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Abstract
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1 Introduction

The paper Bouarroudj et al. (2009) contains classification of finite-dimensional Lie
superalgebras g(A)with indecomposable Cartanmatrix A over an algebraically closed
field K of characteristic p > 0 together with all inequivalent Cartan matrices and
the corresponding Dynkin–Kac diagrams for each such Lie superalgebra (recall that
every modular Lie algebra and every Lie superalgebra over any field can have several
inequivalent Cartan matrices).

Herewe consider the exceptional (not entering infinite series) finite-dimensionalLie
superalgebras g(A) with A indecomposable, and supplement Bouarroudj et al. (2009)
with new results and clarifications. In particular, we clarify the notion of equivalent
Cartan matrices.

In Sect. 2 we recall the definition of Cartan matrix and root system for modular Lie
algebras and Lie superalgebras g(A); the definition of roots over K differs from the
one in characteristic 0; this was suggested in Kuznetsov and Chebochko (2000) and,
following Lebedev, in Bouarroudj et al. (2009).

A posteriori we see that all indecomposable Cartan matrices of finite-dimensional
Lie superalgebras g(A) are symmetrizable. The classification (Bouarroudj et al. 2009)
did not impose any a priori conditions on A except for indecomposability and require-
ment g(A) < ∞.

The paper Bouarroudj et al. (2009) contains superdimensions of each Lie super-
algebra g(A), a description of its even part g(A)0̄, and of its odd part g(A)1̄ as
a g(A)0̄-module. Recall that A/a|B means that A|B = sdim g(A) and a|B =
sdim g(1)(A)/c, where c is the center and g(1) is the first derived of g (for brevity,
we write g(1)(A) instead of (g(A))(1) and the like); note that if p = 2 we define

g(1) := [g, g] + Span{g2 | g ∈ g1̄}, see Eq. (26).

For presentations of these Lie superalgebras obtained with the aid of SuperLie code,
see Grozman (2013), Bouarroudj et al. (2010).

The tables in Sects. 4, 5 are analogs of descriptions of root systems in Bourbaki
(2002). Recall that whereas each Lie algebra with indecomposable Cartan matrix over
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66 S. Bouarroudj et al.

C (finite-dimensional or of polynomial growth, or even hyperbolic, see Chapovalov
et al. 2010) has just one Cartan matrix, each of the exceptional Lie superalgebras con-
sidered has several Cartan matrices, see Bouarroudj et al. (2009) and Chapovalov et al.
(2010). One of Lie superalgebra we consider here has 135 inequivalent Cartan matri-
ces; dozens inequivalent Cartan matrices for one Lie superalgebra is usual. Therefore,
to list all sets of simple roots for every Lie superalgebra is hardly reasonable, so we
list system of roots for each exceptional modular Lie superalgebra g(A), but list simple
roots for just one Cartan matrices of g(A).

This selected Cartan matrix A is the one with the maximal1 number of pairwise
orthogonalwith respect to a non-degenerate invariant symmetric bilinear form (briefly:
NIS) isotropic simple roots. This NIS exists for Cartan matrices of Lie (super)algebras
we consider here, but not always if p = 2, see Bouarroudj et al. (2018).

This Cartan matrixA of g and its Dynkin–Kac diagram Dm are useful to define the
defect of g, an important invariant, and in computing the homology Ker ad x/Im ad x

for any x ∈ g(A)1̄ such that x
2 = 0, see Krutov et al. (2020). To find simple roots for

the other Cartan matrices, one has to use isotropic reflections, see Sect. 2.
Observe that even some even roots can be isotropic, not only odd ones, e.g., for

br(3) for p = 3, and for all Lie (super)algebras g(A), except the one with A = (1̄).
The referee asked us if the Lie (super)algebras we consider are restricted. Restrict-

edness is a very important feature of Lie (super)algebras; besides, there are several
subtleties related both with “super” and the case “p = 2”. In particular, if g(A) is
restricted, its derived algebra might be not. Since, however, this is not directly related
with our main result, we answer this question in Appendix.

Observe that our definitions imply that all root vectors of the Lie (super)algebras
g(A)we consider are of multiplicity 1. This might be not so if we apply the term “root”
speaking of subalgebras and quotients of g(A), as we do (somewhat carelessly) below.
For some infinite-dimensional Lie algebras g(A), even over C, root multiplicities are
> 1.

2 CartanMatrices, Reflections, Chevalley Generators, Chevalley Basis
(from Chapovalov et al. (2010); Bouarroudj et al. (2009)) with
Lebedev’s Clarifications

2.1 Chevalley Generators and CartanMatrices

Let us start with the construction of Lie (super)algebras with Cartan matrix. Let A =
(Ai j ) be an n × n-matrix whose entries lie in the ground field K. Let rk A = n − l. It
means that there exists an l × n-matrix T = (Ti j ) such that

(a) the rows of T are linearly independent;

(b) T A = 0 (or, more precisely, “zero l × n-matrix”). (1)

1 In other words,A is thematrix with themaximal number of not connected grey vertices in its Dynkin–Kac
diagram Dm ; in terms of A, this means that A has the maximal number of zeros on its main diagonal and
ifAi i = A j j = 0, then Ai j = A j i = 0.
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The Roots of Exceptional Lie Superalgebras 67

Indeed, if rk AT = rk A = n − l, then there exist l linearly independent vectors vi
such that AT vi = 0; set

Ti j = (vi ) j .

Let the elements e±
i andhi ,where i = 1, . . . , n, generate aLie superalgebra denoted

g̃(A, I ), where I = (p1, . . . pn) ∈ (Z/2)n is a collection of parities (p(e±
i ) = pi ),

free except for the relations

[e+
i , e−

j ] = δi j hi ; [hi , e±
j ] = ±Ai j e

±
j and [hi , h j ] = 0 for any i, j . (2)

Let Lie (super)algebra with Cartan matrix g(A, I ) be the quotient of g̃(A, I ) modulo
the ideal explicitly described in Grozman and Leites (2001) and Bouarroudj et al.
(2010).

By abuse of notation we denote by e±
j and h j—the elements of g̃(A, I )—and also

their images in g(A, I ) and g(i)(A, I ). We call these images the Chevalley generators
of g(A, I ), and g(i)(A, I ), provided A is normalized, cf. Sect. 2.5.1. (There is no name
for their pre-images in g̃(A, I ); we used to call them Chevalley generators as well, by
abuse of notation.)

2.1.1 In Small Font

First, observe that the formula

deg e±
i := (0, . . . , 0,±1, 0, . . . , 0) with ± in the i th slot (3)

determines a Z
n-grading in g̃(A, I ). The additional to (2) relations that turn g̃(A, I )

into g(A, I ) are of the form Ri = 0 whose left sides are implicitly described, for the
general Cartan matrix with entries in K, as

the Ri that generate the Z
n-graded ideal r maximal among the ideals of g̃(A, I )

whose intersection with the span of the above hi is zero. (4)

Set

ci =
∑

1≤ j≤n

Ti j h j , where i = 1, . . . , l. (5)

Then, from the properties of the matrix T , we deduce that

(a) the elements ci are linearly independent;

(b) the elements ci are central, because

[ci , e±
j ] = ±

⎛

⎝
∑

1≤k≤n

Tik Ak j

⎞

⎠ e±
j = ±(T A)i j e

±
j . (6)
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The existence of central elements means that the linear span of all the roots is of
dimension n − l only. (This can be explained even without central elements: The
weights can be considered as column-vectors whose i-th coordinates are the corre-
sponding eigenvalues of ad hi . The weight of ei is, therefore, the i-th column of A.
Since rk A = n − l, the linear span of all columns of A is (n − l)-dimensional just by
definition of the rank. Since any root is an (integer) linear combination of the weights
of the ei , the linear span of all roots is (n − l)-dimensional).

This means that some elements which we would like to see having different (even
opposite if p = 2) weights, actually, have identical weights. To remedy this, we do
the following: let B be an arbitrary l × n-matrix such that

the (n + l) × n-matrix

(
A
B

)
has rank n. (7)

Let us add to the algebra g = g̃(A, I ), and hence g(A, I ), the grading elements di ,
where i = 1, . . . , l, subject to the following relations:

[di , e±
j ] = ±Bi j e j ; [di , d j ] = 0; [di , h j ] = 0 (8)

(the last two relations mean that the di lie in the Cartan subalgebra, and even in the
maximal torus which will be denoted by h).

Note that these di are outer derivations of g(A, I )(1), i.e., they can not be obtained
as linear combinations of brackets of the elements of g(A, I ), i.e., the di do not lie in
g(A, I )(1).

2.2 Roots andWeights

In this subsection, g denotes one of the algebras g(A, I ) or g̃(A, I ).
Let h be the span of the hi and the d j . The elements of h∗ are called weights. For

a given weight α, the weight subspace of a given g-module V is defined as

Vα = {x ∈V | an integer N >0 exists such that (α(h)−ad h)
N x=0 for any h∈h}.

Any non-zero element x ∈ Vα is said to be of weight α. For the roots, which are
particular cases of weights if p = 0, the above definition is inconvenient for various
reasons, e.g., see Kuznetsov and Chebochko (2000), Bouarroudj et al. (2019), Krutov
et al. (2020).

2.2.1 Statement

(Root decomposition Kac 1995) Over C, the space of any Lie algebra g(A) can be
represented as a direct sum of subspaces

g =
⊕

α∈h∗
gα. (9)
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The Roots of Exceptional Lie Superalgebras 69

Note that if p = 2, it might happen that h � g0. (For example, all weights of the
form 2α over C become 0 over K.)

For the Lie (super)algebras g := g(A) with Cartan matrix A, we assume that
the elements e±

i with the same superscript (either + or −) correspond to linearly
independent roots αi , called simple roots. Any non-zero element α ∈ R

n is called a
root if the corresponding subspace homogenous with respect to the Z

n-grading2 of
grade α (we denote this subspace by gα) is non-zero. The set R of all roots is called
the root system of g.

The terms “root” and “root space” are often applied to various “relatives” of g(A),
e.g., the i th derived algebra g(i) or quotients of g or g(i) modulo center, such as psl(a|a).

Thus, any root α such that gα �= 0 lies in the Z-span of {α1, . . . , αn}, i.e.,

g =
⊕

α∈Z{α1,...,αn}
gα. (10)

Thus, g has a R
n-grading such that e±

i has grade (0, . . . , 0,±1, 0, . . . , 0), where
±1 stands in the i-th slot (this can also be considered as Z

n-grading, but we use R
n

to simplify formulations of various statements). If p = 0, this grading is equivalent to
the weight grading of g. If p > 0, these gradings may be inequivalent; in particular, if
p = 2, then the elements e+

i and e−
i have the same weight. (This is one of the reasons

why in what follows we consider roots as elements ofR
n , not as weights; for one more

reason, see Krutov et al. 2020).
Clearly, the subspaces gα are purely even or purely odd, and the corresponding

roots are said to be even or odd.

2.3 Systems of Simple and Positive Roots

In this subsection, g = g(A, I ), and R is the root system of g.
For any subset B = {σ1, . . . , σm} ⊂ R, we set (we denote by Z+ the set of non-

negative integers):

R±
B = {α ∈ R | α = ±

∑
niσi , where ni ∈ Z+}.

The set B is called a system of simple roots of R (or g) if σ1, . . . , σm are linearly
independent and R = R+

B ∪ R−
B . Note that R contains basis coordinate vectors, and

therefore spans R
n ; thus, any system of simple roots contains exactly n elements.

Let (x, y) = ∑
xi yi for any x, y ∈ R

n denote the standard Euclidean inner product
in R

n . A subset R+ ⊂ R is called a system of positive roots of R (or g) if there exists
x ∈ R

n such that

(α, x) ∈ R\{0} for all α ∈ R,

R+ = {α ∈ R | (α, x) > 0}. (11)

2 NOT the eigenspace! That’s the whole point. Eigenspaces (which are determined by the action of h)
correspond to weights, not to roots.
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Since R is a finite set, then the set

{y ∈ R
n | there exists α ∈ R such that (α, y) = 0}

is a finite union of (n − 1)-dimensional subspaces in R
n , so it has zero measure. So

for almost every x , condition (11) holds.
By construction, any system B of simple roots is contained in exactly one system

of positive roots, which is precisely R+
B .

2.3.1 Conjecture

(Simple roots). (1)Any system R+ of positive roots of g(A) contains exactly one system
of simple roots. This system consists of all the positive roots (i.e., elements of R+) that
can not be represented as a sum of two positive roots.

(2) For any system of simple roots {σ1, . . . , σn} in g(A, I ), there is a pair (A′, I ′)
such that there is an isomorphism between g(A, I ) and g(A′, I ′)whichmaps h to h and
g(A, I )±σi to g(A

′, I ′)(0,...,0,±1,0,...,0), with ±1 in i-th position, for all i = 1, . . . , n.
We do not know an a priori proof of this Conjecture. Item 1) is, however, true

for Lie algebras and Lie superalgebras of the form g(A) with A indecomposable and
dim g(A) < ∞. About item 2), see Lebedev’s comment 3.2.2.

2.4 Normalization Convention and Equivalent CartanMatrices

Clearly,

the rescaling e±
i �→ √

λi e
±
i , sends A to A′ := diag(λ1, . . . , λn) · A. (12)

Two pairs (A, I ) and (A′, I ′) are said to be equivalent if (A′, I ′) is obtained from
(A, I )by a compositionof a permutationof parities and the correspondingpermutation
of the matrix’s rows and columns with a rescaling A′ = diag(λ1, . . . , λn) · A, where
λ1, . . . , λn �= 0. Clearly, equivalent pairs determine isomorphic Lie superalgebras.

The rescaling affects only the matrix AB , not the set of parities IB . The Cartan
matrix A is said to be normalized if

A j j = 0 or 1, or 2. (13)

We let A j j = 2 only if i j = 0̄; in order to eliminate possible confusion, we write
A j j = 0̄ or 1̄ if i j = 0̄, whereas if i j = 1̄, we write A j j = 0 or 1.

Normalization conditions correspond to the “natural” Chevalley generators of the
most usual3 “building blocks” of finite-dimensional Lie (super)algebras with Cartan

3 Together with the possibility to build any simple Lie algebra with Cartan matrix over C and many Lie
(super)algebraswithCartanmatrix over variousfields by just twogenerators, seeGrozmanandLeites (1996),
there are other types of “building blocks”. For simple modular Lie (super)algebras, to describe relations
between a pair of generators, as for “Lie algebra of matrices of complex size”, see Grozman and Leites
(1996), is probably impossible in general because of the lack of complete reducibility of exterior powers of
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matrix: sl(2) if A j j = 2, or gl(1|1) if A j j = 0, or osp(1|2) if A j j = 1, respectively.
(In this paper we do not need “less usual” building blocks—Lie superalgebras with
A j j = 0̄ or 1̄ because they do not contribute to the list of Lie algebras of the type we
consider: finite-dimensionalmodular, see Bouarroudj et al. (2009), nor are they needed
to construct affine Kac–Moody or hyperbolic (almost affine) Lie (super)algebras, see
Chapovalov et al. (2010).)

For the role of the “best” (first among equals) order of indices we propose the one
that minimizes the value

max
i, j∈{1,...,n} such that (AB )i j �=0

|i − j | (14)

(i.e., gather the non-zero entries of A as close to the main diagonal as possible).
Observe that this numbering differs from the one that N. Bourbaki uses for the e type
Lie algebras.

We will only consider normalized Cartan matrices; for them, we do not have
to indicate the set of parities I.

2.4.1 Warnings

(1) The notion ofCartanmatrix, seeKac (1995), is standard now.However, for reasons
difficult to understand, neither for Lie superalgebras, nor formodular Lie algebras
the definitions of the Cartan matrix, nor analog of the Dynkin diagram were
correctly formulated until Bouarroudj et al. (2009) (in the modular case) and
Chapovalov et al. (2010) (for p = 0) were made available. And it is still possible
to hear or read “consider the central extension of the loop algebra g�(1) with values
in simple finite-dimensional Lie algebra g; this central extension hasCartanmatrix
and Dynkin diagram extending those of g”, whereas it is the double extension of
g�(1) that has a Cartan matrix. Likewise, simple Lie superalgebras psl(a|a) in
characteristic 0 as well as psl(a|a + pk) in characteristic p > 0 (and their central
extensions sl(a|a) and sl(a|a + pk)) do not have a Cartan matrix, whereas the
double extensions gl(a|a) and gl(a|a + pk) of the simple Lie superalgebras have
Cartan matrices. For a definition of double extension and succinct review for any
p, see Bouarroudj et al. (2019).

(2) Unlike the case of simple finite-dimensional Lie algebras over C, where the nor-
malized Cartan matrix A is defined uniquely (up to a permutation of rows and
columns), generally this is not so: each row with a 0 or 0̄ on the main diag-
onal can be multiplied by any nonzero factor. For example, when interested in
non-degenerate invariant symmetric bilinear forms on g, see Bouarroudj et al.
(2018), we multiply the rows so as to make AB symmetric, if possible, spoiling
normalization.
Which version of the Cartan matrix should be considered as its “normal form”?

The defining relations give the answer: The normalized Cartan matrix is used, for

Footnote 3 continued
the adjoint module and because it is unclear what are analogs of “principal embedding” of sl(2). For p = 0
and having replaced sl(2) by osp(1|2), we can consider such analogs in the cases classified in Leites et al.
(1986)—when there are “superprincipal embeddings”.
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example, to describe relations between the Chevalley generators of the same sign,
see Grozman and Leites (2001, 2005), Bouarroudj et al. (2009, 2010).

2.5 Remark:Which Systems of Simple Roots is Distinguished?

Let B = {α1, . . . , αn} be a system of simple roots. Choose non-zero elements e±
i in

the 1-dimensional superspaces g±αi ; set hi = [e+
i , e−

i ], let AB = (Ai j ), where the
entries Ai j are recovered from relations (2), and let IB = {p(e1), · · · , p(en)}.

It would be nice to find a convenient way to fix some distinguished pair (AB, IB)

in the equivalence class.

2.5.1 Chevalley Generators and Chevalley Bases

We often denote the set of generators of g(A, I ) and g(i)(A, I ) corresponding to
a normalized Cartan matrix by X±

1 , . . . , X±
n instead of e±

1 , . . . , e±
n ; and call these

generators, togetherwith the elements Hi := [X+
i , X−

i ], and the derivationsd j , see (8),
the Chevalley generators.

For p = 0 and normalized Cartan matrices of simple finite-dimensional Lie alge-
bras, the set of Chevalley generators can be uniquely (up to signs) extended to a basis
all whose elements are homogenous with respect to the grading and all structure con-
stants are integer, cf. Strade (2004). A certain choice of signs gives what is called
a Chevalley basis.

Observe that, having normalized the Cartan matrix of sp(2n) so that Aii = 2 for all
i �= n, but Ann = 1, we get another basis with integer structure constants. We think
that this basis also qualifies to be called Chevalley basis.

For any p and Lie superalgebras osp(2m + 1|2n) such normalization is a must.
Summing up, a Chevalley basis of g(A) with a normalized Cartan matrix A is a one
with generators X±

i and Hi , where all elements are homogenous with respect to the
grading induced by Eq. (3) and some additional requirements on structure constants,
see Cohen and Roozemond (2009). Everything goes as for p = 0 if A has integer
elements and all structure constants lie in Z/pZ; otherwise we do not know how to
define “Chevalley basis”. These exceptional cases are

br(2; ε) for ε �= 0 and p = 3, ospα(4|2) for α �= 0,−1 and p �= 2;
wk(3;α) and bgl(3;α) as well as wk(4;α) and bgl(4;α) for α �= 0, 1 and p = 2.

(15)

2.6 Reflections

Let R+ be the system of positive roots of Lie superalgebra g over a field K of
characteristic p > 0, and let B = {σ1, . . . , σn} be the corresponding system of simple
roots and the corresponding pair (A = AB, I = IB). Then, for any k ∈ {1, . . . , n},
the set

(R+\{mσk | m ∈ Z+,mσk ∈ R+})
∐

{−mσk | m ∈ Z+,mσk ∈ R+} (16)
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is a system of positive roots. The reflection in σk changes the system of simple roots
by the formulas

rσk (σ j ) =
{−σ j if k = j,

σ j + Bkjσk if k �= j,
(17)

where Bkj is the maximalm ∈ Z such that α j +mαk ∈ R provided we considerZ/pZ

as a subfield of K.
The name “reflection” is used because in the case of simple finite-dimensional com-

plex Lie algebras this action, extended on the whole R by linearity, is a map from R to
R, and it does not depend on R+, only on σk . This map is usually denoted by rσk or just
rk . The map rσk extended to the R-span of R is reflection in the hyperplane orthogonal
to σk relative the bilinear form dual to the nondegenerate invarient symmetric bilinear
form.

The reflections in the even (odd) roots are referred to as even (odd) reflections. A
simple root is called isotropic, if the corresponding row of the Cartan matrix has zero
on the main diagonal, and non-isotropic otherwise. The reflections that correspond to
isotropic or non-isotropic roots will be referred to accordingly.

2.6.1 OnWeyl Groups and Groupoids

(A) If there are isotropic simple roots, the reflections rα do not, as a rule, generate
a version of the Weyl group because the product of two reflections in nodes not
connected by a (perhaps, multiple) edge is not defined. These reflections just connect
a pair of “neighboring” systems of simple roots, and there is no reason to expect that
we can multiply such two distinct reflections. In the case of modular Lie algebras, and
in the case of Lie superalgebras for any p, the action of a given isotropic reflection
(17) can not, generally, be extended to a linear map R −→ R. For Lie superalgebras
over C, one can extend the action of reflections by linearity to the root lattice, but
this extension preserves the root system only for sl(m|n) and osp(2m + 1|2n), cf.
Serganova (1996).

(B) At seminars of Manin and Leites in early 1980s in Moscow, discussions of the
question

For Lie superalgebras, what might versions of

the “Weyl group generated by reflections” be? (18)

culminated in the following answers.

(0) In 1978–80, Bernstein and Leites classified the irreducible finite-dimensional rep-
resentations of vectorial Lie superalgebras vect(m|n), in particular, vect(0|2) �
sl(1|2) � osp(2|2). This result and its generalization for vect(0|m), sl(1|n) and
osp(2|2n) yielded analogs of Weyl character formula, where the analog of the
Weyl group of these Z-graded Lie superalgebras g played the Weyl group of g0,
see a review (Leites 1985, p. 2504). This answer to the question (18) did not,
however, look satisfactory for many reasons.
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(1) Manin and Voronov introduced the notion of a super Weyl group in relation to
the geometry of homogeneous superspaces. They constructed Schubert supercells
which were labeled by elements of a super Weyl group, see Manin and Voronov
(1988).

(2) In Heckenberger and Yamane (2008), Heckenberger and Yamane answered the
question (18) Serganova formulated in Serganova (1996): they introduced Weyl
groupoids. Cuntz andHeckenberger reformulated the definition ofWeyl groupoids
in terms of Cartan schemes, see Cuntz and Heckenberger (2009).

(3) Sergeev and Veselov (2017) and references therein, gave a non-equivalent, as far
as we understand, definition of the Weyl groupoid in the super case.

(4) It is interesting to extend the question (18) to modular Lie (super)algebras. We
would like to draw attention of the reader to an under-appreciated paper Skryabin
(1993),where the analog ofWeyl groupwas considered in relationwithbr(3). This
analog seems to be most close to the groupoid defined by Sergeev and Veselov.

