_{\iota(z)}(\iota(C))$ and $\iota_*(v_{z,C}) = v_{\iota(z),\iota(C)}$ on P^1 .

Observation 2.4 For every $z \in \mathbb{P}^1$, the strong triangle inequality $[\mathcal{S}, \mathcal{S}']$ _z \leq $\max\{[\mathcal{S}, \mathcal{S}']_z, [\mathcal{S}', \mathcal{S}'']_z\}$ for $\mathcal{S}, \mathcal{S}', \mathcal{S}'' \in \mathsf{P}^1$ still holds (see [\[5,](#page-22-2) Proposition 4.10]). Hence for every non-empty compact subset *C* in $P^1 \setminus \{ \infty \}$ and every $z \in \mathbb{P}^1 \setminus C$ so close to ∞ that $[z, \infty] < \inf_{S \in C} [S, z]_{\text{can}}$, we have $[\cdot, \infty]_{\text{can}} = [\cdot, z]_{\text{can}}$ on *C*, which yields $[S, S']_{\infty} = [S, S']_z$ on *C* × *C*, so if in addition *C* is of logarithmic capacity > 0 with pole ∞ , then $V_{\infty}(C) = V_{z}(C)$ and v_{∞} $C = v_{z}$ C on P^{1} .

2.5 Potential Theory with a Continuous Weight on P¹

A *continuous weight g on* P^1 is a continuous function on P^1 such that

$$
\mu^g:=\Delta g+\Omega_{\mathrm{can}}
$$

is a probability Radon measure on P^1 . Then μ^g has no atoms on \mathbb{P}^1 , or more strongly, $\mu^{g}(E) = 0$ for any subset *E* in P¹ of logarithmic capacity 0 with some (indeed any) point in $P^1 \setminus E$.

For a continuous weight *g* on P^1 , the *g-potential kernel* on P^1 (the negative of an Arakelov Green kernel function on P^1 relative to μ^g [\[5](#page-22-2), Sect. 8.10]) is an upper semicontinuous function

$$
\Phi_g(\mathcal{S}, \mathcal{S}') := \log[\mathcal{S}, \mathcal{S}']_{\text{can}} - g(\mathcal{S}) - g(\mathcal{S}') \quad \text{on } \mathsf{P}^1 \times \mathsf{P}^1. \tag{2.3}
$$

For every Radon measure *v* on P^1 , the *g-potential* of *v* on P^1 is the function

$$
U_{g,\nu}(\cdot) := \int_{\mathsf{P}^1} \Phi_g(\cdot,\mathcal{S}') \nu(\mathcal{S}') \text{ on } \mathsf{P}^1,
$$

and the *g-energy* of ν is defined by

$$
I_{g,\nu} := \int_{\mathsf{P}^1} U_{g,\nu} \nu \in [-\infty, +\infty).
$$

The *g*-equilibrium energy V_g of (the whole) P^1 is the supremum of the *g*-energy functional $v \mapsto I_{g,v}$, where v ranges over all probability Radon measures on P^1 . Then $V_g \in \mathbb{R}$ since $I_{g,\Omega_{can}} > -\infty$. As in the logarithmic potential theory presented in the previous subsection, there is a unique probability Radon measure v^g on P^1 , which is called the *g*-*equilibrium mass distribution on* P^1 , such that $I_{g,yg} = V_g$. In fact

$$
U_{g,\nu^g} \equiv V_g \quad \text{on } \mathsf{P}^1 \quad \text{and} \quad \nu^g = \mu^g \quad \text{on } \mathsf{P}^1
$$

(see [\[5,](#page-22-2) Theorem 8.67, Proposition 8.70]).

A continuous weight *g* on P^1 is a *normalized weight on* P^1 if $V_g = 0$. For a continuous weight *g* on P^1 , $\overline{g} := g + V_g/2$ is the unique normalized weight on P^1 satisfying $\mu^{\overline{g}} = \mu^g$.

3 Background from Dynamics on P¹

For a potential-theoretic study of dynamics of a rational function of degree > 1 on $P^1 = P^1(K)$, see [\[5](#page-22-2), Sect. 10], [\[14,](#page-23-3) Sect. 3], [\[18,](#page-23-13) Sect. 5], and [\[6](#page-22-3), Sect. 13]. In the following, we adopt a presentation from [\[28](#page-23-14), Sect. 8.1].

3.1 Canonical Measure and the Dynamical Green Function of *f* **on P¹**

Let *f* ∈ *K*(*z*) be a rational function of degree *d* > 1. We call *F* ∈ (*K*[*p*₀, *p*₁]_{*d*})² a *lift* of *f* if

$$
\pi \circ F = f \circ \pi
$$

on $K^2 \setminus \{(0, 0)\}\)$, where for each $j \in \mathbb{N} \cup \{0\}$, $K[p_0, p_1]_j$ is the set of all homogeneous polynomials in $K[p_0, p_1]$ of degree *j*, as usual. A lift $F = (F_0, F_1)$ of f is unique up to multiplication in $K \setminus \{0\}$. Setting $d_0 := \deg F_0(1, z)$ and $d_1 := \deg F_1(1, z)$ and letting c_0^F , $c_1^F \in K \setminus \{0\}$ be the coefficients of the maximal degree terms of $F_0(1, z)$, $F_1(1, z) \in K[z]$, respectively, the *homogeneous* resultant

Res
$$
F = (c_0^F)^{d-d_1} \cdot (c_1^F)^{d-d_0} \cdot R(F_0(1, \cdot), F_1(1, \cdot)) \in K
$$

of *F* does not vanish, where $R(P, Q) \in K$ is the usual resultant of $(P, Q) \in (K[z])^2$ (for the details on Res F , see e.g. [\[32](#page-23-16), Sect. 2.4]).

Let *F* be a lift of *f*, and for every $n \in \mathbb{N} \cup \{0\}$, set $F^n = F \circ F^{n-1}$ where $F^0 := \text{Id}_{K^2}$. Then for every $n \in \mathbb{N}$, F^n is a lift of f^n , and the function

$$
T_{F^n} := \log ||F^n|| - d^n \cdot \log ||\cdot||
$$

on $K^2 \setminus \{(0, 0)\}\)$ descends to \mathbb{P}^1 and in turn extends continuously to P^1 , satisfying the equality $\Delta T_{F^n} = (f^n)^* \Omega_{can} - d^n \cdot \Omega_{can}$ on P¹ (see, e.g., [\[26](#page-23-17), Definition 2.8]). The dynamical Green function of *F* on P^1 is the uniform limit $g_F := \lim_{n \to \infty} T_{F^n}/d^n$ on P1, which is a continuous weight on P1. The *energy* formula

$$
V_{gF} = -\frac{\log|\operatorname{Res} F|}{d(d-1)}
$$

is due to DeMarco $[11]$ for archimedean K by a dynamical argument, and due to Baker–Rumely [\[4](#page-22-5)] when *f* is defined over a number field; see Baker [\[2](#page-22-6), Appendix A] or the present authors [\[29,](#page-23-8) Appendix] for a simple and potential-theoretic proof of this remarkable formula, for general *K*. The *f* -*canonical measure* is the probability Radon measure

$$
\mu_f := \Delta g_F + \Omega_{\text{can}} \quad \text{on } \mathsf{P}^1.
$$

The measure μ_f is independent of the choice of the lift *F* of *f*, has no atoms in \mathbb{P}^1 , and satisfies the *f*-balanced property $f^*\mu_f = d \cdot \mu_f$ (so in particular $f_*\mu_f = \mu_f$) on P^1 . For more details, see [\[5](#page-22-2), Sect. 10], [\[10](#page-22-7), Sect. 2], [\[14,](#page-23-3) Sect. 3.1].

The *dynamical Green function* g_f *of f on* P^1 is the unique normalized weight on P^1 such that $\mu^{g_f} = \mu_f$. By the above energy formula on V_{g_f} and

$$
Res(cF) = c^{2d} \cdot Res F \text{ for every } c \in K \setminus \{0\},
$$

there is a lift *F* of *f* normalized so that $V_{g_F} = 0$ or equivalently that $g_F = g_f$ on P^1 , and such a *normalized lift* F of f is unique up to multiplication in $\{z \in K : |z| = 1\}$. By $g_f = g_F = \lim_{n \to \infty} T_{F^n}/d^n$ on P^1 for a normalized lift *F* of *f*, for every $n \in \mathbb{N}$, we have $g_{F^n} = g_{f^n} = g_f$ on P^1 and $\mu_{f^n} = \mu_f$ on P^1 . We note that $g_f \circ f = d \cdot \lim_{n \to \infty} \frac{G}{T_{F^{n+1}}/d^{n+1}} - T_F = d \cdot g_f - T_F$ on \mathbb{P}^1 , that is,

$$
d \cdot g_f - g_f \circ f = T_F \tag{3.1}
$$

on \mathbb{P}^1 , and in turn on P^1 by the density of \mathbb{P}^1 in P^1 and the continuity of both sides on P^1 (cf. [\[27](#page-23-19), Proof of Lemma 2.4]).

