
Arnold Mathematical Journal (2020) 6:131–148
https://doi.org/10.1007/s40598-020-00138-8

RESEARCH CONTRIBUT ION

Two Parameters bt-Algebra and Invariants for Links and
Tied Links

F. Aicardi1 · J. Juyumaya2

Received: 24 July 2019 / Revised: 17 January 2020 / Accepted: 20 March 2020 / Published online: 2 April 2020
© Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2020

Abstract
We introduce a two-parameters bt-algebra which, by specialization, becomes the one-
parameter bt-algebra, introduced by the authors, as well as another one-parameter
presentation of it; the invariant for links and tied links, associated to this two-parameter
algebra via Jones recipe, contains as specializations the invariants obtained from these
two presentations of the bt-algebra and then is more powerful than each of them. Also,
a new non Homflypt polynomial invariant is obtained for links, which is related to the
linking matrix.

Keywords Links invariants · Tied links invariants · bt-Algebra
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1 Introduction

The bt-algebra is a one-parameter finite dimensional algebra defined by generators
and relations, see Aicardi and Juyumaya (2000) and Ryom-Hansen (2011). In Marin
(2018) it is shown how to associate to each Coxeter group a certain algebra, and in the
case of the Weyl group of type A this algebra coincides with the bt-algebra; this may
open new perspectives for the study of the bt-algebra in knot theory, cf. Flores (2020).
The representation theory of the bt-algebra has been studied in Ryom-Hansen (2011),
Espinoza and Ryom-Hansen (2018), Jacon and Poulain d’Andecy (2017).
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132 F. Aicardi, J. Juyumaya

For every positive integer n, we denote by En(u) the bt-algebra over C(u), with
parameter u. The original definition of En(u) is by braid generators T1, . . . , Tn−1
and tie generators E1, . . . , En−1, satisfying the defining generators of the tied braid
monoid defined in Aicardi and Juyumaya (2016a, Definition 3.1) together with the
polynomial relation

T 2
i = 1 + (u − 1)Ei + (u − 1)Ei Ti , for all i .

It is known that the bt-algebra is a knot algebra: indeed, in Aicardi and Juyumaya
(2016b)we have defined a three-variable polynomial invariant for classical linkswhich
is denoted by �̄; this invariant was constructed originally by using the method—
also called Jones recipe—that Jones introduced to construct the Homflypt polynomial
(Jones 1987).

In Chlouveraki et al. (2020) another presentation for the bt-algebra is considered.
More precisely, denote by

√
u a variable such that (

√
u)2 = u: the new presentation

of the bt-algebra is now over C(
√
u) and is presented by the same tie generators Ei ’s

but the generators Ti ’s are replaced by braid generators Vi ’s, still satisfying all original
defining relation of the Ti ’s with exception of the polynomial relation above which is
replaced by

V 2
i = 1 + (

√
u − √

u
−1

)EiVi , for all i .

We denote by E(
√
u) the bt-algebra with this new presentation. Now, again, by using

the Jones recipe on the bt-algebra but with the presentation E(
√
u), a three-variable

polynomial invariant for classical links is constructed in Chlouveraki et al. (2020);
this invariant is denoted by �.

It was noted by the first author that �̄ and � are not topologically equivalent, see
Aicardi (2016), cf. Chlouveraki et al. (2020); this is an amazing fact that shows the
subtlety of the Jones recipe. In fact, the main motivation of this note is to understand
the relation between the invariants �̄ and �. To do that we introduce a bt-algebra
with two commuting parameters u and v, denoted by En(u, v), presented by the tie
generators Ei ’s and braid generators Ri ’s, subject to the same monomial relations as
the bt-algebra and the polynomial relations

R2
i = 1 + (u − 1)Ei + (v − 1)Ei Ri , for all i .

Similarly to what happens for the two-parameters Hecke algebra (Kassel and Turaev
2008, Subsection 4.2), the bt-algebra with two parameters is isomorphic to the bt-
algebra with one parameter, see Proposition 1; this fact allows to define aMarkov trace
on En(u, v) (Proposition 2). Consequently, we apply the Jones recipe to the bt-algebra
with two parameters, obtaining a four-variable invariant polynomial, denoted by ϒ ,
for classical links as well its extension ˜ϒ to tied links (Aicardi and Juyumaya 2016a).
As it will be observed in Remark 2, specializations of the parameters in En(u, v) yields
En(u) and En(

√
u); therefore, the respective specializations of ϒ yields the invariants

�̄ and �; this gives an answer to the initial question that motivated this work.
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In Sect. 5 we define ˜ϒ by skein relations.We also give a close look to the specializa-
tion of ˜ϒ at v = 1, which is denoted by˜�. In Theorem 4we show some properties of˜�
by introducing a generalization of the linking number to tied links. Finally, in Sect. 6
we give a table comparing the invariant ϒ and its specializations considered here.
Section 7 is a digression on the bt-algebra, at one and two parameters, in comparison
with two different presentations of the Hecke algebra.