(5) Completely independent approach to analogs of “Weyl group” for modular Lie
algebras without Cartan matrix is due to Premet, see Bois et al. (2014) and
references therein. This approach is meaningful for vectorial and periplectic (pre-
serving an odd non-degenerate symmetric bilinear form) Lie superalgebras over
fields of any characteristic.

2.6.2 How Reflections Act on Chevalley Generators

If σi is an odd isotropic root, then the corresponding reflection ri sends one set of
Chevalley generators into a new one:

X̃±
i = X∓

i ; X̃±
j =

{[X±
i , X±

j ] if Ai j �= 0,

X±
j otherwise.

(19)

If σk is an even isotropic root (i.e., ik = 0̄) and p > 0, then the corresponding
reflection rk acts as follows: for j �= k, we have:

X̃±
k = X∓

k ; X̃±
j =

⎧
⎨

⎩
(ad X̃±

k
)p−1 X̃±

j if Akj �= 0,

X±
j otherwise.

(20)

The Cartan matrix ri (A) corresponding to the Chevalley generators (19) should be
obtained as described above: set

H̃i := [X̃+
i , X̃−

i ]

and compute

[H̃i , X̃
+
j ] = B̃i j X̃

+
j .
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Normalize the matrix B̃ as we agreed, see Sect. 2.4; let B be the normalized matrix.
Then, rk(A) := B = (Bi j ).

2.6.3 How Reflections Act on Cartan Matrices ([Lebedev 2008,
Chapovalov et al. 2010])

Let A be a Cartan matrix of size n and I = (p1, . . . , pn) the vector of parities. If
pk = 1̄ and Akk = 0, then the reflection in the kth simple odd root sends A to rk(A),
and I to rk(I ), where

(rk(A))i j = Ai j + ci Ak j + b j Aik, rk(p j ) ≡ p j + b j (mod 2) (21)

and where

ci =

⎧
⎪⎪⎨

⎪⎪⎩

−2 if i = k,

0 if i �= k and Aik = 0,
Aik
Aki

if i �= k and Aik �= 0;
and b j =

⎧
⎪⎪⎨

⎪⎪⎩

−2 if j = k,

0 if j �= k and A jk = 0,

1 if j �= k and A jk �= 0.

This can be expressed in terms of matrices as

rk(A) = (E + C)A(E + B),

where all columns of the matrix C, except the kth one, are zero, whereas the i th
coordinate of the kth column-vector is ci , the i th coordinate of the kth row-vector of
B is bi , the other rows of B being zero; E is the unit matrix.

3 Lebedev’s Comments

Serganova (1984) proved (for p = 0) that for two systems of simple roots B1 and B2,
there is always a chain of reflections connecting a system of simple roots B1 with
either some system of simple roots B ′

2 equivalent to a system of simple roots B2 in the
sense of definition in Sect. 2.4 or with−B ′

2. Here is a version of Serganova’s statement
suitable for any p.

3.1 Lemma

(Any two systems of simple roots are connected by a chain of reflections) For any
two systems of simple roots B1 and B2 of any finite-dimensional Lie superalgebra with
Cartan matrix, there is always a chain of reflections connecting B1 with B2.

Let me start with a statement I am certain of. I will formulate it in terms which I
will define without any relation to Lie superalgebras with Cartan matrices (CM LSA),
so that the proof wouldn’t rely on any properties of CM LSA I am not sure about. But
I will use terms which are also used for concepts related to CM LSA.
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Let R be a non-empty finite subset of the vector space V = R
n such that 0 /∈ R

and −r ∈ R for all r ∈ R. We will call such a set R a system of roots; compare this
definition with that in Serganova (1996, p. 4298).

A subset P ⊂ R will be called a system of positive roots if there is an h ∈ V ∗ such
that h(r) �= 0 for all r ∈ R and P = {r ∈ R | h(r) > 0}.

A non-empty subset L ⊂ R will be called a root ray if it is a maximal subset of
R such that all of its elements are positive multiples of each other, or, equivalently, if
there is an r0 ∈ R such that L = {r ∈ R | r = cr0 for some c ∈ R>0}; for an element
r ∈ R, we will denote the root ray it belongs to by Lr .

Clearly, if P is a system of positive roots and r ∈ P , then Lr ⊂ P . If P is a system
of positive roots, we will call a root ray L ⊂ P simple in P if there is an h ∈ V ∗ such
that h(r) = 0 for all r ∈ L and h(r) > 0 for all r ∈ P\L .

3.2 Statement

(On chains of positive root systems) Let P ′, P ′′ ⊂ R be two system of positive roots.
Then, there is a finite sequence of positive systems of roots

P1 = P ′, P2, . . . , Pm = P ′′

such that each next one is obtained from the previous one by removing a simple root
ray and adding the opposite ray, i.e., for every k = 1, . . . ,m − 1, there is a root ray
L simple in Pk such that Pk+1 = (P\L) � −L , where −L = {−x | x ∈ L}.
Proof We will prove it by induction on |P ′\P ′′|. If it is equal to 0, i.e., P ′ ⊂ P ′′, then
P ′ = P ′′, and the fact is trivial.

Now, let |P ′\P ′′| > 0. Let h′, h′′ ∈ V ∗ be two elements which define P ′ and P ′′.
Consider the convex envelope of P ′∪{0}. It is a bounded convex polytope, and 0 is one
of its vertices, since the (n−1)-dimensional plane h′(x) = 0 passes through 0 and the
rest of the polytope lies on one side of the plane. At least one of the vertices connected
to 0 by an edge must lie outside of the half-space h′′(x) > 0, because otherwise the
whole polytope lies within that half-space, which would mean that P ′ ⊂ P ′′; let us
denote this vertex r0.

Then, the root ray Lr0 is simple in P ′, since there is a half-plane containing the
edge connecting r0 and 0 such that the rest of the polytope lies on one side of it, i.e.,
there is h1 ∈ V ∗ such that h1(r) = 0 for all r ∈ Lr0 and h1(r) > 0 for all r ∈ P\Lr0 .
Then, for a sufficiently small ε > 0, the element h1 − εh′ determines positive system
P2 := (P ′\Lr0) � −Lr0 . Since Lr0 ⊂ P ′, it follows that (−Lr0) ∩ P ′ = ∅, so

|P2\P ′′| = |P ′\P ′′| − |Lr0 | < |P ′\P ′′|,

and by the induction hypothesis, there is a sequence of systems of positive roots of the
required form connecting P2 and P ′′, and by prepending P ′ to it, we get a sequence
of systems of positive roots connecting P ′ and P ′′. ��

123



The Roots of Exceptional Lie Superalgebras 77

3.2.1 Proof of Lemma 3.1

The system of roots of any finite-dimensional Lie superalgebra g(A) is a system of
roots in the sense of the definition in Sect. 3, and its subset is a system of positive
roots if and only if it is a system of positive roots in the above sense. Assuming that
Conjecture 2.3.1.1) is true, there is a one-to-one correspondence between systems
of positive roots and systems of simple roots, and a simple root ray has to contain
a simple root. So if we define reflections as “removing a root ray with a simple root
(i.e., all positive multiples of a given simple root) and adding the opposite root ray”,
then the above argument proves Lemma 3.1 in view of Conjecture 2.3.1.1). ��

3.2.2 On Conjecture 2.3.1.2

When we construct the Lie superalgebra g = g(A, I ), we start with elements e±
i . Let

me call the roots which correspond to e+
i basic roots. The basic roots form a system of

simple roots in the sense of definition in Subsect. 2.3; but we can choose some other
system of simple roots, let us denote them σ1, . . . , σn . Conjecture 2.3.1.2 claims that
all systems of simple roots are equally suitable for constructing g as a Lie superalgebra
with Cartan matrix, i.e., that we could construct g so that σ1, . . . , σn would be basic
roots, with some other pair (A′, I ′).

3.2.3 On the Reviewer’s Question: “Aren’t All Root Spaces 1-dimensional?”

Assume definitions of Sect. 3; then, since in the above proof (Sect. 3.2.1) we change
one system of positive roots into another by replacing root rays with their opposites
one by one, and at each step, the root ray we replace is simple in the current system
of positive roots, it means that every root of g(A, I ) is a multiple of a simple one. If
we assume that Conjecture 2.3.1.2 holds, then every root space is 1-dimensional.

4 Roots and Root Vectors

Let the πi be the fundamental weights relative to a fixed system of simple roots. For
any simple Lie algebra with Cartan matrix, let R(

∑
aiπi ) denote both the irreducible

representation with highest weight (a1, a2, . . . ) and the respective module. The tau-
tological module over the Lie algebra of series sl, o or sp is denoted by id := R(π1).

By Ng(A) we denote the realization of g(A) corresponding to the N th Cartan
matrix A as listed in Bouarroudj et al. (2009). The odd root vectors are boxed and
isotropic roots are underlined.

4.1 osp(4|2; a), ag(2), and ab(3) for p ≥ 5

The answer is the same as is well-known for p = 0, namely (here sli (2) is the i th
copy of sl(2) with the tautological module idi ):
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osp(4|2; a)0̄ = sl1(2) ⊕ sl2(2) ⊕ sl3(2) osp(4|2; a)1̄ = id1 � id2 � id3
ag(2)0̄ = sl(2) ⊕ g(2) ag(2)1̄ = id � R(π1)

ab(3)0̄ = sl(2) ⊕ o(7) ab(3)1̄ = id � R(π1)

Each of the other exceptional Lie superalgebras g(A) with indecomposable Cartan
matrix A exists only in characteristics 2, 3 and 5. The Lie superalgebras 3g(2, 3) and
1g(3, 3) (indigenous to p = 3) resemble 3ag(2) and 6ab(3) (existing for p = 0
and any p > 3), respectively, other exceptional Lie superalgebras g(A) have no
analogs except for two pairs brj(2; 5) ↔ brj(2; 3) and el(5; 5) ↔ el(5; 3) (existing
for p = 5 ↔ p = 3) which we consider one after the other for clarity.

Every Cartanmatrix is considered only once, for p declared.More precisely, certain
Lie (super)algebras have incarnations in several characteristics their elements being
integers of parameter a evaluated in K. For example, osp(4|2; a), ag(2), and ab(3)
have incarnations for p ≥ 5 and 0 and two pairs of exceptions (brj(2; 5) ↔ brj(2; 3)
and el(5; 5) ↔ el(5; 3)) have incarnations for p = 3 and 5. A version of osp(4|2; a)

for p = 2 is called bgl(3; a); its desuperization—wk(3; a)—has the “same” Cartan
matrix, but with different diagonal elements (0̄ instead of 0). One can not consider any
of the Cartan matrices for values of p different from those declared (if one does, one
gets an infinite-dimensional algebra: thanks to the classification).

Recall that the Cartanmatrix of the Brown algebra br(2; ε) is

(
2 −1

−2 1 − ε

)
, where

ε �= 0.

4.2 1brj(2; 5) of sdim 10|12, p = 5

For g = brj(2; 5), we have g0̄ = sp(4) = br(2;−1) and g1̄ = R(π1 + π2) is
irreducible g0̄-module. We consider the Cartan matrix and basis elements

(
0 −1

−2 1

)

the root vectors the roots
x1 , x2 α1, α2

x3 = [x1, x2], x4 = [x2, x2] α1 + α2, 2α2
x5 = [x2, [x1, x2]] α1 + 2α2

x6 = [[x1, x2] , [x2, x2]] α1 + 3α2
x7 = [[x1, x2] , [x2, [x1, x2]]] ,
x8 = [[x2, x2] , [x2, [x1, x2]]]

2α1 + 3α2,

α1 + 4α2

x9 = [[x1, x2] , [[x1, x2] , [x2, x2]]] 2α1 + 4α2

x10 = [[x2, [x1, x2]] , [[x1, x2] , [x2, x2]]] 2α1 + 5α2

4.3 1brj(2; 3) of sdim 10|8, p = 3

For g = brj(2; 3), we have g0̄ = br(2; 1) and g1̄ = R(2π2) as g0̄-module.We consider
the Cartan matrix and basis elements
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(
0 −1

−2 1

)

the root vectors the roots
x1 , x2 α1, α2

x3 = [x1, x2], x4 = [x2, x2] α1 + α2, 2α2
x5 = [x2, [x1, x2]] α1 + 2α2

x6 = [[x1, x2] , [x2, x2]] α1 + 3α2
x7 = [[x2, x2] , [x2, [x1, x2]]] α1 + 4α2

x8 = [[x1, x2] , [[x1, x2] , [x2, x2]]] 2α1 + 4α2

4.4 1el(5; 5) of sdim = 55|32, p = 5

For g = el(5; 5), we have g0̄ = o(11) and g1̄ = R(π5) as g0̄-module. We consider the
Cartan matrix

⎛

⎜⎜⎜⎜⎝

2 0 −1 0 0
0 2 0 0 −1

−1 0 0 −4 −4
0 0 −4 0 −2
0 −1 −4 −2 0

⎞

⎟⎟⎟⎟⎠

the Chevalley basis and the root system are:

the root vectors the roots

x1, x2, x3 , x4 , x5 α1, α2, α3, α4, α5

x6 = [x1, x3], x7 = [x2, x5], x8 = [x3, x4],
x9 = [x3, x5], x10 = [x4, x5]

α1 + α3, α2 + α5, α3 + α4,
α3 + α5, α4 + α5

x11 = [x3, [x2, x5]], x12 = [x4, [x1, x3]],
x13 = [x4, [x2, x5]], x14 = [x5, [x1, x3]],
x15 = [x5, [x3, x4]]

α2 + α3 + α5, α1 + α3 + α4,
α2 + α4 + α5, α1 + α3 + α5,
α3 + α4 + α5

x16 = [[x1, x3], [x2, x5]],
x17 = [[x1, x3], [x4, x5]],
x18 = [[x2, x5], [x3, x4]],
x19 = [[x2, x5], [x4, x5]]

α1 + α2 + α3 + α5,
α1 + α3 + α4 + α5,
α2 + α3 + α4 + α5,
α2 + α4 + 2α5

x20 = [[x2, x5], [x4, [x1, x3]]],
x21 = [[x3, x5], [x4, [x1, x3]]],
x22 = [[x4, x5], [x3, [x2, x5]]],
x23 = [[x4, x5], [x4, [x2, x5]]]

α1 + α2 + α3 + α4 + α5,
α1 + 2α3 + α4 + α5,
α2 + α3 + α4 + 2α5,
α2 + 2α4 + 2α5

x24 = [[x3, [x2, x5]], [x4, [x1, x3]]],
x25 = [[x4, [x2, x5]], [x5, [x1, x3]]],
x26 = [[x4, [x2, x5]], [x5, [x3, x4]]]

α1 + α2 + 2α3 + α4 + α5,
α1 + α2 + α3 + α4 + 2α5,
α2 + α3 + 2α4 + 2α5

123
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x27 = [[x4, [x2, x5]], [[x1, x3], [x4, x5]]],
x28 = [[x5, [x3, x4]], [[x1, x3], [x2, x5]]],
x29 = [[x5, [x3, x4]], [[x2, x5], [x4, x5]]]

α1 + α2 + α3 + 2α4 + 2α5,
α1 + α2 + 2α3 + α4 + 2α5,
α2 + α3 + 2α4 + 3α5

x30 = [[[x1, x3], [x4, x5]], [[x2, x5], [x3, x4]]],
x31 = [[[x1, x3], [x4, x5]], [[x2, x5], [x4, x5]]],
x32 = [[[x2, x5], [x3, x4]], [[x2, x5], [x4, x5]]]

α1 + α2 + 2α3 + 2α4 + 2α5,
α1 + α2 + α3 + 2α4 + 3α5,
2α2 + α3 + 2α4 + 3α5

x33 = [[[x2, x5], [x4, x5]], [[x2, x5], [x4, [x1, x3]]]],
x34 = [[[x2, x5], [x4, x5]], [[x3, x5], [x4, [x1, x3]]]]

α1 + 2α2 + α3 + 2α4 + 3α5,
α1 + α2 + 2α3 + 2α4 + 3α5

x35 = [[[x2, x5], [x4, [x1, x3]]], [[x4, x5], [x3, [x2, x5]]]],
x36 = [[[x3, x5], [x4, [x1, x3]]], [[x4, x5], [x4, [x2, x5]]]]

α1+2α2+2α3+2α4+3α5,
α1+α2+2α3+3α4+3α5

x37 = [[[x4, x5], [x3, [x2, x5]]], [[x4, [x2, x5]], [x5, [x1, x3]]]],
x38 = [[[x4, x5], [x4, [x2, x5]]], [[x3, [x2, x5]], [x4, [x1, x3]]]]

α1 +2α2 +2α3 +2α4 +4α5,
α1 + 2α2 + 2α3 + 3α4 + 3α5

x39 = [[[x4,[x2,x5]],[x5,[x1,x3]]], [[x4, [x2, x5]], [x5, [x3, x4]]]] α1+2α2+2α3+3α4+4α5

x40 = [[[x4, [x2, x5]], [x5, [x3, x4]]],
[[x5, [x3, x4]], [[x1, x3], [x2, x5]]]]

α1 + 2α2 + 3α3 + 3α4 + 4α5

x41 = [[[x4,[x2,x5]],[[x1,x3],[x4,x5]]],
[[x5,[x3,x4]],[[x1,x3], [x2, x5]]]]

2α1+2α2+3α3+3α4+4α5

4.5 7el(5; 3) of sdim = 39|32, p = 3

For g = el(5; 3), we have g0̄ = o(9) ⊕ sl(2) and g1̄ = R(π4) � id as g0̄-module. We
consider the Cartan matrix and Chevalley basis elements

⎛

⎜⎜⎜⎜⎝

0 0 0 −2 0
0 2 0 −1 0
0 0 0 −1 −2

−2 −1 −1 0 0
0 0 −2 0 0

⎞

⎟⎟⎟⎟⎠

the root vectors the roots

x1 , x2, x3 , x4 , x5 , α1, α2, α3, α4, α5,

x6 = [x1, x4],
x7 = [x2, x4],
x8 = [x3, x4],
x9 = [x3, x5],

α1 + α4,
α2 + α4,
α3 + α4,
α3 + α5,

x10 = [x2, [x1, x4]],
x11 = [x3, [x1, x4]],
x12 = [x3, [x2, x4]],
x13 = [x5, [x3, x4]],

α1 + α2 + α4,
α1 + α3 + α4,
α2 + α3 + α4,
α3 + α4 + α5,

123
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x14 = [x3, [x2, [x1, x4]]],
x15 = [[x1, x4], [x3, x5]],
x16 = [[x2, x4], [x3, x4]],
x17 = [[x2, x4], [x3, x5]],

α1 + α2 + α3 + α4,
α1 + α3 + α4 + α5,
2α4 + α2 + α3,
α2 + α3 + α4 + α5,

x18 = [[x2, x4], [x5, [x3, x4]]],
x19 = [[x3, x4], [x2, [x1, x4]]],
x20 = [[x3, x4], [x3, [x2, x4]]],
x21 = [[x3, x5], [x2, [x1, x4]]],

2α4 + α2 + α3 + α5,
2α4 + α1 + α2 + α3,
2α3 + 2α4 + α2,
α1 +α2 +α3 +α4 +α5,

x22 = [[x2, [x1, x4]], [x5, [x3, x4]]],
x23 = [[x3, [x1, x4]], [x3, [x2, x4]]],
x24 = [[x3, [x2, x4]], [x5, [x3, x4]]],

2α4 + α1 + α2
+α3 + α5,
2α3 + 2α4 + α1 + α2,
2α3 + 2α4 + α2 + α5,

x25 = [[x3, [x1, x4]], [[x2, x4], [x3, x4]]],
x26 = [[x5, [x3, x4]], [x3, [x2, [x1, x4]]]],

2α3 + 3α4 + α1 + α2,
2α3+2α4+α1+α2+α5,

x27 = [[x3, [x2, [x1, x4]]], [[x2, x4], [x3, x4]]],
x28 = [[[x1, x4], [x3, x5]], [[x2, x4], [x3, x4]]],

2α2+2α3+3α4+α1,
2α3 + 3α4 + α1
+α2 + α5,

x29 = [[[x1, x4], [x3, x5]], [[x3, x4], [x3, [x2, x4]]]],
x30 = [[[x2, x4], [x3, x5]], [[x3, x4], [x2, [x1, x4]]]],

3α3+3α4+α1+α2+α5,
2α2 + 2α3 + 3α4
+α1 + α5,

x31 = [[[x3, x4], [x3, [x2, x4]]],
[[x3, x5], [x2, [x1, x4]]]],

2α2+3α3+3α4 +
α1+α5,

x32 = [[[x3, x4], [x3, [x2, x4]]],
[[x2, [x1, x4]], [x5, [x3, x4]]]], 2α2+3α3+4α4+α1+α5,

x33 = [[[x2,[x1,x4]],[x5,[x3,x4]]],
[[x3,[x1,x4]],[x3,[x2, x4]]]] 2α1+2α2+3α3+4α4+α5

4.6 1g(1, 6) of sdim 21|14, p = 3

For g = g(1, 6), we have g0̄ = sp(6) and g1̄ = R(π3) as g0̄-module. We consider the

Cartan matrix

⎛

⎝
2 −1 0

−1 1 −1
0 −1 0

⎞

⎠ and the Chevalley basis elements

123
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the root vectors the roots

x1, x2 , x3 , α1, α2, α3,

x4 = [x1, x2], x5 = [x2, x2], x6 = [x2, x3], α1 + α2, 2α2, α2 + α3,

x7 = [x2, [x1, x2]], x8 = [x3, [x1, x2]],
x9 = [x3, [x2, x2]],

2α2 + α1, α1 + α2 + α3,
2α2 + α3,

x10 = [[x1, x2], [x1, x2]],
x11 = [[x1, x2], [x2, x3]],

2α1 + 2α2, 2α2 + α1 + α3,

x12 = [[x1, x2], [x3, [x1, x2]]],
x13 = [[x2, x3], [x2, [x1, x2]]],

2α1 + 2α2 + α3,
3α2 + α1 + α3,

x14 = [[x2, [x1, x2]], [x3, [x1, x2]]], 2α1 + 3α2 + α3,

x15 = [[x3, [x2, x2]], [[x1, x2], [x1, x2]]], 2α1 + 4α2 + α3,

x16 = [[[x1, x2], [x2, x3]], [[x1, x2], [x2, x3]]] 2α1 + 2α3 + 4α2

4.7 2g(2, 3) of sdim 12/10|14, p = 3

Forg = g(2, 3),wehaveg0̄ = gl(3)⊕sl(2) andg1̄ = psl(3)�id asg0̄-module.Clearly,

(g(1)(2, 3)/c)0̄ = psl(3) ⊕ sl(2). We consider the Cartan matrix

⎛

⎝
0 0 −1
0 0 −1

−1 −1 0

⎞

⎠ and

the Chevalley basis elements

the root vectors the roots

x1 , x2 , x3 , α1, α2, α3,

x4 = [x1, x3], x5 = [x2, x3], α1 + α3, α2 + α3,

x6 = [x2, [x1, x3]], α1 + α2 + α3,

x7 = [[x1, x3], [x2, x3]], 2α3 + α1 + α2,

x8 = [[x1, x3], [x2, [x1, x3]]],
x9 = [[x2, x3], [x2, [x1, x3]]],

2α1 + 2α3 + α2,
2α2 + 2α3 + α1,

x10 = [[x2, [x1, x3]], [x2, [x1, x3]]], 2α1 + 2α2 + 2α3,

x11 = [[x2, [x1, x3]], [[x1, x3], [x2, x3]]] 2α1 + 2α2 + 3α3

123
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4.8 2g(2, 6) of sdim 36/34|20, p = 3

We have g(2, 6)0̄ = gl(6) and g(2, 6)1̄ = R(π3) as g(2, 6)0̄-module. Clearly,
(g(1)(2, 6)/c)0̄ = psl(6). We consider the Cartan matrix

⎛

⎜⎜⎜⎜⎝

2 −1 0 0 0
−1 0 −2 −2 0
0 −2 0 −2 −1
0 −1 −1 0 0
0 0 −1 0 2

⎞

⎟⎟⎟⎟⎠

and the Chevalley basis elements

the root vectors the roots

x1, x2 , x3 , x4 , x5, α1, α2, α3, α4, α5,

x6 = [x1, x2], x7 = [x2, x3], x8 = [x2, x4],
x9 = [x3, x4], x10 = [x3, x5],

α1 + α2, α2 + α3, α2 + α4,
α3 + α4, α3 + α5,

x11 = [x3, [x1, x2]], x12 = [x4, [x1, x2]],
x13 = [x4, [x2, x3]], x14 = [x5, [x2, x3]],
x15 = [x5, [x3, x4]],

α1 + α2 + α3, α1 + α2 + α4,
α2 + α3 + α4, α2 + α3 + α5,
α3 + α4 + α5,

x16 = [[x1, x2], [x3, x4]],
x17 = [[x1, x2], [x3, x5]],
x18 = [[x2, x4], [x3, x5]],

α1 + α2 + α3 + α4,
α1 + α2 + α3 + α5,
α2 + α3 + α4 + α5,

x19 = [[x2, x4], [x3, [x1, x2]]],
x20 = [[x3, x5], [x4, [x1, x2]]],
x21 = [[x3, x5], [x4, [x2, x3]]],

2α2 + α1 + α3 + α4,
α1 + α2 + α3 + α4 + α5,
2α3 + α2 + α4 + α5,

x22 = [[x3, [x1, x2]], [x5, [x3, x4]]],
x23 = [[x4, [x1, x2]], [x5, [x2, x3]]],

2α3 + α1 + α2 + α4 + α5,
2α2 + α1 + α3 + α4 + α5,

x24 = [[x5, [x2, x3]], [[x1, x2], [x3, x4]]], 2α2 + 2α3 + α1 + α4 + α5,

x25 = [[[x1, x2], [x3, x4]], [[x2, x4], [x3, x5]]] 2α2 + 2α3 + 2α4 + α1 + α5

4.9 7g(3, 3) of sdim 23/21|16, p = 3

Let spin7 := R(π3). For g = g(3, 3), we have g0̄ = (o(7) ⊕ Kz) ⊕ Kd and
g1̄ = (spin7)+ ⊕ (spin7)− as g0̄-module. The action of d—the outer derivative of
g(1)—separates the identical o(7)-modules spin7 by acting on these modules as the
scalar multiplication by ±1, as indicated by subscripts, z spans the center of g(3, 3).