3.2 Fundamental Properties of μ_{f}

Recall the definition of $J(f)$ in Sect. [1.](#page-0-0) The characterization of μ_f as the unique probability Radon measure ν on P^1 such that $\nu(E(f)) = 0$ and that $f^* \nu = d \cdot \nu$ on P¹ is a consequence of the following equidistribution theorem: *for every probability Radon measure* μ *on* P^1 *, if* $\mu(E(f)) = 0$ *, then*

$$
\lim_{n \to \infty} \frac{(f^n)^* \mu}{d^n} = \mu_f \quad weakly \text{ on } \mathsf{P}^1. \tag{3.2}
$$

This foundational result is due to Favre and Rivera-Letelier [\[14](#page-23-3)] (for a purely potentialtheoretic proof, see also Jonsson [\[18\]](#page-23-13)) and is a non-archimedean counterpart to Brolin [\[9](#page-22-0)], Lyubich [\[20\]](#page-23-0), Freire et al. [\[15](#page-23-1)].

Remark 3.1 The *classical Julia set* $J(f) \cap \mathbb{P}^1$ of *f* coincides with the set of all points in \mathbb{P}^1 at each of which the family $(f^n : (\mathbb{P}^1, [z, w]) \to (\mathbb{P}^1, [z, w])$ _{*n*∈N} is not locally equicontinuous (see, e.g., [\[5,](#page-22-2) Theorem 10.67]).

The equality supp $\mu_f = J(f)$ holds; the inclusion $J(f) \subset \text{supp }\mu_f$ follows from the definition of $J(f)$, the balanced property $f^* \mu_f = d \cdot \mu_f$ on P^1 , and supp $\mu_f \not\subset E(f)$ (or more precisely, recalling that $E(f)$ is an at most countable subset in \mathbb{P}^1 and that μ_f has no atoms in \mathbb{P}^1). The opposite inclusion supp $\mu_f \subset J(f)$ follows from the definition of $J(f)$ and the above equidistribution theorem.

Remark 3.2 (see, e.g., [\[5,](#page-22-2) Corollary 10.33]) If μ_f has an atom in P¹, then f has a potentially good reduction, so in particular $J(f)$ is a singleton in H^1 .

For every $n \in \mathbb{N}$, by supp $\mu_f = J(f)$ and $\mu_{f^n} = \mu_f$ on P^1 , we also have $J(f^n) =$ $J(f)$. For every *m* ∈ PGL(2, *K*), we have $m_* \mu_f = \mu_{m \circ f \circ m^{-1}}$ on P¹, $m(J(f))$ = $J(m \circ f \circ m^{-1})$, and $m(F(f)) = F(m \circ f \circ m^{-1})$.

3.3 Root Divisors on P**¹ and the Proximity Functions on P¹**

For any distinct $h_1, h_2 \in K(z)$, let $[h_1 = h_2]$ be the effective $(K-)$ divisor on \mathbb{P}^1 defined by all solutions to the equation $h_1 = h_2$ in \mathbb{P}^1 taking into account their multiplicities, which is also regarded as the Radon measure

$$
\sum_{w \in \mathbb{P}^1} (\text{ord}_w[h_1 = h_2]) \cdot \delta_w
$$

on P^1 . The function $\mathbb{P}^1 \ni z \mapsto [h_1(z), h_2(z)]$ between h_1 and h_2 uniquely extends to a continuous function $S \mapsto [h_1, h_2]_{\text{can}}(S)$ on P^1 (see, e.g., [\[26](#page-23-17), Proposition 2.9]), so that for every continuous weight *g* on $P¹$, (the exp of) the function

$$
\Phi(h_1, h_2)_g(\mathcal{S}) := \log[h_1, h_2]_{\text{can}}(\mathcal{S}) - g(h_1(\mathcal{S})) - g(h_2(\mathcal{S})) \text{ on } \mathsf{P}^1 \tag{3.3}
$$

is a unique continuous extension of (the exp of) the function $\mathbb{P}^1 \ni z \mapsto z$ $\Phi_{g}(h_1(z), h_2(z)).$

4 Potential-Theoretic Computations

Let $f \in K(z)$ be a rational function of degree $d > 1$.

Lemma 4.1 (Riesz's decomposition for the pullback of an atom) *For every* $S \in P^1$,

$$
\Phi_{g_f}(f(\cdot), \mathcal{S}) = U_{g_f, f^*\delta \mathcal{S}}(\cdot) \quad \text{on } \mathsf{P}^1. \tag{4.1}
$$

Proof Fix a lift *F* of *f* normalized so that $g_F = g_f$ on P^1 . Fix $w \in P^1$ and $W \in$ $\pi^{-1}(w)$. Choose a sequence $(q_j)_{j=1}^d$ in $K^2 \setminus \{(0, 0)\}$ such that $F(p_0, p_1) \wedge W \in$ $K[p_0, p_1]_d$ factors as $F(p_0, p_1) \wedge W = \prod_{j=1}^d ((p_0, p_1) \wedge q_j)$ in $K[p_0, p_1]$. This together with (3.1) and the definition of T_F implies

$$
\Phi_{g_f}(f \circ \pi, w) - U_{g_f, f^* \delta_w} \circ \pi
$$
\n
$$
= (\log |F(\cdot) \wedge W| - \log ||F|| - \log ||W|| - (g_f \circ f)(\pi(\cdot)) - g_f(w))
$$
\n
$$
- \sum_{j=1}^d (\log |\cdot \wedge q_j| - \log ||\cdot|| - \log ||q_j|| - g_f \circ \pi - g_f(\pi(q_j)))
$$
\n
$$
= (\log |F(\cdot) \wedge W| - \sum_{j=1}^d \log |\cdot \wedge q_j|) - ((g_f \circ f)(\pi(\cdot)) + d \cdot g_f \circ \pi)
$$
\n
$$
- (\log ||F|| - d \cdot \log ||\cdot ||)
$$
\n
$$
- (g_f(w) + \log ||W||) + \sum_{j=1}^d (g_f(\pi(q_j)) + \log ||q_j||)
$$
\n
$$
\equiv -(g_f(w) + \log ||W||) + \sum_{j=1}^d (g_f(\pi(q_j)) + \log ||q_j||) =: C \text{ on } K^2 \setminus \{0\},
$$

so $\Phi_{g_f}(f(\cdot), w) - U_{g_f, f^*\delta_w}(\cdot) \equiv C$ on \mathbb{P}^1 , and in turn on P^1 by the density of \mathbb{P}^1 in $P¹$ and the continuity of (the exp of) both sides on $P¹$. Integrating both sides against μ_f over P^1 , since $\int_{P^1} U_{g_f, f^* \delta_w} \mu_f = \int_{P^1} U_{g_f, \mu_f}(f^* \delta_w) = 0$ (by $U_{g_f, \mu_f} \equiv 0$) and $f_* \mu_f = \mu_f$, we have

$$
C = \int_{\mathsf{P}^1} \Phi_{g_f}(f(\cdot), w)\mu_f = U_{g_f, f_*\mu_f}(w) = U_{g_f, \mu_f}(w) = 0.
$$

This completes the proof of [\(4.1\)](#page-11-1) in the case $S = w \in \mathbb{P}^1$.

Fix $S_0 \in H^1$. By the density of \mathbb{P}^1 in P^1 , we can choose a sequence (w_n) in \mathbb{P}^1 tending to S_0 as $n \to \infty$. Then $\lim_{n \to \infty} f^* \delta_{w_n} = f^* \delta_{S_0}$ weakly on P^1 and, for every $n \in \mathbb{N}$, applying [\(4.1\)](#page-11-1) to $S = w_n \in \mathbb{P}^1$, we have $\Phi_{g_f}(\check{f}(\cdot), w_n) = U_{g_f, f^*\delta_{w_n}}(\cdot)$ on P^1 . Hence, for each $S' \in H^1$, by the continuity of both $\Phi_{g_f}(f(S'), \cdot)$ and $\Phi_{g_f}(S', \cdot)$ on $P¹$, we have

$$
\Phi_{g_f}(f(S'),\mathcal{S}_0)=\lim_{n\to\infty}\Phi_{g_f}(f(S'),w_n)=\lim_{n\to\infty}U_{g_f,f^*\delta_{w_n}}(S')=U_{g_f,f^*\delta_{\mathcal{S}_0}}(S').
$$

This completes the proof of [\(4.1\)](#page-11-1) by the density of H^1 in P^1 and the continuity of (the \exp of) both $\Phi_{g_f}(f(\cdot), \mathcal{S}_0)$ and $U_{g_f, f^*\delta_{\mathcal{S}_0}}(\cdot)$ on P^1 .