2 Preliminaries

Here, K-algebra means an associative algebra, with unity 1, over the field K.

2.1 TheMonoid of Tied Braids

As usual we denote by Bn the braid group on n-strands. The Artin presentation of Bn is
by the braids generators σ1, . . . , σn−1 and the relations: σiσ j = σ jσi , for |i − j | > 1
and σiσ jσi = σ jσiσ j , for |i − j | = 1. An extension of the braid group Bn is the
monoid of tied braids T Bn , which is a master piece in the study of tied links.

Definition 1 (Aicardi and Juyumaya 2016a, Definition 3.1) TBn is the monoid pre-
sented by the usual braids generators σ1, . . . , σn−1 together with the tied generators
η1, . . . , ηn−1 and the relations:

ηiη j = η jηi for all i, j, (1)

ηiηi = ηi for all i, (2)

ηiσi = σiηi for all i, (3)

ηiσ j = σ jηi for |i − j | > 1, (4)

ηiσ jσi = σ jσiη j for |i − j | = 1, (5)

ηiη jσi = η jσiη j = σiηiη j for |i − j | = 1, (6)

σiσ j = σ jσi for |i − j | > 1, (7)

σiσ jσi = σ jσiσ j for |i − j | = 1, (8)

ηiσ jσ
−1
i = σ jσ

−1
i η j for |i − j | = 1. (9)

2.2 The One Parameter bt-Algebra

Set u a variable: the bt-algebra En(u) (Aicardi and Juyumaya 2000; Ryom-Hansen
2011; Aicardi and Juyumaya 2016b) can be conceived as the quotient algebra of the
monoid algebra of T Bn over C(u), by the two-sided ideal generated by

σ 2
i − 1 − (u − 1)ηi (1 + σi ), for all i .

See Aicardi and Juyumaya (2016a, Remark 4.3). In other words, En(u) is the C(u)-
algebra generated by T1, . . . , Tn−1, E1, . . . , En−1 satisfying the relations (1)–(8),
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134 F. Aicardi, J. Juyumaya

where σi is replaced by Ti and ηi by Ei , together with the relations

T 2
i = 1 + (u − 1)Ei + (u − 1)Ei Ti , for all i . (10)

We consider now another presentation of the bt-algebra, used in Chlouveraki et al.
(2020), Marin (2018). Let

√
u be a variable s.t.

√
u2 = u. We denote by En(

√
u) the

bt-algebra presented by the generators V1, . . . , Vn−1 and E1, . . . , En−1, where

Vi := Ti +
(

1√
u

− 1

)

Ei Ti .

The Vi ’s still satisfy the defining relations (1)–(8), substituting σi with Vi , ηi with Ei ,
but equation (10) becomes

V 2
i = 1 +

(√
u − 1√

u

)

EiVi , for all i . (11)

2.3 Tied Links

Tied links were introduced in Aicardi and Juyumaya (2016a) and roughly correspond
to links which may have ties connecting pairs of points of two components or of the
same component. The ties in the diagrams of the tied links are drawn as springs, to
outline the fact that they can be contracted and extended, letting their extremes to slide
along the components. The ties define a partition of the set of components in this way:
two components connected by a tie belong to the same part of the partition. Every
classical link can be considered as a tied link without ties; in this case each component
form a distinct part of the partition. Alternatively, a classical link can be considered
as a tied link in which all components form a sole part.

We denote by L the set of classical links in R
3 and by ˜L the set of tied links. As

we have just recalled, L ⊂ ˜L, but the set L can be identified also with the subset ˜L∗
of ˜L, formed by the tied links whose components are all tied. In terms of braids, the
situation is as follows. Recall that the tied links are in bijection with the equivalence
classes of T B∞ under the t-Markov moves (Aicardi and Juyumaya 2016a, Theorem
3.7). Now, observe that Bn can be naturally considered as a submonoid of T Bn and
the t-Markov moves at level of Bn are the classical Markov moves: this implies the
inclusion L ⊂ ˜L. On the other hand, the group Bn is isomorphic, as group, to the
submonoid EBn of T Bn ,

EBn := {ηnσ ; σ ∈ Bn}, ηn := η1 · · · ηn−1,

where the group isomorphism from EBn to Bn , denoted byf, is given byf(ηnσ) = σ .
Moreover, two tied braids of EBn are t-Markov equivalent if and only if their images by
f areMarkov equivalent. This explains, in terms of braids, the identification betweenL
and˜L∗ mentioned above. Formoredetails seeAicardi and Juyumaya (2018, Subsection
2.3).
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2.4 Invariants

Invariants for classical and tied links were constructed by using the bt-algebra in the
Jones recipe (Jones 1987).We recall some facts and introduce some notations for these
invariants:

(1) � and ˜� denote respectively the three-variable invariant for classical links and
tied links, defined through the original bt-algebra. The invariant �, called �̄ in
Aicardi and Juyumaya (2016b), is the restriction of ˜� to L; the invariant ˜� was
defined in Aicardi and Juyumaya (2016a), where was denoted F .