We consider the Cartan matrix

⎛

⎜⎜⎝

0 −1 0 0
−1 0 −1 −2
0 −1 2 0
0 −1 0 0

⎞

⎟⎟⎠ and the Chevalley basis elements

123
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the root vectors the roots

x1 , x2 , x3, x4 , α1, α2, α3, α4,

x5 = [x1, x2], x6 = [x2, x3], x7 = [x2, x4], α1 + α2, α2 + α3, α2 + α4,

x8 = [x3, [x1, x2]], x9 = [x4, [x1, x2]],
x10 = [x4, [x2, x3]],

α1 + α2 + α3, α1 + α2 + α4,
α2 + α3 + α4,

x11 = [x4, [x3, [x1, x2]]],
x12 = [[x1, x2], [x2, x3]],

α1 + α2 + α3 + α4,
2α2 + α1 + α3,

x13 = [[x1, x2], [x3, [x1, x2]]],
x14 = [[x2, x4], [x3, [x1, x2]]],

2α1 + 2α2 + α3,
2α2 + α1 + α3 + α4,

x15 = [[x3, [x1, x2]], [x4, [x1, x2]]], 2α1 + 2α2 + α3 + α4,

x16 = [[x4, [x1, x2]], [[x1, x2], [x2, x3]]], 2α1 + 3α2 + α3 + α4,

x17 = [[x4, [x3, [x1, x2]]], [[x1, x2], [x2, x3]]] 2α1 + 2α3 + 3α2 + α4

4.10 2g(3, 6) of sdim 36|40, p = 3

For g = g(3, 6), we have g0̄ = sp(8) and g1̄ = R(π3) as g0̄-module. We consider the
Cartan matrix

⎛

⎜⎜⎝

0 −1 0 0
−1 0 1 0
0 −1 1 −1
0 0 −1 0

⎞

⎟⎟⎠

and the Chevalley basis elements
the root vectors the roots

x1 , x2 , x3 , x4 , α1, α2, α3, α4,

x5 = [x1, x2],
x6 = [x2, x3],
x7 = [x3, x3],
x8 = [x3, x4],

α1 + α2,
α2 + α3,
2α3,
α3 + α4,

x9 = [x3, [x1, x2]],
x10 = [x3, [x2, x3]],
x11 = [x4, [x2, x3]],
x12 = [x4, [x3, x3]],

α1 + α2 + α3,
2α3 + α2,
α2 + α3 + α4,
2α3 + α4,

x13 = [[x1, x2], [x3, x3]],
x14 = [[x1, x2], [x3, x4]],
x15 = [[x2, x3], [x3, x4]],

2α3 + α1 + α2,
α1 + α2 + α3 + α4,
2α3 + α2 + α4,

123
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x16 = [[x2, x3], [x3, [x1, x2]]],
x17 = [[x3, x4], [x3, [x1, x2]]],
x18 = [[x3, x4], [x3, [x2, x3]]],

2α2 + 2α3 + α1,
2α3 + α1 + α2 + α4,
3α3 + α2 + α4,

x19 = [[x3, [x1, x2]], [x3, [x1, x2]]],
x20 = [[x3, [x1, x2]], [x4, [x2, x3]]],
x21 = [[x3, [x1, x2]], [x4, [x3, x3]]],

2α1 + 2α2 + 2α3,
2α2 + 2α3 + α1 + α4,
3α3 + α1 + α2 + α4,

x22 = [[x3, [x1, x2]], [[x1, x2], [x3, x4]]],
x23 = [[x4, [x2, x3]], [[x1, x2], [x3, x3]]],

2α1 + 2α2 + 2α3 + α4,
2α2 + 3α3 + α1 + α4,

x24 = [[[x1, x2], [x3, x3]], [[x1, x2], [x3, x4]]],
x25 = [[[x1, x2], [x3, x3]], [[x2, x3], [x3, x4]]],

2α1 + 2α2 + 3α3 + α4,
2α2 + 4α3 + α1 + α4,

x26 = [[[x1, x2], [x3, x3]], [[x3, x4], [x3, [x1, x2]]]],
x27 = [[[x1, x2], [x3, x4]], [[x2, x3], [x3, [x1, x2]]]],
x28 = [[[x2, x3], [x3, x4]], [[x3, x4], [x3, [x1, x2]]]],

2α1 + 2α2 + 4α3 + α4,
2α1 + 3α2 + 3α3 + α4,
2α2 + 2α4 + 4α3 + α1,

x29 = [[[x2, x3], [x3, [x1, x2]]], [[x3, x4], [x3, [x1, x2]]]],
x30 = [[[x3, x4], [x3, [x1, x2]]], [[x3, x4], [x3, [x1, x2]]]],

2α1 + 3α2 + 4α3 + α4,
2α1 + 2α2 + 2α4 + 4α3,

x31 = [[[x3, x4], [x3, [x1, x2]]], [[x3, [x1, x2]], [x4, [x2, x3]]]],
x32 = [[[x3, x4], [x3, [x2, x3]]], [[x3, [x1, x2]], [x3, [x1, x2]]]], 2α1 + 2α4 + 3α2 + 4α3,

2α1 + 3α2 + 5α3 + α4,

x33 = [[[x3, [x1, x2]], [x4, [x2, x3]]], [[x3, [x1, x2]], [x4, [x3, x3]]]], 2α1 + 2α4 + 3α2 + 5α3,

x34 = [[[x3, [x1, x2]], [x4, [x3, x3]]], [[x4, [x2, x3]],
[[x1, x2], [x3, x3]]]], 2α1 + 2α4 + 3α2 + 6α3,

x35 = [[[x4, [x2, x3]], [[x1, x2], [x3, x3]]], [[x4, [x2, x3]],
[[x1, x2], [x3, x3]]]],

2α1 + 2α4 + 4α2 + 6α3,

x36 = [[[x4, [x2, x3]], [[x1, x2], [x3, x3]]], [[[x1, x2],
[x3, x3]], [[x1, x2], [x3, x4]]]] 2α4 + 3α1 + 4α2 + 6α3

4.11 6g(4, 3) of sdim 24|26, p = 3

For g = g(4, 3), we have g0̄ = sp(6) ⊕ sl(2) and g1̄ = R(π2) � id as g0̄-module. We
consider the Cartan matrix

⎛

⎜⎜⎝

0 −1 0 0
−1 0 −2 0
0 −1 0 −1
0 0 −1 0

⎞

⎟⎟⎠

and the Chevalley basis elements

123
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the root vectors the roots

x1 , x2 , x3 , x4 , α1, α2, α3, α4,

x5 = [x1, x2],
x6 = [x2, x3],
x7 = [x3, x4],

α1 + α2,
α2 + α3,
α3 + α4,

x8 = [x3, [x1, x2]],
x9 = [x4, [x2, x3]],

α1 + α2 + α3,
α2 + α3 + α4,

x10 = [[x1, x2], [x3, x4]],
x11 = [[x2, x3], [x3, x4]],

α1 + α2 + α3 + α4,
2α3 + α2 + α4,

x12 = [[x2, x3], [x4, [x2, x3]]],
x13 = [[x3, x4], [x3, [x1, x2]]],
x14 = [[x3, x4], [x4, [x2, x3]]],

2α2 + 2α3 + α4,
2α3 + α1 + α2 + α4,
2α3 + 2α4 + α2,

x15 = [[x3, x4], [[x1, x2], [x3, x4]]],
x16 = [[x3, [x1, x2]], [x4, [x2, x3]]],
x17 = [[x4, [x2, x3]], [x4, [x2, x3]]],

2α3 + 2α4 + α1 + α2,
2α2 + 2α3 + α1 + α4,
2α2 + 2α3 + 2α4,

x18 = [[x4, [x2, x3]], [[x1, x2], [x3, x4]]],
x19 = [[x4, [x2, x3]], [[x2, x3], [x3, x4]]],

2α2 + 2α3 + 2α4 + α1,
2α2 + 2α4 + 3α3,

x20 = [[[x1, x2], [x3, x4]], [[x2, x3], [x3, x4]]], 2α2 + 2α4 + 3α3 + α1,

x21 = [[[x1, x2], [x3, x4]], [[x2, x3], [x4, [x2, x3]]]], 2α4 + 3α2 + 3α3 + α1,

x22 = [[[x2, x3], [x4, [x2, x3]]], [[x3, x4],
[x3, [x1, x2]]]], 2α4 + 3α2 + 4α3 + α1,

x23 = [[[x3, x4], [x4, [x2, x3]]], [[x3, [x1, x2]],
[x4, [x2, x3]]]],

3α2 + 3α4 + 4α3 + α1,

4.12 13g(8, 3) of sdim 55|50, p = 3

For g = g(8, 3), we have g0̄ = f(4) ⊕ sl(2) and g1̄ = R(π4) � id as g0̄-module. We
consider the Cartan matrix

⎛

⎜⎜⎜⎜⎝

2 −1 −1 0 0
−1 0 −1 −2 0
−1 −1 0 0 0
0 −2 0 0 −1
0 0 0 −1 0

⎞

⎟⎟⎟⎟⎠

123
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and the Chevalley basis elements
the root vectors the roots

x1, x2 , x3 , x4 , x5 , α1, α2, α3, α4, α5,

x6 = [x1, x2], x7 = [x1, x3], x8 = [x2, x3],
x9 = [x2, x4], x10 = [x4, x5],

α1 + α2, α1 + α3, α2 + α3,
α2 + α4, α4 + α5,

x11 = [x3, [x1, x2]], x12 = [x4, [x1, x2]],
x13 = [x4, [x2, x3]], x14 = [x5, [x2, x4]],

α1 +α2 +α3, α1 +α2 +α4,
α2 + α3 + α4,
α2 + α4 + α5,

x15 = [[x1, x2], [x1, x3]],
x16 = [[x1, x2], [x4, x5]],
x17 = [[x1, x3], [x2, x4]],
x18 = [[x2, x3], [x4, x5]],

2α1 + α2 + α3,
α1 + α2 + α4 + α5,
α1 + α2 + α3 + α4,
α2 + α3 + α4 + α5,

x19 = [[x1, x3], [x4, [x1, x2]]],
x20 = [[x2, x4], [x3, [x1, x2]]],
x21 = [[x4, x5], [x3, [x1, x2]]],

2α1 + α2 + α3 + α4,
2α2 + α1 + α3 + α4,
α1 + α2 + α3 + α4 + α5,

x22 = [[x4, x5], [[x1, x2], [x1, x3]]],
x23 = [[x3, [x1, x2]], [x4, [x1, x2]]],
x24 = [[x3, [x1, x2]], [x5, [x2, x4]]],
x25 = [[x4, [x1, x2]], [x4, [x2, x3]]],

2α1 + α2 + α3 + α4 + α5,
2α1 + 2α2 + α3 + α4,
2α2 + α1 + α3 + α4 + α5,
2α2 + 2α4 + α1 + α3,

x26 = [[x4, [x1, x2]], [[x1, x3], [x2, x4]]],
x27 = [[x4, [x2, x3]], [[x1, x2], [x1, x3]]],
x28 = [[x5, [x2, x4]], [[x1, x2], [x1, x3]]],
x29 = [[x5, [x2, x4]], [[x1, x3], [x2, x4]]],

2α1 + 2α2 + 2α4 + α3,
2α1 + 2α2 + 2α3 + α4,
2α1 + 2α2 + α3 + α4 + α5,
2α2 + 2α4 + α1 + α3 + α5,

x30 = [[x4, [x1, x2]], [[x2, x4], [x3, [x1, x2]]]],
x31 = [[[x1, x2], [x1, x3]], [[x2, x3], [x4, x5]]],
x32 = [[[x1, x2], [x4, x5]], [[x1, x3], [x2, x4]]],
x33 = [[[x1, x3], [x2, x4]], [[x1, x3], [x2, x4]]],

2α1 + 2α4 + 3α2 + α3,
2α1 +2α2 +2α3 +α4 +α5,
2α1 +2α2 +2α4 +α3 +α5,
2α1 + 2α2 + 2α3 + 2α4,

x34 = [[[x1, x2], [x4, x5]], [[x2, x4], [x3, [x1, x2]]]],
x35 = [[[x1, x3], [x2, x4]], [[x2, x4], [x3, [x1, x2]]]],
x36 = [[[x2, x3], [x4, x5]], [[x1, x3], [x4, [x1, x2]]]],

2α1 + 2α4 + 3α2+α3+α5,
2α1 + 2α3 + 2α4 + 3α2,
2α1 + 2α2 + 2α3+2α4+α5,

x37 = [[[x1, x2], [x4, x5]], [[x4, [x1, x2]], [x4, [x2, x3]]]],
x38 = [[[x1, x3], [x4, [x1, x2]]], [[x2, x4], [x3, [x1, x2]]]],
x39 = [[[x2, x4], [x3, [x1, x2]]], [[x4, x5], [x3, [x1, x2]]]],

2α1 + 3α2 + 3α4 +α3 +α5,
2α3 + 2α4 + 3α1 + 3α2,
2α1+2α3+2α4+3α2+α5,

x40 = [[[x4, x5], [x3, [x1, x2]]], [[x3, [x1, x2]], [x4, [x1, x2]]]],
x41 = [[[x4, x5], [x3, [x1, x2]]], [[x4, [x1, x2]], [x4, [x2, x3]]]],

2α3+2α4+3α1+3α2+α5,
2α1 + 2α3 + 3α2+3α4+α5,

x42 = [[[x4, x5], [[x1, x2], [x1, x3]]],
[[x4, [x1, x2]], [x4, [x2, x3]]]],
x43 = [[[x3, [x1, x2]], [x5, [x2, x4]]], [[x4, [x1, x2]],
[x4, [x2, x3]]]],

2α3 + 3α1 + 3α2+3α4+α5,
2α1+2α3+3α4+4α2+α5,
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x44 = [[[x4, [x1, x2]], [x4, [x2, x3]]], [[x5, [x2, x4]],
[[x1, x2], [x1, x3]]]],

2α3+3α1+3α4+4α2+α5,

x45 = [[[x4, [x1, x2]], [[x1, x3], [x2, x4]]], [[x5, [x2, x4]],
[[x1, x2], [x1, x3]]]],
x46 = [[[x4, [x2, x3]], [[x1, x2], [x1, x3]]], [[x5, [x2, x4]],

[[x1, x3], [x2, x4]]]],

2α3+3α4+4α1+4α2+α5,
3α1 + 3α3 + 3α4+4α2+α5,

x47 = [[[x5, [x2, x4]], [[x1, x2], [x1, x3]]],
[[[x1, x3], [x2, x4]], [[x1, x3], [x2, x4]]]], 3α3 + 3α4 + 4α1+4α2+α5,

x48 = [[[x4, [x1, x2]], [[x2, x4], [x3, [x1, x2]]]],
[[[x1, x2], [x1, x3]], [[x2, x3], [x4, x5]]]], 3α3+3α4+4α1+5α2+α5,

x49 = [[[[x1, x3], [x2, x4]], [[x1, x3], [x2, x4]]],
[[[x1, x2], [x4, x5]], [[x2, x4], [x3, [x1, x2]]]]],

3α3 + 4α1 + 4α4+5α2+α5,

x50 = [[[[x1, x2], [x4, x5]], [[x2, x4], [x3, [x1, x2]]]],
[[[x2, x3], [x4, x5]], [[x1, x3], [x4, [x1, x2]]]]] 2α5+3α3+4α1+4α4+5α2

4.13 2g(4, 6) of sdim 66|32, p = 3

For g = g(4, 6), we have g0̄ = o(12) and g1̄ = R(π5) as g0̄-module. We consider the
Cartan matrix

⎛

⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −2 0 −1 −1 0
0 0 −1 0 −1 −2
0 0 −1 −1 0 0
0 0 0 −1 0 2

⎞

⎟⎟⎟⎟⎟⎟⎠

and the Chevalley basis elements
the root vectors the roots

x1, x2, x3 , x4 , x5 , x6, α1, α2, α3, α4, α5, α6,

x7 = [x1, x2], x8 = [x2, x3], x9 = [x3, x4],
x10 = [x3, x5], x11 = [x4, x5], x12 = [x4, x6],

α1 + α2, α2 + α3, α3 + α4,
α3 + α5, α4 + α5, α4 + α6,

x13 = [x3, [x1, x2]], x14 = [x4, [x2, x3]],
x15 = [x5, [x2, x3]], x16 = [x5, [x3, x4]],
x17 = [x6, [x3, x4]], x18 = [x6, [x4, x5]],

α1 + α2 + α3, α2 + α3 + α4,
α2 + α3 + α5, α3 + α4 + α5,
α3 + α4 + α6, α4 + α5 + α6,

x19 = [[x1, x2], [x3, x4]],
x20 = [[x1, x2], [x3, x5]],
x21 = [[x2, x3], [x4, x5]],
x22 = [[x2, x3], [x4, x6]],
x23 = [[x3, x5], [x4, x6]],

α1 + α2 + α3 + α4,
α1 + α2 + α3 + α5,
α2 + α3 + α4 + α5,
α2 + α3 + α4 + α6,
α3 + α4 + α5 + α6,

123
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x24 = [[x3, x5], [x4, [x2, x3]]],
x25 = [[x4, x5], [x3, [x1, x2]]],
x26 = [[x4, x6], [x3, [x1, x2]]],
x27 = [[x4, x6], [x5, [x2, x3]]],
x28 = [[x4, x6], [x5, [x3, x4]]],

2α3 + α2 + α4 + α5,
α1 + α2 + α3 + α4 + α5,
α1 + α2 + α3 + α4 + α6,
α2 + α3 + α4 + α5 + α6,
2α4 + α3 + α5 + α6,

x29 = [[x3, [x1, x2]], [x5, [x3, x4]]],
x30 = [[x3, [x1, x2]], [x6, [x4, x5]]],
x31 = [[x4, [x2, x3]], [x6, [x4, x5]]],
x32 = [[x5, [x2, x3]], [x6, [x3, x4]]],

2α3 + α1 + α2 + α4 + α5,
α1 + α2 + α3 + α4 + α5 + α6,
2α4 + α2 + α3 + α5 + α6,
2α3 + α2 + α4 + α5 + α6,

x33 = [[x5, [x2, x3]], [[x1, x2], [x3, x4]]],
x34 = [[x6, [x3, x4]], [[x1, x2], [x3, x5]]],
x35 = [[x6, [x3, x4]], [[x2, x3], [x4, x5]]],
x36 = [[x6, [x4, x5]], [[x1, x2], [x3, x4]]],

2α2 + 2α3 + α1 + α4 + α5,
2α3 + α1 + α2 + α4 + α5 + α6,
2α3 + 2α4 + α2 + α5 + α6,
2α4 + α1 + α2 + α3 + α5 + α6,

x37 = [[[x1, x2], [x3, x4]], [[x3, x5], [x4, x6]]],
x38 = [[[x1, x2], [x3, x5]], [[x2, x3], [x4, x6]]],
x39 = [[[x2, x3], [x4, x5]], [[x3, x5], [x4, x6]]],

2α3 + 2α4 + α1+α2+α5 + α6,
2α2+2α3+α1+α4+α5+α6,
2α3 + 2α4 + 2α5 + α2 + α6,

x40 = [[[x2, x3], [x4, x6]], [[x4, x5], [x3, [x1, x2]]]],
x41 = [[[x3, x5], [x4, x6]], [[x4, x5], [x3, [x1, x2]]]], 2α2 + 2α3 + 2α4+α1+α5 + α6,

2α3+2α4+2α5+α1+α2+α6,

x42 = [[[x3, x5], [x4, [x2, x3]]], [[x4, x6], [x3, [x1, x2]]]],
x43 = [[[x4, x5], [x3, [x1, x2]]], [[x4, x6], [x5, [x2, x3]]]],

2α2+2α4+3α3+α1+α5+α6,
2α2+2α3+2α4+2α5+α1+α6,

x44 = [[[x4, x6], [x5, [x2, x3]]], [[x3, [x1, x2]], [x5, [x3, x4]]]],
2α2 + 2α4 + 2α5 + 3α3+α1+α6,

x45 = [[[x3, [x1, x2]], [x5, [x3, x4]]], [[x4, [x2, x3]],
[x6, [x4, x5]]]],

2α2+2α5+3α3+3α4+α1+α6,

x46 = [[[x5, [x2, x3]], [x6, [x3, x4]]], [[x6, [x4, x5]],
[[x1, x2], [x3, x4]]]]

2α2 + 2α5 + 2α6 + 3α3 +
3α4 + α1

4.14 4g(6, 6) of sdim 78|64, p = 3

For g = g(6, 6), we have g0̄ = o(13) and g1̄ = spin13 := R(π6) as g0̄-module. We
consider the Cartan matrix