The following computation is an application of Lemma [4.1.](#page-11-1) We include a proof of it although it will not be used in this article.

Lemma 4.2 (Riesz's decomposition for the fixed points divisor on \mathbb{P}^1)

$$
\Phi(f, \mathrm{Id}_{\mathbb{P}^1})_{g_f} = U_{g_f, [f = \mathrm{Id}_{\mathbb{P}^1}]} \quad on \; \mathsf{P}^1. \tag{4.2}
$$

Proof Fix a lift *F* of *f* normalized so that $g_F = g_f$ on P^1 . Choose a sequence $(q_j)_{j=1}^{d+1}$ in $K^2 \setminus \{(0,0)\}$ so that $(F \wedge \text{Id}_{\mathbb{P}^1})(p_0, p_1) \in K[p_0, p_1]_{d+1}$ factors as $(F \wedge \text{Id}_{\mathbb{P}^1})(p_0, p_1)$ $\text{Id}_{\mathbb{P}^1}$ $(p_0, p_1) = \prod_{j=1}^{d+1} ((p_0, p_1) \wedge q_j)$ in $K[p_0, p_1]$, which with [\(3.1\)](#page-9-0) implies

$$
\Phi(f, \mathrm{Id}_{\mathbb{P}^1})_{g_f} - U_{g_f, [f = \mathrm{Id}_{\mathbb{P}^1}]} \equiv \sum_{j=1}^{d+1} (g_f(\pi(q_j)) + \log ||q_j||) =: C
$$

on \mathbb{P}^1 , and in turn on P^1 by the density of \mathbb{P}^1 in P^1 and the continuity of (the exp of) both sides on P^1 . Integrating both sides against μ_f over P^1 , since $\int_{P^1} U_{g_f,[f]=Id_{P^1}} \mu_f =$ $\int_{\mathsf{P}^1} U_{g_f, \mu_f} [f] = \text{Id}_{\mathbb{P}^1}] = 0$ (by $U_{g_f, \mu_f} \equiv 0$), we have $C = \int_{\mathsf{P}^1} \Phi(f, \text{Id}_{\mathbb{P}^1})_{g_f} \mu_f$, so that we first have

$$
\Phi(f, \mathrm{Id}_{\mathbb{P}^1})_{g_f} = U_{g_f, [f = \mathrm{Id}_{\mathbb{P}^1}]} + \int_{\mathsf{P}^1} \Phi(f, \mathrm{Id}_{\mathbb{P}^1})_{g_f} \mu_f \text{ on } \mathsf{P}^1.
$$

Fix $z_0 \in \mathbb{P}^1 \setminus (\text{supp}[f] = \text{Id}_{\mathbb{P}^1})$. Using the above equality twice, by $f_*[f] = \text{Id}_{\mathbb{P}^1}$ $[f = \text{Id}_{\mathbb{P}^1}]$ on \overline{P}^1 and [\(4.1\)](#page-11-1), we have

$$
\Phi_{g_f}(f(z_0), z_0) - \int_{\mathsf{P}^1} \Phi(f, \mathrm{Id}_{\mathbb{P}^1})_{g_f} \mu_f
$$
\n
$$
= U_{g_f, [f = \mathrm{Id}_{\mathbb{P}^1}](z_0) = U_{g_f, f_*[f = \mathrm{Id}_{\mathbb{P}^1}](z_0) = \int_{\mathsf{P}^1} \Phi_{g_f}(z_0, \cdot)(f_*[f = \mathrm{Id}_{\mathbb{P}^1}](\cdot)
$$
\n
$$
= \int_{\mathsf{P}^1} \Phi_{g_f}(z_0, f(\cdot))[f = \mathrm{Id}_{\mathbb{P}^1}](\cdot) = \int_{\mathsf{P}^1} U_{g_f, f^* \delta_{z_0}}[f = \mathrm{Id}_{\mathbb{P}^1}]
$$
\n
$$
= \int_{\mathsf{P}^1} U_{g_f, [f = \mathrm{Id}_{\mathbb{P}^1}](f^* \delta_{z_0}) = \int_{\mathsf{P}^1} (\Phi(f, \mathrm{Id}_{\mathbb{P}^1})_{g_f} - \int_{\mathsf{P}^1} \Phi(f, \mathrm{Id}_{\mathbb{P}^1})_{g_f} \mu_f)(f^* \delta_{z_0})
$$
\n
$$
= \int_{\mathsf{P}^1} \Phi(f, \mathrm{Id}_{\mathbb{P}^1})_{g_f}(f^* \delta_{z_0}) - d \cdot \int_{\mathsf{P}^1} \Phi(f, \mathrm{Id}_{\mathbb{P}^1})_{g_f} \mu_f,
$$

 \mathcal{D} Springer

and moreover, $\int_{\mathbb{P}^1} \Phi(f, \text{Id}_{\mathbb{P}^1})_{g_f}(f^* \delta_{z_0}) = U_{g_f, f^* \delta_{z_0}}(z_0) = \Phi_{g_f}(f(z_0), z_0)$ by [\(4.1\)](#page-11-1). Hence $(d-1) \int_{\mathsf{P}^1} \Phi(f, \mathrm{Id}_{\mathbb{P}^1})_{g_f} \mu_f = 0$, and in turn since $d > 1$,

$$
\int_{\mathsf{P}^1} \Phi(f, \mathrm{Id}_{\mathbb{P}^1})_{g_f} \mu_f = 0. \tag{4.3}
$$

This completes the proof.

From now on, we focus on the case where $\infty \in F(f)$. We adopt the following convention when no confusion would be caused:

Convention For every probability Radon measure *ν* supported by $P^1 \setminus \{\infty\}$, we denote p_{∞} and I_{∞} by p_{ν} and I_{ν} , respectively, for simplicity.

Since supp $\mu_f = J(f) \subset P^1 \setminus D_\infty$, the equality [\(4.5\)](#page-13-0) below implies that $P^1 \setminus D_\infty$ is of logarithmic capacity > 0 with pole ∞ .

Lemma 4.3 *Suppose that* $\infty \in F(f)$ *. Then*

$$
p_{\mu_f} = g_f - \log[\cdot, \infty]_{\text{can}} + \frac{I_{\mu_f}}{2} \quad on \, \mathsf{P}^1,\tag{4.4}
$$

$$
I_{\mu_f} = -2 \cdot g_f(\infty) > -\infty, \text{ and} \tag{4.5}
$$

$$
\Phi_{g_f}(\cdot,\infty) = -p_{\mu_f} + I_{\mu_f} \quad \text{on } \mathsf{P}^1. \tag{4.6}
$$

Proof Suppose $\infty \in F(f)$. Then we have supp $\mu_f = J(f) \subset P^1 \setminus D_{\infty}$ and

$$
0 = V_{g_f} = \int_{\mathsf{P}^1 \times \mathsf{P}^1} \Phi_{g_f}(\mu_f \times \mu_f) = I_{\mu_f} - 2 \cdot \int_{\mathsf{P}^1} (g_f - \log[\cdot, \infty]_{\text{can}}) \mu_f,
$$

so that $I_{\mu_f} = 2 \cdot \int_{\mathsf{P}^1}(g_f - \log[\cdot, \infty]_{\text{can}}) \mu_f$, which with

$$
0 \equiv U_{g_f, \mu_f} = p_{\mu_f} - (g_f - \log[\cdot, \infty]_{\text{can}}) - \int_{\mathsf{P}^1} (g_f - \log[\cdot, \infty]_{\text{can}}) \mu_f \text{ on } \mathsf{P}^1
$$

yields [\(4.4\)](#page-13-0). By (4.4) and $\log[z,\infty] = \log[z,0] - \log|z|$ on $\mathbb{P}^1 \setminus {\infty}$, we have

$$
g_f(\infty) = \lim_{z \to \infty} \left((p_{\mu_f}(z) - \log|z|) + \log(z, 0) \right) - \frac{I_{\mu_f}}{2} = -\frac{I_{\mu_f}}{2},
$$

so that [\(4.5\)](#page-13-0) holds. By [\(4.4\)](#page-13-0) and (4.5), we have $\Phi_{g_f}(\cdot, \infty) = \log[\cdot, \infty]_{\text{can}} - g_f$ $g_f(\infty) = (-p_{\mu_f} + I_{\mu_f}/2) + I_{\mu_f}/2 = -p_{\mu_f} + I_{\mu_f}$ on P^1 , so [\(4.6\)](#page-13-0) also holds. \Box

