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Abstract
In 1915, Ramanujan proved asymptotic inequalities for the sum of divisors function,
assuming the Riemann hypothesis (RH).We consider a strong version of Ramanujan’s
theorem and define highest abundant numbers that are extreme with respect to the
Ramanujan and Robin inequalities. Properties of these numbers are very different
depending on whether the RH is true or false.

Keywords Ramanujan theorem · Riemann hypothesis · Robin’s criterion · Colossally
abundant number

1 Introduction

The function σ(n) = ∑
d|n d is the sum of divisors function. In 1913 Grönwall (see

Hardy and Wright 1979, Theorem 323) proved that the asymptotic maximal size of
σ(n) satisfies

lim sup
n→∞

G(n) = eγ , G(n) := σ(n)

n log log n
, n ≥ 2,

where γ ≈ 0.5772 is the Euler–Mascheroni constant. Robin (1984) showed that the
Riemann hypothesis (RH) is true if and only if

σ(n) < eγ n log log n for all n > 5040. (R)

Briggs’ computation of the colossally abundant numbers implies (R) for n < 10(1010)

(Briggs 2006). According toMorrill and Platt (2018), (R) holds for all integers 5040 <

n < 10(1013).
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120 O. R. Musin

A positive integer n is called superabundant (SA) if

σ(k)

k
<

σ(n)

n
for all integer k ∈ [1, n − 1].

Colossally abundant numbers (CA) are those numbers n for which there is ε > 0 such
that

σ(k)

k1+ε
≤ σ(n)

n1+ε
for all k ∈ N.

Bachmann (see Hardy and Wright 1979, Theorem 324) showed that on average,
σ(n) is around π2n/6. Bachmann and Grönwall’s results ensure that for every ε > 0
the function σ(n)/n1+ε has a maximum and that as ε tends to zero these maxima will
increase. Thus there are infinitely many CA numbers.

SA and CA numbers were studied in detail by Alaoglu and Erdős (1944) and
Erdős and Nicolas (1975). The study of numbers with σ(n) large was initiated by
Ramanujan (1915). In fact, SA and CA numbers had been studied by Ramanujan in
1915. Unknown to Alaoglu and Erdös, about 30 pages of Ramanujan’s paper “Highly
Composite Numbers”’ were suppressed. Those pages were finally published in 1997
(Ramanujan 1997).

Let

F(x, k) := log(1 + 1/(x + · · · + xk))

log x
,

E p := {F(p, k) | k ≥ 1}, p is prime,

and

E :=
⋃

p

E p = {ε1, ε2, . . .} =
{

log2

(
3

2

)

, log3

(
4

3

)

, log2

(
7

6

)

, . . .

}

.

Alaoglu and Erdös (1944, Theorem 10) showed that if ε is not critical, i.e. ε /∈ E , then
σ(k)/k1+ε has a unique maximum attained at the number nε. If ε satisfies εi > ε >

εi+1, i ∈ N, then nε is constant on the interval (εi+1, εi ) and we call it ni . Moreover,

nε =
∏

p∈P
paε(p), where aε(p) =

⌊
log(p1+ε − 1) − log(pε − 1)

log p

⌋

− 1.

In particular, Alaoglu and Erdős in their 1944 paper found all SA and CA numbers up
to 1018. The first 14 CA numbers n1, n2, . . . , n14 are

2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200.
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Ramanujan’s Theorem and Highest Abundant Numbers 121

Robin (1984, Sect. 3: Prop. 1) showed that if the Riemann hypothesis is false, then
there exists a counterexample to the Robin criterion (R) which is a colossally abundant
number. Thus, it suffices to check (R) only for CA numbers.

Ramanujan (1997, p. 143), proved that if n is a CA number (he called CA numbers
as generalized superior highly composite) then under theRH the following inequalities
hold

lim sup
n→∞

(
σ(n)

n
− eγ log log n

)
√
log n ≤ −c1, c1 := eγ (2

√
2 − 4 − γ + log 4π) ≈ 1.3932, (1)

lim inf
n→∞

(
σ(n)

n
− eγ log log n

)
√
log n ≥ −c2, c2 := eγ (2

√
2 + γ − log 4π) ≈ 1.5578. (2)

Denote

T (n) :=
(

eγ log log n − σ(n)

n

)
√
log n.

