**RESEARCH CONTRIBUTION** 



# The Roots of Exceptional Modular Lie Superalgebras with Cartan Matrix

Sofiane Bouarroudj<sup>1</sup>  $\cdot$  Dimitry Leites<sup>1,2</sup>  $\circ$   $\cdot$  Olexander Lozhechnyk<sup>3</sup>  $\cdot$  Jin Shang<sup>1</sup>

Received: 23 April 2019 / Revised: 3 December 2019 / Accepted: 15 February 2020 / Published online: 20 March 2020 © Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2020

## Abstract

For each of the exceptional (not entering infinite series) finite-dimensional modular Lie superalgebras with indecomposable Cartan matrix, we give the explicit list of its roots, and the corresponding Chevalley basis, for one of its inequivalent Cartan matrices, namely the one corresponding to the greatest number of mutually orthogonal isotropic odd simple roots (this number, called the defect of the Lie superalgebra, is important in the representation theory). Our main tools: Grozman's Mathematica-based code SuperLie, Python, and A. Lebedev's help.

Keywords Modular Lie superalgebra · Cartan matrix

Mathematics Subject Classification Primary 17B50; Secondary 17B20

Dimitry Leites dl146@nyu.edu; mleites@math.su.se

> Sofiane Bouarroudj sofiane.bouarroudj@nyu.edu

Olexander Lozhechnyk alozhechnik@gmail.com

Jin Shang js8544@nyu.edu

- <sup>1</sup> Division of Science and Mathematics, New York University Abu Dhabi, P.O. Box 129188 Abu Dhabi, United Arab Emirates
- <sup>2</sup> Department of Mathematics, Stockholm University, Roslagsv. 101, Stockholm, Sweden
- <sup>3</sup> Faculty of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Volodymirskaya st. 64, Kiev 01033, Ukraine

Generous help of A. Lebedev is gratefully acknowledged. S.B. and D.L. were partly supported by the grant AD 065 NYUAD.

# Contents

| 1  | Intro | oduction                                                                                                                                                        | 5  |
|----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2  | Cart  | an Matrices, Reflections, Chevalley Generators, Chevalley Basis (from Chapovalov et al.                                                                         |    |
|    | (201  | 0); Bouarroudj et al. (2009)) with Lebedev's Clarifications                                                                                                     | 6  |
|    | 2.1   | Chevalley Generators and Cartan Matrices                                                                                                                        | 6  |
|    |       | 2.1.1 In Small Font                                                                                                                                             | 7  |
|    | 2.2   | Roots and Weights                                                                                                                                               | 8  |
|    |       | 2.2.1 Statement                                                                                                                                                 |    |
|    | 2.3   | Systems of Simple and Positive Roots                                                                                                                            |    |
|    | 2.5   | 2.3.1         Conjecture         7                                                                                                                              |    |
|    | 2.4   | Normalization Convention and Equivalent Cartan Matrices                                                                                                         |    |
|    | 2.7   | 2.4.1 Warnings                                                                                                                                                  |    |
|    | 2.5   | Remark: Which Systems of Simple Roots is Distinguished?                                                                                                         |    |
|    | 2.5   | 2.5.1       Chevalley Generators and Chevalley Bases       7                                                                                                    |    |
|    | 20    |                                                                                                                                                                 | 2  |
|    | 2.6   |                                                                                                                                                                 |    |
|    |       | 2.6.1 On Weyl Groups and Groupoids                                                                                                                              |    |
|    |       | 2.6.2 How Reflections Act on Chevalley Generators                                                                                                               | 4  |
|    |       | 2.6.3 How Reflections Act on Cartan Matrices ([Lebedev 2008,                                                                                                    | _  |
| ~  |       | Chapovalov et al. 2010])                                                                                                                                        |    |
| 3  |       | edev's Comments                                                                                                                                                 |    |
|    | 3.1   | Lemma                                                                                                                                                           |    |
|    | 3.2   | Statement                                                                                                                                                       |    |
|    |       | 3.2.1 Proof of Lemma 3.1                                                                                                                                        |    |
|    |       | 3.2.2 On Conjecture 2.3.1.2                                                                                                                                     |    |
|    |       | 3.2.3 On the Reviewer's Question: "Aren't All Root Spaces 1-dimensional?" 7                                                                                     | 7  |
| 4  | Roo   | ts and Root Vectors                                                                                                                                             | 7  |
|    | 4.1   | $\mathfrak{osp}(4 2; a), \mathfrak{ag}(2), \text{ and } \mathfrak{ab}(3) \text{ for } p \geq 5  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots $ | 7  |
|    | 4.2   | 1brj(2; 5) of sdim 10 12, $p = 5$                                                                                                                               | 8  |
|    | 4.3   | 1brj(2; 3) of sdim $10 8, p = 3$                                                                                                                                | 8  |
|    | 4.4   | 1el(5; 5)  of sdim = 55 32, p = 5 7                                                                                                                             | 9  |
|    | 4.5   | $7el(5; 3) \text{ of sdim } = 39 32, p = 3 \dots 8$                                                                                                             | 0  |
|    | 4.6   | 1g(1, 6) of sdim 21 14, $p = 3$                                                                                                                                 | 1  |
|    | 4.7   | 2g(2,3) of sdim $12/10 14$ , $p = 3$                                                                                                                            | 2  |
|    | 4.8   | 2g(2, 6) of sdim $36/34 20, p = 3$                                                                                                                              | 3  |
|    | 4.9   | 7g(3, 3) of sdim $23/21 16$ , $p = 3$                                                                                                                           | 3  |
|    | 4.10  |                                                                                                                                                                 | 4  |
|    |       | 6g(4, 3) of sdim 24 26, $p = 3$                                                                                                                                 | 5  |
|    |       |                                                                                                                                                                 | 6  |
|    |       | 2g(4, 6) of sdim $66 32, p = 3$                                                                                                                                 | 8  |
|    |       |                                                                                                                                                                 | 9  |
|    | 4.15  | 5g(8, 6) of sdim 133 56, $p = 3$                                                                                                                                |    |
|    |       |                                                                                                                                                                 | 4  |
|    |       |                                                                                                                                                                 | 4  |
|    |       |                                                                                                                                                                 | 4  |
|    |       |                                                                                                                                                                 | 5  |
|    |       |                                                                                                                                                                 | 5  |
|    |       |                                                                                                                                                                 | 6  |
|    |       | 4.16.6 $e(7, 1)$ of sdim = $\frac{38}{40}$                                                                                                                      |    |
|    |       |                                                                                                                                                                 | 9  |
|    |       |                                                                                                                                                                 |    |
|    |       |                                                                                                                                                                 | 01 |
|    |       |                                                                                                                                                                 | 02 |
| e. | р     |                                                                                                                                                                 | 07 |
| 5  |       |                                                                                                                                                                 | 12 |
|    | 5.1   |                                                                                                                                                                 | 12 |
|    | 5.2   |                                                                                                                                                                 | 12 |
|    | 5.3   | $\mathfrak{br}(2; \varepsilon)$ , Where $\varepsilon \neq 0$ and $p = 3$                                                                                        | 12 |