Let $F = (F_0, F_1) \in (K[p_0, p_1]_d)^2$ be a normalized lift of f, and $c_0^F, c_1^F \in$ *K* \setminus {0} be the coefficients of the maximal degree terms of *F*₀(1, *z*), *F*₁(1, *z*) ∈ *K*[*z*], respectively. No matter whether $\infty \in F(f)$, by the equality $[z, \infty] = 1/||(1, z)||$ on \mathbb{P}^1 and the definition of T_F , we have

$$
T_F = -\log[f(\cdot), \infty]_{\text{can}} + \log|F_0(1, \cdot)|_{\infty} + d \cdot \log[\cdot, \infty]_{\text{can}}
$$

on $\mathbb{P}^1 \setminus (\{\infty\} \cup f^{-1}(\infty))$, and in turn on $\mathsf{P}^1 \setminus (\{\infty\} \cup f^{-1}(\infty))$ by the density of \mathbb{P}^1 in P¹ and the continuity of both sides on P¹ \ ({∞} \cup *f*⁻¹(∞)). By [\(3.1\)](#page-9-0), this equality is rewritten as

$$
d \cdot (g_f - \log[\cdot, \infty]_{\text{can}}) - (g_f \circ f - \log[f(\cdot), \infty]_{\text{can}}) = \log |F_0(1, \cdot)|_{\infty} \quad (4.7)
$$

on $\mathsf{P}^1 \setminus (\{\infty\} \cup f^{-1}(\infty)).$

Lemma 4.4 (Pullback formula for p_{μ} *f* under *f*) *If* $\infty \in F(f)$ *, then*

$$
\log |F_0(1, \cdot)|_{\infty} = d \cdot p_{\mu_f} - p_{\mu_f} \circ f - (d - 1) \frac{I_{\mu_f}}{2}
$$
 (4.8)

on $P¹ \setminus (\{\infty\} \cup f^{-1}(\infty))$; *moreover, for every S'* ∈ $P¹ \setminus \{\infty, f(\infty)\}\)$,

$$
p_{\mu_f}(\mathcal{S}') - \int_{\mathsf{P}^1 \setminus \{\infty\}} p_{\mu_f}(f^* \delta_{\mathcal{S}'}) + (d-1)I_{\mu_f}
$$

=
$$
- \int_{\mathsf{P}^1} \log |F_0(1, \cdot)| \infty \frac{f^* \delta_{\mathcal{S}'}}{d} + (d-1)\frac{I_{\mu_f}}{2},
$$
(4.9)

and similarly

$$
\int_{\mathsf{P}^1 \setminus \{\infty\}} p_{\mu_f}(f^* \delta_{\infty}) - (d-1) I_{\mu_f} = -\log|c_0^F| - (d-1)\frac{I_{\mu_f}}{2}.\tag{4.10}
$$

Proof Suppose $\infty \in F(f)$. Then for every $S' \in P^1 \setminus \{ \infty, f(\infty) \}$, by [\(4.7\)](#page-14-0) and [\(4.4\)](#page-13-0), we have [\(4.8\)](#page-14-1). Integrating both sides in (4.8) against $f * \delta s / d$ over P¹, we have [\(4.9\)](#page-14-2). Similarly, integrating both sides in [\(4.8\)](#page-14-1) against μ_f over P¹, also by $f_*\mu_f = \mu_f$ and $I_{\mu_f} := \int_{\mathsf{P}^1} p_{\mu_f} \mu_f$, we have

$$
\log|c_0^F| + \int_{\mathsf{P}^1 \setminus \{\infty\}} p_{\mu_f}(f^* \delta_{\infty}) = \int_{\mathsf{P}^1} \log|F_0(1, \cdot)|_{\infty} \mu_f
$$

= $d \cdot I_{\mu_f} - \int_{\mathsf{P}^1} (p_{\mu_f} \circ f) \mu_f - (d - 1) \frac{I_{\mu_f}}{2} = (d - 1) \frac{I_{\mu_f}}{2},$

so (4.10) also holds.

If $f(\infty) = \infty$, then $F(0, 1) = (0, c_1^F)$, so that by the homogeneity of *F*, for every *n* ∈ *N*, $F^n(0, 1) = (0, (c_1^F)^{(d^n-1)/(d-1)})$ and that

$$
g_f(\infty) = \lim_{n \to \infty} \frac{T_{F^n}(\infty)}{d^n} = \lim_{n \to \infty} \frac{\log ||F^n(0, 1)||}{d^n} - \log ||(0, 1)|| = \frac{\log |c_1^F|}{d - 1}.
$$

 \mathcal{D} Springer

Lemma 4.5 *If* $f(\infty) = \infty \in F(f)$ *, then*

$$
I_{\mu_f} = -\frac{2}{d-1} \log |c_1^F|
$$
\n(4.11)

and, for every $S' \in P^1$,

$$
\int_{\mathsf{P}^1\backslash\{\infty\}} p_{\mu_f}(f^*\delta_{\mathcal{S}'}) - (d-1)I_{\mu_f} = \begin{cases} p_{\mu_f}(\mathcal{S}') & \text{if } \mathcal{S}' \neq \infty, \\ \log \left| \frac{c_1^F}{c_0^F} \right| & \text{if } \mathcal{S}' = \infty. \end{cases} \tag{4.12}
$$

Proof Suppose that $f(\infty) = \infty \in F(f)$. Then by the above computation of $g_f(\infty)$ and [\(4.5\)](#page-13-0), we have [\(4.11\)](#page-15-0). Moreover, for every $S' \in P^1 \setminus \{ \infty \}$, using [\(4.6\)](#page-13-0) twice and [\(4.1\)](#page-11-1) (and the assumption $f(\infty) = \infty$), we compute

$$
-p_{\mu_f}(\mathcal{S}') + I_{\mu_f} = \Phi_{g_f}(\infty, \mathcal{S}') = \Phi_{g_f}(f(\infty), \mathcal{S}')
$$

=
$$
\int_{\mathsf{P}^1} \Phi_{g_f}(\infty, \cdot) (f^* \delta_{\mathcal{S}'}) = -\int_{\mathsf{P}^1} p_{\mu_f}(f^* \delta_{\mathcal{S}'}) + d \cdot I_{\mu_f},
$$

so [\(4.12\)](#page-15-1) holds for *S'* ∈ $P^1 \setminus \{ \infty \}$. Finally, (4.12) for *S'* = ∞ holds by [\(4.10\)](#page-14-3) and (4.11). (4.11) .

Let us now focus on $v_{\infty} = v_{\infty, \mathsf{P}^1 \setminus D_{\infty}}$ when $\infty \in \mathsf{F}(f)$. Then $f(\infty) \in \mathsf{F}(f)$ and, since supp $\nu_{\infty} \subset \partial D_{\infty} \subset J(f) = \sup \widetilde{\mu}_f$, we have

$$
\mathrm{supp}(f_*\nu_\infty) \subset f(\mathsf{J}(f)) = \mathsf{J}(f) = \mathrm{supp}\,\mu_f \subset \mathsf{P}^1 \setminus D_\infty.
$$

Lemma 4.6 *Suppose that* $\infty \in F(f)$ *. Then for every* $S' \in P^1 \setminus \{\infty, f(\infty)\}\$ *,*

$$
p_{f_*\nu_\infty}(S') - \int_{\mathsf{P}^1} p_{\nu_\infty}(f^*\delta_{S'}) + d \cdot I_{\nu_\infty} - \int_{\mathsf{P}^1} (p_{f_*\nu_\infty}) \mu_f
$$

= $p_{\mu_f}(S') - \int_{\mathsf{P}^1} p_{\mu_f}(f^*\delta_{S'}) + (d-1)I_{\mu_f}$ (4.13)

and, if in addition v_{∞} *is invariant under f in that* $f_*v_{\infty} = v_{\infty}$ *on* P^1 *, then*

$$
p_{\nu_{\infty}}(S') - \int_{\mathsf{P}^1} p_{\nu_{\infty}}(f^*\delta_{S'}) + (d-1) \cdot I_{\nu_{\infty}}
$$

= $p_{\mu_f}(S') - \int_{\mathsf{P}^1} p_{\mu_f}(f^*\delta_{S'}) + (d-1)I_{\mu_f}.$ (4.14)