It is easy to see that Ramanujan’s inequalities (1) and (2) yield the following fact:
If the RH is true, then there is i0 such that for all CA numbers ni , i ≥ i0, we have

1.393 < T (ni ) < 1.558. (3)

Note that (2) does not hold for all integers. Indeed, if pi is prime, then σ(pi ) =
pi + 1. Therefore,

lim sup
i→∞

T (pi ) = ∞.

However, (1) holds for all numbers. In Sect. 2 we prove the following theorem.

Theorem 1 (The strong Ramanujan theorem) If the RH is true, then

lim inf
n→∞ T (n) ≥ c1 > 1.393.

It is an interesting open problem: Can Ramanujan’s constant c1 be improved?
Theorem 1 implies the following inequality (see Corollary 1 in Sect. 2):

If the RH is true, then there is m0 such that for all n > m0 we have

σ(n) + 1.393 n√
log n

< eγ n log log n (4)

which is stronger than Ramanujan’s theorem (Broughan 2017, Theorem 7.2):
If the RH is true, then there is m0 such that for all n > m0 we have

σ(n) < eγ n log log n. (5)

Note that, for fixed ε > 0, CA numbers n may be viewed as maximizers of

Q(k) − ε log k = log(σ (k)/k1+ε), Q(k) := log σ(k) − log k.
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122 O. R. Musin

Equivalently, n is CA if (xn, A(xn)) is a vertex of the convex envelope of A on D,
where

xk := log k, A(xk) := xk − log σ(k) = −Q(k), D := {xk}, k ≥ 2,

see details in Sect. 3, Example 1.
Let n ≥ 2 and s be a real number. Denote

Rs(n) := (
eγ n log log n − σ(n)

)
(log n)s .

Now we define Highest Abundant (HA) numbers. We say that n ∈ D ⊂ N is H A
with respect to Rs and write n ∈ H As(D) if for some real a

Rs(k) − ak

attains its minimum on D at n. For D = {n ∈ N | n ≥ 5040} we denote H As(D) by
H As .

Actually, if D is infinite, then H As(D) can be empty or contain only one number
m0. It is clear that m0 is the minimum number in D = {m0 = x0, x1, . . .}. Then there
is a0 such that m0 is defined by any a ≤ a0.

It can be shown, see Proposition 1 in Sect. 3, if H As(D) = {m0, m1...} contains
at least two numbers, then there is a set of critical values a, As(D) = {a1, a2, ...},
a1 < a2 < ..., such that if a is not critical, then Rs(n) − na has a unique minimum
on D attained at the number ma . If a ∈ (ai , ai+1), i = 1, 2, ..., then ma is constant on
the interval (ai , ai+1) and ma = mi . In fact, ai is the slope of Rs on [mi−1, mi ], i.e.

ai = Rs(mi ) − Rs(mi−1)

mi − mi−1
.

We see that definitions of CA and HA numbers are similar, in both cases numbers
can be determined through the vertices of the convex envelopes of certain functions.
In Example 3 (Sect. 3) is considered HA numbers with respect to Rs , s = 1, on
D = [2, n13 = 21621600]. There are 13 HA numbers in this interval, 12 of them are
CA numbers (except n6 = 360) and one more m = 2162160 is SA but m is not CA.
However, properties of HA and CA numbers are different. The property that H As is
infinite depending on whether the RH is true or false.

Theorem 2 (i) Let s > 1/2. If the RH is true, then H As is infinite and lim
n→∞ an = ∞.

If the RH is false, then H As is empty.
(ii) Let s ≤ 0. If the RH is false, then H As is infinite, all ai < 0 and limn→∞ an = 0.

If the RH is true, then H As = {5040} and As = {0}.
In Sect. 4 (Theorems 3 and 4) we consider extensions of Theorem 2. Proofs of

these theorems rely on Robin’s inequalities (7) and (8) (Sect. 4), the strong Ramanujan
theorem and his inequality (2), namely on Corollary 2 in Sect. 2.
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Ramanujan’s Theorem and Highest Abundant Numbers 123

Let hn := ∑n
i=1 1/i denote the harmonic sum. Using (R) Lagarias (2002) showed

that the Riemann hypothesis is equivalent to the following inequality

L0(n) := hn + exp(hn) log(hn) − σ(n) > 0 for all n > 1. (L)

In Sect. 4 we consider an analog of Theorem 2 for (L) on D = N.