|     | 5.4   | $\mathfrak{br}(3), p = 3 \dots \dots$ | 2 |
|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------|---|
| 6   | App   | bendix. On Restrictedness (from Bouarroudj et al. 2015)                                                                               | 2 |
|     | 6.1   | Restrictedness on Lie Algebras                                                                                                        | 3 |
|     |       | 6.1.1 Remarks                                                                                                                         | 3 |
|     |       | 6.1.2 Restricted Modules                                                                                                              | 3 |
|     | 6.2   | Lie Superalgebras                                                                                                                     | 4 |
|     | 6.3   | The $p 2p$ -Structure or Restricted Lie Superalgebra                                                                                  | 4 |
|     |       | 6.3.1 Remark                                                                                                                          | 5 |
|     |       | 6.3.2 Restricted Modules                                                                                                              | 5 |
|     | 6.4   | On 2 2-Structures on Lie Superalgebras (for $p = 2$ )                                                                                 | 5 |
|     |       | 6.4.1 Restricted Modules                                                                                                              | 5 |
|     | 6.5   | Restrictedness of Lie (super)algebras with Cartan Matrix, and of Their Relatives 11                                                   | 6 |
|     |       | 6.5.1 Proposition                                                                                                                     | 6 |
| Ret | erenc | ces 11                                                                                                                                | 6 |

# **1** Introduction

The paper Bouarroudj et al. (2009) contains classification of finite-dimensional Lie superalgebras  $\mathfrak{g}(A)$  with indecomposable Cartan matrix A over an algebraically closed field  $\mathbb{K}$  of characteristic p > 0 together with all inequivalent Cartan matrices and the corresponding Dynkin–Kac diagrams for each such Lie superalgebra (recall that every modular Lie algebra and every Lie superalgebra over any field can have several inequivalent Cartan matrices).

Here we consider the *exceptional* (not entering infinite series) finite-dimensional Lie superalgebras g(A) with A indecomposable, and supplement Bouarroudj et al. (2009) with new results and clarifications. In particular, we clarify the notion of equivalent Cartan matrices.

In Sect. 2 we recall the definition of Cartan matrix and root system for modular Lie algebras and Lie superalgebras  $\mathfrak{g}(A)$ ; the definition of roots over  $\mathbb{K}$  differs from the one in characteristic 0; this was suggested in Kuznetsov and Chebochko (2000) and, following Lebedev, in Bouarroudj et al. (2009).

A posteriori we see that all indecomposable Cartan matrices of finite-dimensional Lie superalgebras  $\mathfrak{g}(A)$  are symmetrizable. The classification (Bouarroudj et al. 2009) did not impose any a priori conditions on A except for indecomposability and requirement  $\mathfrak{g}(A) < \infty$ .