⎛

⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0
−1 0 −2 0 0 0
0 −2 0 −1 −1 0
0 0 −1 0 −1 −2
0 0 −1 −1 0 0
0 0 0 −1 0 2

⎞

⎟⎟⎟⎟⎟⎟⎠

and the Chevalley basis elements

123
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the root vectors the roots

x1 , x2 , x3 , x4 , x5 , x6, α1, α2, α3, α4, α5, α6,

x7 = [x1, x2], x8 = [x2, x3], x9 = [x3, x4],
x10 = [x3, x5], x11 = [x4, x5], x12 = [x4, x6],

α1 + α2, α2 + α3, α3 + α4,
α3 + α5, α4 + α5, α4 + α6,

x13 = [x3, [x1, x2]], x14 = [x4, [x2, x3]],
x15 = [x5, [x2, x3]], x16 = [x5, [x3, x4]],
x17 = [x6, [x3, x4]], x18 = [x6, [x4, x5]],

α1 + α2 + α3, α2 + α3 + α4,
α2 + α3 + α5, α3 + α4 + α5,
α3 + α4 + α6, α4 + α5 + α6,

x19 = [[x1, x2], [x3, x4]],
x20 = [[x1, x2], [x3, x5]],
x21 = [[x2, x3], [x4, x5]],
x22 = [[x2, x3], [x4, x6]],
x23 = [[x3, x5], [x4, x6]],

α1 + α2 + α3 + α4,
α1 + α2 + α3 + α5,
α2 + α3 + α4 + α5,
α2 + α3 + α4 + α6,
α3 + α4 + α5 + α6,

x24 = [[x3, x5], [x4, [x2, x3]]],
x25 = [[x4, x5], [x3, [x1, x2]]],
x26 = [[x4, x6], [x3, [x1, x2]]],
x27 = [[x4, x6], [x5, [x2, x3]]],
x28 = [[x4, x6], [x5, [x3, x4]]],

2α3 + α2 + α4 + α5,
α1 + α2 + α3 + α4 + α5,
α1 + α2 + α3 + α4 + α6,
α2 + α3 + α4 + α5 + α6,
2α4 + α3 + α5 + α6,

x29 = [[x3, [x1, x2]], [x5, [x3, x4]]],
x30 = [[x3, [x1, x2]], [x6, [x4, x5]]],
x31 = [[x4, [x2, x3]], [x5, [x2, x3]]],
x32 = [[x4, [x2, x3]], [x6, [x4, x5]]],
x33 = [[x5, [x2, x3]], [x6, [x3, x4]]],

2α3 + α1 + α2 + α4 + α5,
α1 + α2 + α3 + α4 + α5 + α6,
2α2 + 2α3 + α4 + α5,
2α4 + α2 + α3 + α5 + α6,
2α3 + α2 + α4 + α5 + α6,

x34 = [[x5, [x2, x3]], [[x1, x2], [x3, x4]]],
x35 = [[x5, [x2, x3]], [[x2, x3], [x4, x6]]],
x36 = [[x6, [x3, x4]], [[x1, x2], [x3, x5]]],
x37 = [[x6, [x3, x4]], [[x2, x3], [x4, x5]]],
x38 = [[x6, [x4, x5]], [[x1, x2], [x3, x4]]],

2α2 + 2α3 + α1 + α4 + α5,
2α2 + 2α3 + α4 + α5 + α6,
2α3 + α1 + α2 + α4 + α5 + α6,
2α3 + 2α4 + α2 + α5 + α6,
2α4 + α1 + α2 + α3 + α5 + α6,

x39 = [[[x1, x2], [x3, x4]], [[x3, x5], [x4, x6]]],
x40 = [[[x1, x2], [x3, x5]], [[x2, x3], [x4, x6]]],
x41 = [[[x2, x3], [x4, x5]], [[x2, x3], [x4, x6]]],
x42 = [[[x2, x3], [x4, x5]], [[x3, x5], [x4, x6]]],

2α3 + 2α4 + α1 + α2 + α5 + α6,
2α2 + 2α3 + α1 + α4 + α5 + α6,
2α2 + 2α3 + 2α4 + α5 + α6,
2α3 + 2α4 + 2α5 + α2 + α6,

x43 = [[[x2, x3], [x4, x5]], [[x4, x6], [x5, [x2, x3]]]],
x44 = [[[x2, x3], [x4, x6]], [[x3, x5], [x4, [x2, x3]]]],
x45 = [[[x2, x3], [x4, x6]], [[x4, x5], [x3, [x1, x2]]]],
x46 = [[[x3, x5], [x4, x6]], [[x4, x5], [x3, [x1, x2]]]],

2α2 + 2α3 + 2α4 + 2α5 + α6,
2α2 + 2α4 + 3α3 + α5 + α6,
2α2 + 2α3 + 2α4 + α1 + α5 + α6,
2α3 + 2α4 + 2α5 + α1 + α2 + α6,

x47 = [[[x3, x5], [x4, [x2, x3]]], [[x4, x6], [x3, [x1, x2]]]],
x48 = [[[x3, x5], [x4, [x2, x3]]], [[x4, x6], [x5, [x2, x3]]]],
x49 = [[[x4, x5], [x3, [x1, x2]]], [[x4, x6], [x5, [x2, x3]]]],

2α2 + 2α4 + 3α3 + α1 + α5 + α6,
2α2 + 2α4 + 2α5 + 3α3 + α6,
2α2 + 2α3 + 2α4 + 2α5 + α1 + α6,

x50 = [[[x4, x6], [x3, [x1, x2]]], [[x4, [x2, x3]],
[x5, [x2, x3]]]],
x51 = [[[x4, x6], [x5, [x2, x3]]], [[x3, [x1, x2]],
[x5, [x3, x4]]]],
x52 = [[[x4, x6], [x5, [x3, x4]]], [[x4, [x2, x3]],
[x5, [x2, x3]]]],

2α4 + 3α2 + 3α3 + α1 + α5 + α6,
2α2 + 2α4 + 2α5 + 3α3 + α1 + α6,
2α2 + 2α5 + 3α3 + 3α4 + α6,

123
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x53 = [[[x3, [x1, x2]], [x5, [x3, x4]]], [[x4, [x2, x3]],
[x6, [x4, x5]]]], 2α2 + 2α5 + 3α3 + 3α4 + α1 + α6,

x54 = [[[x3, [x1, x2]], [x6, [x4, x5]]], [[x4, [x2, x3]],
[x5, [x2, x3]]]], 2α4 + 2α5 + 3α2 + 3α3 + α1 + α6,

x55 = [[[x4, [x2, x3]], [x6, [x4, x5]]], [[x5, [x2, x3]],
[x6, [x3, x4]]]],

2α2 + 2α5 + 2α6 + 3α3 + 3α4,

x56 = [[[x4, [x2, x3]], [x6, [x4, x5]]],
[[x5, [x2, x3]], [[x1, x2], [x3, x4]]]],

2α5 + 3α2 + 3α3 + 3α4 + α1 + α6,

x57 = [[[x5, [x2, x3]], [x6, [x3, x4]]],
[[x5, [x2, x3]], [[x1, x2], [x3, x4]]]],

2α4 + 2α5 + 3α2 + 4α3 + α1 + α6,

x58 = [[[x5, [x2, x3]], [x6, [x3, x4]]],
[[x6, [x4, x5]], [[x1, x2], [x3, x4]]]], 2α2 + 2α5 + 2α6 + 3α3 + 3α4 + α1,

x59 = [[[x5, [x2, x3]], [[x1, x2], [x3, x4]]],
[[x6, [x3, x4]], [[x2, x3], [x4, x5]]]], 2α5 + 3α2 + 3α4 + 4α3 + α1 + α6,

x60 = [[[x5, [x2, x3]], [[x2, x3], [x4, x6]]],
[[x6, [x4, x5]], [[x1, x2], [x3, x4]]]],

2α5 +2α6 +3α2 +3α3+3α4 +α1,

x61 = [[[x5, [x2, x3]], [[x1, x2], [x3, x4]]],
[[[x2, x3], [x4, x5]], [[x3, x5], [x4, x6]]]],

3α2 + 3α4 + 3α5 + 4α3 + α1 + α6,

x62 = [[[x6, [x3, x4]], [[x2, x3], [x4, x5]]],
[[[x1, x2], [x3, x5]], [[x2, x3], [x4, x6]]]], 2α5 + 2α6 + 3α2 + 3α4 + 4α3 + α1,

x63 = [[[[x1, x2], [x3, x4]], [[x3, x5], [x4, x6]]],
[[[x2, x3], [x4, x5]], [[x2, x3], [x4, x6]]]],

2α5+2α6 +3α2 +4α3+4α4 +α1,

x64 = [[[[x1, x2], [x3, x5]], [[x2, x3], [x4, x6]]],
[[[x2, x3], [x4, x5]], [[x3, x5], [x4, x6]]]],

2α6 +3α2 +3α4 +3α5+4α3+α1,

x65 = [[[[x2, x3], [x4, x5]], [[x3, x5], [x4, x6]]],
[[[x2, x3], [x4, x6]], [[x4, x5], [x3, [x1, x2]]]]], 2α6 + 3α2 + 3α5 + 4α3 + 4α4 + α1,

x66 = [[[[x2, x3], [x4, x6]], [[x3, x5], [x4, [x2, x3]]]],
[[[x3, x5], [x4, x6]], [[x4, x5], [x3, [x1, x2]]]]],

2α6 +3α2 +3α5+4α4 +5α3+α1,

x67 = [[[[x2, x3], [x4, x6]], [[x4, x5], [x3, [x1, x2]]]],
[[[x3, x5], [x4, [x2, x3]]], [[x4, x6], [x5, [x2, x3]]]]], 2α6 + 3α5 + 4α2 + 4α4 + 5α3 + α1,

x68 = [[[[x3, x5], [x4, [x2, x3]]], [[x4, x6], [x3, [x1, x2]]]],
[[[x4, x5], [x3, [x1, x2]]], [[x4, x6], [x5, [x2, x3]]]]]

2α1+2α6+3α5+4α2+4α4+5α3

4.15 5g(8, 6) of sdim 133|56, p = 3

For g = g(8, 6), we have g0̄ = e(7) and g1̄ = R(π1) as g0̄-module. We consider the
following Cartan matrix and the Chevalley basis elements

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −1 0 0 0 0
0 0 −1 −1 0 0 0

−2 −1 0 −1 0 0 0
0 −1 −1 0 −2 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

123
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the root vectors the roots

x1, x2 , x3 , x4 , x5, x6, x7, α1, α2, α3, α4, α5, α6, α7,

x8 = [x1, x3], x9 = [x2, x3], x10 = [x2, x4],
x11 = [x3, x4], x12 = [x4, x5], x13 = [x5, x6],
x14 = [x6, x7],

α1 + α3, α2 + α3, α2 + α4,
α3 + α4, α4 + α5, α5 + α6,
α6 + α7,

x15 = [x2, [x1, x3]], x16 = [x4, [x1, x3]],
x17 = [x4, [x2, x3]], x18 = [x5, [x2, x4]],
x19 = [x5, [x3, x4]], x20 = [x6, [x4, x5]],
x21 = [x7, [x5, x6]],

α1 + α2 + α3, α1 + α3 + α4,
α2 + α3 + α4, α2 + α4 + α5,
α3 + α4 + α5, α4 + α5 + α6,
α5 + α6 + α7,

x22 = [[x1, x3], [x2, x4]],
x23 = [[x1, x3], [x4, x5]],
x24 = [[x2, x3], [x4, x5]],
x25 = [[x2, x4], [x5, x6]],
x26 = [[x3, x4], [x5, x6]],
x27 = [[x4, x5], [x6, x7]],

α1 + α2 + α3 + α4,
α1 + α3 + α4 + α5,
α2 + α3 + α4 + α5,
α2 + α4 + α5 + α6,
α3 + α4 + α5 + α6,
α4 + α5 + α6 + α7,

x28 = [[x3, x4], [x2, [x1, x3]]],
x29 = [[x4, x5], [x2, [x1, x3]]],
x30 = [[x4, x5], [x4, [x2, x3]]],
x31 = [[x5, x6], [x4, [x1, x3]]],
x32 = [[x5, x6], [x4, [x2, x3]]],
x33 = [[x6, x7], [x5, [x2, x4]]],
x34 = [[x6, x7], [x5, [x3, x4]]],

2α3 + α1 + α2 + α4,
α1 + α2 + α3 + α4 + α5,
2α4 + α2 + α3 + α5,
α1 + α3 + α4 + α5 + α6,
α2 + α3 + α4 + α5 + α6,
α2 + α4 + α5 + α6 + α7,
α3 + α4 + α5 + α6 + α7,

x35 = [[x2, [x1, x3]], [x5, [x3, x4]]],
x36 = [[x2, [x1, x3]], [x6, [x4, x5]]],
x37 = [[x4, [x1, x3]], [x5, [x2, x4]]],
x38 = [[x4, [x1, x3]], [x7, [x5, x6]]],
x39 = [[x4, [x2, x3]], [x6, [x4, x5]]],
x40 = [[x4, [x2, x3]], [x7, [x5, x6]]],

2α3 + α1 + α2 + α4 + α5,
α1 + α2 + α3 + α4+α5 + α6,
2α4 + α1 + α2 + α3 + α5,
α1 + α3 + α4 + α5 + α6 + α7,
2α4 + α2 + α3 + α5 + α6,
α2 + α3 + α4 + α5+α6+α7,

x41 = [[x2, [x1, x3]], [[x3, x4], [x5, x6]]],
x42 = [[x4, [x2, x3]], [[x4, x5], [x6, x7]]],
x43 = [[x5, [x3, x4]], [[x1, x3], [x2, x4]]],
x44 = [[x6, [x4, x5]], [[x1, x3], [x2, x4]]],
x45 = [[x6, [x4, x5]], [[x2, x3], [x4, x5]]],
x46 = [[x7, [x5, x6]], [[x1, x3], [x2, x4]]],

2α3 + α1 + α2 + α4 + α5 + α6,
2α4 + α2 + α3 + α5 + α6 + α7,
2α3 + 2α4 + α1 + α2 + α5,
2α4 + α1 + α2 + α3 + α5 + α6,
2α4 + 2α5 + α2 + α3 + α6,
α1 + α2 + α3 + α4 + α5
+α6 + α7,

x47 = [[x7, [x5, x6]], [[x3, x4], [x2, [x1, x3]]]],
x48 = [[[x1, x3], [x2, x4]], [[x2, x3], [x4, x5]]],
x49 = [[[x1, x3], [x2, x4]], [[x3, x4], [x5, x6]]],
x50 = [[[x1, x3], [x2, x4]], [[x4, x5], [x6, x7]]],
x51 = [[[x1, x3], [x4, x5]], [[x2, x4], [x5, x6]]],
x52 = [[[x2, x3], [x4, x5]], [[x4, x5], [x6, x7]]],

2α3+α1+α2+α4+α5+α6+α7,
2α2 + 2α3 + 2α4 + α1 + α5,
2α3 + 2α4 + α1+α2+α5+α6,
2α4+α1+α2+α3+α5+α6+α7,
2α4 + 2α5 + α1 + α2 + α3 + α6,
2α4 + 2α5 + α2 + α3 + α6 + α7,

x53 = [[[x2, x4], [x5, x6]], [[x3, x4], [x2, [x1, x3]]]],
x54 = [[[x3, x4], [x5, x6]], [[x4, x5], [x2, [x1, x3]]]],
x55 = [[[x4, x5], [x6, x7]], [[x3, x4], [x2, [x1, x3]]]],
x56 = [[[x4, x5], [x6, x7]], [[x4, x5], [x2, [x1, x3]]]],
x57 = [[[x4, x5], [x6, x7]], [[x5, x6], [x4, [x2, x3]]]],

2α2 + 2α3 + 2α4 + α1 + α5 + α6,
2α3 + 2α4 + 2α5 + α1 +α2 + α6,
2α3 + 2α4 + α1 + α2
+α5 + α6 + α7,
2α4+2α5+α1+α2+α3+α6+α7,
2α4 + 2α5 + 2α6 + α2 + α3 + α7,
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x58 = [[[x3, x4], [x2, [x1, x3]]], [[x6, x7], [x5, [x2, x4]]]],
x59 = [[[x4, x5], [x2, [x1, x3]]], [[x5, x6], [x4, [x2, x3]]]],
x60 =

[[[x4, x5], [x2, [x1, x3]]], [[x6, x7], [x5, [x3, x4]]]],
x61 = [[[x4, x5], [x4, [x2, x3]]], [[x5, x6], [x4, [x1, x3]]]],
x62 = [[[x5, x6], [x4, [x1, x3]]], [[x6, x7], [x5, [x2, x4]]]],

2α2+2α3+2α4+α1+α5+α6+α7,
2α2 + 2α3 + 2α4 + 2α5 + α1 + α6,
2α3 + 2α4 + 2α5 + α1
+α2 + α6 + α7,
2α3 + 2α5 + 3α4 + α1 + α2 + α6,
2α4+2α5+2α6+α1+α2+α3+α7,

x63 =
[[[x5, x6], [x4, [x2, x3]]], [[x4, [x1, x3]], [x5, [x2, x4]]]],
x64 =
[[[x6, x7], [x5, [x2, x4]]], [[x2, [x1, x3]], [x5, [x3, x4]]]],
x65 =

[[[x6, x7], [x5, [x3, x4]]], [[x2, [x1, x3]], [x6, [x4, x5]]]],
x66 =
[[[x6, x7], [x5, [x3, x4]]], [[x4, [x1, x3]], [x5, [x2, x4]]]],

2α2 + 2α3 + 2α5 + 3α4
+α1 + α6, 2α2 + 2α3 + 2α4 +
2α5 + α1 + α6 + α7,
2α3 + 2α4 + 2α5 + 2α6
+α1 + α2 + α7,
2α3+2α5+3α4+α1+α2+α6+α7,

x67 = [[[x2, [x1, x3]], [x5, [x3, x4]]],
[[x4, [x2, x3]], [x6, [x4, x5]]]],
x68 = [[[x2, [x1, x3]], [x6, [x4, x5]]],
[[x4, [x2, x3]], [x7, [x5, x6]]]],
x69 = [[[x4, [x1, x3]], [x5, [x2, x4]]],

[[x4, [x2, x3]], [x7, [x5, x6]]]],
x70 = [[[x4, [x1, x3]], [x7, [x5, x6]]], [[x4,
[x2, x3]], [x6, [x4, x5]]]],

2α2 + 2α5 + 3α3 + 3α4 + α1 + α6,
2α2+2α3+2α4+2α5+2α6+α1+α7,
2α2 + 2α3 + 2α5 + 3α4 + α1
+α6 + α7,
2α3 +2α5 +2α6 +3α4 +α1 +α2 +α7,

x71 = [[[x4, [x1, x3]], [x5, [x2, x4]]], [[x2, [x1, x3]],
[[x3, x4], [x5, x6]]]],
x72 = [[[x4, [x1, x3]], [x7, [x5, x6]]], [[x6, [x4, x5]],
[[x2, x3], [x4, x5]]]],
x73 = [[[x4, [x2, x3]], [x7, [x5, x6]]], [[x5, [x3, x4]],
[[x1, x3], [x2, x4]]]],
x74 =

[[[x4, [x2, x3]], [x7, [x5, x6]]], [[x6, [x4, x5]],
[[x1, x3], [x2, x4]]]],

2α1 + 2α2 + 2α5 + 3α3 + 3α4 + α6,
2α3 +2α6 +3α4 +3α5 +α1 +α2 +α7,
2α2 +2α5 +3α3 +3α4 +α1 +α6 +α7,
2α2 + 2α3 + 2α5 + 2α6 + 3α4
+α1 + α7,

x75 = [[[x2, [x1, x3]], [[x3, x4], [x5, x6]]],
[[x4, [x2, x3]], [[x4, x5], [x6, x7]]]],
x76 = [[[x5, [x3, x4]], [[x1, x3], [x2, x4]]],
[[x7, [x5, x6]], [[x1, x3], [x2, x4]]]],
x77 = [[[x6, [x4, x5]], [[x2, x3], [x4, x5]]],

[[x7, [x5, x6]], [[x1, x3], [x2, x4]]]],

2α2+2α5+2α6+3α3+3α4+α1+α7,
2α1+2α2+2α5+3α3+3α4+α6+α7,
2α2 + 2α3 + 2α6 + 3α4 + 3α5
+α1 + α7,

x78 = [[[x6, [x4, x5]], [[x2, x3], [x4, x5]]],
[[x7, [x5, x6]], [[x3, x4], [x2, [x1, x3]]]]],
x79 = [[[x6, [x4, x5]], [[x2, x3], [x4, x5]]],
[[[x1, x3], [x2, x4]], [[x4, x5], [x6, x7]]]],
x80 = [[[x7, [x5, x6]], [[x1, x3], [x2, x4]]],
[[[x1, x3], [x2, x4]], [[x3, x4], [x5, x6]]]],

2α2+2α6+3α3+3α4+3α5+α1+α7,
2α2+2α3+2α6+3α5+4α4+α1+α7,
2α1+2α2+2α5+2α6+3α3+3α4+α7,

x81 = [[[x7, [x5, x6]], [[x3, x4], [x2, [x1, x3]]]],
[[[x1, x3], [x4, x5]], [[x2, x4], [x5, x6]]]],
x82 = [[[[x1, x3], [x2, x4]], [[x3, x4], [x5, x6]]],

[[[x2, x3], [x4, x5]], [[x4, x5], [x6, x7]]]],

2α1+2α2+2α6+3α3+3α4+3α5+α7,
2α2 + 2α6 + 3α3 + 3α5 + 4α4
+α1 + α7,

x83 =
[[[[x1, x3], [x4, x5]], [[x2, x4], [x5, x6]]], [[[x4, x5],
[x6, x7]], [[x3, x4], [x2, [x1, x3]]]]],
x84 =
[[[[x2, x3], [x4, x5]], [[x4, x5], [x6, x7]]], [[[x2, x4],
[x5, x6]], [[x3, x4], [x2, [x1, x3]]]]],

2α1 + 2α2 + 2α6 + 3α3 + 3α5
+4α4 + α7,
2α6+3α2+3α3+3α5+4α4+α1+α7,
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x85 = [[[[x2, x4], [x5, x6]], [[x3, x4], [x2, [x1, x3]]]],
[[[x4, x5], [x6, x7]], [[x4, x5], [x2, [x1, x3]]]]],
x86 = [[[[x3, x4], [x5, x6]], [[x4, x5], [x2, [x1, x3]]]],
[[[x4, x5], [x6, x7]], [[x3, x4], [x2, [x1, x3]]]]],

2α1+2α6+3α2+3α3+3α5+4α4+α7,
2α1+2α2+2α6+3α5+4α3+4α4+α7,

x87 = [[[[x4, x5], [x6, x7]], [[x3, x4], [x2, [x1, x3]]]],
[[[x4, x5], [x2, [x1, x3]]], [[x5, x6],
[x4, [x2, x3]]]]],

2α1 + 2α6 + 3α2 + 3α5 + 4α3
+4α4 + α7,

x88 = [[[[x3, x4], [x2, [x1, x3]]], [[x6, x7],
[x5, [x2, x4]]]], [[[x4, x5], [x4, [x2, x3]]],
[[x5, x6], [x4, [x1, x3]]]]],

2α1+2α6+3α2+3α5+4α3+5α4+α7,

x89 = [[[[x4, x5], [x4, [x2, x3]]], [[x5, x6],
[x4, [x1, x3]]]], [[[x6, x7], [x5, [x2, x4]]],
[[x2, [x1, x3]], [x5, [x3, x4]]]]],

2α1+2α6+3α2+4α3+4α5+5α4+α7,

x90 = [[[[x5, x6], [x4, [x2, x3]]], [[x4, [x1, x3]],
[x5, [x2, x4]]]], [[[x6, x7], [x5, [x3, x4]]],
[[x2, [x1, x3]], [x6, [x4, x5]]]]],

2α1+3α2+3α6+4α3+4α5+5α4+α7,

x91 = [[[[x6, x7], [x5, [x3, x4]]], [[x4, [x1, x3]],
[x5, [x2, x4]]]], [[[x2, [x1, x3]], [x6, [x4, x5]]],
[[x4, [x2, x3]], [x7, [x5, x6]]]]]

2α1+2α7+3α2+3α6+4α3+4α5+5α4

4.16 p = 2

4.16.1 NotationA ⊕c B needed to describe bgl(4;˛), e(6, 6), e(7, 6), and e(8, 1)

This notation describes the case where A and B are nontrivial central extensions of
the Lie algebras a and b, respectively, and A⊕c B—a nontrivial central extension of
a ⊕ b (or, perhaps, a more complicated a⊂+ b) with 1-dimensional center spanned by
c—is such that the restriction of the extension of a⊕ b to a gives A and that to b gives
B.