2 The Strong Ramanujan Theorem

Ramanujan’s theorem in the form of (5) is present in Broughan (2017, Theorem 7.2),
Nicolas and Sondow (2014), Ramanujan (1997, p. 152) and other places. This theorem
can be easily derived from (1) for the CA numbers. Theorem 1 extends (1) for all n ∈ N

and is a strong version of Ramanujan’s theorem, see (4). However, we could not find
a proof of Theorem 1 for arbitrary integers. In this section we fill this gap.

Proof of Theorem 1 Let

f (n) := √
log n log log n, g(n) := eγ − G(n).

Then T (n) = f (n) g(n).

Let S be the set of all non-CA integers n > 2. Then for every n ∈ S there is
i = i(n) > 1 such that ni−1 < n < ni , where ni−1 and ni are two consecutive CA
numbers. Robin (1984, Proposition 1) showed that

G(n) ≤ max(G(ni−1), G(ni )).

We divide S into two disjoint subsets S1 and S2:

S1 := {n ∈ S | G(n) ≤ G(ni−1)}, S2 := {n ∈ S | G(ni−1) < G(n) ≤ G(ni )}.

(1) Suppose n ∈ S1. Then g(n) ≥ g(ni−1), where i = i(n). Since f is amonotonically
increasing function, we have f (n) > f (ni−1) and T (n) > T (ni−1). Thus,

lim inf
n∈S1,n→∞ T (n) ≥ lim inf

i→∞ T (ni−1) = lim inf
i→∞ T (ni ) ≥ c1.

(2) Suppose n ∈ S2. Then g(n) ≥ g(ni ) and f (n) > f (ni−1). That yields

T (n) > f (ni−1)g(ni ) = T (ni )F(i), F(i) := f (ni−1)

f (ni )
.

We have

lim
i→∞

log(ni−1)

log(ni )
= 1. (6)
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124 O. R. Musin

Indeed, let P(n) denote the largest prime factor of n. Alaoglu&Erdős (1944, Theorem
7) proved that P(n) ∼ log n for all SA numbers. Then, in particular, it holds for CA
numbers. The quotient of two consecutive CA numbers is either a prime or the product
of two distinct primes (Alaoglu and Erdős 1944, page 455; Broughan 2017, Lemma
6.15), i.e. ni ≤ ni−1P2(ni ) ∼ ni−1 log2(ni ). Then we have

1 >
log(ni−1)

log(ni )
>

log(ni ) − 2 log(P(ni ))

log(ni )
∼ 1 − 2 log log ni

log ni
∼ 1.

It is not hard to see that (6) implies lim
i→∞ F(i) = 1. That yields

lim inf
n∈S2,n→∞ T (n) ≥ lim inf

i→∞ T (ni )F(i) = lim inf
i→∞ T (ni ) ≥ c1.

Thus, we have (1) for CA, S1 and S2, i.e. for all numbers. ��
Remark In the first version of this paper our proof of Case (2) relies on Wu (2019,
Theorem 1). I am very grateful to Xiaolong Wu for the idea of proving this case using
(6). Note that (6) is easily derived from the results of the classical paper of Alaoglu
and Erdős (1944).

Corollary 1 If the RH is true, then for every ε > 0 there is m0 such that for all n > m0
we have

σ(n) + (c1 − ε)
n√
log n

< eγ n log log n.

In particular, if ε ≤ 1.393, then σ(n) < eγ n log log n for all n > m0.

From (2) for CA numbers ni we have

lim sup
i→∞

T (ni ) ≤ c2 < 1.558.

This fact and Corollary 1 yield the following corollary:

Corollary 2 If the RH is true, then for every ε > 0 there is m0 such that a set

M(ε) := {n > m0 | T (n) < c2 + ε}

is infinite and for all n ∈ M(ε) we have T (n) > c1 − ε.