The paper Bouarroudj et al. (2009) contains superdimensions of each Lie superalgebra  $\mathfrak{g}(A)$ , a description of its even part  $\mathfrak{g}(A)_{\overline{0}}$ , and of its odd part  $\mathfrak{g}(A)_{\overline{1}}$  as a  $\mathfrak{g}(A)_{\overline{0}}$ -module. Recall that A/a|B means that  $A|B = \operatorname{sdim} \mathfrak{g}(A)$  and  $a|B = \operatorname{sdim} \mathfrak{g}^{(1)}(A)/\mathfrak{c}$ , where  $\mathfrak{c}$  is the center and  $\mathfrak{g}^{(1)}$  is the first derived of  $\mathfrak{g}$  (for brevity, we write  $\mathfrak{g}^{(1)}(A)$  instead of  $(\mathfrak{g}(A))^{(1)}$  and the like); note that if p = 2 we define

$$\mathfrak{g}^{(1)} := [\mathfrak{g}, \mathfrak{g}] + \operatorname{Span}\{g^2 \mid g \in \mathfrak{g}_{\overline{1}}\}, \text{ see Eq. (26)}$$

For presentations of these Lie superalgebras obtained with the aid of *SuperLie* code, see Grozman (2013), Bouarroudj et al. (2010).

The tables in Sects. 4, 5 are analogs of descriptions of root systems in Bourbaki (2002). Recall that whereas each Lie algebra with indecomposable Cartan matrix over

 $\mathbb{C}$  (finite-dimensional or of polynomial growth, or even hyperbolic, see Chapovalov et al. 2010) has just one Cartan matrix, each of the exceptional Lie **super**algebras considered has several Cartan matrices, see Bouarroudj et al. (2009) and Chapovalov et al. (2010). One of Lie superalgebra we consider here has 135 inequivalent Cartan matrices; dozens inequivalent Cartan matrices for one Lie superalgebra is usual. Therefore, to list all sets of simple roots for every Lie superalgebra is hardly reasonable, so we list *system of roots* for each exceptional modular Lie superalgebra  $\mathfrak{g}(A)$ , but list *simple roots* for just one Cartan matrices of  $\mathfrak{g}(A)$ .

This selected Cartan matrix A is the one with the maximal<sup>1</sup> number of pairwise orthogonal with respect to a non-degenerate invariant symmetric bilinear form (briefly: NIS) isotropic simple roots. This NIS exists for Cartan matrices of Lie (super)algebras we consider here, but not always if p = 2, see Bouarroudj et al. (2018).

This Cartan matrix  $\mathcal{A}$  of  $\mathfrak{g}$  and its Dynkin–Kac diagram  $D_m$  are useful to define the *defect* of  $\mathfrak{g}$ , an important invariant, and in computing the homology Ker ad  $_x$ /Im ad  $_x$  for any  $x \in \mathfrak{g}(A)_{\overline{1}}$  such that  $x^2 = 0$ , see Krutov et al. (2020). To find simple roots for the other Cartan matrices, one has to use isotropic reflections, see Sect. 2.

Observe that even some even roots can be isotropic, not only odd ones, e.g., for  $\mathfrak{br}(3)$  for p = 3, and for all Lie (super)algebras  $\mathfrak{g}(A)$ , except the one with  $A = (\overline{1})$ .

The referee asked us if the Lie (super)algebras we consider are restricted. Restrictedness is a very important feature of Lie (super)algebras; besides, there are several subtleties related both with "super" and the case "p = 2". In particular, if g(A) is restricted, its derived algebra might be not. Since, however, this is not directly related with our main result, we answer this question in Appendix.

Observe that our definitions imply that all root vectors of the Lie (super)algebras  $\mathfrak{g}(A)$  we consider are of multiplicity 1. This might be not so if we apply the term "root" speaking of subalgebras and quotients of  $\mathfrak{g}(A)$ , as we do (somewhat carelessly) below. For some infinite-dimensional Lie algebras  $\mathfrak{g}(A)$ , even over  $\mathbb{C}$ , root multiplicities are > 1.

# 2 Cartan Matrices, Reflections, Chevalley Generators, Chevalley Basis (from Chapovalov et al. (2010); Bouarroudj et al. (2009)) with Lebedev's Clarifications

#### 2.1 Chevalley Generators and Cartan Matrices

Let us start with the construction of Lie (super)algebras with Cartan matrix. Let  $A = (A_{ij})$  be an  $n \times n$ -matrix whose entries lie in the ground field K. Let rk A = n - l. It means that there exists an  $l \times n$ -matrix  $T = (T_{ij})$  such that

(b) TA = 0 (or, more precisely, "zero  $l \times n$ -matrix"). (1)

<sup>&</sup>lt;sup>1</sup> In other words,  $\mathcal{A}$  is the matrix with the maximal number of not connected grey vertices in its Dynkin–Kac diagram  $D_m$ ; in terms of  $\mathcal{A}$ , this means that  $\mathcal{A}$  has the maximal number of zeros on its main diagonal and if  $\mathcal{A}_{ii} = \mathcal{A}_{jj} = 0$ , then  $\mathcal{A}_{ij} = \mathcal{A}_{ji} = 0$ .