Proof Suppose that $\infty \in F(f)$. Then for every $S' \in P^1 \setminus {\infty, f(\infty)}$, using [\(4.4\)](#page-13-0) repeatedly and [\(4.1\)](#page-11-1), we have

$$
p_{f_*\nu_\infty}(\mathcal{S}') = \int_{\mathsf{P}^1} \log |\mathcal{S}' - \cdot|_{\infty}(f_*\nu_\infty) = \int_{\mathsf{P}^1} \log |\mathcal{S}' - f(\cdot)|_{\infty}\nu_\infty
$$

 \mathcal{D} Springer

$$
= \int_{\mathsf{P}^1} \left(\Phi_{g_f}(f(\cdot), S') + (p_{\mu_f}(f(\cdot)) - \frac{I_{\mu_f}}{2}) + (p_{\mu_f}(S') - \frac{I_{\mu_f}}{2}) \right) v_{\infty}
$$

\n
$$
= \int_{\mathsf{P}^1} \left(\int_{\mathsf{P}^1} \Phi_{g_f}(\cdot, S)(f^* \delta_{S'})(S) \right) v_{\infty} + \int_{\mathsf{P}^1} (p_{\mu_f} \circ f) v_{\infty} + p_{\mu_f}(S') - I_{\mu_f}
$$

\n
$$
= \int_{\mathsf{P}^1} \left(\int_{\mathsf{P}^1} \left(\log |S - \cdot|_{\infty} - (p_{\mu_f}(S) - \frac{I_{\mu_f}}{2}) - (p_{\mu_f}(\cdot) - \frac{I_{\mu_f}}{2}) \right) (f^* \delta_{S'})(S) \right) v_{\infty}
$$

\n
$$
+ \int_{\mathsf{P}^1} (p_{\mu_f} \circ f) v_{\infty} + p_{\mu_f}(S') - I_{\mu_f}
$$

\n
$$
= \int_{\mathsf{P}^1} p_{\nu_{\infty}}(f^* \delta_{S'}) + \int_{\mathsf{P}^1} (p_{\mu_f} \circ f - d \cdot p_{\mu_f}) v_{\infty}
$$

\n
$$
+ p_{\mu_f}(S') - \int_{\mathsf{P}^1} p_{\mu_f}(f^* \delta_{S'}) + (d - 1) I_{\mu_f}.
$$

Moreover, by Fubini's theorem and $p_{v_{\infty}} \equiv I_{v_{\infty}}$ on $P^1 \setminus D_{\infty}$, we also have

$$
\int_{\mathsf{P}^1} (p_{\mu_f} \circ f - d \cdot p_{\mu_f}) \nu_{\infty}
$$
\n
$$
= \int_{\mathsf{P}^1} p_{\mu_f} (f_* \nu_{\infty}) - d \cdot \int_{\mathsf{P}^1} p_{\mu_f} \nu_{\infty} = \int_{\mathsf{P}^1} (p_{f_* \nu_{\infty}}) \mu_f - d \cdot I_{\nu_{\infty}},
$$

which completes the proof of (4.13) .

If in addition $f_* v_\infty = v_\infty$ on P^1 , then by the identity $p_{v_\infty} \equiv I_{v_\infty}$ on $P^1 \setminus (D_\infty \cup E)$, where *E* is an F_{σ} -subset in ∂D_{∞} of logarithmic capacity 0 with pole ∞ , and by the vanishing $\mu_f(E) = 0$ (from [\(4.5\)](#page-13-0)), we also have

$$
\int_{\mathsf{P}^1} (p_{f_*\nu_\infty}) \mu_f = \int_{\mathsf{P}^1} (p_{\nu_\infty}) \mu_f = I_{\nu_\infty},\tag{4.15}
$$

which completes the proof of (4.14) .

Lemma 4.7 (Invariance of v_{∞} under *f*) If $f(\infty) = \infty \in F(f)$, then $f_*v_{\infty} = v_{\infty}$ on P^1 *and, for every* $S' \in P^1$,

$$
\int_{\mathsf{P}^1\backslash\{\infty\}} p_{\nu_{\infty}}(f^*\delta_{\mathcal{S}'}) - (d-1)I_{\nu_{\infty}} = \begin{cases} p_{\nu_{\infty}}(\mathcal{S}') & \text{if } \mathcal{S}' \neq \infty, \\ \log \left| \frac{c_1^F}{c_0^F} \right| & \text{if } \mathcal{S}' = \infty. \end{cases} \tag{4.16}
$$

Proof Suppose that $f(\infty) = \infty \in F(f)$. Then for every $S' \in P^1 \setminus \{\infty\}$, by [\(4.13\)](#page-15-2) and [\(4.12\)](#page-15-1), we have

$$
p_{f_*\nu_\infty}(\mathcal{S}') = \int_{\mathsf{P}^1} p_{\nu_\infty}(f^*\delta_{\mathcal{S}'}) - d \cdot I_{\nu_\infty} + \int_{\mathsf{P}^1} (p_{f_*\nu_\infty})\mu_f. \tag{4.13'}
$$

² Springer

$$
\Box
$$

We claim that

$$
p_{f_*\nu_\infty} \equiv \int_{\mathsf{P}^1} (p_{f_*\nu_\infty}) \mu_f \quad \text{on } \mathsf{J}(f); \tag{4.17}
$$

for, by the equality (4.13[']) and $p_{v_{\infty}} \geq I_{v_{\infty}}$ on P^1 (and Fubini's theorem and [\(4.4\)](#page-13-0)), we have

$$
p_{f_*\nu_{\infty}} \ge \int_{\mathsf{P}^1} (p_{f_*\nu_{\infty}})\mu_f > -\infty \quad \text{on } \mathsf{P}^1 \setminus \{\infty\},
$$

so that $p_{f_*\nu_\infty} \equiv \int_{\mathsf{P}^1} p_{\mu_f}(f_*\nu_\infty) \mu_f$ -a.e. on P^1 . Hence the claim follows by the strong upper semicontinuity [\(2.1\)](#page-6-1) of $p_{f_*v_{\infty}}$ on P^1 and $J(f) = \text{supp }\mu_f$, also recalling Remark [3.2.](#page-10-0)

Once the identity [\(4.17\)](#page-17-0) is at our disposal, using also the maximum principle for the subharmonic function $p_{f_*v_\infty}$ and the latter inequality in [\(2.2\)](#page-7-0), we have

$$
p_{f_*\nu_{\infty}} \equiv \int_{\mathsf{P}^1} (p_{f_*\nu_{\infty}}) \mu_f = \sup_{\mathsf{J}(f)} p_{f_*\nu_{\infty}} \ge \sup_{\mathsf{P}^1 \setminus D_{\infty}} p_{f_*\nu_{\infty}} \ge I_{\nu_{\infty}} \text{ on } \mathsf{J}(f),
$$

and integrating both sides of this inequality against f_*v_{∞} , we have $I_{f_*v_{\infty}} \geq I_{v_{\infty}}$ or equivalently

$$
f_*\nu_\infty=\nu_\infty\quad\text{on }\mathsf{P}^1.
$$

Then [\(4.16\)](#page-16-1) holds for every $S' \in P^1 \setminus \{ \infty \}$ by [\(4.14\)](#page-15-3) and [\(4.12\)](#page-15-1). Finally, integrating both sides in [\(4.8\)](#page-14-1) against v_{∞} over P¹, by [\(4.15\)](#page-16-2) and Fubini's theorem, we compute

$$
\log|c_0^F| + \int_{P^1 \setminus \{\infty\}} p_{v_{\infty}}(f^* \delta_{\infty}) = \int_{P^1} \log|F_0(1, \cdot)|_{\infty} v_{\infty}
$$

= $d \cdot I_{v_{\infty}} - \int_{P^1} (p_{\mu_f} \circ f) v_{\infty} - (d - 1) \frac{I_{\mu_f}}{2}$
= $d \cdot I_{v_{\infty}} - \int_{P^1} (p_{f_* v_{\infty}}) \mu_f - (d - 1) \frac{I_{\mu_f}}{2} = (d - 1) I_{v_{\infty}} - (d - 1) \frac{I_{\mu_f}}{2},$

which with (4.11) yields (4.16) for $S' = \infty$.

Remark 4.8 All the computations in this Section are also valid for $K = \mathbb{C}$.