(2) � and ˜� denote respectively the three-variable invariant for classical links and
tied links, defined in Chlouveraki et al. (2020); the original notation for ˜� was �.
Notice that the invariant � is the restriction of ˜� to L.

(3) The invariants ˜� and ˜�, restricted to˜L∗, coincide with the Homplypt polynomial,
which is denoted by P = P(t, x); we keep the defining skein relation of P as in
Jones (1987, Proposition 6.2).

(4) The invariants � and � coincide with the Homplypt polynomial, whenever they
are evaluated on knots; however they distinguish pairs of links that are not dis-
tinguished by P. See Chlouveraki et al. (2020, Theorem 8.3) and Aicardi (2016,
Proposition 2).

(5) It is intriguing to note that despite the only difference in the construction � and �

is the presentation used for the bt-algebra, these invariants are not topologically
equivalent, see Aicardi (2016), Chlouveraki et al. (2020).

3 The Two-Parameters bt-Algebra

3.1 Generators and Relations

Let v be a variable commuting with u, and set K = C(u, v).

Definition 2 (Cf. Aicardi and Juyumaya 2000; Ryom-Hansen 2011; Aicardi and
Juyumaya 2016b) The two-parameter bt-algebra, denoted by En(u, v), is defined by
E1(u, v) := K and, for n > 1, as the unital associative K-algebra, with unity 1, pre-
sented by the braid generators R1, . . . , Rn−1 and the tie generators E1, . . . , En−1,
subject to the following relations:

Ei E j = E j Ei for all i, j, (12)

E2
i = Ei for all i, (13)

Ei R j = R j Ei for |i − j | > 1, (14)

Ei Ri = Ri Ei for all i, (15)

Ei R j Ri = R j Ri E j for |i − j | = 1, (16)

Ei E j Ri = E j Ri E j = Ri Ei E j for |i − j | = 1, (17)

Ri R j = R j Ri for |i − j | > 1, (18)

Ri R j Ri = R j Ri R j for |i − j | = 1, (19)
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136 F. Aicardi, J. Juyumaya

R2
i = 1 + (u − 1)Ei + (v − 1)Ei Ri for all i . (20)

Notice that every Ri is invertible, and

R−1
i = Ri + (1 − v)u−1Ei + (u−1 − 1)Ei Ri . (21)

Remark 1 The algebra En(u, v) can be conceived as the quotient of the monoid algebra
of T Bn , over K, by the two-sided ideal generated by all expressions of the form
σ 2
i − 1 − (u − 1)ηi − (v − 1)ηiσi , for all i .

Remark 2 Observe that the original bt-algebra En(u) is obtained as En(u, u), while the
presentation En(

√
u) corresponds to En(1, v), with v = √

u − √
u−1 + 1.

3.2 Isomorphism of bt-Algebras with One and Two Parameters

We show here that the new two-parameters algebra is isomorphic to the original bt-
algebra.

Let δ be a root of the quadratic polynomial

u(z + 1)2 − (v − 1)(z + 1) − 1. (22)

Define the elements Ti ’s by

Ti := Ri + δEi Ri , for all i . (23)

Proposition 1 The L-algebras En(u, v) ⊗K L and En(u(δ + 1)2), are isomorphic
through the mappings Ri �→ Ti , Ei �→ Ei , where L is the smaller field contain-
ing K and δ.

Proof The Ti ’s satisfy the relations (12)–(19) and we have, using relation (20),

T 2
i = R2

i + (δ2 + 2δ)Ei R
2
i = 1 + (u(δ + 1)2 − 1)Ei + (v − 1)(δ + 1)2Ei Ri .

Now, since

Ri = Ti − δ

δ + 1
Ei Ti ,

we have Ei Ri = (δ + 1)−1Ei Ti , and substituting we get

T 2
i = 1 + (u(δ + 1)2 − 1)Ei + (v − 1)(δ + 1)Ei Ti . (24)

Therefore, the coefficients of Ei and Ei Ti are equal since δ is a root of the polynomial
(22). 
�
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Remark 3 Notice that the roots of (22) are: z± = (v− 1− 2u±√

(v − 1)2 + 4u)/2u,
so

T 2
i = 1 +

(v − 1)
(

v − 1 ± √

(v − 1)2 + 4u
)

2u
(Ei + Ei Ti ). (25)

Thus, for v = u, we have: z+ = 0 and z− = −u−1(u + 1) with the corresponding
quadratic relations:

T 2
i = 1 + (u − 1)(Ei + Ei Ti ), T 2

i = 1 + 1 − u
u

(Ei + Ei Ti ).