Indeed, if  $rk A^T = rk A = n - l$ , then there exist *l* linearly independent vectors  $v_i$  such that  $A^T v_i = 0$ ; set

$$T_{ij} = (v_i)_j.$$

Let the elements  $e_i^{\pm}$  and  $h_i$ , where i = 1, ..., n, generate a Lie superalgebra denoted  $\tilde{\mathfrak{g}}(A, I)$ , where  $I = (p_1, ..., p_n) \in (\mathbb{Z}/2)^n$  is a collection of parities  $(p(e_i^{\pm}) = p_i)$ , free except for the relations

$$[e_i^+, e_j^-] = \delta_{ij} h_i; \quad [h_i, e_j^\pm] = \pm A_{ij} e_j^\pm \quad \text{and} \ [h_i, h_j] = 0 \text{ for any } i, j.$$
(2)

Let Lie (super)algebra with Cartan matrix  $\mathfrak{g}(A, I)$  be the quotient of  $\tilde{\mathfrak{g}}(A, I)$  modulo the ideal explicitly described in Grozman and Leites (2001) and Bouarroudj et al. (2010).

By abuse of notation we denote by  $e_j^{\pm}$  and  $h_j$ —the elements of  $\tilde{\mathfrak{g}}(A, I)$ —and also their images in  $\mathfrak{g}(A, I)$  and  $\mathfrak{g}^{(i)}(A, I)$ . We call these images the *Chevalley generators* of  $\mathfrak{g}(A, I)$ , and  $\mathfrak{g}^{(i)}(A, I)$ , provided A is normalized, cf. Sect. 2.5.1. (There is no name for their pre-images in  $\tilde{\mathfrak{g}}(A, I)$ ; we used to call them *Chevalley generators* as well, by abuse of notation.)

#### 2.1.1 In Small Font

First, observe that the formula

deg 
$$e_i^{\pm} := (0, \dots, 0, \pm 1, 0, \dots, 0)$$
 with  $\pm$  in the *i*th slot (3)

determines a  $\mathbb{Z}^n$ -grading in  $\tilde{\mathfrak{g}}(A, I)$ . The additional to (2) relations that turn  $\tilde{\mathfrak{g}}(A, I)$  into  $\mathfrak{g}(A, I)$  are of the form  $R_i = 0$  whose left sides are implicitly described, for the general Cartan matrix with entries in  $\mathbb{K}$ , as

the  $R_i$  that generate the  $\mathbb{Z}^n$ -graded ideal  $\mathfrak{r}$  maximal among the ideals of  $\tilde{\mathfrak{g}}(A, I)$ whose intersection with the span of the above  $h_i$  is zero. (4)

Set

$$c_i = \sum_{1 \le j \le n} T_{ij} h_j, \text{ where } i = 1, \dots, l.$$
(5)

Then, from the properties of the matrix T, we deduce that

- (a) the elements  $c_i$  are linearly independent;
- (b) the elements  $c_i$  are central, because

$$[c_i, e_j^{\pm}] = \pm \left(\sum_{1 \le k \le n} T_{ik} A_{kj}\right) e_j^{\pm} = \pm (TA)_{ij} e_j^{\pm}.$$
 (6)

Deringer

The existence of central elements means that the linear span of all the roots is of dimension n - l only. (This can be explained even without central elements: The weights can be considered as column-vectors whose *i*-th coordinates are the corresponding eigenvalues of ad  $h_i$ . The weight of  $e_i$  is, therefore, the *i*-th column of A. Since rk A = n - l, the linear span of all columns of A is (n - l)-dimensional just by definition of the rank. Since any root is an (integer) linear combination of the weights of the  $e_i$ , the linear span of all roots is (n - l)-dimensional).

This means that some elements which we would like to see having different (even opposite if p = 2) weights, actually, have identical weights. To remedy this, we do the following: let *B* be an arbitrary  $l \times n$ -matrix such that

the 
$$(n+l) \times n$$
-matrix  $\begin{pmatrix} A \\ B \end{pmatrix}$  has rank  $n$ . (7)

Let us add to the algebra  $\mathfrak{g} = \tilde{\mathfrak{g}}(A, I)$ , and hence  $\mathfrak{g}(A, I)$ , the grading elements  $d_i$ , where i = 1, ..., l, subject to the following relations:

$$[d_i, e_j^{\pm}] = \pm B_{ij} e_j; \quad [d_i, d_j] = 0; \quad [d_i, h_j] = 0$$
(8)

(the last two relations mean that the  $d_i$  lie in the Cartan subalgebra, and even in the maximal torus which will be denoted by  $\mathfrak{h}$ ).

Note that these  $d_i$  are *outer* derivations of  $\mathfrak{g}(A, I)^{(1)}$ , i.e., they can not be obtained as linear combinations of brackets of the elements of  $\mathfrak{g}(A, I)$ , i.e., the  $d_i$  do not lie in  $\mathfrak{g}(A, I)^{(1)}$ .