In these four cases, g(A)0̄ is of the form

g(B) ⊕c hei(2) � g(B) ⊕ Span(X+, X−),

where the matrix B is not invertible (so g(B) has a grading element d and a central
element c), and where X+, X− and c span the Heisenberg Lie algebra hei(2). The
brackets are:

[g(1)(B), X±] = 0;
[d, X±] = X±; ([d, X±] = αX± for bgl(4;α))

[X+, X−] = c. (22)

The odd part of g(A) (at least in two of the four cases) consists of two copies of the
same g(B)-module N , the operators ad X± permute these copies, and ad 2

X± = 0, so
each of the operators maps one of the copies to the other, and this other copy to zero.

4.16.2 bgl(3;˛), where˛ �= 0, 1; sdim = 10/8|8

The roots of g = bgl(3;α) are the same as those of osp(4|2;α) (or, more correctly, of
wk(3;α)), with the same division into even and odd ones; g0̄ � gl(3) ⊕ KZ and the
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g0̄-module g1̄ is the sum of two irreducibles whose highest weight vectors are x7 and
y1, where the roots corresponding to xi and yi are opposite.

We consider the Cartan matrix and the Chevalley basis elements

⎛

⎝
0 α 0
α 0 1
0 1 0

⎞

⎠

the root vectors the roots

x1 , x2 , x3 , α1, α2, α3

x4 = [x1, x2], x5 = [x2, x3], α1 + α2, α2 + α3,

x6 = [x3, [x1, x2]] α1 + α2 + α3

x7 = [[x1, x2], [x2, x3]] α1 + 2α2 + α3

4.16.3 bgl(4;˛), where˛ �= 0, 1; sdim = 18|16

The roots of bgl(4;α) are the same as those of wk(4;α), but divided into even and
odd ones: bgl(4;α)0̄ = gl(4) ⊕c hei(2) and bgl(4;α)1̄ = N � id, where N is an
8-dimensional gl(4) module, and id is the irreducible 2-dimensional hei(2)-module.
We consider the Cartan matrix and the Chevalley basis elements

⎛

⎜⎜⎝

0 α 0 0
α 0 1 0
0 1 0 1
0 0 1 0

⎞

⎟⎟⎠

root vectors roots

x1 , x2 x3 , x4 , α1, α2, α3, α4

x5 = [x1, x2], x6 = [x1, x3], α1 + α2, α1 + α3,
x7 = [x3, x4], α3 + α4
x8 = [x3, [x1, x2]], α1 + α2 + α3,

x9 = [x4, [x1, x3]], α1 + α3 + α4

x10 = [[x1, x2], [x1, x3]], 2α1 + α2 + α3,
x11 = [[x1, x2], [x3, x4]] α1 + α2 + α3 + α4
x12 =[[x1, x2], [x4, [x1, x3]]], 2α1 + α2 + α3 + α4

x13 = [[x3, [x1, x2]], [x4, [x1, x3]]], 2α1 + α2 + 2α3 + α4
x14 = [[x4, [x1, x3]], [[x1, x2], [x1, x3]]] 3α1 + α2 + 2α3 + α4

x15 = [[[x1, x2], [x1, x3]], [[x1, x2], [x3, x4]]] 3α1 + 2α2 + 2α3 + α4

4.16.4 e(6, 1) of sdim = 46|32

We have g0̄ � oc(2; 10)⊕Kz and g1̄ is a reducible module of the form R(π4)⊕R(π5)

with the two highest weight vectors

x36 = [[[x4, x5], [x6, [x2, x3]]], [[x3, [x1, x2]], [x6, [x3, x4]]]]

and y5. We consider the Cartan matrix of e(6) with parities of simple roots 111100.
The Chevalley basis elements are
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the root vectors the roots

x1 , x2 , x3 , x4 , x5, x6, α1, α2, α3, α4, α5, α6,

x7 = [x1, x2], x8 = [x2, x3], x9 = [x3, x4],
x10 = [x3, x6], x11 = [x4, x5],

α1 + α2, α2 + α3, α3 + α4,
α3 + α6, α4 + α5,

x12 = [x3, [x1, x2]], x13 = [x4, [x2, x3]],
x14 = [x5, [x3, x4]], x15 = [x6, [x2, x3]],
x16 = [x6, [x3, x4]],

α1 + α2 + α3, α2 + α3 + α4,
α3 + α4 + α5, α2 + α3 + α6,
α3 + α4 + α6,

x17 = [x6, [x4, [x2, x3]]], α2 + α3 + α4 + α6,

x18 = [[x1, x2], [x3, x4]], α1 + α2 + α3 + α4,
x19 = [[x1, x2], [x3, x6]], α1 + α2 + α3 + α6,

x20 = [[x2, x3], [x4, x5]], α2 + α3 + α4 + α5,

x21 = [[x3, x6], [x4, x5]], α3 + α4 + α5 + α6,

x22 = [[x1, x2], [x6, [x3, x4]]],
x23 = [[x3, x6], [x4, [x2, x3]]],
x24 = [[x4, x5], [x3, [x1, x2]]],
x25 = [[x4, x5], [x6, [x2, x3]]],

α1 + α2 + α3 + α4 + α6,
2α3 + α2 + α4 + α6,
α1 + α2 + α3 + α4 + α5,
α2 + α3 + α4 + α5 + α6,

x26 = [[x4, x5], [[x1, x2], [x3, x6]]],
x27 = [[x3, [x1, x2]], [x6, [x3, x4]]],
x28 = [[x5, [x3, x4]], [x6, [x2, x3]]],

α1 + α2 + α3 + α4 + α5 + α6,
2α3 + α1 + α2 + α4 + α6,
2α3 + α2 + α4 + α5 + α6,

x29 = [[x5, [x3, x4]], [[x1, x2], [x3, x6]]],
x30 = [[x6, [x2, x3]], [[x1, x2], [x3, x4]]],
x31 = [[x6, [x3, x4]], [[x2, x3], [x4, x5]]],

2α3 + α1 + α2 + α4 + α5 + α6,
2α2 + 2α3 + α1 + α4 + α6,
2α3 + 2α4 + α2 + α5 + α6,

x32 = [[[x1, x2], [x3, x4]], [[x3, x6], [x4, x5]]],
x33 = [[[x1, x2], [x3, x6]], [[x2, x3], [x4, x5]]],

2α3 + 2α4 + α1 + α2 + α5 + α6,
2α2 + 2α3 + α1 + α4 + α5 + α6,

x34 = [[[x2, x3], [x4, x5]], [[x1, x2], [x6, [x3, x4]]]], 2α2 + 2α3 + 2α4 + α1 + α5 + α6,

x35 = [[[x3, x6], [x4, [x2, x3]]], [[x4, x5], [x3, [x1, x2]]]], 2α2 + 2α4 + 3α3 + α1 + α5 + α6,

x36 = [[[x4, x5], [x6, [x2, x3]]], [[x3, [x1, x2]],
[x6, [x3, x4]]]]

2α2 + 2α4 + 2α6 + 3α3 + α1 + α5

4.16.5 e(6, 6) of sdim = 38|40

In this case, g(B) � gl(6), see (4.16.1). The g0̄-module g1̄ is irreducible with the
highest weight vector

x35 = [[[x3, x6], [x4, [x2, x3]]], [[x4, x5], [x3, [x1, x2]]]] of weight (0, 0, 1, 0, 0, 1).

We consider the Cartan matrix of e(6) with parities of simple roots 111111. The
Chevalley basis elements are
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the root vectors the roots

x1 , x2 , x3 , x4 , x5 , x6 , α1, α2, α3, α4, α5, α6,

x7 = [x1, x2], x8 = [x2, x3], x9 = [x3, x4], x10 = [x3, x6],
x11 = [x4, x5],

α1 + α2, α2 + α3, α3 + α4,
α3 + α6, α4 + α5,

x12 = [x3, [x1, x2]], x13 = [x4, [x2, x3]],
x14 = [x5, [x3, x4]], x15 = [x6, [x2, x3]],
x16 = [x6, [x3, x4]],

α1 + α2 + α3, α2 + α3 + α4,
α3 + α4 + α5, α2 + α3 + α6,
α3 + α4 + α6,

x17 = [x6, [x4, [x2, x3]]], x18 = [[x1, x2], [x3, x4]],
x19 = [[x1, x2], [x3, x6]], x20 = [[x2, x3], [x4, x5]],
x21 = [[x3, x6], [x4, x5]],

α2 + α3 + α4 + α6,
α1 + α2 + α3 + α4,
α1 + α2 + α3 + α6,
α2 + α3 + α4 + α5,
α3 + α4 + α5 + α6,

x22 = [[x1, x2], [x6, [x3, x4]]],
x23 = [[x3, x6], [x4, [x2, x3]]],
x24 = [[x4, x5], [x3, [x1, x2]]],
x25 = [[x4, x5], [x6, [x2, x3]]],

α1 + α2 + α3 + α4 + α6,
2α3 + α2 + α4 + α6,
α1 + α2 + α3 + α4 + α5,
α2 + α3 + α4 + α5 + α6,

x26 = [[x4, x5], [[x1, x2], [x3, x6]]],
x27 = [[x3, [x1, x2]], [x6, [x3, x4]]],
x28 = [[x5, [x3, x4]], [x6, [x2, x3]]],

α1 + α2 + α3 + α4 + α5 + α6,
2α3 + α1 + α2 + α4 + α6,
2α3 + α2 + α4 + α5 + α6,

x29 = [[x5, [x3, x4]], [[x1, x2], [x3, x6]]],
x30 = [[x6, [x2, x3]], [[x1, x2], [x3, x4]]],
x31 = [[x6, [x3, x4]], [[x2, x3], [x4, x5]]],

2α3 + α1 + α2 + α4 + α5 + α6,
2α2 + 2α3 + α1 + α4 + α6,
2α3 + 2α4 + α2 + α5 + α6,

x32 = [[[x1, x2], [x3, x4]], [[x3, x6], [x4, x5]]],
x33 = [[[x1, x2], [x3, x6]], [[x2, x3], [x4, x5]]],

2α3 + 2α4 + α1 + α2 + α5 + α6,
2α2 + 2α3 + α1 + α4 + α5 + α6,

x34 = [[[x2, x3], [x4, x5]], [[x1, x2], [x6, [x3, x4]]]], 2α2 + 2α3 + 2α4 + α1 + α5 + α6,

x35 = [[[x3, x6], [x4, [x2, x3]]], [[x4, x5], [x3, [x1, x2]]]], 2α2 + 2α4 + 3α3 + α1 + α5 + α6,

x36 = [[[x4, x5], [x6, [x2, x3]]], [[x3, [x1, x2]],
[x6, [x3, x4]]]]

2α2 + 2α4 + 2α6 + 3α3 + α1 + α5

4.16.6 e(7, 1) of sdim = 80/78|54

We consider the Cartan matrix of e(7) with the parities of simple roots 1111001. The
Chevalley basis elements are
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the root vectors the roots

x1 , x2 , x3 , x4 , x5, x6, x7 , α1, α2, α3, α4, α5, α6, α7,

x8 = [x1, x2], x9 = [x2, x3], x10 = [x3, x4],
x11 = [x4, x5], x12 = [x4, x7], x13 = [x5, x6],

α1 + α2, α2 + α3, α3 + α4, α4 + α5,
α4 + α7, α5 + α6,

x14 = [x3, [x1, x2]], x15 = [x4, [x2, x3]],
x16 = [x5, [x3, x4]], x17 = [x6, [x4, x5]],
x18 = [x7, [x3, x4]], x19 = [x7, [x4, x5]],

α1 + α2 + α3, α2 + α3 + α4,
α3 + α4 + α5, α4 + α5 + α6,
α3 + α4 + α7, α4 + α5 + α7,

x20 = [x7, [x5, [x3, x4]]], x21 = [[x1, x2], [x3, x4]],
x22 = [[x2, x3], [x4, x5]], x23 = [[x2, x3], [x4, x7]],
x24 = [[x3, x4], [x5, x6]], x25 = [[x4, x7], [x5, x6]],

α3 + α4 + α5 + α7,
α1 + α2 + α3 + α4,
α2 + α3 + α4 + α5,
α2 + α3 + α4 + α7,
α3 + α4 + α5 + α6,
α4 + α5 + α6 + α7,

x26 = [[x2, x3], [x7, [x4, x5]]],
x27 = [[x4, x5], [x3, [x1, x2]]],
x28 = [[x4, x7], [x3, [x1, x2]]],
x29 = [[x4, x7], [x5, [x3, x4]]],
x30 = [[x5, x6], [x4, [x2, x3]]],
x31 = [[x5, x6], [x7, [x3, x4]]],

α2 + α3 + α4 + α5 + α7,
α1 + α2 + α3 + α4 + α5,
α1 + α2 + α3 + α4 + α7,
2α4 + α3 + α5 + α7,
α2 + α3 + α4 + α5 + α6,
α3 + α4 + α5 + α6 + α7,

x32 = [[x5, x6], [[x2, x3], [x4, x7]]],
x33 = [[x3, [x1, x2]], [x6, [x4, x5]]],
x34 = [[x3, [x1, x2]], [x7, [x4, x5]]],
x35 = [[x4, [x2, x3]], [x7, [x4, x5]]],
x36 = [[x6, [x4, x5]], [x7, [x3, x4]]],

α2 + α3 + α4 + α5 + α6 + α7,
α1 + α2 + α3 + α4 + α5 + α6,
α1 + α2 + α3 + α4 + α5 + α7,
2α4 + α2 + α3 + α5 + α7,
2α4 + α3 + α5 + α6 + α7,

x37 = [[x3, [x1, x2]], [[x4, x7], [x5, x6]]],
x38 = [[x6, [x4, x5]], [[x2, x3], [x4, x7]]],
x39 = [[x7, [x3, x4]], [[x2, x3], [x4, x5]]],
x40 = [[x7, [x4, x5]], [[x1, x2], [x3, x4]]],
x41 = [[x7, [x4, x5]], [[x3, x4], [x5, x6]]],

α1 + α2 + α3 + α4 + α5 + α6 + α7,
2α4 + α2 + α3 + α5 + α6 + α7,
2α3 + 2α4 + α2 + α5 + α7,
2α4 + α1 + α2 + α3 + α5 + α7,
2α4 + 2α5 + α3 + α6 + α7,

x42 = [[x7, [x5, [x3, x4]]], [[x1, x2], [x3, x4]]],
x43 = [[[x1, x2], [x3, x4]], [[x4, x7], [x5, x6]]],
x44 = [[[x2, x3], [x4, x5]], [[x4, x7], [x5, x6]]],
x45 = [[[x2, x3], [x4, x7]], [[x3, x4], [x5, x6]]],

2α3 + 2α4 + α1 + α2 + α5 + α7,
2α4 + α1 + α2 + α3 + α5 + α6 + α7,
2α4 + 2α5 + α2 + α3 + α6 + α7,
2α3 + 2α4 + α2 + α5 + α6 + α7,

x46 = [[[x2, x3], [x4, x7]], [[x4, x5], [x3, [x1, x2]]]],
x47 = [[[x3, x4], [x5, x6]], [[x2, x3], [x7, [x4, x5]]]],
x48 = [[[x3, x4], [x5, x6]], [[x4, x7], [x3, [x1, x2]]]],
x49 = [[[x4, x7], [x5, x6]], [[x4, x5], [x3, [x1, x2]]]],

2α2 + 2α3 + 2α4 + α1 + α5 + α7,
2α3 + 2α4 + 2α5 + α2 + α6 + α7,
2α3 + 2α4 + α1 + α2+α5+α6+α7,
2α4 +2α5 +α1 +α2 +α3 +α6 +α7,

x50 =
[[[x4, x5], [x3, [x1, x2]]], [[x5, x6], [x7, [x3, x4]]]],
x51 = [[[x4, x7], [x3, [x1, x2]]], [[x5, x6], [x4, [x2, x3]]]],
x52 =

[[[x4, x7], [x5, [x3, x4]]], [[x5, x6], [x4, [x2, x3]]]],

2α3 + 2α4 + 2α5 + α1+α2+α6+α7,
2α2+2α3+2α4+α1+α5+α6+α7,
2α3 + 2α5 + 3α4 + α2 + α6 + α7,
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x53 =
[[[x4, x7], [x5, [x3, x4]]], [[x3, [x1, x2]], [x6, [x4, x5]]]],
x54 =
[[[x5, x6], [x4, [x2, x3]]], [[x3, [x1, x2]], [x7, [x4, x5]]]],
x55 =
[[[x5, x6], [x7, [x3, x4]]], [[x4, [x2, x3]], [x7, [x4, x5]]]],

2α3+2α5+3α4+α1+α2+α6+α7,
2α2+2α3+2α4+2α5+α1+α6+α7,
2α3 + 2α5 + 2α7 + 3α4 + α2 + α6,

x56 = [[[x3, [x1, x2]], [x6, [x4, x5]]], [[x4, [x2, x3]],
[x7, [x4, x5]]]],
x57 = [[[x3, [x1, x2]], [x7, [x4, x5]]], [[x6, [x4, x5]],

[x7, [x3, x4]]]],

2α2 + 2α3 + 2α5 + 3α4 + α1
+α6 + α7,
2α3 + 2α5 + 2α7 + 3α4 + α1
+α2 + α6,

x58 = [[[x3, [x1, x2]], [x6, [x4, x5]]], [[x7, [x3, x4]],
[[x2, x3], [x4, x5]]]],
x59 = [[[x4, [x2, x3]], [x7, [x4, x5]]], [[x3, [x1, x2]],
[[x4, x7], [x5, x6]]]],

2α2+2α5+3α3+3α4+α1+α6+α7,
2α2+2α3+2α5+2α7+3α4+α1+α6,

x60 = [[[x3, [x1, x2]], [[x4, x7], [x5, x6]]],
[[x7, [x3, x4]], [[x2, x3], [x4, x5]]]],

2α2 + 2α5 + 2α7 + 3α3 + 3α4
+α1 + α6,

x61 = [[[x7, [x4, x5]], [[x1, x2], [x3, x4]]],
[[[x2, x3], [x4, x7]], [[x3, x4], [x5, x6]]]],

2α2+2α5+2α7+3α3+4α4+α1+α6,

x62 = [[[x7, [x5, [x3, x4]]], [[x1, x2], [x3, x4]]],
[[[x2, x3], [x4, x5]], [[x4, x7], [x5, x6]]]],

2α2+2α7+3α3+3α5+4α4+α1+α6,

x63 = [[[[x2, x3], [x4, x7]], [[x3, x4], [x5, x6]]],
[[[x4, x7], [x5, x6]], [[x4, x5], [x3, [x1, x2]]]]]

2α2 + 2α6 + 2α7 + 3α3 + 3α5 +
4α4 + α1

4.16.7 e(7, 6) of sdim = 70/68|64

We consider the Cartan matrix of e(7) with the parities of simple roots 0101010 and
the Chevalley basis elements

the root vectors the roots

x1, x2 , x3, x4 , x5, x6 , x7, α1, α2, α3, α4, α5, α6, α7,

x8 = [x1, x2], x9 = [x2, x3], x10 = [x3, x4],
x11 = [x4, x5], x12 = [x4, x7], x13 = [x5, x6],

α1 + α2, α2 + α3, α3 + α4,
α4 + α5, α4 + α7, α5 + α6,

x14 = [x3, [x1, x2]], x15 = [x4, [x2, x3]],
x16 = [x5, [x3, x4]], x17 = [x6, [x4, x5]],
x18 = [x7, [x3, x4]], x19 = [x7, [x4, x5]],

α1 + α2 + α3, α2 + α3 + α4,
α3 + α4 + α5, α4 + α5 + α6,
α3 + α4 + α7, α4 + α5 + α7,

x20 = [x7, [x5, [x3, x4]]], x21 = [[x1, x2], [x3, x4]],
x22 = [[x2, x3], [x4, x5]], x23 = [[x2, x3], [x4, x7]],
x24 = [[x3, x4], [x5, x6]], x25 = [[x4, x7], [x5, x6]],

α3 + α4 + α5 + α7, α1 + α2 + α3 + α4,
α2 + α3 + α4 + α5, α2 + α3 + α4 + α7,
α3 + α4 + α5 + α6, α4 + α5 + α6 + α7,

x26 = [[x2, x3], [x7, [x4, x5]]],
x27 = [[x4, x5], [x3, [x1, x2]]],
x28 = [[x4, x7], [x3, [x1, x2]]],
x29 = [[x4, x7], [x5, [x3, x4]]],
x30 = [[x5, x6], [x4, [x2, x3]]],
x31 = [[x5, x6], [x7, [x3, x4]]],

α2 + α3 + α4 + α5 + α7,
α1 + α2 + α3 + α4 + α5,
α1 + α2 + α3 + α4 + α7,
2α4 + α3 + α5 + α7,
α2 + α3 + α4 + α5 + α6,
α3 + α4 + α5 + α6 + α7,
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x32 = [[x5, x6], [[x2, x3], [x4, x7]]],
x33 = [[x3, [x1, x2]], [x6, [x4, x5]]],
x34 = [[x3, [x1, x2]], [x7, [x4, x5]]],
x35 = [[x4, [x2, x3]], [x7, [x4, x5]]],
x36 = [[x6, [x4, x5]], [x7, [x3, x4]]],

α2 + α3 + α4 + α5 + α6 + α7,
α1 + α2 + α3 + α4 + α5 + α6,
α1 + α2 + α3 + α4 + α5 + α7,
2α4 + α2 + α3 + α5 + α7,
2α4 + α3 + α5 + α6 + α7,

x37 = [[x3, [x1, x2]], [[x4, x7], [x5, x6]]],
x38 = [[x6, [x4, x5]], [[x2, x3], [x4, x7]]],
x39 = [[x7, [x3, x4]], [[x2, x3], [x4, x5]]],
x40 = [[x7, [x4, x5]], [[x1, x2], [x3, x4]]],
x41 = [[x7, [x4, x5]], [[x3, x4], [x5, x6]]],