The first solution gives trivially En(u), while the second one gives another presen-
tation of En(u), obtained by keeping as parameter u−1; note that En(u) = En(u−1).

On the other hand, for u = 1, we get z± = (v − 3 ± √
v2 − 2v + 5)/2 giving

T 2
i = 1 +

(v − 1)
(

v − 1 ± √
v2 − 2v + 5

)

2
(Ei + Ei Ti ). (26)

These two solutions determine isomorphisms between En(
√
u) and En(u).

At this point we have to note that there is another interesting specialization of
En(u, v), namely when v = 1. In fact, En(u, 1) deserves a deeper investigation. Here
we gives some relations holding only in this specialization. More precisely, we have:

R2
i = 1 + (u − 1)Ei and R−1

i = Ri + (u−1 − 1)Ei Ri for all i . (27)

Then we deduce

(u + 1)Ri − uR−1
i = R3

i (28)

since Ei R
−1
i = u−1Ei Ri . So,

R4
i − (u + 1)R2

i + u = 0, or equivalently (R2
i − 1)(R2

i − u) = 0. (29)

3.3 Markov Trace on En(u, v)

Proposition 2 Let a and b two mutually commuting variables. There exists a unique
Markov trace ρ = {ρn}n∈N on En(u, v), where the ρn’s are linear maps from En(u, v)
to L(a, b), satisfying ρn(1) = 1, and defined inductively by the rules:

(1) ρn(XY ) = ρn(Y X),
(2) ρn+1(XRn) = ρn+1(XRnEn) = aρn(X),
(3) ρn+1(XEn) = bρn(X),

where X ,Y ∈ En(u, v).
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138 F. Aicardi, J. Juyumaya

Proof The proof follows from Proposition 1, since is obtained by carrying theMarkov
trace on the bt-algebra (Aicardi and Juyumaya 2016b, Theorem 3) to En(u, v). More
precisely, if we denote by ρ′ the Markov trace on the bt-algebra, then ρ is defined by
ρ′ ◦ φ, where φ denote the isomorphism of Proposition 1; moreover denoting by a′
and b′ the parameters trace of ρ′, we have a = (δ + 1)−1a′ and b = b′. 
�

4 Invariants

In this section we define, via Jones recipe, the invariants of classical and tied links
associated to the algebra En(u, v).

4.1 An Invariant for Classical Links

Define the homomorphism πc from Bn to En(u, v) by taking

πc(σi ) = √
cRi , (30)

where the scaling factor c is obtained by imposing, due to the second Markov move,
that (ρ ◦ πc)(σi ) = (ρ ◦ πc)(σ

−1
i ); thus

c := a + (1 − v)u−1b + (u−1 − 1)a
a

= a + b(1 − v)
au

. (31)

Theorem 1 The function ϒ : L −→ C(u, v, a,
√
c), defines an invariant for classical

links,

ϒ(L) :=
(

1

a
√
c

)n−1

(ρ ◦ πc)(σ ),

where L = σ̂ , σ ∈ Bn.

Proof The proof follows step by step the proof done for the invariant �̄ in Aicardi and
Juyumaya (2016b), replacing the elements Ti by Ri . Observe that the only differences
consist in the expressions of L (see (46), Aicardi and Juyumaya 2016b), that must be
replaced by c, and of the inverse element, that contains now two parameters. However,
it is a routine to check that the proof is not affected by the presence of two parameters
instead of one. 
�
Remark 4 From Remark 2 it follows that, respectively, the invariants � and � corre-
spond to the specializations u = v and u = 1 with v = √

u − √
u−1 of ϒ .

4.2 An Invariant for Tied Links

The invariant ϒ can be extended to an invariant of tied links, denoted by ˜ϒ , simply
extending πc to T Bn by mapping ηi to Ei . We denote this extension by π̃c.

123



Two Parameters bt-Algebra and Invariants for Links... 139

Theorem 2 The function ˜ϒ : ˜L −→ C(u, v, a,
√
c), defines an invariant for tied links,

where

˜ϒ(L) :=
(

1

a
√
c

)n−1

(ρ ◦ π̃c)(η),

L being the closure of the n-tied braid η.

This theorem will be proved together with Theorem 3 of the next section.

5 The Invariant ˜7 via Skein Relation

This section is two parts: the first one describes ˜ϒ by skein relation and the second is
devoted to analyze a specialization ˜� of ˜ϒ .

In the sequel, if there is no risk of confusion, we indicate by L both the oriented tied
link and its diagram and we denote by L+, L−, L∼, L+,∼ and L−,∼ the diagrams of
tied links, that are identical outside a small disc into which enter two strands, whereas
inside the disc the two strands look as shown in Fig. 1.

The following theorem is the counterpart ofAicardi and Juyumaya (2016a, Theorem
2.1).