#### 2.2 Roots and Weights

In this subsection,  $\mathfrak{g}$  denotes one of the algebras  $\mathfrak{g}(A, I)$  or  $\tilde{\mathfrak{g}}(A, I)$ .

Let  $\mathfrak{h}$  be the span of the  $h_i$  and the  $d_j$ . The elements of  $\mathfrak{h}^*$  are called *weights*. For a given weight  $\alpha$ , the *weight subspace* of a given  $\mathfrak{g}$ -module V is defined as

 $V_{\alpha} = \{x \in V \mid \text{an integer } N > 0 \text{ exists such that } (\alpha(h) - \operatorname{ad}_{h})^{N} x = 0 \text{ for any } h \in \mathfrak{h}\}.$ 

Any non-zero element  $x \in V_{\alpha}$  is said to be *of weight*  $\alpha$ . For the roots, which are particular cases of weights if p = 0, the above definition is inconvenient for various reasons, e.g., see Kuznetsov and Chebochko (2000), Bouarroudj et al. (2019), Krutov et al. (2020).

## 2.2.1 Statement

(Root decomposition Kac 1995) *Over*  $\mathbb{C}$ , *the space of any Lie algebra*  $\mathfrak{g}(A)$  *can be represented as a direct sum of subspaces* 

$$\mathfrak{g} = \bigoplus_{\alpha \in \mathfrak{h}^*} \mathfrak{g}_{\alpha}. \tag{9}$$

Note that if p = 2, it might happen that  $\mathfrak{h} \subsetneq \mathfrak{g}_0$ . (For example, all weights of the form  $2\alpha$  over  $\mathbb{C}$  become 0 over  $\mathbb{K}$ .)

For the Lie (super)algebras  $\mathfrak{g} := \mathfrak{g}(A)$  with Cartan matrix A, we assume that the elements  $e_i^{\pm}$  with the same superscript (either + or -) correspond to linearly independent *roots*  $\alpha_i$ , called *simple roots*. Any non-zero element  $\alpha \in \mathbb{R}^n$  is called *a root* if the corresponding subspace homogenous with respect to the  $\mathbb{Z}^n$ -grading<sup>2</sup> of grade  $\alpha$  (we denote this subspace by  $\mathfrak{g}_{\alpha}$ ) is non-zero. The set *R* of all roots is called *the root system* of  $\mathfrak{g}$ .

The terms "root" and "root space" are often applied to various "relatives" of  $\mathfrak{g}(A)$ , e.g., the *i*th derived algebra  $\mathfrak{g}^{(i)}$  or quotients of  $\mathfrak{g}$  or  $\mathfrak{g}^{(i)}$  modulo center, such as  $\mathfrak{psl}(a|a)$ .

Thus, any root  $\alpha$  such that  $\mathfrak{g}_{\alpha} \neq 0$  lies in the  $\mathbb{Z}$ -span of  $\{\alpha_1, \ldots, \alpha_n\}$ , i.e.,

$$\mathfrak{g} = \bigoplus_{\alpha \in \mathbb{Z}\{\alpha_1, \dots, \alpha_n\}} \mathfrak{g}_{\alpha}.$$
 (10)

Thus,  $\mathfrak{g}$  has a  $\mathbb{R}^n$ -grading such that  $e_i^{\pm}$  has grade  $(0, \ldots, 0, \pm 1, 0, \ldots, 0)$ , where  $\pm 1$  stands in the *i*-th slot (this can also be considered as  $\mathbb{Z}^n$ -grading, but we use  $\mathbb{R}^n$  to simplify formulations of various statements). If p = 0, this grading is equivalent to the weight grading of  $\mathfrak{g}$ . If p > 0, these gradings may be inequivalent; in particular, if p = 2, then the elements  $e_i^+$  and  $e_i^-$  have the same weight. (This is one of the reasons why in what follows we consider roots as elements of  $\mathbb{R}^n$ , not as weights; for one more reason, see Krutov et al. 2020).

Clearly, the subspaces  $g_{\alpha}$  are purely even or purely odd, and the corresponding roots are said to be *even* or *odd*.

#### 2.3 Systems of Simple and Positive Roots

In this subsection, g = g(A, I), and *R* is the root system of g.

For any subset  $B = \{\sigma_1, \ldots, \sigma_m\} \subset R$ , we set (we denote by  $\mathbb{Z}_+$  the set of non-negative integers):

$$R_B^{\pm} = \{ \alpha \in R \mid \alpha = \pm \sum n_i \sigma_i, \text{ where } n_i \in \mathbb{Z}_+ \}.$$

The set *B* is called a *system of simple roots* of *R* (or  $\mathfrak{g}$ ) if  $\sigma_1, \ldots, \sigma_m$  are linearly independent and  $R = R_B^+ \cup R_B^-$ . Note that *R* contains basis coordinate vectors, and therefore spans  $\mathbb{R}^n$ ; thus, any system of simple roots contains exactly *n* elements.