3 Convex Envelope of Functions

Let D = {xn} be an increasing sequence. Let h : D → R be a function on D. We say
that h is convex (or concave upward ) on D if for all a, x, b ∈ D such that a < x < b
we have

h(x) ≤ (b − x)h(a) + (x − a)h(b)

b − a
.
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Ramanujan’s Theorem and Highest Abundant Numbers 125

Denote by �( f ) the set of all convex functions h : D → R such that h(x) ≤ f (x)

for all x ∈ D. Suppose �( f ) 
= ∅. The lower convex envelope f̆ of a function f on
D is defined at each point of D as the supremum of all convex functions that lie under
that function, i.e.

f̆ (x) := sup{h(x) | h ∈ �( f )}.

Alternatively, f̆ can be defined as follows. Let

� f := {(x, f (x)) ∈ D × R ⊂ R
2}

be the graph of f . The convex hull of � f in R
2 is the set of all convex combinations

of points in � f :

conv(� f ) := {c1 p1 + · · · + ck pk | pi ∈ G f , ci ≥ 0, i = 1, . . . , k, c1 + · · · + ck = 1}.

Then the graph {(x, f̆ (x)) ∈ D × R} is the lower convex hull of conv(� f ).
It is clear, if D is finite, then �( f ) is not empty. However, if D is infinite, then

�( f ) can be empty, for instance if f (n) = −n2 and D = N.
Let f be a function on D = {x0, x1, . . .} with �( f ) 
= ∅. Then f̆ is a piecewise

linear convex function on D. Hence, there is a subset

H f := {m0 = x0, m1, . . .} ⊂ D

such that f̆ is a linear function on [mi−1, mi ], f̆ (mi ) = f (mi ) for all i , and the
sequence of slopes A f := {a1, a2, . . .} is strictly monotonic increasing, i.e. a1 <

a2 < · · · , where

ai := f (mi ) − f (mi−1)

mi − mi−1
.

Let H̃ f be a subset in D such thatm ∈ H̃ f if for some a ∈ R the function f (x)−ax
attains its minimum on D at m, i.e.

H̃ f := {m ∈ D | ∃a ∈ R, ∀x ∈ D, f (m) − ma ≤ f (x) − ax}.

The next proposition can be easily derived from the above definitions.

Proposition 1 Let f be a function on D = {xn} with �( f ) 
= ∅. Then H̃ f coincides
with H f and every mi ∈ H f , i ≥ 1, is uniquely determined by any a ∈ (ai−1, ai ).

Example 1 Let D := {xn}, where xn := log n, n ∈ N. Let f (xn) := xn − log σ(n).
Then f (xn) = −Q(n), where Q is defined in Sect. 1. It is easy to see that in this case
Proposition 1 yields that H f is the set of CA numbers and A f = {−εi }.

If D = {x0, x1, . . . , xl} is finite, then H f := {m0 = x0, m1, . . . , mk ≤ xl} and the
cardinality |A f | = k. If D is infinite, then A f can be (i) infinite or (ii) finite. It is not

123



126 O. R. Musin

0 20 40 60 80 100 120
-200

0

200

400

600

800

1000

Fig. 1 Graphs of R1 and R̆1 on D = {2, . . . , 120}

hard to see that in case (ii) H f := {m0, m1, . . . , mk} and A f = {a1, . . . , ak, ak+1},
where

f̆ (n) = f̆ (mk) + (n − mk) ak+1 for all n ∈ D, n ≥ mk .

Let mk+1 := ∞. Then for both cases we have that ai is the slope of f̆ on [mi−1, mi ].
Example 2 Let f (n) = R1(n) = (eγ n log log n − σ(n)) log n on D = {2, , 120}.
Then H f = {2, 6, 12, 60, 120}. (Note that H f consists of the first five CA numbers.)
In this case R̆1 is a convex monotonically decreasing function on D, see Fig. 1.

Example 3 Let f = R1 on D = {2, 3, ..., n13 = 21621600}. Then

H f = {2, 6, 12, 60, 120, 2520, 5040, 55440, 720720, 1441440, 2162160, 4324320, 21621600}.

In this list of 13 numbers m0, ..., m12 there are 12 out of the first 13 CA numbers
except n6 = 360. However, m10 is an SA number 2162160 = 24 ·33 ·5 ·7 ·11 ·13 but is
not CA. R̆1 on H f has a minimum at m5 = 2520 and is positive for mi > m6 = 5040.
We have

a1 < · · · < a5 < 0 < a6 < · · · < a12.