Theorem 3 The function ˜ϒ is defined uniquely by the following three rules:

I The value of ˜ϒ is equal to 1 on the unknot.
II Let L be a tied link. By L � © we denote the tied link consisting of L and the

unknot, unlinked to L. Then

˜ϒ(L � © ) = 1

a
√
c
˜ϒ(L).

III Skein rule:

1√
c
˜ϒ(L+) − √

c˜ϒ(L−) = v − 1

u
˜ϒ(L∼) + 1√

c
(1 − u−1)˜ϒ(L+,∼).

Proof (of Theorems 2 and 3) See the proof done for the invariant F in Aicardi and
Juyumaya (2016a, Theorem 2.1) replacing the variables z andw respectively by a and

  L   L  L+ _ ~   L+,~   L_ ,~

Fig. 1 The discs where the corresponding diagrams differ
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140 F. Aicardi, J. Juyumaya

c. The definition of t must be replaced by that of b given by

b = a(uc − 1)/(1 − v), (32)

according to (31). All steps of the proofs are still holding for the new skein rules
involving the new parameter v.

At this point we have an invariant for tied links ˜ϒ , uniquely defined by the rules
I–III. It remains to prove that it coincides with that obtained via Jones recipe: the proof
now proceeds exactly as that of Aicardi and Juyumaya (2016a, Theorem 4.5). In this
way we have proven also Theorem 2. 
�
Remark 5 Rules I and II imply that the value of the invariant on a collection of n
unlinked circles is (a

√
c)1−n .

Remark 6 The following skein rule IV is obtained from rule III, adding a tie between
the two strands inside the disc. Rules Va and Vb are equivalent to the skein rule III,
by using rule IV.

IV

1

u
√
c
˜ϒ(L+,∼) − √

c˜ϒ(L−,∼) = v − 1

u
˜ϒ(L∼).

Va

1√
c
˜ϒ(L+) = √

c
[

˜ϒ(L−) + (u − 1) ˜ϒ(L−,∼)
] + (v − 1) ˜ϒ(L∼).

Vb

√
c˜ϒ(L−) = 1√

c

[

˜ϒ(L+) + 1 − u
u

˜ϒ(L+,∼)

]

+ 1 − v
u

˜ϒ(L∼).

Remark 7 The value of the invariant ˜ϒ(u, v) on a tied link made by n unlinked circles
all tied, is obtained by rule IV (cf. Aicardi and Juyumaya 2016a, Remark 2.3), and it
is

(

uc − 1√
c(1 − v)

)n−1

=
(

b

a
√
c

)n−1

. (33)

The last equality comes from (32).

Remark 8 For tied links in ˜L∗, the invariant ˜ϒ is uniquely defined by rules I and IV.
Observe that, by multiplying skein rule IV by

√
u, we get that ˜ϒ coincides with the

Homflypt polynomial in the variables t = √
uc and x = (v − 1)/

√
c; that is, if L is

the tied link in ˜L∗, associated to the classical links L , then ˜ϒ(L) = P(L).

Remark 9 The invariants of tied links ˜� and ˜� are, respectively, the specializations
˜ϒ(u, u) and ˜ϒ(1, v).
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Two Parameters bt-Algebra and Invariants for Links... 141

5.1 The Invariant ˜Ä

We shall denote by ˜� the specialization ˜ϒu,v at v = 1.
We observe firstly that if v = 1 then c = u−1, so the invariant ˜� takes in fact values

in C(
√
u, a,b). The next lemma describes ˜� by skein relations and is the key to show

its main properties.

Lemma 1 The invariant ˜� is uniquely defined by the following rules:

I ˜�(©) = 1.
II ˜�(L � © ) = a−1√u˜�(L).

III By L �̃ © we denote the tied link consisting of the tied link L and the unknot,
unlinked to L, but tied to one component of L. Then

˜�(L �̃ © ) = b
√
u

a
˜�(L).

IV Skein rule:

√
u˜�(L+) − 1√

u
˜�(L−) + √

u(u−1 − 1) ˜�(L+,∼) = 0.

Proof By comparing the rules of the lemma with those of Theorem 3, we observe
that: rule I coincides with rule I for ˜ϒ , rules II and IV are obtained by setting v = 1
in the corresponding rules II and III. Notice that, when the two components of the
considered crossing are tied, rule IV becomes

˜�(L+,∼) − ˜�(L−,∼) = 0. (34)

Observe now that the necessity of rule III for defining ˜�, depends on the fact that the
skein rule IV does not involve the diagram L∼, so that the value of ˜� on two unlinked
circles tied together cannot be deduced, using skein rules; note this value is chosen by
imposing that it coincide with the value obtained through the Jones recipe, and indeed
matches with (33). Rule III is in fact the unique point that makes the case v = 1 to be
considered separately from Theorem 3. 
�

To present the next result we need to highlight some facts and to introduce some
notations.