Let  $(x, y) = \sum x_i y_i$  for any  $x, y \in \mathbb{R}^n$  denote the standard Euclidean inner product in  $\mathbb{R}^n$ . A subset  $R^+ \subset R$  is called a *system of positive roots* of R (or  $\mathfrak{g}$ ) if there exists  $x \in \mathbb{R}^n$  such that

$$\begin{aligned} & (\alpha, x) \in \mathbb{R} \setminus \{0\} \text{ for all } \alpha \in R, \\ & R^+ = \{\alpha \in R \mid (\alpha, x) > 0\}. \end{aligned}$$
 (11)

<sup>&</sup>lt;sup>2</sup> NOT the *eigenspace*! That's the whole point. Eigenspaces (which are determined by the action of  $\mathfrak{h}$ ) correspond to weights, not to roots.

Since *R* is a finite set, then the set

 $\{y \in \mathbb{R}^n \mid \text{there exists } \alpha \in R \text{ such that } (\alpha, y) = 0\}$ 

is a finite union of (n - 1)-dimensional subspaces in  $\mathbb{R}^n$ , so it has zero measure. So for almost every x, condition (11) holds.

By construction, any system *B* of simple roots is contained in exactly one system of positive roots, which is precisely  $R_B^+$ .

#### 2.3.1 Conjecture

(Simple roots). (1) Any system  $R^+$  of positive roots of  $\mathfrak{g}(A)$  contains exactly one system of simple roots. This system consists of all the positive roots (i.e., elements of  $R^+$ ) that can not be represented as a sum of two positive roots.

(2) For any system of simple roots  $\{\sigma_1, \ldots, \sigma_n\}$  in  $\mathfrak{g}(A, I)$ , there is a pair (A', I') such that there is an isomorphism between  $\mathfrak{g}(A, I)$  and  $\mathfrak{g}(A', I')$  which maps  $\mathfrak{h}$  to  $\mathfrak{h}$  and  $\mathfrak{g}(A, I)_{\pm\sigma_i}$  to  $\mathfrak{g}(A', I')_{(0,\ldots,0,\pm 1,0,\ldots,0)}$ , with  $\pm 1$  in *i*-th position, for all  $i = 1, \ldots, n$ .

We do not know an *a priori* proof of this Conjecture. Item 1) is, however, true for Lie algebras and Lie superalgebras of the form  $\mathfrak{g}(A)$  with A indecomposable and dim  $\mathfrak{g}(A) < \infty$ . About item 2), see Lebedev's comment 3.2.2.

#### 2.4 Normalization Convention and Equivalent Cartan Matrices

Clearly,

the rescaling 
$$e_i^{\pm} \mapsto \sqrt{\lambda_i} e_i^{\pm}$$
, sends A to  $A' := \operatorname{diag}(\lambda_1, \dots, \lambda_n) \cdot A$ . (12)

Two pairs (A, I) and (A', I') are said to be *equivalent* if (A', I') is obtained from (A, I) by a composition of a permutation of parities and the corresponding permutation of the matrix's rows and columns with a rescaling  $A' = \text{diag}(\lambda_1, \ldots, \lambda_n) \cdot A$ , where  $\lambda_1, \ldots, \lambda_n \neq 0$ . Clearly, equivalent pairs determine isomorphic Lie superalgebras.

The rescaling affects only the matrix  $A_B$ , not the set of parities  $I_B$ . The Cartan matrix A is said to be *normalized* if

$$A_{ii} = 0 \text{ or } 1, \text{ or } 2.$$
 (13)

We let  $A_{jj} = 2$  only if  $i_j = \overline{0}$ ; in order to eliminate possible confusion, we write  $A_{jj} = \overline{0}$  or  $\overline{1}$  if  $i_j = \overline{0}$ , whereas if  $i_j = \overline{1}$ , we write  $A_{jj} = 0$  or 1.

Normalization conditions correspond to the "natural" Chevalley generators of the most usual<sup>3</sup> "building blocks" of finite-dimensional Lie (super)algebras with Cartan

<sup>&</sup>lt;sup>3</sup> Together with the possibility to build any simple Lie algebra with Cartan matrix over  $\mathbb{C}$  and many Lie (super)algebras with Cartan matrix over various fields by just two generators, see Grozman and Leites (1996), there are other types of "building blocks". For simple modular Lie (super)algebras, to describe relations between a pair of generators, as for "Lie algebra of matrices of complex size", see Grozman and Leites (1996), is probably impossible in general because of the lack of complete reducibility of exterior powers of

matrix:  $\mathfrak{sl}(2)$  if  $A_{jj} = 2$ , or  $\mathfrak{gl}(1|1)$  if  $A_{jj} = 0$ , or  $\mathfrak{osp}(1|2)$  if  $A_{jj} = 1$ , respectively. (In this paper we do not need "less usual" building blocks—Lie superalgebras with  $A_{jj} = \overline{0}$  or  $\overline{1}$  because they do not contribute to the list of Lie algebras of the type we consider: finite-dimensional modular, see Bouarroudj et al. (2009), nor are they needed to construct affine Kac–Moody or hyperbolic (almost affine) Lie (super)algebras, see Chapovalov et al. (2010).)