Now we prove the main results of this section.
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Ramanujan’s Theorem and Highest Abundant Numbers 127

Lemma 1 Let D ⊂ N be infinite and n0 ∈ D. Let f and g be functions on D such
that

f (n) ≥ g(n) for all n ≥ n0 and lim
n→∞

g(n)

n
= ∞.

Then A f is infinite and limn→∞ an = ∞.

Proof By assumption, for any real a there is na such that g(n) > an for all n ≥ na .
This fact yields that for any linear function l(x) = ax + b there is no or there are
finitely many n ∈ D such that f (n) ≤ l(n).

Let D = {x0, x1, ...}, m0 := x0 and H (0)
f := {m0}. Suppose H (i)

f = {m0, . . . , mi }
andA(i)

f = {a1, . . . , ai }. Let l(x) be a linear function given by two points (mi , f (mi ))

and (xk+1, f (xk+1)), where mi = xk . Denote

Dl = {n ∈ D | n > mi , f (n) ≤ l(n)}.

We have 1 ≤ |Dl | < ∞. Let x j be a number in Dl such that the slope of a linear
function given by twopoints (mi , f (mi )) and (n, f (n)),n ∈ Dl , attains itsminimumat
x j . We denote the correspondent linear function by li+1. It is clear that f (n) ≥ li+1(n)

for all n ∈ Dl . Hence, mi+1 = x j and ai+1 is the slope of li+1. We can continue this
process. Since f (n)/n → ∞ as n → ∞, we have ai → ∞ as i → ∞. ��
Lemma 2 Let g1 and g2 be functions on D ⊂ N such that for all n ∈ D we have

g2(n) ≥ g1(n) and lim
n→∞ g1(n) = ∞, lim

n→∞
g2(n)

n
= 0.

Suppose for a function f on D there is n0 ∈ D such that f (n) ≥ g1(n) for all n ≥ n0.
If there are infinitely many n ∈ D such that f (n) ≤ g2(n), then A f = {a1, ..., ak} is
finite and

a1 < · · · < ak = 0.

Proof Denote D0 := {n ∈ D | n < n0} and D1 := {n ∈ D | n ≥ n0, f (n) ≤ g2(n)}
By assumption, D1 is infinite and for any linear function l(x) = ax + b with a > 0
there is no or there are finitely many n ∈ D1 such that f (n) ≥ l(n). Hence, all ai ≤ 0.
Since f (n) → ∞ as n → ∞, we have that A f is finite and the largest ak = 0. ��
Lemma 3 Let g1 and g2 be functions on D ⊂ N such that for all n ∈ D we have

g2(n) ≥ g1(n) and lim
n→∞ g2(n) = −∞, lim

n→∞
g1(n)

n
= 0.

Suppose for a function f on D there is n0 ∈ D such that f (n) ≥ g1(n) for all n ≥ n0.
If there are infinitely many n ∈ D such that f (n) ≤ g2(n), then A f is infinite and
lim

n→∞ an = 0.
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Proof It is not hard to see that the assumptions yield that for any l(x) = ax + b with
a < 0 there is no or there are finitely many n ∈ D such that f (n) ≤ l(n). Let li be
the same as in Lemma 1. In this case for n ∈ D1, that defined in Lemma 2, we have
f (n) → −∞ and f (n)/n → 0 as n → ∞. Thus, ai → 0 as i → ∞. ��
Lemma 4 Let D ⊂ N be infinite. Let g be a function on D such that

lim
n→∞

g(n)

n
= −∞.

Suppose for a function f on D there are infinitely many n ∈ D such that f (n) ≤ g(n).
Then �( f ) is empty.

Proof Let Dg := {n ∈ D | f (n) ≤ g(n)}. Let ln be a linear function given by two
points (x0, f (x0)) and (n, f (n)). By assumption for any a there is n ∈ Dg such
that the slope of ln is less than a. Moreover, there are infinitely many m in Dg with
f (m) < ln(m). This completes the proof. ��

4 Proof of Theorem 2 and Its Extensions

Robin (1984, Theorem 2) showed that for all n ≥ 3

R0(n) = eγ n log log n − σ(n) > −0.6482
n

log log n
. (7)

If the RH is false Robin (1984, Theorem 1) proved that there exist constants b ∈
(0, 1/2) and c > 0 such that

R0(n) < −c n log log n

(log n)b
(8)

holds for infinitely many n. Thus, if the RH is false there are infinitely many n ∈ N

such that

C1(n) := −0.6482 n

log log n
< R0(n) < C2(n) := −c n log log n

(log n)b
.