α1 + α2 + α3 + α4 + α5 + α6 + α7,
2α4 + α2 + α3 + α5 + α6 + α7,
2α3 + 2α4 + α2 + α5 + α7,
2α4 + α1 + α2 + α3 + α5 + α7,
2α4 + 2α5 + α3 + α6 + α7,

x42 = [[x7, [x5, [x3, x4]]], [[x1, x2], [x3, x4]]],
x43 = [[[x1, x2], [x3, x4]], [[x4, x7], [x5, x6]]],
x44 = [[[x2, x3], [x4, x5]], [[x4, x7], [x5, x6]]],
x45 = [[[x2, x3], [x4, x7]], [[x3, x4], [x5, x6]]],

2α3 + 2α4 + α1 + α2 + α5 + α7,
2α4 + α1 + α2 + α3 + α5 + α6 + α7,
2α4 + 2α5 + α2 + α3 + α6 + α7,
2α3 + 2α4 + α2 + α5 + α6 + α7,

x46 = [[[x2, x3], [x4, x7]], [[x4, x5], [x3, [x1, x2]]]],
x47 = [[[x3, x4], [x5, x6]], [[x2, x3], [x7, [x4, x5]]]],
x48 = [[[x3, x4], [x5, x6]], [[x4, x7], [x3, [x1, x2]]]],
x49 = [[[x4, x7], [x5, x6]], [[x4, x5], [x3, [x1, x2]]]],

2α2 + 2α3 + 2α4 + α1 + α5 + α7,
2α3 + 2α4 + 2α5 + α2 + α6 + α7,
2α3 + 2α4 + α1 + α2 + α5 + α6 + α7,
2α4 + 2α5 + α1 + α2 + α3 + α6 + α7,

x50 =
[[[x4, x5], [x3, [x1, x2]]], [[x5, x6], [x7, [x3, x4]]]],
x51 =

[[[x4, x7], [x3, [x1, x2]]], [[x5, x6], [x4, [x2, x3]]]],
x52 =

[[[x4, x7], [x5, [x3, x4]]], [[x5, x6], [x4, [x2, x3]]]],

2α3 + 2α4 + 2α5 + α1 + α2 + α6 + α7,
2α2 + 2α3 + 2α4 + α1 + α5 + α6 + α7,
2α3 + 2α5 + 3α4 + α2 + α6 + α7,

x53 = [[[x4, x7], [x5, [x3, x4]]],
[[x3, [x1, x2]], [x6, [x4, x5]]]], 2α3 + 2α5 + 3α4 + α1 + α2 + α6 + α7,

x54 = [[[x5, x6], [x4, [x2, x3]]],
[[x3, [x1, x2]], [x7, [x4, x5]]]], 2α2 + 2α3 + 2α4 + 2α5 + α1 + α6 + α7,

x55 = [[[x5, x6], [x7, [x3, x4]]],
[[x4, [x2, x3]], [x7, [x4, x5]]]],

2α3 + 2α5 + 2α7 + 3α4 + α2 + α6,

x56 = [[[x3, [x1, x2]], [x6, [x4, x5]]],
[[x4, [x2, x3]], [x7, [x4, x5]]]],

2α2 + 2α3 + 2α5 + 3α4 + α1 + α6 + α7,

x57 = [[[x3, [x1, x2]], [x7, [x4, x5]]],
[[x6, [x4, x5]], [x7, [x3, x4]]]], 2α3 + 2α5 + 2α7 + 3α4 + α1 + α2 + α6,

x58 = [[[x3, [x1, x2]], [x6, [x4, x5]]],
[[x7, [x3, x4]], [[x2, x3], [x4, x5]]]],

2α2 + 2α5 + 3α3 + 3α4 + α1 + α6 + α7,

x59 = [[[x4, [x2, x3]], [x7, [x4, x5]]],
[[x3, [x1, x2]], [[x4, x7], [x5, x6]]]],

2α2 +2α3 +2α5 +2α7 +3α4 +α1 +α6,

x60 = [[[x3, [x1, x2]], [[x4, x7], [x5, x6]]],
[[x7, [x3, x4]], [[x2, x3], [x4, x5]]]],

2α2 +2α5 +2α7 +3α3 +3α4 +α1 +α6,

x61 = [[[x7, [x4, x5]], [[x1, x2], [x3, x4]]],
[[[x2, x3], [x4, x7]], [[x3, x4], [x5, x6]]]], 2α2 + 2α5 + 2α7 + 3α3 + 4α4+α1+α6,

x62 = [[[x7, [x5, [x3, x4]]], [[x1, x2], [x3, x4]]],
[[[x2, x3], [x4, x5]], [[x4, x7], [x5, x6]]]], 2α2 + 2α7 + 3α3 + 3α5 + 4α4+α1+α6,

x63 = [[[[x2, x3], [x4, x7]], [[x3, x4], [x5, x6]]],
[[[x4, x7], [x5, x6]], [[x4, x5], [x3, [x1, x2]]]]]

2α2+2α6+2α7+3α3+3α5+4α4+α1
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4.16.8 e(7, 7) of sdim = 64/62|70

We consider the Cartan matrix of e(7) with the parities of simple roots 1111111 and
the Chevalley basis elements

the root vectors the roots

x1 , x2 , x3 , x4 , x5 , x6 , x7 , α1, α2, α3, α4, α5, α6, α7,

x8 = [x1, x2], x9 = [x2, x3], x10 = [x3, x4],
x11 = [x4, x5], x12 = [x4, x7], x13 = [x5, x6],

α1 + α2, α2 + α3, α3 + α4, α4 + α5,
α4 + α7, α5 + α6,

x14 = [x3, [x1, x2]], x15 = [x4, [x2, x3]],
x16 = [x5, [x3, x4]], x17 = [x6, [x4, x5]],
x18 = [x7, [x3, x4]], x19 = [x7, [x4, x5]],

α1 + α2 + α3, α2 + α3 + α4,
α3 + α4 + α5, α4 + α5 + α6,
α3 + α4 + α7, α4 + α5 + α7,

x20 = [x7, [x5, [x3, x4]]], x21 = [[x1, x2], [x3, x4]],
x22 = [[x2, x3], [x4, x5]], x23 = [[x2, x3], [x4, x7]],
x24 = [[x3, x4], [x5, x6]], x25 = [[x4, x7], [x5, x6]],

α3 + α4 + α5 + α7, α1 + α2 + α3 + α4,
α2 + α3 + α4 + α5, α2 + α3 + α4 + α7,
α3 + α4 + α5 + α6, α4 + α5 + α6 + α7,

x26 = [[x2, x3], [x7, [x4, x5]]], α2 + α3 + α4 + α5 + α7,

x27 = [[x4, x5], [x3, [x1, x2]]], α1 + α2 + α3 + α4 + α5,

x28 = [[x4, x7], [x3, [x1, x2]]], α1 + α2 + α3 + α4 + α7,

x29 = [[x4, x7], [x5, [x3, x4]]], 2α4 + α3 + α5 + α7,

x30 = [[x5, x6], [x4, [x2, x3]]], α2 + α3 + α4 + α5 + α6,

x31 = [[x5, x6], [x7, [x3, x4]]], α3 + α4 + α5 + α6 + α7,

x32 = [[x5, x6], [[x2, x3], [x4, x7]]],
x33 = [[x3, [x1, x2]], [x6, [x4, x5]]],
x34 = [[x3, [x1, x2]], [x7, [x4, x5]]],
x35 = [[x4, [x2, x3]], [x7, [x4, x5]]],
x36 = [[x6, [x4, x5]], [x7, [x3, x4]]],

α2 + α3 + α4 + α5 + α6 + α7,
α1 + α2 + α3 + α4 + α5 + α6,
α1 + α2 + α3 + α4 + α5 + α7,
2α4 + α2 + α3 + α5 + α7,
2α4 + α3 + α5 + α6 + α7,

x37 = [[x3, [x1, x2]], [[x4, x7], [x5, x6]]], α1 + α2 + α3 + α4 + α5 + α6 + α7,

x38 = [[x6, [x4, x5]], [[x2, x3], [x4, x7]]], 2α4 + α2 + α3 + α5 + α6 + α7,

x39 = [[x7, [x3, x4]], [[x2, x3], [x4, x5]]], 2α3 + 2α4 + α2 + α5 + α7,

x40 = [[x7, [x4, x5]], [[x1, x2], [x3, x4]]], 2α4 + α1 + α2 + α3 + α5 + α7,

x41 = [[x7, [x4, x5]], [[x3, x4], [x5, x6]]], 2α4 + 2α5 + α3 + α6 + α7,

x42 = [[x7, [x5, [x3, x4]]], [[x1, x2], [x3, x4]]],
x43 = [[[x1, x2], [x3, x4]], [[x4, x7], [x5, x6]]],
x44 = [[[x2, x3], [x4, x5]], [[x4, x7], [x5, x6]]],
x45 = [[[x2, x3], [x4, x7]], [[x3, x4], [x5, x6]]],

2α3 + 2α4 + α1 + α2 + α5 + α7,
2α4 + α1 + α2 + α3 + α5 + α6 + α7,
2α4 + 2α5 + α2 + α3 + α6 + α7,
2α3 + 2α4 + α2 + α5 + α6 + α7,

x46 = [[[x2, x3], [x4, x7]], [[x4, x5], [x3, [x1, x2]]]], 2α2 + 2α3 + 2α4 + α1 + α5 + α7,

x47 = [[[x3, x4], [x5, x6]], [[x2, x3], [x7, [x4, x5]]]], 2α3 + 2α4 + 2α5 + α2 + α6 + α7,

x48 = [[[x3, x4], [x5, x6]], [[x4, x7], [x3, [x1, x2]]]], 2α3 + 2α4 + α1 + α2 + α5 + α6 + α7,

x49 = [[[x4, x7], [x5, x6]], [[x4, x5], [x3, [x1, x2]]]], 2α4 + 2α5 + α1 + α2 + α3 + α6 + α7,
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x50 =
[[[x4, x5], [x3, [x1, x2]]], [[x5, x6], [x7, [x3, x4]]]],
x51 =
[[[x4, x7], [x3, [x1, x2]]], [[x5, x6], [x4, [x2, x3]]]],
x52 =
[[[x4, x7], [x5, [x3, x4]]], [[x5, x6], [x4, [x2, x3]]]],

2α3 + 2α4 + 2α5 + α1 + α2 + α6 + α7,
2α2 + 2α3 + 2α4 + α1 + α5 + α6 + α7,
2α3 + 2α5 + 3α4 + α2 + α6 + α7,

x53 = [[[x4, x7], [x5, [x3, x4]]],
[[x3, [x1, x2]], [x6, [x4, x5]]]],

2α3 + 2α5 + 3α4 + α1 + α2 + α6 + α7,

x54 = [[[x5, x6], [x4, [x2, x3]]],
[[x3, [x1, x2]], [x7, [x4, x5]]]], 2α2 + 2α3 + 2α4 + 2α5 + α1 + α6 + α7,

x55 = [[[x5, x6], [x7, [x3, x4]]],
[[x4, [x2, x3]], [x7, [x4, x5]]]],

2α3 + 2α5 + 2α7 + 3α4 + α2 + α6,

x56 = [[[x3, [x1, x2]], [x6, [x4, x5]]],
[[x4, [x2, x3]], [x7, [x4, x5]]]],

2α2 + 2α3 + 2α5 + 3α4 + α1 + α6 + α7,

x57 = [[[x3, [x1, x2]], [x7, [x4, x5]]],
[[x6, [x4, x5]], [x7, [x3, x4]]]]

2α3 + 2α5 + 2α7 + 3α4 + α1 + α2 + α6,

x58 = [[[x3, [x1, x2]], [x6, [x4, x5]]],
[[x7, [x3, x4]], [[x2, x3], [x4, x5]]]], 2α2 + 2α5 + 3α3 + 3α4 + α1 + α6 + α7,

x59 = [[[x4, [x2, x3]], [x7, [x4, x5]]],
[[x3, [x1, x2]], [[x4, x7], [x5, x6]]]],

2α2 + 2α3 + 2α5 + 2α7 + 3α4+α1+α6,

x60 = [[[x3, [x1, x2]], [[x4, x7], [x5, x6]]],
[[x7, [x3, x4]], [[x2, x3], [x4, x5]]]],

2α2 +2α5 +2α7 +3α3 +3α4 +α1 +α6,

x61 = [[[x7, [x4, x5]], [[x1, x2], [x3, x4]]],
[[[x2, x3], [x4, x7]], [[x3, x4], [x5, x6]]]], 2α2 + 2α5 + 2α7 + 3α3 + 4α4 + α1 + α6,

x62 = [[[x7, [x5, [x3, x4]]], [[x1, x2], [x3, x4]]],
[[[x2, x3], [x4, x5]], [[x4, x7], [x5, x6]]]],

2α2 +2α7 +3α3 +3α5 +4α4 +α1 +α6,

x63 = [[[[x2, x3], [x4, x7]], [[x3, x4], [x5, x6]]],
[[[x4, x7], [x5, x6]], [[x4, x5], [x3, [x1, x2]]]]] 2α2 + 2α6 + 2α7 + 3α3 + 3α5+4α4+α1

4.16.9 e(8, 1) of sdim = 136|112

We have (cf. Sect. 4.16.1) g(B) � e(7). We consider the Cartan Matrix of e(8) with
the parities of simple roots 11001111 and the Chevalley basis elements

the root vectors the roots

x1 , x2 , x3, x4, x5 , x6 , x7 , x8 , α1, α2, α3, α4, α5, α6, α7, α8,

x9 = [x1, x2], x10 = [x2, x3], x11 = [x3, x4],
x12 = [x4, x5], x13 = [x5, x6], x14 = [x5, x8],
x15 = [x6, x7],

α1 + α2, α2 + α3, α3 + α4,
α4 + α5, α5 + α6, α5 + α8,
α6 + α7,

x16 = [x3, [x1, x2]], x17 = [x4, [x2, x3]],
x18 = [x5, [x3, x4]], x19 = [x6, [x4, x5]],
x20 = [x7, [x5, x6]], x21 = [x8, [x4, x5]],
x22 = [x8, [x5, x6]],

α1 + α2 + α3, α2 + α3 + α4,
α3 + α4 + α5, α4 + α5 + α6,
α5 + α6 + α7, α4 + α5 + α8,
α5 + α6 + α8,
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x23 = [x8, [x6, [x4, x5]]],
x24 = [[x1, x2], [x3, x4]],
x25 = [[x2, x3], [x4, x5]],
x26 = [[x3, x4], [x5, x6]],
x27 = [[x3, x4], [x5, x8]],
x28 = [[x4, x5], [x6, x7]],
x29 = [[x5, x8], [x6, x7]],

α4 + α5 + α6 + α8, α1 + α2 + α3 + α4,
α2 + α3 + α4 + α5, α3 + α4 + α5 + α6,
α3 + α4 + α5 + α8, α4 + α5 + α6 + α7,
α5 + α6 + α7 + α8,

x30 = [[x3, x4], [x8, [x5, x6]]], α3 + α4 + α5 + α6 + α8,

x31 = [[x4, x5], [x3, [x1, x2]]], α1 + α2 + α3 + α4 + α5,

x32 = [[x5, x6], [x4, [x2, x3]]], α2 + α3 + α4 + α5 + α6,

x33 = [[x5, x8], [x4, [x2, x3]]], α2 + α3 + α4 + α5 + α8,

x34 = [[x5, x8], [x6, [x4, x5]]], 2α5 + α4 + α6 + α8,
x35 = [[x6, x7], [x5, [x3, x4]]], α3 + α4 + α5 + α6 + α7,

x36 = [[x6, x7], [x8, [x4, x5]]], α4 + α5 + α6 + α7 + α8,

x37 = [[x6, x7], [[x3, x4], [x5, x8]]],
x38 = [[x3, [x1, x2]], [x6, [x4, x5]]],
x39 = [[x3, [x1, x2]], [x8, [x4, x5]]],
x40 = [[x4, [x2, x3]], [x7, [x5, x6]]],
x41 = [[x4, [x2, x3]], [x8, [x5, x6]]],
x42 = [[x5, [x3, x4]], [x8, [x5, x6]]],
x43 = [[x7, [x5, x6]], [x8, [x4, x5]]],

α3 + α4 + α5 + α6 + α7 + α8,
α1 + α2 + α3 + α4 + α5 + α6,
α1 + α2 + α3 + α4 + α5 + α8,
α2 + α3 + α4 + α5 + α6 + α7,
α2 + α3 + α4 + α5 + α6 + α8,
2α5 + α3 + α4 + α6 + α8,
2α5 + α4 + α6 + α7 + α8,

x44 = [[x4, [x2, x3]], [[x5, x8], [x6, x7]]], α2 + α3 + α4 + α5 + α6 + α7 + α8,

x45 = [[x7, [x5, x6]], [[x1, x2], [x3, x4]]], α1 + α2 + α3 + α4 + α5 + α6 + α7,

x46 = [[x7, [x5, x6]], [[x3, x4], [x5, x8]]], 2α5 + α3 + α4 + α6 + α7 + α8,

x47 = [[x8, [x4, x5]], [[x3, x4], [x5, x6]]], 2α4 + 2α5 + α3 + α6 + α8,
x48 = [[x8, [x5, x6]], [[x1, x2], [x3, x4]]], α1 + α2 + α3 + α4 + α5 + α6 + α8,

x49 = [[x8, [x5, x6]], [[x2, x3], [x4, x5]]], 2α5 + α2 + α3 + α4 + α6 + α8,

x50 = [[x8, [x5, x6]], [[x4, x5], [x6, x7]]], 2α5 + 2α6 + α4 + α7 + α8,

x51 = [[x8, [x5, x6]], [[x4, x5], [x3, [x1, x2]]]],
x52 = [[x8, [x6, [x4, x5]]], [[x2, x3], [x4, x5]]],
x53 = [[[x1, x2], [x3, x4]], [[x5, x8], [x6, x7]]],
x54 = [[[x2, x3], [x4, x5]], [[x5, x8], [x6, x7]]],
x55 = [[[x3, x4], [x5, x6]], [[x5, x8], [x6, x7]]],
x56 = [[[x3, x4], [x5, x8]], [[x4, x5], [x6, x7]]],

2α5 + α1 + α2 + α3 + α4 + α6 + α8,
2α4 + 2α5 + α2 + α3 + α6 + α8,
α1 + α2 + α3 + α4 + α5 + α6 + α7 + α8,
2α5 + α2 + α3 + α4 + α6 + α7 + α8,
2α5 + 2α6 + α3 + α4 + α7 + α8,
2α4 + 2α5 + α3 + α6 + α7 + α8,

x57 =
[[[x1, x2], [x3, x4]], [[x5, x8], [x6, [x4, x5]]]],
x58 =

[[[x3, x4], [x5, x8]], [[x5, x6], [x4, [x2, x3]]]],
x59 =
[[[x4, x5], [x6, x7]], [[x3, x4], [x8, [x5, x6]]]],
x60 =
[[[x4, x5], [x6, x7]], [[x5, x8], [x4, [x2, x3]]]],
x61 =

[[[x5, x8], [x6, x7]], [[x4, x5], [x3, [x1, x2]]]],
x62 =

[[[x5, x8], [x6, x7]], [[x5, x6], [x4, [x2, x3]]]],

2α4 + 2α5 + α1 + α2 + α3 + α6 + α8,
2α3 + 2α4 + 2α5 + α2 + α6 + α8,
2α4 + 2α5 + 2α6 + α3 + α7 + α8,
2α4 + 2α5 + α2 + α3 + α6 + α7 + α8,
2α5 + α1 + α2 + α3 + α4 + α6 + α7 + α8,
2α5 + 2α6 + α2 + α3 + α4 + α7 + α8,

123



104 S. Bouarroudj et al.

x63 =
[[[x5, x8], [x6, x7]], [[x3, [x1, x2]], [x6, [x4, x5]]]],
x64 =
[[[x3, x4], [x8, [x5, x6]]], [[x4, x5], [x3, [x1, x2]]]],
x65 =

[[[x4, x5], [x3, [x1, x2]]], [[x6, x7], [x8, [x4, x5]]]],
x66 =

[[[x5, x6], [x4, [x2, x3]]], [[x6, x7], [x8, [x4, x5]]]],
x67 =
[[[x5, x8], [x4, [x2, x3]]], [[x6, x7], [x5, [x3, x4]]]],
x68 =

[[[x5, x8], [x6, [x4, x5]]], [[x6, x7], [x5, [x3, x4]]]],

2α5 + 2α6 + α1 + α2 + α3 + α4 + α7 + α8,
2α3 + 2α4 + 2α5 + α1 + α2 + α6 + α8,
2α4 + 2α5 + α1 + α2 + α3 + α6 + α7 + α8,
2α4 + 2α5 + 2α6 + α2 + α3 + α7 + α8,
2α3 + 2α4 + 2α5 + α2 + α6 + α7 + α8,
2α4 + 2α6 + 3α5 + α3 + α7 + α8,

x69 = [[[x5, x8], [x4, [x2, x3]]], [[x3, [x1, x2]],
[x6, [x4, x5]]]],

2α2 + 2α3 + 2α4 + 2α5 + α1 + α6 + α8,

x70 = [[[x5, x8], [x6, [x4, x5]]], [[x4, [x2, x3]],
[x7, [x5, x6]]]],

2α4 + 2α6 + 3α5 + α2 + α3 + α7 + α8,

x71 = [[[x6, x7], [x5, [x3, x4]]], [[x3, [x1, x2]],
[x8, [x4, x5]]]], 2α3 + 2α4 + 2α5 + α1 + α2 + α6 + α7 + α8,

x72 = [[[x6, x7], [x5, [x3, x4]]], [[x4, [x2, x3]],
[x8, [x5, x6]]]],

2α3 + 2α4 + 2α5 + 2α6 + α2+α7+α8,

x73 = [[[x6, x7], [x8, [x4, x5]]], [[x3, [x1, x2]],
[x6, [x4, x5]]]],

2α4 + 2α5 + 2α6 +α1 +α2 +α3 +α7 +α8,

x74 = [[[x6, x7], [x8, [x4, x5]]], [[x5, [x3, x4]],
[x8, [x5, x6]]]],

2α4 + 2α6 + 2α8 + 3α5 + α3 + α7,

x75 =
[[[x6, x7], [[x3, x4], [x5, x8]]], [[x3, [x1, x2]],
[x6, [x4, x5]]]],

2α3+2α4+2α5+2α6+α1+α2+α7+α8,

x76 =
[[[x3, [x1, x2]], [x6, [x4, x5]]], [[x7, [x5, x6]],
[x8, [x4, x5]]]],

2α4 + 2α6 + 3α5 + α1 + α2 + α3
+α7 + α8,

x77 =
[[[x3, [x1, x2]], [x8, [x4, x5]]], [[x4, [x2, x3]],
[x7, [x5, x6]]]],

2α2+2α3+2α4+2α5+α1+α6+α7+α8,

x78 =
[[[x4, [x2, x3]], [x7, [x5, x6]]], [[x5, [x3, x4]],
[x8, [x5, x6]]]],

2α3 + 2α4 + 2α6 + 3α5 + α2 + α7 + α8,

x79 =
[[[x4, [x2, x3]], [x8, [x5, x6]]], [[x7, [x5, x6]],
[x8, [x4, x5]]]],

2α4 + 2α6 + 2α8 + 3α5 + α2 + α3 + α7,

x80 = [[[x4, [x2, x3]], [x7, [x5, x6]]],
[[x8, [x4, x5]], [[x3, x4], [x5, x6]]]],

2α3 + 2α6 + 3α4 + 3α5 + α2 + α7 + α8,

x81 = [[[x4, [x2, x3]], [x8, [x5, x6]]],
[[x7, [x5, x6]], [[x1, x2], [x3, x4]]]],