We start by recalling that the ties of a tied link define a partition of the set of
components: if there is a tie between two components, then these components belong
to the same class, see Aicardi and Juyumaya (2018, Section 2.1).

Definition 3 We call linking graph of a link, them-graph whose vertices represent the
m components and where two vertices are connected by an edge if the corresponding
components have a nonzero linking number. Each edge is labeled by the corresponding
linking number.

We generalize the linking number to tied links.
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142 F. Aicardi, J. Juyumaya

Definition 4 We call class linking number or c-linking number, between two classes
of components, the sum of linking numbers of the components of one class with the
components of the other class.

Definition 5 We call c-linking graph of a tied link L , the k-graph whose vertices
represent the k classes of the L components and where two vertices are connected by
an edge if the corresponding classes have a nonzero c-linking number. Each edge is
labeled by the corresponding c-linking number.

Example 1 The links in Fig. 2 have three components: 1, 2 and 3, and two classes,
A = {1, 3} and B = {2}. All crossings have positive sign. The c-linking number
between the classes A and B is in both cases equal to 2. The corresponding c-linking
graph is shown at right.

Remark 10 For tied links in L, the c-linking graph coincides with the linking graph.

Theorem 4 The invariant ˜� has the following properties:

(1) The value of ˜� is equal to 1 on knots.
(2) ˜� takes the same value on links with the same number of components all tied

together. The value depends only on the number of components m, namely it is
equal to (b

√
u/a)m−1.

(3) ˜� takes the same value on tied links having the same number of components and
the same c-linking graph.

Proof Rule (34) implies that, given any knot diagram, ˜� takes the same value on
any other diagram obtained by changing any crossing from positive to negative or
viceversa. Thus, it takes the same value also on the diagram corresponding to the
unknot: by rule I this value is equal to 1. This proves claim (1).

Claim (2) is a consequence of rule (34) together with rule III of Lemma 1.
Suppose the tied link ˜L has m components, partitioned into k classes. We order

arbitrarily the classes, and inside each class, using rule (34), we change the signs of
some crossings in order to unlink the components and transform each component into
the unknot. Then we start from the first class c1 and consider in their order all the
other classes ci linked with it: we mark all the undercrossing of c1 with ci as deciding
crossings. Thenwe pass to the class c2, we select all classes c j linkedwith it and having
indices greater than 2, and mark the undercrossings of c2 with c j , so increasing the
list of deciding crossings. We proceed this way till the last class. At the end we have
obtained an ordered sequence of q pairs of classes characterized by the corresponding

1
1

2

2

3
3+

++

+++

+

+

2

Fig. 2 Two tied links with the same c-linking graph
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c-linking numbers. So, we construct a graph with k vertices, and q ordered edges,
labeled with the c-linking numbers.

Consider now the first pair of classes (i, j) in the sequence. We apply the skein
rule IV of Lemma 1, to each one of the n deciding crossings between the components
of this pair. These points have signs s1, . . . , sn . By using rule (34), rule IV becomes,
respectively for positive and negative crossings,

˜�(L+) = 1

u
˜�(L−) +

(

1 − 1

u

)

˜�(L−,∼)

and ˜�(L−) = u˜�(L+) + (1 − u)˜�(L+,∼).

So, consider the first deciding point with signs s1. We have

˜�(Ls1) = u−s1
˜�(L−s1) + (1 − u−s1)˜�(L−s1,∼).

The two diagrams at the right member are identical, but in the second one there is a
tie between the classes i and j . We denote this diagram by Li∼ j ; observe that in this
diagram the classes i and j merge in a sole class.

To calculate the first term u−s1˜�(L−s1), we pass to the second deciding point, so
obtaining a first term u−(s1+s2)˜�(L−s2), and a second term u−s1(1 − u−s2)˜�(Li∼ j ).
At the n-th deciding point, we obtain

˜�(L) = u−(s1+s2+···+sn)
˜�(L−sn ) +

n
∑

i=1

u−(s0+···+si−1)(1 − u−si )˜�(Li∼ j ),

where s0 = 0. Now, L−sn is the link obtained by L by unlinking the classes i and j ,
that we shall denote by Li‖ j . By expanding the sum we obtain

n
∑

i=1

u−(s0+···+si−1)(1 − u−si ) = 1 − u−(s1+s2+···+sn).

The sum s1 + · · · + sn is the sum of the signs of all undercrossings, and therefore
equals the c-linking number of the two classes, that we denote by �(i, j). Therefore
we get

˜�(L) = u−�(i, j)
˜�(Li‖ j ) + (1 − u−�(i, j))˜�(Li∼ j ). (35)

Observe now that Eq. (35) is a generalized skein relation, that is used to unlink two
classes of components (or two components, when the classes contain a sole compo-
nent), see Fig. 3. The independence of the calculation by skein of ˜ϒ from the order
of the deciding points, implies here the independence of the calculation of ˜� by the
generalized skein equation (35) from the order of the pairs of classes.