For the role of the "best" (first among equals) order of indices we propose the one that minimizes the value

$$\max_{\substack{i,j\in\{1,\dots,n\}\text{ such that }(A_B)_{ij}\neq 0}}|i-j|$$
(14)

(i.e., gather the non-zero entries of A as close to the main diagonal as possible). Observe that this numbering differs from the one that N. Bourbaki uses for the  $\mathfrak{e}$  type Lie algebras.

## We will only consider normalized Cartan matrices; for them, we do not have to indicate the set of parities I.

#### 2.4.1 Warnings

- (1) The notion of Cartan matrix, see Kac (1995), is standard now. However, for reasons difficult to understand, neither for Lie *super*algebras, nor for *modular* Lie algebras the definitions of the Cartan matrix, nor analog of the Dynkin diagram were correctly formulated until Bouarroudj et al. (2009) (in the modular case) and Chapovalov et al. (2010) (for p = 0) were made available. And it is still possible to hear or read "consider the central extension of the loop algebra  $g^{\ell(1)}$  with values in simple finite-dimensional Lie algebra g; this central extension has Cartan matrix and Dynkin diagram extending those of g", whereas it is the *double extension* of  $g^{\ell(1)}$  that has a Cartan matrix. Likewise, simple Lie superalgebras  $p\mathfrak{sl}(a|a)$  in characteristic 0 as well as  $p\mathfrak{sl}(a|a + pk)$  in characteristic p > 0 (and their central extensions  $\mathfrak{sl}(a|a)$  and  $\mathfrak{sl}(a|a + pk)$ ) do not have a Cartan matrix, whereas the double extensions  $\mathfrak{gl}(a|a)$  and  $\mathfrak{gl}(a|a + pk)$  of the simple Lie superalgebras have Cartan matrices. For a definition of *double extension* and succinct review for any p, see Bouarroudj et al. (2019).
- (2) Unlike the case of simple finite-dimensional Lie algebras over C, where the normalized Cartan matrix A is defined uniquely (up to a permutation of rows and columns), generally this is not so: each row with a 0 or 0 on the main diagonal can be multiplied by any nonzero factor. For example, when interested in non-degenerate invariant symmetric bilinear forms on g, see Bouarroudj et al. (2018), we multiply the rows so as to make A<sub>B</sub> symmetric, if possible, spoiling normalization.

Which version of the Cartan matrix should be considered as its "normal form"? The defining relations give the answer: The normalized Cartan matrix is used, for

Footnote 3 continued

the adjoint module and because it is unclear what are analogs of "principal embedding" of  $\mathfrak{sl}(2)$ . For p = 0 and having replaced  $\mathfrak{sl}(2)$  by  $\mathfrak{osp}(1|2)$ , we can consider such analogs in the cases classified in Leites et al. (1986)—when there are "superprincipal embeddings".

example, to describe relations between the Chevalley generators of the same sign, see Grozman and Leites (2001, 2005), Bouarroudj et al. (2009, 2010).

## 2.5 Remark: Which Systems of Simple Roots is Distinguished?

Let  $B = \{\alpha_1, \ldots, \alpha_n\}$  be a system of simple roots. Choose non-zero elements  $e_i^{\pm}$  in the 1-dimensional superspaces  $\mathfrak{g}_{\pm\alpha_i}$ ; set  $h_i = [e_i^+, e_i^-]$ , let  $A_B = (A_{ij})$ , where the entries  $A_{ij}$  are recovered from relations (2), and let  $I_B = \{p(e_1), \cdots, p(e_n)\}$ .

It would be nice to find a convenient way to fix some distinguished pair  $(A_B, I_B)$  in the equivalence class.

#### 2.5.1 Chevalley Generators and Chevalley Bases

We often denote the set of generators of  $\mathfrak{g}(A, I)$  and  $\mathfrak{g}^{(i)}(A, I)$  corresponding to a normalized Cartan matrix by  $X_1^{\pm}, \ldots, X_n^{\pm}$  instead of  $e_1^{\pm}, \ldots, e_n^{\pm}$ ; and call these generators, together with the elements  $H_i := [X_i^+, X_i^-]$ , and the derivations  $d_j$ , see (8), the *Chevalley generators*.

For p = 0 and normalized Cartan matrices of simple finite-dimensional Lie algebras, the set of Chevalley generators can be uniquely (up to signs) extended to a basis all whose elements are homogenous with respect to the grading and all structure constants are integer, cf. Strade (2004). A certain choice of signs gives what is called a *Chevalley* basis.

Observe that, having normalized the Cartan matrix of  $\mathfrak{sp}(2n)$  so that  $A_{ii} = 2$  for all  $i \neq n$ , but  $A_{nn} = 1$ , we get **another** basis with integer structure constants. We think that this basis also qualifies to be called *Chevalley basis*.