2α2 + 2α3 + 2α4 + 2α5 + 2α6 + α1
+α7 + α8,

x82 = [[[x5, [x3, x4]], [x8, [x5, x6]]],
[[x4, [x2, x3]], [[x5, x8], [x6, x7]]]],

2α3 + 2α4 + 2α6 + 2α8 + 3α5 +α2 + α7,

x83 = [[[x5, [x3, x4]], [x8, [x5, x6]]],
[[x7, [x5, x6]], [[x1, x2], [x3, x4]]]],

2α3 + 2α4 + 2α6 + 3α5 + α1 + α2
+α7 + α8,

x84 = [[[x7, [x5, x6]], [x8, [x4, x5]]],
[[x8, [x5, x6]], [[x1, x2], [x3, x4]]]],

2α4+2α6+2α8+3α5+α1+α2+α3+α7,
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x85 = [[[x4, [x2, x3]], [[x5, x8], [x6, x7]]],
[[x8, [x4, x5]], [[x3, x4], [x5, x6]]]],

2α3 + 2α6 + 2α8 + 3α4 + 3α5 +α2 + α7,

x86 = [[[x7, [x5, x6]], [[x1, x2], [x3, x4]]],
[[x8, [x4, x5]], [[x3, x4], [x5, x6]]]],

2α3 + 2α6 + 3α4 + 3α5 + α1 + α2
+α7 + α8,

x87 = [[[x7, [x5, x6]], [[x1, x2], [x3, x4]]],
[[x8, [x5, x6]], [[x2, x3], [x4, x5]]]],

2α2+2α3+2α4+2α6+3α5+α1+α7+α8,

x88 = [[[x7, [x5, x6]], [[x3, x4], [x5, x8]]],
[[x8, [x5, x6]], [[x1, x2], [x3, x4]]]],

2α3+2α4+2α6+2α8+3α5+α1+α2+α7,

x89 = [[[x7, [x5, x6]], [[x1, x2], [x3, x4]]],
[[x8, [x6, [x4, x5]]], [[x2, x3], [x4, x5]]]],

2α2+2α3+2α6+3α4+3α5+α1+α7+α8,

x90 = [[[x8, [x5, x6]], [[x1, x2], [x3, x4]]],
[[[x3, x4], [x5, x8]], [[x4, x5], [x6, x7]]]],

2α3+2α6+2α8+3α4+3α5+α1+α2+α7,

x91 = [[[x8, [x5, x6]], [[x2, x3], [x4, x5]]],
[[[x1, x2], [x3, x4]], [[x5, x8], [x6, x7]]]],

2α2 + 2α3 + 2α4 + 2α6 + 2α8
+3α5 + α1 + α7,

x92 = [[[x8, [x5, x6]], [[x2, x3], [x4, x5]]],
[[[x3, x4], [x5, x8]], [[x4, x5], [x6, x7]]]],

2α3 + 2α6 + 2α8 + 3α4 + 4α5 + α2 + α7,

x93 = [[[x7, [x5, x6]], [[x1, x2], [x3, x4]]],
[[[x3, x4], [x5, x8]], [[x5, x6],
[x4, [x2, x3]]]]],

2α2+2α6+3α3+3α4+3α5+α1+α7+α8,

x94 = [[[x8, [x5, x6]], [[x4, x5], [x3, [x1, x2]]]],
[[[x3, x4], [x5, x8]], [[x4, x5], [x6, x7]]]],

2α3 + 2α6 + 2α8 + 3α4 + 4α5 + α1
+α2 + α7,

x95 = [[[x8, [x6, [x4, x5]]], [[x2, x3], [x4, x5]]],
[[[x1, x2], [x3, x4]], [[x5, x8], [x6, x7]]]],

2α2 + 2α3 + 2α6 + 2α8 + 3α4 + 3α5
+α1 + α7,

x96 = [[[x8, [x6, [x4, x5]]], [[x2, x3], [x4, x5]]],
[[[x3, x4], [x5, x6]], [[x5, x8], [x6, x7]]]],

2α3 + 2α8 + 3α4 + 3α6 +4α5 + α2 + α7,

x97 = [[[[x1, x2], [x3, x4]], [[x5, x8], [x6, x7]]],
[[[x3, x4], [x5, x8]], [[x5, x6],
[x4, [x2, x3]]]]],

2α2 + 2α6 + 2α8 + 3α3 + 3α4 + 3α5
+α1 + α7,

x98 = [[[[x2, x3], [x4, x5]], [[x5, x8], [x6, x7]]],
[[[x1, x2], [x3, x4]], [[x5, x8],
[x6, [x4, x5]]]]],

2α2+2α3+2α6+2α8+3α4+4α5+α1+α7,

x99 = [[[[x3, x4], [x5, x6]], [[x5, x8], [x6, x7]]],
[[[x1, x2], [x3, x4]], [[x5, x8],
[x6, [x4, x5]]]]],

2α3+2α8+3α4+3α6+4α5+α1+α2+α7,

x100 = [[[[x3, x4], [x5, x8]], [[x4, x5], [x6, x7]]],
[[[x5, x8], [x6, x7]], [[x5, x6],
[x4, [x2, x3]]]]],

2α3 + 2α7 + 2α8 + 3α4 + 3α6 + 4α5 + α2,

x101 = [[[[x1, x2], [x3, x4]], [[x5, x8],
[x6, [x4, x5]]]], [[[x5, x8], [x6, x7]],
[[x5, x6], [x4, [x2, x3]]]]],

2α2 + 2α3 + 2α8 + 3α4 + 3α6
+4α5 + α1 + α7,

x102 = [[[[x3, x4], [x5, x8]], [[x5, x6],
[x4, [x2, x3]]]], [[[x5, x8], [x6, x7]],
[[x4, x5], [x3, [x1, x2]]]]],

2α2+2α6+2α8+3α3+3α4+4α5+α1+α7,

x103 = [[[[x4, x5], [x6, x7]], [[x3, x4],
[x8, [x5, x6]]]], [[[x5, x8], [x6, x7]],
[[x4, x5], [x3, [x1, x2]]]]],

2α3 + 2α7 + 2α8 + 3α4 + 3α6
+4α5 + α1 + α2,
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x104 = [[[[x4, x5], [x6, x7]], [[x5, x8],
[x4, [x2, x3]]]], [[[x3, x4], [x8, [x5, x6]]],
[[x4, x5], [x3, [x1, x2]]]]],

2α2+2α6+2α8+3α3+4α4+4α5+α1+α7,

x105 = [[[[x5, x8], [x6, x7]], [[x5, x6],
[x4, [x2, x3]]]], [[[x3, x4], [x8, [x5, x6]]],
[[x4, x5], [x3, [x1, x2]]]]],

2α2 + 2α8 + 3α3 + 3α4 + 3α6
+4α5 + α1 + α7,

x106 = [[[[x5, x8], [x6, x7]], [[x5, x6],
[x4, [x2, x3]]]], [[[x4, x5], [x3, [x1, x2]]],
[[x6, x7], [x8, [x4, x5]]]]],

2α2+2α3+2α7+2α8+3α4+3α6+4α5+α1,

x107 = [[[[x5, x8], [x6, x7]], [[x3, [x1, x2]],
[x6, [x4, x5]]]], [[[x5, x8], [x4, [x2, x3]]],
[[x6, x7], [x5, [x3, x4]]]]],

2α2+2α7+2α8+3α3+3α4+3α6+4α5+α1,

x108 = [[[[x3, x4], [x8, [x5, x6]]], [[x4, x5],
[x3, [x1, x2]]]], [[[x5, x6], [x4, [x2, x3]]],
[[x6, x7], [x8, [x4, x5]]]]],

2α2 + 2α8 + 3α3 + 3α6 + 4α4
+4α5 + α1 + α7,

x109 = [[[[x5, x8], [x4, [x2, x3]]], [[x6, x7],
[x5, [x3, x4]]]], [[[x6, x7], [x8, [x4, x5]]],
[[x3, [x1, x2]], [x6, [x4, x5]]]]],

2α2+2α7+2α8+3α3+3α6+4α4+4α5+α1,

x110 = [[[[x5, x8], [x6, [x4, x5]]], [[x6, x7],
[x5, [x3, x4]]]], [[[x5, x8], [x4, [x2, x3]]],
[[x3, [x1, x2]], [x6, [x4, x5]]]]],

2α2+2α8+3α3+3α6+4α4+5α5+α1+α7,

x111 = [[[[x5, x8], [x4, [x2, x3]]],
[[x3, [x1, x2]], [x6, [x4, x5]]]],
[[[x6, x7], [x8, [x4, x5]]],
[[x5, [x3, x4]], [x8, [x5, x6]]]]],

2α2 + 3α3 + 3α6 + 3α8 + 4α4 + 5α5
+α1 + α7,

x112 = [[[[x5, x8], [x6, [x4, x5]]],
[[x4, [x2, x3]], [x7, [x5, x6]]]],
[[[x6, x7], [x5, [x3, x4]]],
[[x3, [x1, x2]], [x8, [x4, x5]]]]],

2α2 + 2α7 + 2α8 + 3α3 + 3α6
+4α4 + 5α5 + α1,

x113 = [[[[x6, x7], [x8, [x4, x5]]],
[[x3, [x1, x2]], [x6, [x4, x5]]]],
[[[x4, [x2, x3]], [x7, [x5, x6]]],
[[x5, [x3, x4]], [x8, [x5, x6]]]]],

2α2+2α7+2α8+3α3+4α4+4α6+5α5+α1,

x114 = [[[[x6, x7], [x8, [x4, x5]]],
[[x5, [x3, x4]], [x8, [x5, x6]]]],
[[[x3, [x1, x2]], [x8, [x4, x5]]],
[[x4, [x2, x3]], [x7, [x5, x6]]]]],

2α2+2α7+3α3+3α6+3α8+4α4+5α5+α1,

x115 = [[[[x6, x7], [[x3, x4], [x5, x8]]],
[[x3, [x1, x2]], [x6, [x4, x5]]]],
[[[x4, [x2, x3]], [x8, [x5, x6]]],
[[x7, [x5, x6]], [x8, [x4, x5]]]]],

2α2 + 2α7 + 3α3 + 3α8 + 4α4
+4α6 + 5α5 + α1,

x116 = [[[[x4, [x2, x3]], [x8, [x5, x6]]],
[[x7, [x5, x6]], [x8, [x4, x5]]]],
[[[x5, [x3, x4]], [x8, [x5, x6]]],
[[x7, [x5, x6]], [[x1, x2], [x3, x4]]]]],

2α2+2α7+3α3+3α8+4α4+4α6+6α5+α1,

x117 = [[[[x4, [x2, x3]], [x7, [x5, x6]]],
[[x8, [x4, x5]], [[x3, x4], [x5, x6]]]],
[[[x7, [x5, x6]], [x8, [x4, x5]]],
[[x8, [x5, x6]], [[x1, x2], [x3, x4]]]]],

2α2+2α7+3α3+3α8+4α6+5α4+6α5+α1,
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x118 = [[[[x5, [x3, x4]], [x8, [x5, x6]]],
[[x7, [x5, x6]], [[x1, x2], [x3, x4]]]],
[[[x4, [x2, x3]], [[x5, x8], [x6, x7]]],
[[x8, [x4, x5]], [[x3, x4], [x5, x6]]]]],

2α2+2α7+3α8+4α3+4α6+5α4+6α5+α1,

x119 = [[[[x4, [x2, x3]], [[x5, x8], [x6, x7]]],
[[x8, [x4, x5]], [[x3, x4], [x5, x6]]]],
[[[x7, [x5, x6]], [[x1, x2], [x3, x4]]],
[[x8, [x5, x6]], [[x2, x3], [x4, x5]]]]],

2α7 + 3α2 + 3α8 + 4α3 + 4α6
+5α4 + 6α5 + α1,

x120 = [[[[x7, [x5, x6]], [[x3, x4], [x5, x8]]],
[[x8, [x5, x6]], [[x1, x2], [x3, x4]]]],
[[[x7, [x5, x6]], [[x1, x2], [x3, x4]]],
[[x8, [x6, [x4, x5]]], [[x2, x3], [x4, x5]]]]]

2α1 + 2α7 + 3α2 + 3α8 + 4α3 + 4α6 +
5α4 + 6α5

4.16.10 e(8, 8) of sdim = 120|128

In theZ-gradingwith the 1st CMwith deg e±
8 = ±1 and deg e±

i = 0 for i �= 8,we have
g0 = gl(8) = gl(V ). There are different isomorphisms between g0 and gl(8); using
the one where hi = Ei,i + Ei+1,i+1 for all i = 1, . . . , 7, and h8 = E6,6+ E7,7+ E8,8,
we see that, as modules over gl(V ),

g1 = ∧5 V ∗; g2 = ∧6 V ; g3 = V ;
g−1 = ∧5 V ; g−2 = ∧6 V ∗; g−3 = V ∗.

We can also set h8 = E1,1 + E2,2 + E3,3 + E4,4 + E5,5. Then we get

g1 = ∧3 V ; g2 = ∧6 V ; g3 = ∧7 V ∗;
g−1 = ∧3 V ∗; g−2 = ∧6 V ∗; g−3 = ∧7 V .

The algebra g0̄ is isomorphic to o
(2)
	 (16)⊂+ Kd, where d = E6,6 + · · · + E13,13,

and g1̄ is an irreducible g0̄-module with the highest weight element x120 of weight
(1, 0, . . . , 0) with respect to h1, . . . , h8; g1̄ also possesses a lowest weight vector.

the root vectors the roots

x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , α1, α2, α3, α4, α5, α6, α7, α8,

x9 = [x1, x2], x10 = [x2, x3], x11 = [x3, x4], x12 = [x4, x5],
x13 = [x5, x6], x14 = [x5, x8], x15 = [x6, x7],

α1 + α2, α2 + α3, α3 + α4,
α4 + α5, α5 + α6, α5 + α8,
α6 + α7,

x16 = [x3, [x1, x2]], x17 = [x4, [x2, x3]],
x18 = [x5, [x3, x4]], x19 = [x6, [x4, x5]],
x20 = [x7, [x5, x6]], x21 = [x8, [x4, x5]],
x22 = [x8, [x5, x6]],

α1 + α2 + α3, α2 + α3 + α4,
α3 + α4 + α5, α4 + α5 + α6,
α5 + α6 + α7, α4 + α5 + α8,
α5 + α6 + α8,

x23 = [x8, [x6, [x4, x5]]], x24 = [[x1, x2], [x3, x4]],
x25 = [[x2, x3], [x4, x5]], x26 = [[x3, x4], [x5, x6]],
x27 = [[x3, x4], [x5, x8]], x28 = [[x4, x5], [x6, x7]],
x29 = [[x5, x8], [x6, x7]],

α4 + α5 + α6 + α8,
α1 + α2 + α3 + α4,
α2 + α3 + α4 + α5,
α3 + α4 + α5 + α6,
α3 + α4 + α5 + α8,
α4 + α5 + α6 + α7,
α5 + α6 + α7 + α8,
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x30 = [[x3, x4], [x8, [x5, x6]]], α3 + α4 + α5 + α6 + α8,

x31 = [[x4, x5], [x3, [x1, x2]]], α1 + α2 + α3 + α4 + α5,

x32 = [[x5, x6], [x4, [x2, x3]]], α2 + α3 + α4 + α5 + α6,

x33 = [[x5, x8], [x4, [x2, x3]]], α2 + α3 + α4 + α5 + α8,

x34 = [[x5, x8], [x6, [x4, x5]]], 2α5 + α4 + α6 + α8,

x35 = [[x6, x7], [x5, [x3, x4]]], α3 + α4 + α5 + α6 + α7,

x36 = [[x6, x7], [x8, [x4, x5]]], α4 + α5 + α6 + α7 + α8,

x37 = [[x6, x7], [[x3, x4], [x5, x8]]],
x38 = [[x3, [x1, x2]], [x6, [x4, x5]]],
x39 = [[x3, [x1, x2]], [x8, [x4, x5]]],
x40 = [[x4, [x2, x3]], [x7, [x5, x6]]],
x41 = [[x4, [x2, x3]], [x8, [x5, x6]]],
x42 = [[x5, [x3, x4]], [x8, [x5, x6]]],
x43 = [[x7, [x5, x6]], [x8, [x4, x5]]],

α3 + α4 + α5 + α6 + α7 + α8,
α1 + α2 + α3 + α4 + α5 + α6,
α1 + α2 + α3 + α4 + α5 + α8,
α2 + α3 + α4 + α5 + α6 + α7,
α2 + α3 + α4 + α5 + α6 + α8,
2α5 + α3 + α4 + α6 + α8,
2α5 + α4 + α6 + α7 + α8,

x44 = [[x4, [x2, x3]], [[x5, x8], [x6, x7]]],
α2 + α3 + α4 + α5+α6+α7+α8,

x45 = [[x7, [x5, x6]], [[x1, x2], [x3, x4]]],
α1 + α2 + α3 + α4+α5+α6+α7,

x46 = [[x7, [x5, x6]], [[x3, x4], [x5, x8]]], 2α5 + α3 + α4 + α6 + α7 + α8,

x47 = [[x8, [x4, x5]], [[x3, x4], [x5, x6]]], 2α4 + 2α5 + α3 + α6 + α8,

x48 = [[x8, [x5, x6]], [[x1, x2], [x3, x4]]],
α1 + α2 + α3 + α4+α5+α6+α8,

x49 = [[x8, [x5, x6]], [[x2, x3], [x4, x5]]], 2α5 + α2 + α3 + α4 + α6 + α8,

x50 = [[x8, [x5, x6]], [[x4, x5], [x6, x7]]], 2α5 + 2α6 + α4 + α7 + α8,

x51 = [[x8, [x5, x6]], [[x4, x5], [x3, [x1, x2]]]],
x52 = [[x8, [x6, [x4, x5]]], [[x2, x3], [x4, x5]]],
x53 = [[[x1, x2], [x3, x4]], [[x5, x8], [x6, x7]]],
x54 = [[[x2, x3], [x4, x5]], [[x5, x8], [x6, x7]]],
x55 = [[[x3, x4], [x5, x6]], [[x5, x8], [x6, x7]]],
x56 = [[[x3, x4], [x5, x8]], [[x4, x5], [x6, x7]]],

2α5+α1+α2+α3+α4+α6+α8,
2α4 + 2α5 + α2 + α3 + α6 + α8,
α1 + α2 + α3 + α4 + α5 + α6 +
α7 + α8,
2α5+α2+α3+α4+α6+α7+α8,
2α5 + 2α6 + α3 + α4 + α7 + α8,
2α4 + 2α5 + α3 + α6 + α7 + α8,

x57 = [[[x1, x2], [x3, x4]], [[x5, x8], [x6, [x4, x5]]]], 2α4 + 2α5 + α1 + α2 + α3
+α6 + α8,

x58 = [[[x3, x4], [x5, x8]], [[x5, x6], [x4, [x2, x3]]]],
2α3 + 2α4 + 2α5 + α2+α6+α8,

x59 = [[[x4, x5], [x6, x7]], [[x3, x4], [x8, [x5, x6]]]],
2α4 + 2α5 + 2α6 + α3+α7+α8,

x60 = [[[x4, x5], [x6, x7]], [[x5, x8], [x4, [x2, x3]]]], 2α4 + 2α5 + α2 + α3 + α6
+α7 + α8,

x61 = [[[x5, x8], [x6, x7]], [[x4, x5], [x3, [x1, x2]]]], 2α5 + α1 + α2 + α3 + α4 + α6
+α7 + α8,

x62 = [[[x5, x8], [x6, x7]], [[x5, x6], [x4, [x2, x3]]]], 2α5 + 2α6 + α2 + α3 + α4
+α7 + α8,
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x63 = [[[x5, x8], [x6, x7]], [[x3, [x1, x2]], [x6, [x4, x5]]]],
x64 = [[[x3, x4], [x8, [x5, x6]]], [[x4, x5], [x3, [x1, x2]]]],
x65 = [[[x4, x5], [x3, [x1, x2]]], [[x6, x7], [x8, [x4, x5]]]],
x66 = [[[x5, x6], [x4, [x2, x3]]], [[x6, x7], [x8, [x4, x5]]]],
x67 = [[[x5, x8], [x4, [x2, x3]]], [[x6, x7], [x5, [x3, x4]]]],
x68 = [[[x5, x8], [x6, [x4, x5]]], [[x6, x7], [x5, [x3, x4]]]],

2α5 + 2α6 + α1 + α2 + α3 +
α4 + α7 + α8, 2α3 + 2α4 +
2α5 + α1 + α2 + α6 + α8,
2α4 + 2α5 + α1 + α2 + α3 +
α6 + α7 + α8, 2α4 + 2α5 +
2α6 + α2 + α3 + α7 + α8, 2α3 +
2α4 + 2α5 + α2 + α6 + α7 + α8,
2α4+2α6+3α5+α3+α7+α8,

x69 =
[[[x5, x8], [x4, [x2, x3]]], [[x3, [x1, x2]], [x6, [x4, x5]]]],

2α2 + 2α3 + 2α4 + 2α5 + α1
+α6 + α8,

x70 =
[[[x5, x8], [x6, [x4, x5]]], [[x4, [x2, x3]], [x7, [x5, x6]]]],

2α4 + 2α6 + 3α5 + α2 + α3
+α7 + α8,

x71 =
[[[x6, x7], [x5, [x3, x4]]], [[x3, [x1, x2]], [x8, [x4, x5]]]],

2α3 + 2α4 + 2α5 + α1 + α2
+α6 + α7 + α8,

x72 =
[[[x6, x7], [x5, [x3, x4]]], [[x4, [x2, x3]], [x8, [x5, x6]]]],

2α3 + 2α4 + 2α5 + 2α6
+α2 + α7 + α8,

x73 =
[[[x6, x7], [x8, [x4, x5]]], [[x3, [x1, x2]], [x6, [x4, x5]]]],

2α4 + 2α5 + 2α6 + α1 + α2
+α3 + α7 + α8,

x74 =
[[[x6, x7], [x8, [x4, x5]]], [[x5, [x3, x4]], [x8, [x5, x6]]]],

2α4 + 2α6 + 2α8 + 3α5
+α3 + α7,

x75 =
[[[x6, x7], [[x3, x4], [x5, x8]]], [[x3, [x1, x2]], [x6, [x4, x5]]]],
x76 =
[[[x3, [x1, x2]], [x6, [x4, x5]]], [[x7, [x5, x6]], [x8, [x4, x5]]]],
x77 =
[[[x3, [x1, x2]], [x8, [x4, x5]]], [[x4, [x2, x3]], [x7, [x5, x6]]]],
x78 =
[[[x4, [x2, x3]], [x7, [x5, x6]]], [[x5, [x3, x4]], [x8, [x5, x6]]]],
x79 =
[[[x4, [x2, x3]], [x8, [x5, x6]]], [[x7, [x5, x6]], [x8, [x4, x5]]]],

2α3 + 2α4 + 2α5 + 2α6 + α1 +
α2 + α7 + α8, 2α4 + 2α6 +
3α5 + α1 + α2 + α3 + α7 + α8,
2α2 + 2α3 + 2α4 + 2α5 + α1 +
α6 + α7 + α8, 2α3 + 2α4 +
2α6 + 3α5 + α2 + α7 + α8,
2α4 + 2α6 + 2α8 + 3α5 + α2 +
α3 + α7,

x80 = [[[x4, [x2, x3]], [x7, [x5, x6]]], [[x8, [x4, x5]],
[[x3, x4], [x5, x6]]]],