However, Eq. (35) becomes ˜�(L) = ˜�(Li‖ j ) when the c-linking number is zero.
Therefore, the invariant ˜� does not distinguish two linked classes with c-linking num-
ber zero from the same classes unlinked. So, we obtain the c-linking graph by deleting
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Fig. 3 Generalized skein rule

the edges labeled by zero in the graph before constructed. Observe that, if there remain
p edges with non zero label, the generalized skein relation (35) defines a tree terminat-
ing in 2p diagrams L j , all having the classes unlinked. These diagrams differ only for
a certain number of ties, and each one of them can be represented by a graph obtained
from the c-linking graph where each edge is either deleted or substituted by a tie. The
value of ˜�(L) is then the sum

2p
∑

j=1

α j˜�(L j ). (36)

Notice that each vertex of the tree is labeled by a pair (x, y) of classes, that is, the
classes that are unlinked by the skein rule at that vertex. To calculate the coefficient α j ,
consider all the p vertices of the path in the skein tree, going from L j to L . For each
one of these vertices, say with label (x, y), choose the factor u−�(x,y) if it is reached
from left, otherwise the factor (1−u−�(x,y)). The coefficient α j is the product of these
p factors.

The value˜�(L j ) depends only on the numberm of components, and on the number
of classes h, h ≤ k, of L j ; indeed, by rules II and III of Lemma 1 we have:

˜�(L j ) =
(√

u
a

)m−1

bm−h . (37)

To calculate h for the diagram L j , we start from the c-linking graph of L , and use
again the p vertices of the considered path in the skein tree: if the path reaches a vertex
labeled (x, y) from left, then the edge (x, y) is eliminated from the graph, otherwise
the edge is substituted by a tie. The number of connected components of the graph so
obtained, having ties as edges, is the resulting number h of classes, e.g. see Fig. 5.

To conclude the proof, it is now sufficient to observe that the calculation of ˜�(L)

depends only on the c-linking graph and on the total number of components of L . 
�
Corollary 1 Let L be a tied link withm components and k classes. Let r be the exponent
of a and s the minimal exponent of b in ˜�(L). Then m = 1 − r and k = 1 − r − s.

Proof It follows from Eqs. (36) and (37), noting that the coefficients αi depend only
on the variable u. 
�

We shall denote by � the specialization of ϒ at v = 1, that is, � is the restriction
of ˜� to L. We have the following results for classical links.
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Corollary 2 The invariant � has the following properties: � takes the same value on
links having the same linking graph. If L has m components, the exponent of a in �

is 1 − m and there is a term in � non containing b.

Proof It follows from Theorem 4 and Corollary 1. 
�
Example 2 Consider the link L in Fig. 4. Here m = 3, c = 3 and p = 3. All linking
numbers �(i, j) are equal to 1.

The value �(L) is obtained by adding the value of � on the 23 graphs shown in
Fig. 5, where they are subdivided in four groups, according to the value of �, i.e., to
the number of classes, indicated at bottom. The coefficients, here written for the four
groups, are:

u−3, u−2(1 − u−1), u−1(1 − u−1)2 and (1 − u−1)3,

whereas the corresponding values of � are

u/a2, bu/a2, b2u/a2 and b2u/a2.

Then,�(L) = ua−2(u−3+3b(u−2(1−u−1))+3b2(u−1(1−u−1)2)+b2(1−u−1)3),
so

�(L) = a−2u−2(1 + 3bu − 3b − 3b2u + 2b2 + b2u3).

Finally, observe that r = −2 and s = 0; indeed, L has 3 components and 3 classes.

6 Results of Calculations

Here the notations of the links with ten or eleven crossings are taken from Cha and
Livingston (2018).

The following table shows eight pairs of non isotopic links with three components,
distinguished by ϒ(u, v), but non distinguished by the Homflypt polynomial. A star
indicates when they are distinguished also by a specialization of ϒ(u, v).

Fig. 4 A link and its linking
graph

1

1

1

3 2 1 1

Fig. 5 The eight graph obtained from the c-linking graph of Fig. 4
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Link l.graph Link l.graph Υ(u, v) Υ(1, v) Υ(u, u) Υ(u, 1)
L11n358{0, 1}  -2  -1 L11n418{0, 0}  -2  -1 � �
L11n358{1, 1}   2   1 L11n418{1, 0}   2   1 � �
L11n356{1, 0}   2  -1 L11n434{0, 0}   2  -1 � �
L11n325{1, 1}   -1 L11n424{0, 0}   -1 � � �

L10n79{1, 1}   -3 L10n95{1, 0}
1

 -2  -2 � � � �

L11a404{1, 1}  1

1

 -2 L11a428{1, 0}  1

1

 2 � � � �
L11a467{0, 1}  -2  -1 L11a527{0, 0}  -2  -1 � �

L10n76{1, 1}   -3 L11n425{1, 0}
1

 -2  -2 � � � �

Observe that, among the eight pairs distinguished by ϒ(u, v), six are distinguished
by ϒ(u, u), six by ϒ(1, v); the pair distinguished by both ϒ(u, u) and ϒ(1, v) are
four, three of which are distinguished also by ϒ(u, 1). We don’t know whether it
is necessary, for being distinguished by ϒ(u, 1), to be distinguished by all other
specializations.