Remark 4.9 The *f*-invariance of v_{∞} in Lemma [4.7](#page-16-0) is a non-archimedean counterpart to Mañé and da Rocha [\[22,](#page-23-6) p. 253, before Corollary 1]. Their argument was based on solving Dirichlet problem using the Poisson kernel on $D_{\infty} \cup \partial D_{\infty}$. A similar machinery has been only partly developed in the potential theory on $P¹$ (see [\[5,](#page-22-2) Sects. 7.3, 7.6]).

$$
\Box
$$

5 Proof of Theorem [1](#page-2-0)

Let $f \in K(z)$ be a rational function of degree $d > 1$, and $F = (F_0, F_1) \in$ $(K[p_0, p_1]_d)^2$ be a normalized lift of *f*. When $\infty \in F(f)$, let us still denote $v_{p_1}_D_\infty = v_{\infty,p_1}_D_\infty$ by v_∞ for simplicity. If $\mu_f = v_\infty$ on P^1 , then not only $p_{\mu_f} = p_{\nu_\infty} > I_{\nu_\infty} = I_{\mu_f}$ on D_∞ but, by the continuity of p_{μ_f} on $P^1 \setminus \{\infty\}$ (by [\(4.4\)](#page-13-0)), also $p_{\mu_f} = p_{\nu_\infty} \equiv I_{\nu_\infty} = I_{\mu_f}$ on $\mathsf{P}^1 \setminus D_\infty$.

Suppose that $\infty \in F(f)$, $f(D_{\infty}) = D_{\infty}$ (so $D_{\infty} \subset f^{-1}(D_{\infty})$), and $\mu_f = \nu_{\infty}$ on P¹. Then by [\(4.8\)](#page-14-1) and $p_{\mu f} \equiv I_{\mu f}$ on P¹ \ D_{∞} , we have

$$
\log |F_0(1, \cdot)|_{\infty} \equiv (d-1)\frac{I_{\mu_f}}{2} =: I_0 \quad \text{on } \mathsf{P}^1 \setminus f^{-1}(D_{\infty}).
$$
 (5.1)

Let S_0 be the point in H¹ represented by the disk $\{z \in K : |z| < e^{I_0}\}$ in K.

Suppose also that $f^{-1}(D_{\infty}) \setminus D_{\infty} \neq \emptyset$. Then deg $F_0(1, z) > 0$. The subset

$$
U_{\infty} := \{ \mathcal{S} \in \mathsf{P}^1 : |F_0(1, \mathcal{S})|_{\infty} > e^{I_0} \}
$$

in P¹ is the component of P¹ \ $(F_0(1, \cdot))^{-1}(\mathcal{S}_0)$ containing ∞ , and ∂U_{∞} = $(F_0(1, \cdot))^{-1}(\mathcal{S}_0)$. By [\(5.1\)](#page-18-1), we have $U_\infty \subset f^{-1}(D_\infty)$, and in turn

$$
U_{\infty} \subset D_{\infty}.
$$

For every $w \in f^{-1}(\infty) \setminus {\infty} = (F_0(1, \cdot))^{-1}(0) \subset {\mathcal{S}} \in {\sf P}^1 : |F_0(1, {\mathcal{S}})|_{\infty} < e^{I_0}$ let D_w (resp. U_w) be the component of $f^{-1}(D_\infty)$ (resp. the component of $\{S \in \mathsf{P}^1 :$ $|F_0(1, S)|_{\infty} < e^{I_0}$ }) containing w. Then U_w is the component of $P^1 \setminus (F_0(1, \cdot))^{-1}(\mathcal{S}_0)$ containing w, and ∂U_w is a singleton in $(F_0(1, \cdot))^{-1}(\mathcal{S}_0) = \partial U_\infty$. For every $w \in$ $f^{-1}(\infty) \cap D_{\infty}, D_w = D_{\infty}.$

We claim that ∂D_{∞} is a singleton say { S_{∞} } in H¹ and, moreover, that for every $w \in f^{-1}(\infty) \setminus D_{\infty}(\neq \emptyset \text{ under the assumption that } f^{-1}(D_{\infty}) \setminus D_{\infty} \neq \emptyset),$

$$
\partial D_w = \partial D_{\infty} (= {\{\mathcal{S}_{\infty}\}});
$$

indeed, for every $w \in f^{-1}(\infty) \setminus D_{\infty}$, we not only have $D_w \subset U_w$ (since otherwise, we must have $\emptyset \neq D_w \cap U_\infty \subset D_w \cap D_\infty$ so $D_w = D_\infty$, which contradicts $w \notin D_\infty$) but also $U_w \subset D_w$ (by [\(5.1\)](#page-18-1)), so that $U_w = D_w$. This together with $\partial U_w \subset \partial U_\infty$ and U_{∞} ⊂ D_{∞} yields

$$
\partial D_w = \partial U_w \subset \partial D_{\infty}
$$

(since otherwise, we must have $\emptyset \neq U_w \cap D_{\infty} = D_w \cap D_{\infty}$ so $D_w = D_{\infty}$, which contradicts $w \notin D_{\infty}$). Hence the claim holds since $f(\partial U_w) = f(\partial D_w) = \partial D_{\infty}$ is a singleton in H^1 .

Once the claim is at our disposal, we compute

$$
f^{-1}(\{\mathcal{S}_{\infty}\}) = f^{-1}(\partial D_{\infty}) \subset \bigcup_{w \in f^{-1}(\infty)} \partial D_w
$$

=
$$
\Big(\bigcup_{w \in f^{-1}(\infty) \cap D_{\infty}} \partial D_w\Big) \cup \Big(\bigcup_{w \in f^{-1}(\infty) \setminus D_{\infty}} \partial D_w\Big) = \{\mathcal{S}_{\infty}\} \cup \{\mathcal{S}_{\infty}\} = \{\mathcal{S}_{\infty}\},
$$

so *f* has a potential good reduction.

6 Proof of Theorem [2](#page-3-1)

Pick a prime number p, and let us denote $|\cdot|_p$ by $|\cdot|$ for simplicity. Set

$$
f(z) := \frac{z^p - z}{p} \in \mathbb{Q}[z] \text{ and } A(z) := \frac{az + b}{cz + d} \in \text{PGL}(2, \mathbb{Z}_p).
$$

If $|c| < 1$, then $|ad - bc| = |ad| = 1$, so that $|a| = |d| = 1$.

Let $J(f \circ A)$ and $F(f \circ A)$ denote the Berkovich Julia and Fatou sets in $P^1(\mathbb{C}_p)$ of $f \circ A$ as an element of $\mathbb{C}_p(z)$ of degree p, respectively.

6.1 Computing ^J*(^f* **◦** *^A)*

The fact that $J(f)$ coincides with the classical Julia set of f (see Remark [3.1\)](#page-10-1), which is \mathbb{Z}_p , is well known (see e.g., [\[17,](#page-23-20) Example 4.11], [\[6,](#page-22-3) Example 5.30]). In this subsection, more general facts will be established.

Lemma 6.1 *If* $|c| < 1$ *, then* $(f \circ A)^{-1}(\mathbb{Z}_p) = \mathbb{Z}_p$ *.*

Proof We first claim that for every $z \in \mathbb{Z}$, $p \cdot f(z) = z^p - z \equiv 0$ modulo $p\mathbb{Z}$; indeed, when is obvious if $z = 0$ modulo $p\mathbb{Z}$, and is the case by Fermat's Little Theorem when $z \neq 0$ modulo $p\mathbb{Z}$. By this claim, we have $f(\mathbb{Z}) \subset \mathbb{Z}$ (cf. [\[34\]](#page-23-21)), and in turn $f(\mathbb{Z}_p) \subset \mathbb{Z}_p$ by the continuity of the action of f on \mathbb{Q}_p and the density of \mathbb{Z} in \mathbb{Z}_p . Next, we claim that *f*⁻¹(\mathbb{Z}_p) ⊂ \mathbb{Z}_p or equivalently that for every $w \in \mathbb{Z}_p$, *f* ^{−1}(w) ⊂ \mathbb{Z}_p ; indeed, setting $W(X) := X^p - X - pw \in \mathbb{Z}_p[X]$ of degree *p*, we have already seen that the reduction $\overline{W}(X) = X^p - X \in \mathbb{F}_p[X]$ of *W* modulo $p\mathbb{Z}_p$ has *p* distinct roots $\overline{0}, \ldots, \overline{p-1}$ in \mathbb{F}_p . Hence by Hensel's lemma (see, e.g., [\[24](#page-23-22), Corollary 1 in Sect. 5.1], [\[8](#page-22-8), Sect. 3.3.4, Proposition 3]), $W(X)$ also has p distinct roots in \mathbb{Z}_p , and has no other roots in $\overline{\mathbb{Q}_p}$, so the claim holds. We have seen that $f^{-1}(\mathbb{Z}_p) = \mathbb{Z}_p$.