2α3 + 2α6 + 3α4 + 3α5
+α2 + α7 + α8,

x81 = [[[x4, [x2, x3]], [x8, [x5, x6]]], [[x7, [x5, x6]],
[[x1, x2], [x3, x4]]]],

2α2 + 2α3 + 2α4 + 2α5
+2α6 + α1 + α7 + α8,

x82 = [[[x5, [x3, x4]], [x8, [x5, x6]]], [[x4, [x2, x3]],
[[x5, x8], [x6, x7]]]],

2α3 + 2α4 + 2α6 + 2α8
+3α5 + α2 + α7,

x83 = [[[x5, [x3, x4]], [x8, [x5, x6]]], [[x7, [x5, x6]],
[[x1, x2], [x3, x4]]]],

2α3 + 2α4 + 2α6 + 3α5
+α1 + α2 + α7 + α8,

x84 = [[[x7, [x5, x6]], [x8, [x4, x5]]], [[x8, [x5, x6]],
[[x1, x2], [x3, x4]]]],

2α4 + 2α6 + 2α8 + 3α5
+α1 + α2 + α3 + α7,

x85 = [[[x4, [x2, x3]], [[x5, x8], [x6, x7]]], [[x8, [x4, x5]],
[[x3, x4], [x5, x6]]]],
x86 = [[[x7, [x5, x6]], [[x1, x2], [x3, x4]]], [[x8, [x4, x5]],
[[x3, x4], [x5, x6]]]],
x87 = [[[x7, [x5, x6]], [[x1, x2], [x3, x4]]], [[x8, [x5, x6]],
[[x2, x3], [x4, x5]]]],
x88 = [[[x7, [x5, x6]], [[x3, x4], [x5, x8]]], [[x8, [x5, x6]],
[[x1, x2], [x3, x4]]]],

2α3 + 2α6 + 2α8 + 3α4 + 3α5 +
α2 + α7, 2α3 + 2α6 + 3α4 +
3α5 + α1 + α2 + α7 + α8,
2α2 + 2α3 + 2α4 + 2α6 +
3α5 + α1 + α7 + α8,
2α3 + 2α4 + 2α6 + 2α8 +
3α5 + α1 + α2 + α7,
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x89 =
[[[x7, [x5, x6]], [[x1, x2], [x3, x4]]], [[x8, [x6, [x4, x5]]],
[[x2, x3], [x4, x5]]]],

2α2 + 2α3 + 2α6 + 3α4
+3α5 + α1 + α7 + α8,

x90 =
[[[x8, [x5, x6]], [[x1, x2], [x3, x4]]], [[[x3, x4], [x5, x8]],
[[x4, x5], [x6, x7]]]],

2α3 + 2α6 + 2α8 + 3α4
+3α5 + α1 + α2 + α7,

x91 =
[[[x8, [x5, x6]], [[x2, x3], [x4, x5]]], [[[x1, x2], [x3, x4]],
[[x5, x8], [x6, x7]]]],

2α2 + 2α3 + 2α4 + 2α6
+2α8 + 3α5 + α1 + α7,

x92 =
[[[x8, [x5, x6]], [[x2, x3], [x4, x5]]], [[[x3, x4], [x5, x8]],
[[x4, x5], [x6, x7]]]],

2α3 + 2α6 + 2α8 + 3α4
+4α5 + α2 + α7,

x93 =
[[[x7, [x5, x6]], [[x1, x2], [x3, x4]]], [[[x3, x4], [x5, x8]],
[[x5, x6], [x4, [x2, x3]]]]],
x94 = [[[x8, [x5, x6]], [[x4, x5], [x3, [x1, x2]]]], [[[x3, x4],
[x5, x8]], [[x4, x5], [x6, x7]]]],
x95 = [[[x8, [x6, [x4, x5]]], [[x2, x3], [x4, x5]]], [[[x1, x2],
[x3, x4]], [[x5, x8], [x6, x7]]]],
x96 = [[[x8, [x6, [x4, x5]]], [[x2, x3], [x4, x5]]], [[[x3, x4],
[x5, x6]], [[x5, x8], [x6, x7]]]],

2α2 + 2α6 + 3α3 + 3α4 +
3α5 + α1 + α7 + α8,
2α3 + 2α6 + 2α8 + 3α4 +
4α5 + α1 + α2 + α7,
2α2 + 2α3 + 2α6 + 2α8 + 3α4 +
3α5 + α1 + α7, 2α3 + 2α8 +
3α4 + 3α6 + 4α5 + α2 + α7,

x97 =
[[[[x1, x2], [x3, x4]], [[x5, x8], [x6, x7]]], [[[x3, x4], [x5, x8]],
[[x5, x6], [x4, [x2, x3]]]]],

2α2 + 2α6 + 2α8 + 3α3 + 3α4
+3α5 + α1 + α7,

x98 =
[[[[x2, x3], [x4, x5]], [[x5, x8], [x6, x7]]], [[[x1, x2], [x3, x4]],
[[x5, x8], [x6, [x4, x5]]]]],

2α2 + 2α3 + 2α6 + 2α8 + 3α4
+4α5 + α1 + α7,

x99 =
[[[[x3, x4], [x5, x6]], [[x5, x8], [x6, x7]]], [[[x1, x2], [x3, x4]],
[[x5, x8], [x6, [x4, x5]]]]],

2α3 + 2α8 + 3α4 + 3α6 + 4α5
+α1 + α2 + α7,

x100 =
[[[[x3, x4], [x5, x8]], [[x4, x5], [x6, x7]]], [[[x5, x8], [x6, x7]],
[[x5, x6], [x4, [x2, x3]]]]],

2α3 + 2α7 + 2α8 + 3α4
+3α6 + 4α5 + α2,

x101 =
[[[[x1, x2], [x3, x4]], [[x5, x8], [x6, [x4, x5]]]], [[[x5, x8],
[x6, x7]], [[x5, x6], [x4, [x2, x3]]]]],

2α2 + 2α3 + 2α8 + 3α4 +
3α6 + 4α5 + α1 + α7,

x102 =
[[[[x3, x4], [x5, x8]], [[x5, x6], [x4, [x2, x3]]]], [[[x5, x8],
[x6, x7]], [[x4, x5], [x3, [x1, x2]]]]],

2α2 + 2α6 + 2α8 + 3α3 +
3α4 + 4α5 + α1 + α7,

x103 =
[[[[x4, x5], [x6, x7]], [[x3, x4], [x8, [x5, x6]]]], [[[x5, x8],
[x6, x7]], [[x4, x5], [x3, [x1, x2]]]]],

2α3 + 2α7 + 2α8 + 3α4 +
3α6 + 4α5 + α1 + α2,

x104 =
[[[[x4, x5], [x6, x7]], [[x5, x8], [x4, [x2, x3]]]], [[[x3, x4],
[x8, [x5, x6]]], [[x4, x5], [x3, [x1, x2]]]]],

2α2 + 2α6 + 2α8 + 3α3
+4α4 + 4α5 + α1 + α7,

x105 =
[[[[x5, x8], [x6, x7]], [[x5, x6], [x4, [x2, x3]]]], [[[x3, x4],
[x8, [x5, x6]]], [[x4, x5], [x3, [x1, x2]]]]],

2α2 + 2α8 + 3α3 + 3α4
+3α6 + 4α5 + α1 + α7,

x106 =
[[[[x5, x8], [x6, x7]], [[x5, x6], [x4, [x2, x3]]]], [[[x4, x5],
[x3, [x1, x2]]], [[x6, x7], [x8, [x4, x5]]]]],

2α2 + 2α3 + 2α7 + 2α8
+3α4 + 3α6 + 4α5 + α1,
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x107 = [[[[x5, x8], [x6, x7]], [[x3, [x1, x2]], [x6, [x4, x5]]]],
[[[x5, x8], [x4, [x2, x3]]], [[x6, x7], [x5, [x3, x4]]]]], 2α2 + 2α7 + 2α8 + 3α3 +

3α4 + 3α6 + 4α5 + α1,
x108 = [[[[x3, x4], [x8, [x5, x6]]], [[x4, x5], [x3, [x1, x2]]]],

[[[x5, x6], [x4, [x2, x3]]], [[x6, x7], [x8, [x4, x5]]]]], 2α2 + 2α8 + 3α3 + 3α6 +
4α4 + 4α5 + α1 + α7,

x109 = [[[[x5, x8], [x4, [x2, x3]]], [[x6, x7], [x5, [x3, x4]]]],
[[[x6, x7], [x8, [x4, x5]]], [[x3, [x1, x2]],
[x6, [x4, x5]]]]],

2α2 + 2α7 + 2α8 + 3α3
+3α6 + 4α4 + 4α5 + α1,

x110 = [[[[x5, x8], [x6, [x4, x5]]], [[x6, x7], [x5, [x3, x4]]]],
[[[x5, x8], [x4, [x2, x3]]], [[x3, [x1, x2]],
[x6, [x4, x5]]]]],

2α2 + 2α8 + 3α3 + 3α6
+4α4 + 5α5 + α1 + α7,

x111 = [[[[x5, x8], [x4, [x2, x3]]], [[x3, [x1, x2]], [x6, [x4, x5]]]],
[[[x6, x7], [x8, [x4, x5]]], [[x5, [x3, x4]], [x8, [x5, x6]]]]],

2α2 + 3α3 + 3α6 + 3α8 +
4α4 + 5α5 + α1 + α7,

x112 = [[[[x5, x8], [x6, [x4, x5]]], [[x4, [x2, x3]], [x7, [x5, x6]]]],
[[[x6, x7], [x5, [x3, x4]]], [[x3, [x1, x2]], [x8, [x4, x5]]]]],

2α2 + 2α7 + 2α8 + 3α3 +
3α6 + 4α4 + 5α5 + α1,

x113 = [[[[x6, x7], [x8, [x4, x5]]], [[x3, [x1, x2]],
[x6, [x4, x5]]]], [[[x4, [x2, x3]], [x7, [x5, x6]]],
[[x5, [x3, x4]], [x8, [x5, x6]]]]],

2α2 + 2α7 + 2α8 + 3α3
+4α4 + 4α6 + 5α5 + α1,

x114 = [[[[x6, x7], [x8, [x4, x5]]], [[x5, [x3, x4]],
[x8, [x5, x6]]]], [[[x3, [x1, x2]], [x8, [x4, x5]]],
[[x4, [x2, x3]], [x7, [x5, x6]]]]],

2α2 + 2α7 + 3α3 + 3α6
+3α8 + 4α4 + 5α5 + α1,

x115 = [[[[x6, x7], [[x3, x4], [x5, x8]]], [[x3, [x1, x2]],
[x6, [x4, x5]]]], [[[x4, [x2, x3]], [x8, [x5, x6]]],
[[x7, [x5, x6]], [x8, [x4, x5]]]]],

2α2 + 2α7 + 3α3 + 3α8 +
4α4 + 4α6 + 5α5 + α1,

x116 = [[[[x4, [x2, x3]], [x8, [x5, x6]]], [[x7, [x5, x6]],
[x8, [x4, x5]]]], [[[x5, [x3, x4]], [x8, [x5, x6]]],
[[x7, [x5, x6]], [[x1, x2], [x3, x4]]]]],

2α2 + 2α7 + 3α3 + 3α8
+4α4 + 4α6 + 6α5 + α1,

x117 = [[[[x4, [x2, x3]], [x7, [x5, x6]]], [[x8, [x4, x5]],
[[x3, x4], [x5, x6]]]], [[[x7, [x5, x6]], [x8, [x4, x5]]],
[[x8, [x5, x6]], [[x1, x2], [x3, x4]]]]],

2α2 + 2α7 + 3α3 + 3α8 +
4α6 + 5α4 + 6α5 + α1,

x118 = [[[[x5, [x3, x4]], [x8, [x5, x6]]], [[x7, [x5, x6]],
[[x1, x2], [x3, x4]]]], [[[x4, [x2, x3]], [[x5, x8],
[x6, x7]]], [[x8, [x4, x5]], [[x3, x4], [x5, x6]]]]],

2α2 + 2α7 + 3α8 + 4α3
+4α6 + 5α4 + 6α5 + α1,

x119 = [[[[x4, [x2, x3]], [[x5, x8], [x6, x7]]], [[x8, [x4, x5]],
[[x3, x4], [x5, x6]]]], [[[x7, [x5, x6]], [[x1, x2], [x3, x4]]],
[[x8, [x5, x6]], [[x2, x3], [x4, x5]]]]],

2α7 + 3α2 + 3α8 + 4α3 +
4α6 + 5α4 + 6α5 + α1,

x120 = [[[[x7, [x5, x6]], [[x3, x4], [x5, x8]]], [[x8, [x5, x6]],
[[x1, x2], [x3, x4]]]], [[[x7, [x5, x6]], [[x1, x2],
[x3, x4]]], [[x8, [x6, [x4, x5]]], [[x2, x3], [x4, x5]]]]]

2α1 + 2α7 + 3α2 + 3α8
+4α3 + 4α6 + 5α4 + 6α5
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5 Root Systems of Lie Algebras of the Form g(A)with
Indecomposable A

5.1 wk(3; a) andwk(4; a),Where˛ �= 0, 1 and p = 2

These Lie algebras are desuperizations (whichmeanswe forget squaring and only con-
sider the brackets, see Bouarroudj et al. 2015) of bgl(3; a) and bgl(4; a), respectively,
so they have the same root systems, see Sects. 4.16.2 and 4.16.3.

5.2 F(oo(1|2n)), where F is the Desuperization Functor, p = 2

(In Weisfeiler and Kac (1971), this simple Lie algebra is denoted 
n .) Its root system
is the same as that of o(2n + 1), see Bouarroudj et al. (2015).

5.3 br(2;"),Where " �= 0 and p = 3

These Lie algebras (described in Bouarroudj et al. (2011)) have the same root system
as o(5).

5.4 br(3), p = 3

We consider the following (one of the two) Cartan matrix (Skryabin was the first
to describe the Cartan matrices of br(3), see Skryabin (1993)). The corresponding
Chevalley basis is

⎛

⎝
2 −1 0

−1 2 −1
0 −1 0̄

⎞

⎠

the root vectors the roots
x1, x2, x3 α1, α2, α3
x4 = [x1, x2], x5 = [x2, x3] α1 + α2, α2 + α3
x6 = [x3, [x1, x2]], x7 = [x3, [x2, x3]] α1 + α2 + α3, α2 + 2α3
x8 = [x3, [x3, [x1, x2]]] α1 + α2 + 2α3
x9 = [[x2, x3], [x3, [x1, x2]]] α1 + 2α2 + 2α3
x10 = [[x3, [x1, x2]], [x3, [x2, x3]]] α1 + 2α2 + 3α3
x11 = [[x3, [x2, x3]], [x3, [x3, [x1, x2]]]] α1 + 2α2 + 4α3
x12 = [[x3, [x2, x3]], [[x2, x3], [x3, [x1, x2]]]] α1 + 3α2 + 4α3
x13 = [[x3, [x3, [x1, x2]]], [[x2, x3], [x3, [x1, x2]]]] 2α1 + 3α2 + 4α3

6 Appendix. On Restrictedness (from Bouarroudj et al. 2015)

In 2005, P. Deligne wrote several comments to a draft of Lebedev and Leites (2006),
see his Appendix in Lebedev and Leites (2006). In particular, a part of his advice
(in our words) was: “Over K, to classify ALL simple Lie (super)algebras and their
representations are, perhaps, not very reasonable problems, and definitely very tough;
investigate first the restricted case: it is related to geometry, meaningful and of inter-
est”.
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Having citedDeligne’swords in our papers devoted to classification of simple finite-
dimensional modular Lie (super)algebras we were rebuffed by referees: non-restricted
Lie (super)algebras are often needed as well, at least, to describe the restricted ones!
See also studies of other topics, e.g., of p-groups, see Kostrikin (1996).

But what is restrictedness if p = 2? We consider here only the versions of restrict-
edness relevant for the exceptional cases; certain serial Lie (super)algebras can have
still other types of restrictedness, see Bouarroudj et al. (2015).

6.1 Restrictedness on Lie Algebras

Let the ground fieldK be of characteristic p > 0, and g a Lie algebra. For every x ∈ g,
the operator (ad x )

p is a derivation of g. If this derivation is an inner one, i.e., there
is a map (called p-structure) [p] : g −→ g, x �→ x [p] such that

[x [p], y] = (ad x )
p(y) for any x, y ∈ g, (23)

(ax)[p] = a px [p] for any a ∈ K, x ∈ g, (24)

(x + y)[p] = x [p] + y[p] +
∑

1≤i≤p−1

si (x, y) for any x, y ∈ g, (25)

where isi (x, y) is the coefficient of λi−1 in (ad λx+y)
p−1(x), then the Lie algebra g is

said to be restricted or having a p-structure.

6.1.1 Remarks

(1) If the Lie algebra g is centerless, then the condition (23) implies conditions (24)
and (25).

A p-structure on a given Lie algebra g does not have to be unique; all p-structures
on g agree modulo center. Hence, on any simple Lie algebra, there is not more than
one p-structure.

(2) According to Strade and Farnsteiner (1988, Th. 2.3, p. 71), the following con-
dition, due to Jacobson, is sufficient for a Lie algebra g to have a p-structure: for
a basis {gi }i∈I of g, there exist elements g[p]

i such that

[g[p]
i , y] = (ad gi )

p(y) for any y ∈ g.

6.1.2 Restricted Modules

A g-module M over a restricted Lie algebra g, and the representation ρ defining M ,
are said to be restricted or having a p-structure if

ρ(x [p]) = (ρ(x))p for any x ∈ g.
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6.2 Lie Superalgebras

Naively, the definition of Lie superalgebra is the same for any p �= 2. Let us point at
the subtleties for p = 2. For any p, a Lie superalgebra is a superspace g = g0̄ ⊕ g1̄
such that the even part g0̄ is a Lie algebra, the odd part g1̄ is a g0̄-module (made into
the two-sided one by anti-symmetry, i.e., [y, x] = −[x, y] for any x ∈ g0̄ and y ∈ g1̄),
and a squaring defined on g1̄ as a map S2(g1̄) −→ g0̄:

x �→ x2 ∈ g0̄ such that (ax)2 = a2x2 for any x ∈ g1̄ and a ∈ K, and
[x, y] := (x + y)2 − x2 − y2 is a bilinear form on g1̄ with values in g0̄.

(This extra requirement on squaring is needed, say, over Z/2 where not any quadratic
form that vanishes at the origin yields a bilinear form [−,−].)

The Jacobi identity involving odd elements takes the following form:

[x2, y] = [x, [x, y]] for any x ∈ g1̄, y ∈ g.

For any Lie superalgebra g, its derived algebras are defined to be (for i ≥ 0)

g(0) := g, g(i+1) =
{[g(i), g(i)] for p �= 2,

[g(i), g(i)] + Span{g2 | g ∈ g
(i)
1̄

} for p = 2.
(26)

6.3 The p|2p-Structure or Restricted Lie Superalgebra

For a Lie superalgebra g of characteristic p > 0, let the Lie algebra g0̄ be restricted
and

[x [p], y] = (ad x )
p(y) for any x ∈ g0̄, y ∈ g. (27)

This gives rise to the map (recall that the bracket of odd elements is the polarization
of the squaring x �→ x2)

[2p] : g1̄ → g0̄, x �→ (x2)[p],

satisfying the condition

[x [2p], y] = (ad x )
2p(y) for any x ∈ g1̄, y ∈ g. (28)

The pair ofmaps [p] and [2p] is called a p-structure (or, sometimes, a p|2p-structure)
on g, and g is said to be restricted. It suffices to determine the p|2p-structure on any
basis of g; on simple Lie superalgebras there are not more than one p|2p-structure.

123



The Roots of Exceptional Lie Superalgebras 115

6.3.1 Remark

If (28) is not satisfied, the p-structure on g0̄ does not have to generate a p|2p-structure
on g: even if the actions of (ad x )

p and ad x [p] coincide on g0̄, they do not have
to coincide on the whole of g. The restricted universal enveloping algebra U [p](g)
defined for Lie algebras g as the quotient of the universal enveloping U (g) modulo
the two-sided ideal generated by g⊗p − g[p] for any g ∈ g should be defined for the
Lie superalgebra g as the quotient of U (g) modulo the two-sided ideal i generated by
g⊗p − g[p] for any g ∈ g0̄. The seemingly needed further factorization modulo the
two-sided ideal generated by the elements g⊗2p − g[2p] for any g ∈ g1̄ is not needed:
these elements are in i automatically, as is not difficult to show.

6.3.2 Restricted Modules

A g-module M corresponding to a representation ρ of the restricted Lie superalgebra
g is said to be restricted or having a p|2p-structure if

ρ(x [p]) = (ρ(x))p for any x ∈ g0̄,

ρ(x [2p]) = (ρ(x))2p for any x ∈ g1̄.

6.4 On 2|2-Structures on Lie Superalgebras (for p = 2)

Let p = 2, a Lie superalgebra g have a 2|4-structure, and F(g) be the Lie algebra
one gets from g by forgetting the squaring and considering only brackets by setting
[x, x] := 2x2 = 0 for x odd. Then, F(g) has a 2-structure given by

the “2” part of 2|4-structure on g0̄;
the squaring on g1̄, i.e., x

[2] := x2;

the rule (x + y)[2] :=

⎧
⎪⎪⎨

⎪⎪⎩

x [2] + y[2] + [x, y] if x, y ∈ g0̄,

x2 + y[2] + [x, y] if x ∈ g1̄, y ∈ g0̄,

x2 + y2 + [x, y] if x, y ∈ g1̄.

(29)

(Actually, the first and the third cases in (29) are redundant. If x and y are both in
g0̄ or both in g1̄, then x + y is homogenous, and (x + y)[2] in F(g) is already given
by (x + y)[2] or (x + y)2, accordingly.) So one can say that if p = 2, then the
restricted Lie superalgebra (i.e., the one with a 2|4-structure) also has a 2|2-structure
which is defined even on inhomogeneous elements (unlike p|2p-structures). In future,
for Lie superalgebras with 2|2-structure, we write x [2] instead of x2 for any odd or
inhomogeneous x ∈ g. The analog of sufficient condition 2) of Remarks 6.1.1 holds.

6.4.1 Restricted Modules

A g-module M corresponding to a representation ρ of the Lie superalgebra g with
2|2-structure is said to be restricted or having a 2|2-structure if
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ρ(x [2]) = (ρ(x))2 for any x ∈ g.

6.5 Restrictedness of Lie (super)algebras with CartanMatrix, and of Their
Relatives

Let R be the set of all roots of g and h the maximal torus.

6.5.1 Proposition

Bouarroudj et al. (2015) (1) If p > 2 (or p = 2 and Aii �= 1̄ or 1 for any i) and g(A)

is a Lie (super)algebra, then g(A) has a p-structure (resp. p|2p-structure) such that

(xα)[p] = 0 for any even α ∈ R and xα ∈ gα,

(xα)[2p] = 0 for any odd α ∈ R and xα ∈ gα,

h[p] ⊂ h. (30)

(2) If Ai j ∈ Z/p for all i, j , then the derived Lie (super)algebra g(1)(A) inherits
the p-structure (resp. p|2p-structure) of g(A) (assuming g(A) has one), and we can
make the 3rd line of Eq. (30) precise:

h[p]
i = hi for any basis element hi ∈ h. (31)

(3)The quotient modulo center of any Lie (super)algebra gwith a p-structure (resp.
p|2p-structure) always inherits the p-structure (resp. p|2p-structure) of g.
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