7 Final Remarks

7.1 Other Similar Recent Results

Recently, Jacon and Poulain d’Andecy have constructed an explicit isomorphism
between the Yokonuma–Hecke algebra and a direct sum of matrix algebras over tensor
products of Iwahori–Hecke algebras, also they have classified the Markov traces on
the Yokonuma–Hecke algebra, see Jacon and Poulain d’Andecy (2016, Theorems 3.1,
5.3). In the same paper they defined an invariant of three parameters and have shown
that the invariants � and � can be obtained from it, see Jacon and Poulain d’Andecy
(2016, Subsection 6.5). In Chlouveraki et al. (2020, Appendix) Lickorish found a
formula for � which allows to compute �(L) through the linking numbers and the
Homflypt polynomials of the sublinks of the oriented link L , cf. Poulain d’Andecy and
Wagner (2018). On the other hand, in Espinoza and Ryom-Hansen (2018, Theorem
14) Espinoza and Ryom–Hansen proved that the bt-algebra can be considered as a
subalgebra of the Yokonuma–Hecke algebra; cf. Jacon and Poulain d’Andecy (2017).
This result together with the results of Jacon and Poulain d’Andecy and the formula
for � induce to think that some of the results of this paper, at level of classical links,
could be recovered by a combination of the results mentioned before. However, this
combination do not imply the results proved here for tied links.

An open problem yet is to know how strong is the four variable invariantϒ (respec-
tively, ˜ϒ) with respect to � and � (respectively, ˜� and ˜�).

7.2 Different Hecke Algebra Presentations

Denote by Hn(u) the Hecke algebra, that is, the C(u)-algebra generated by
h1, . . . , hn−1 subject to the braid relations of type A, together with the quadratic
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relation

h2i = u + (u − 1)hi , for all i .

Now, there exits another presentation used to describe the Hecke algebra, which is
obtained by rescaling hi by

√
u−1; more precisely, taking fi := √

u−1hi . In this case
the fi ’s satisfy the braid relations and the quadratic relation

f 2i = 1 + (
√
u − √

u
−1

) fi .

Denote by Hn(
√
u) the presentation of the Hecke algebra through the fi ’s. The con-

struction of the Homflypt polynomial can be made indistinctly from any of the above
presentations for the Hecke algebra.

The bt-algebra can be regarded as a generalization of theHecke algebra, in the sense
that, by taking Ei = 1 in the presentation of the bt-algebra, we get the Hecke algebra;
indeed, under Ei = 1 the presentations, respectively, of En(u) and En(

√
u) becomes

Hn(u) and Hn(
√
u). Now we recall that, as we noted in observation 5 of Subsection

2.4, these two presentations of the bt-algebra yield different invariants. The authors
don’t know other situations where different presentations of the same algebra produce
different invariants.

7.3 Relation with Two Parameters Hecke Algebra

Also the Hecke algebra with two parameters can be considered; that is, by taking
two commuting parameters u1 and u2, and imposing that the generators hi ’s satisfy
h2i = u1+u2hi , for all i ; however, the Hecke algebras with one and two parameters are
isomorphic, see Kassel and Turaev (2008, Subsection 4.2); hence, from the algebraic
point of view these algebras are the same. Now, regarding the behavior of the Hecke
algebra with two parameters Hn(u1, u2), in the construction of polynomial invariants,
we have that, after suitable rescaling, Hn(u1, u1) becomes of the type Hn(

√
u) and

Hn(u1, 0) becomes the group algebra of the symmetric group. ForHn(0, u2), we obtain
the so-called 0-Hecke algebra.

We examine now the bt-algebra with one more parameter. Taking u0, u1, u2 and u3
commuting variables, it is natural to keep generators Ri ’s instead the Ti ’s, satisfying
R2
i = u0 + u1Ei + u2Ei Ri + u3Ri , for all i ; notice that a simple rescaling shows

that we can take u0 = 1. Now, we need that these Ri ’s, together with the Ei ’s, satisfy
all defining relations of the bt-algebra with the only exception of relation (20); it is
straightforward to see that these defining relations hold if and only if we take u3 = 0.
This is the motivation for defining the bt-algebra En(u, v) with two parameters in
this paper. Observe that we have a homomorphism from En(u, v) onto Hn(u, v − 1),
defined by sending Ei to 1 and Ri to hi ; so, the 0-Hecke algebra is the homomorphic
image of En(0, v).
Acknowledgements The authors thank the referee for important remarks.
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