Suppose now that $|c| < 1$. Then for every $z \in \mathbb{Z}_p$, we have $|cz| < 1 = |d|$, so that $|A(z)|=|az + b|/|cz + d| = |az + b| \leq 1$. Hence $A(\mathbb{Z}_p) \subset \mathbb{Z}_p$, and similarly $A^{-1}(\mathbb{Z}_p) \subset \mathbb{Z}_p$ since $A^{-1}(z) = (dz - b)/(-cz + a) \in \text{PGL}(2, \mathbb{Z}_p)$ and $|-c| = |c| < 1$. Now we conclude that $(f \circ A)^{-1}(\mathbb{Z}_p) = A^{-1}(\mathbb{Z}_p) = \mathbb{Z}_p$.

Lemma 6.2 *If* $|b| \ll 1$ *and* $|c| \ll 1$ *, then* $f \circ A$ *has an attracting fixed point* z_A *in* $\mathbb{P}^1(\mathbb{C}_p) \setminus \mathbb{Z}_p$, which tends to ∞ as $(a, b, c, d) \to (1, 0, 0, 1)$ in $(\mathbb{Z}_p)^4$. Moreover, if *in addition c* \neq 0*, then* $z_A \in \mathbb{C}_p \setminus \mathbb{Z}_p$ *and* $(f \circ A)^{-1}(z_A) \neq \{z_A\}$ *.*

Proof Since $f^{-1}(\infty) = {\infty}$ and deg $f = p > 1$, the former assertion holds also noting that $(\mathrm{Id}_{\mathbb{P}^1(\mathbb{C}_n)})' \equiv 1 \neq 0$ and applying an implicit function theorem to the equation $(f \circ A)(z) = z$ near $(z, a, b, c, d) = (\infty, 1, 0, 0, 1)$ in $\mathbb{P}^1(\mathbb{C}_p) \times (\mathbb{Z}_p)^4$ (see, e.g., [\[1,](#page-22-9) (10.8)]). Moreover, since $f'(z) = z^{p-1} - p^{-1}$ and $f''(z) = (p-1)z^{p-2}$, the point $A^{-1}(\infty) = -d/c$ is the unique point $z \in \mathbb{P}^1(\mathbb{C}_p)$ such that deg_z($f \circ A$) = p (= deg($f \circ A$)), and on the other hand, if in addition $c \neq 0$, then the point $A^{-1}(\infty)$ is \neq ∞ and is not fixed by *f* ◦ *A*. Hence the latter assertion holds also noting that $(f \circ A)(\infty) \neq \infty$ if in addition $c \neq 0$.

Consequently, if $|b| \ll 1$ and $|c| \ll 1$, then

$$
\mathsf{J}(f \circ A) = \mathbb{Z}_p = \mathsf{P}^1(\mathbb{C}_p) \setminus D_{z_A}(f \circ A); \tag{6.1}
$$

indeed, by Lemma [6.1](#page-19-1) (and [\(3.2\)](#page-10-2)), if $|c| < 1$, then $J(f \circ A) \subset \mathbb{Z}_p$. If in addition $|b|$ ≪ 1 and $|c|$ ≪ 1, then by Lemma [6.2](#page-19-2) (and \mathbb{Z}_p ⊂ \mathbb{C}_p), we have $F(f \circ A)$ = D_{74} ($f \circ A$), which is an (immediate) attractive basin of f (see [\[31,](#page-23-23) Théorème de Classification]) associated with $z_A \in \mathbb{P}^1(\mathbb{C}_p) \setminus \mathbb{Z}_p$, and in turn have $J(f \circ A) = \mathbb{Z}_p$ since $(f \circ A)(\mathbb{Z}_p) \subset \mathbb{Z}_p$ by Lemma [6.1.](#page-19-1)

6.2 Computing Energies and Measures

Since

$$
Res(p^{1/2} \cdot (z_0^p, z_0^p f(z_1/z_0))) = (p^{1/2})^{2p} \cdot (1^{p-p} \cdot (p^{-1})^{p-0} \cdot 1) = 1,
$$

the pair

$$
F(z_0, z_1) := p^{1/2} \cdot (z_0^p, z_0^p f(z_1/z_0)) \in (\mathbb{Q}[z_0, z_1]_p)^2
$$

is a normalized lift of *f*. Noting that $|Res(a z_0 + b z_1, cz_0 + d z_1)| = |ad - bc| = 1$ and using a formula for the homogeneous resultant of the composition of homogeneous polynomial maps (see, e.g., [\[32](#page-23-16), Exercise 2.12]), we also have $\left| \text{Res}\left(F(a z_0 + b z_1, c z_0 + \dots)\right)\right|$ $|dz_1\rangle$ = $|(\text{Res } F)^1 \cdot (\text{Res}(az_0 + bz_1, cz_0 + dz_1))^{p^2}| = 1$, so that

$$
F_A(z_0, z_1) := F(az_0 + bz_1, cz_0 + dz_1)
$$

= $p^{1/2} \cdot \left((az_0 + bz_1)^p, \frac{(cz_0 + dz_1)^p - (az_0 + bz_1)^{p-1}(cz_0 + dz_1)}{p} \right)$
 $\in (\mathbb{Q}_p[z_0, z_1]_p)^2$

is a normalized lift of $f \circ A$. For every $n \in \mathbb{N}$, write

$$
(F_A)^n = (F_{A,0}^{(n)}, F_{A,1}^{(n)}) \in (\mathbb{Q}_p[z_0, z_1]_{p^n})^2.
$$

Lemma 6.3 *If* $|b| < 1$ *and* $|c| < 1$ *, then*

$$
g_{f \circ A}(\infty) \bigg(= \sum_{j=1}^{\infty} \Big(\frac{\log \|(F_A)^j(0,1)\|}{p^j} - \frac{\log \|(F_A)^{j-1}(0,1)\|}{p^{j-1}} \Big) \bigg) = \frac{\log p}{2(p-1)}.
$$

Proof Suppose that $|b| < 1$ and $|c| < 1$, and recall $|p| = p^{-1} < 1$. Then for every $(z_0, z_1) \in \mathbb{C}_p^2$, if $|z_0| < |z_1|$, then

$$
|cz_0 + dz_1| = |dz_1| = |z_1| > \max\{|az_0|, |bz_1|\} \ge |az_0 + bz_1|
$$

so

$$
|F_{A,0}^{(1)}(z_0, z_1)| < |F_{A,1}^{(1)}(z_0, z_1)| \text{ and}
$$

\n
$$
||F_A(z_0, z_1)|| = |F_{A,1}^{(1)}(z_0, z_1)| = p^{1/2} |cz_0 + dz_1|^p
$$

\n
$$
= p^{1/2} |dz_1|^p = p^{1/2} |z_1|^p = p^{1/2} ||(z_0, z_1)||^p.
$$

Hence inductively, for every $n \in \mathbb{N}$, we have $|F_{A,0}^{(n)}(0, 1)| < |F_{A,1}^{(n)}(0, 1)|$, and moreover

$$
\sum_{j=1}^{n} \left(\frac{\log ||(F_A)^j(0,1)||}{p^j} - \frac{\log ||(F_A)^{j-1}(0,1)||}{p^{j-1}} \right) = \sum_{j=1}^{n} \frac{\frac{1}{2} \log p}{p^j}
$$

$$
= \left(\frac{1}{2} \log p \right) \frac{(1/p)(1 - 1/p^n)}{1 - 1/p} \to \left(\frac{1}{2} \log p \right) \frac{1}{p-1}
$$

as $n \to \infty$.

Lemma 6.4 *If* (*a*, *b*, *c*, *d*) *is close enough to* (1, 0, 0, 1) *in* $(\mathbb{Z}_p)^4$ *, then*

$$
\mu_{f\circ A} = \nu_{\infty, \mathbb{Z}_p} = \nu_{z_A, \mathbb{Z}_p} \quad on \; \mathsf{P}^1(\mathbb{C}_p).
$$

Proof If $|b| \ll 1$ and $|c| \ll 1$, then by [\(6.1\)](#page-20-0) and $\mathbb{Z}_p \subset \mathbb{C}_p$, we have

$$
\infty \in \mathsf{F}(f \circ A) = D_{z_A}(f \circ A) = \mathsf{P}^1(\mathbb{C}_p) \setminus \mathbb{Z}_p.
$$

Then by (4.5) and Lemma [6.3,](#page-20-1) we have

$$
I_{\infty,\mu_{f\circ A}} = -2 \cdot \left(\frac{\log p}{2(p-1)}\right) = \log p^{\frac{-1}{p-1}},
$$

and in particular, recalling $v_{\infty, \mathbb{Z}_p} = \mu_f$ on $\mathsf{P}^1(\mathbb{C}_p)$, also $I_{\infty, v_{\infty, \mathbb{Z}_p}} = I_{\infty, \mu_f}$ log $p^{\frac{-1}{p-1}}$ (for a non-dynamical and more direct computation of $I_{\infty,\nu_{\infty,\mathbb{Z}_p}}$, see [\[3\]](#page-22-10)). Now the first equality holds by the uniqueness of the equilibrium mass distribution on the non-polar compact subset \mathbb{Z}_p in $\mathsf{P}^1(\mathbb{C}_p)$. The second equality holds since z_A

tends to ∞ as $(a, b, c, d) \to (1, 0, 0, 1)$ in $(\mathbb{Z}_p)^4$ (by Lemma [6.2\)](#page-19-2), also recalling Observation 2.4. Observation [2.4.](#page-7-1)

Remark 6.5 If $0 < |c| \ll 1$ and $|b| \ll 1$, then $(f \circ A)(\infty) \neq \infty \in F(f \circ A)$, $(f \circ A)(D_{\infty}(f \circ A)) = D_{\infty}(f \circ A), \, J(f \circ A) \not\subset H^{1}$ (indeed $J(f \circ A) \subset \mathbb{C}_{p}$), and $\mu_{f \circ A} = v_{\infty} p_1 \vee p_{\infty}$ on P^1 .