Let τ(n) be any positive function on D ⊂ N. Denote

Rτ (n) := (
eγ n log log n − σ(n)

)
τ(n), n ∈ D.

We defined HA numbers with respect to Rτ as follows:

H Aτ (D) := HRτ (D) = {m ∈ D | ∃a ∈ R, ∀x ∈ D, Rτ (m) − ma ≤ Rτ (x) − ax}.

As above,Aτ (D) = {a1, a2, ...} are slopes of Rτ on H Aτ (D) andwe denote H Aτ (D)

by H Aτ for D = {n ∈ N | n ≥ 5040}.
The following theorem extends Theorem 2(i).
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Ramanujan’s Theorem and Highest Abundant Numbers 129

Theorem 3 Let τ(n) > 0 for all n ≥ 5040. Denote

	τ := lim
n→∞

τ(n)√
log n

.

(a) Assume the RH is true. If 	τ = ∞, then H Aτ is infinite and lim
n→∞ an = ∞.

(b) If the RH is false and 	τ > 0, then H Aτ is empty.

Proof (a) Suppose the RH is true. Let

g(n) := 1.393 n τ(n)√
log n

.

By Corollary 1 there is n0 such that for all n ≥ n0 we have

Rτ (n) = nT (n)τ (n)√
log n

≥ g(n) and by assumption lim
n→∞

g(n)

n
= 1.393	τ = ∞.

Then Lemma 1 with f = Rτ yields that lim
n→∞ an = ∞.

(b) Suppose the RH is false. Since b < 1/2 by (8) there are infinitely many n ∈ N

such that

Rτ (n) = R0(n)τ (n) ≤ C2(n)τ (n) < g(n) := −c n τ(n) log log n√
log n

.

Then Lemma 4 with f = Rτ completes the proof. ��
Now we consider a generalization of Theorem 2(ii).

Theorem 4 Let

τ(n) > 0, n ≥ 5040, lim
n→∞

τ(n)

log log n
= 0 and lim

n→∞
τ(n) n log log n√

log n
= ∞.

(a) If the RH is false, then H Aτ is infinite, all ai < 0 and limn→∞ an = 0.
(b) If the RH is true, then H Aτ = {5040} and Aτ = {0}.
Proof (a) Suppose the RH is false. Let

g1(n) := C1(n)τ (n), g2(n) := C2(n)τ (n).

Then by (7) we have that g1(n) < Rτ (n) for all n ∈ D and by (8) the inequality
Rτ (n) < g2(n) holds for infinitely many n. Since f = Rτ , g1 and g2 satisfy the
assumption of Lemma 3 we have (a).

(b) Suppose the RH is true. Let

g1(n) := 1.393 n τ(n)√
log n

, g2(n) := 1.558 n τ(n)√
log n

.
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130 O. R. Musin

Then Corollary 2 yields that f = Rτ , g1 and g2 satisfy the assumption of Lemma 2.
Since for all n > 5040 we have Rτ (n) > 0 > Rτ (5040), there are not ai ≤ 0. Thus,
H Aτ = {5040}. ��
Proof of Theorem 2 This theorem immediately follows fromTheorems 3 and 4. Indeed,
if τ(n) = (log n)s , then Rτ (n) = Rs(n). It clear that 	τ = ∞ in Theorem 3 only if
s > 1/2 and the assumptions in Theorem 4 hold if s ≤ 0. ��

From the Lagarias inequalities (Lagarias 2002, Lemmas 3.1, 3.2) for n > 20 we
have

R0(n) + hn ≤ L0(n) ≤ R0(n) + 7n

log n
. (9)

Let Lτ (n) := L0(n)τ (n). Then (9) yields analogs of Theorems 3 and 4 for Lτ . We
can just substitute Rτ by Lτ .

Theorem 5 (i) If the RH is true, τ(n) > 0 and 	τ = ∞, then there are infinitely
many H A numbers with respect to Lτ and limn→∞ an = ∞.

(ii) Let τ(n) satisfy the assumptions of Theorem 4. If the RH is false, then there are
infinitely many H A numbers with respect to Lτ , all ai < 0 and limn→∞ an = 0.
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