6.3 Conclusion

If $|b| \ll 1$ and $0 < |c| \ll 1$, then setting $m_A(z) := \frac{1}{z - z_A} \in \text{PGL}(2, \mathbb{C}_p)$, the rational function

$$
g_A := m_A \circ (f \circ A) \circ m_A^{-1} \in \mathbb{C}_p(z)
$$

is of degree *p* and satisfies $g_A(\infty) = \infty$, $|g'_A(\infty)| < 1$, $g_A^{-1}(\infty) \neq {\infty}$, and $\infty \in$ $m_A(D_{z_A}(f \circ A)) = D_{\infty}(g_A)$. If moreover (a, b, c, d) is close enough to $(1, 0, 0, 1)$ in $(\mathbb{Z}_p)^4$, then also recalling Observations [2.2](#page-7-2) and [2.3,](#page-7-3) we have

$$
\mu_{g_A} = (m_A)_* \mu_{f \circ A} = (m_A)_* \nu_{\infty, \mathbb{Z}_p} = (m_A)_* \nu_{\mathbb{Z}_A, \mathbb{Z}_p}
$$

=
$$
(m_A)_* \nu_{\mathbb{Z}_A, \mathsf{P}^1 \setminus D_{\mathbb{Z}_A}(f \circ A)} = \nu_{\infty, \mathsf{P}^1 \setminus D_{\infty}(g_A)} \text{ on } \mathsf{P}^1(\mathbb{C}_p).
$$

Now the proof of Theorem [2](#page-3-1) is complete.

Acknowledgements The authors thank the referee for a very careful scrutiny and invaluable comments. The first author was partially supported by JSPS Grant-in-Aid for Scientific Research (C), 15K04924 and 19K03541 and (B), 19H01798.

References

- 1. Abhyankar, S. S.: Local Analytic Geometry. World Scientific Publishing Co. Inc., River Edge (2001) (reprint of the 1964 original)
- 2. Baker, M.: A finiteness theorem for canonical heights attached to rational maps over function fields. J. Reine Angew. Math. **626**, 205–233 (2009)
- 3. Baker, M.H., Hsia, L.-C.: Canonical heights, transfinite diameters, and polynomial dynamics. J. Reine Angew. Math. **585**, 61–92 (2005)
- 4. Baker, M.H., Rumely, R.: Equidistribution of small points, rational dynamics, and potential theory. Ann. Inst. Fourier (Grenoble) **56**(3), 625–688 (2006)
- 5. Baker, M., Rumely, R.: Potential theory and dynamics on the Berkovich projective line, Mathematical Surveys and Monographs, vol. 159. American Mathematical Society, Providence (2010)
- 6. Benedetto, R.L.: Dynamics in one non-archimedean variable, Graduate Studies in Mathematics, vol. 198. American Mathematical Society, Providence (2019)
- 7. Berkovich, V.G.: Spectral theory and analytic geometry over non-Archimedean fields. In: Mathematical Surveys and Monographs, vol. 33. American Mathematical Society, Providence (1990)
- 8. Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean analysis. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261. Springer, Berlin (1984) (a systematic approach to rigid analytic geometry)
- 9. Brolin, H.: Invariant sets under iteration of rational functions. Ark. Mat. **6**, 103–144 (1965)
- 10. Chambert-Loir, A.: Mesures et équidistribution sur les espaces de Berkovich. J. Reine Angew. Math. **595**, 215–235 (2006)

- 11. DeMarco, L.: Dynamics of rational maps: Lyapunov exponents, bifurcations, and capacity. Math. Ann. **326**(1), 43–73 (2003)
- 12. Favre, C., Jonsson, M.: The valuative tree. In: Lecture Notes in Mathematics, vol. 1853. Springer, Berlin (2004)
- 13. Favre, C., Rivera-Letelier, J.: Équidistribution quantitative des points de petite hauteur sur la droite projective. Math. Ann. **335**(2), 311–361 (2006)
- 14. Favre, C., Rivera-Letelier, J.: Théorie ergodique des fractions rationnelles sur un corps ultramétrique. Proc. Lond. Math. Soc. (3) **100**(1), 116–154 (2010)
- 15. Freire, A., Lopes, A., Mañé, R.: An invariant measure for rational maps. Bol. Soc. Brasil. Mat. **14**(1), 45–62 (1983)
- 16. Fresnel, J., Put, van der M.: Rigid analytic geometry and its applications. In: Progress in Mathematics, vol. 218. Birkhäuser Boston, Inc., Boston (2004)
- 17. Hsia, L.-C.: Closure of periodic points over a non-Archimedean field. J. Lond. Math. Soc. (2), **62**(3) , 685–700 (2000)
- 18. Jonsson, M.: Dynamics on Berkovich spaces in low dimensions, Berkovich Spaces and Applications. pp. 205–366. Springer, New York (2015)
- 19. Lalley, S.P.: Brownian motion and the equilibrium measure on the Julia set of a rational mapping. Ann. Probab. **20**(4), 1932–1967 (1992)
- 20. Ljubich, M.J.: Entropy properties of rational endomorphisms of the Riemann sphere. Ergod. Theory Dyn. Syst. **3**(3), 351–385 (1983)
- 21. Lopes, A.O.: Equilibrium measures for rational maps. Ergod. Theory Dyn. Syst. **6**(3), 393–399 (1986)
- 22. Mañé, R., da Rocha, L.F.: Julia sets are uniformly perfect. Proc. Am. Math. Soc. **116**(3), 251–257 (1992)
- 23. Mañé, R.: On the uniqueness of the maximizing measure for rational maps. Bol. Soc. Brasil. Mat. **14**(1), 27–43 (1983)
- 24. Narkiewicz, W.: Elementary and analytic theory of algebraic numbers, 3rd edn. Springer Monographs in Mathematics. Springer, Berlin (2004)
- 25. Oba, M.K., Pitcher, T.S.: A new characterization of the *F* set of a rational function. Trans. Am. Math. Soc. **166**, 297–308 (1972)
- 26. Okuyama, Y.: Adelic equidistribution, characterization of equidistribution, and a general equidistribution theorem in non-archimedean dynamics. Acta. Arith. **161**(2), 101–125 (2013)
- 27. Okuyama, Y.: Quantitative approximations of the Lyapunov exponent of a rational function over valued fields. Math. Z. **280**(3–4), 691–706 (2015)
- 28. Okuyama, Y.: Effective divisors on the projective line having small diagonals and small heights and their application to adelic dynamics. Pac. J. Math. **280**(1), 141–175 (2016)
- 29. Okuyama, Y., Stawiska, M.: Potential theory and a characterization of polynomials in complex dynamics. Conform. Geom. Dyn. **15**, 152–159 (2011)
- 30. Okuyama, Y., Stawiska, M.: A generalization of the converse of Brolin's theorem. Ann. Polon. Math. **123**(1), 467–472 (2019)
- 31. Rivera-Letelier, J.: Dynamique, des fonctions rationnelles sur des corps locaux. Astérisque **287:xv**, 147–230 (2003) (geometric methods in dynamics, II)
- 32. Silverman, J. H.: The arithmetic of dynamical systems. In: Graduate Texts in Mathematics, vol. 241. Springer, New York (2007)
- 33. Thuillier, A.: *Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d'Arakelov*. PhD thesis, Université Rennes 1 (2005)
- 34. Woodcock, C.F., Smart, N.P.: *p*-adic chaos and random number generation. Exp. Math. **7**(4), 333–342 (1998)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.