For any p and Lie superalgebras  $\mathfrak{osp}(2m + 1|2n)$  such normalization is a must. Summing up, a *Chevalley basis* of  $\mathfrak{g}(A)$  with a normalized Cartan matrix A is a one with generators  $X_i^{\pm}$  and  $H_i$ , where all elements are homogenous with respect to the grading induced by Eq. (3) and some additional requirements on structure constants, see Cohen and Roozemond (2009). Everything goes as for p = 0 if A has integer elements and all structure constants lie in  $\mathbb{Z}/p\mathbb{Z}$ ; otherwise we do not know how to define "Chevalley basis". These exceptional cases are

$$\mathfrak{br}(2; \varepsilon)$$
 for  $\varepsilon \neq 0$  and  $p = 3$ ,  $\mathfrak{osp}_{\alpha}(4|2)$  for  $\alpha \neq 0, -1$  and  $p \neq 2$ ;  
 $\mathfrak{wk}(3; \alpha)$  and  $\mathfrak{bgl}(3; \alpha)$  as well as  $\mathfrak{wk}(4; \alpha)$  and  $\mathfrak{bgl}(4; \alpha)$  for  $\alpha \neq 0, 1$  and  $p = 2$ .  
(15)

#### 2.6 Reflections

Let  $R^+$  be the system of positive roots of Lie superalgebra  $\mathfrak{g}$  over a field  $\mathbb{K}$  of characteristic p > 0, and let  $B = \{\sigma_1, \ldots, \sigma_n\}$  be the corresponding system of simple roots and the corresponding pair  $(A = A_B, I = I_B)$ . Then, for any  $k \in \{1, \ldots, n\}$ , the set

$$(R^+ \setminus \{m\sigma_k \mid m \in \mathbb{Z}_+, m\sigma_k \in R^+\}) \coprod \{-m\sigma_k \mid m \in \mathbb{Z}_+, m\sigma_k \in R^+\}$$
(16)

is a system of positive roots. The *reflection in*  $\sigma_k$  changes the system of simple roots by the formulas

$$r_{\sigma_k}(\sigma_j) = \begin{cases} -\sigma_j & \text{if } k = j, \\ \sigma_j + B_{kj}\sigma_k & \text{if } k \neq j, \end{cases}$$
(17)

where  $B_{kj}$  is the maximal  $m \in \mathbb{Z}$  such that  $\alpha_j + m\alpha_k \in R$  provided we consider  $\mathbb{Z}/p\mathbb{Z}$  as a subfield of  $\mathbb{K}$ .

The name "reflection" is used because in the case of simple finite-dimensional complex Lie algebras this action, extended on the whole *R* by linearity, is a map from *R* to *R*, and it does not depend on  $R^+$ , only on  $\sigma_k$ . This map is usually denoted by  $r_{\sigma_k}$  or just  $r_k$ . The map  $r_{\sigma_k}$  extended to the  $\mathbb{R}$ -span of *R* is reflection in the hyperplane orthogonal to  $\sigma_k$  relative the bilinear form dual to the nondegenerate invarient symmetric bilinear form.

The reflections in the even (odd) roots are referred to as *even* (*odd*) *reflections*. A simple root is called *isotropic*, if the corresponding row of the Cartan matrix has zero on the main diagonal, and *non-isotropic* otherwise. The reflections that correspond to isotropic or non-isotropic roots will be referred to accordingly.

#### 2.6.1 On Weyl Groups and Groupoids

(A) If there are isotropic simple roots, the reflections  $r_{\alpha}$  do not, as a rule, generate a version of the *Weyl group* because the product of two reflections in nodes not connected by a (perhaps, multiple) edge is not defined. These reflections just connect a pair of "neighboring" systems of simple roots, and there is no reason to expect that we can multiply such two distinct reflections. In the case of modular Lie algebras, and in the case of Lie superalgebras for any p, the action of a given isotropic reflection (17) can not, generally, be extended to a linear map  $R \longrightarrow R$ . For Lie superalgebras over  $\mathbb{C}$ , one can extend the action of reflections by linearity to the root lattice, but this extension preserves the root system only for  $\mathfrak{sl}(m|n)$  and  $\mathfrak{osp}(2m + 1|2n)$ , cf. Serganova (1996).

(B) At seminars of Manin and Leites in early 1980s in Moscow, discussions of the question

culminated in the following answers.

(0) In 1978-80, Bernstein and Leites classified the irreducible finite-dimensional representations of vectorial Lie superalgebras vect(m|n), in particular, vect(0|2) ≃ sl(1|2) ≃ osp(2|2). This result and its generalization for vect(0|m), sl(1|n) and osp(2|2n) yielded analogs of Weyl character formula, where the analog of the Weyl group of these Z-graded Lie superalgebras g played the Weyl group of g<sub>0</sub>, see a review (Leites 1985, p. 2504). This answer to the question (18) did not, however, look satisfactory for many reasons.

- Manin and Voronov introduced the notion of a *super Weyl group* in relation to the geometry of homogeneous superspaces. They constructed Schubert supercells which were labeled by elements of a super Weyl group, see Manin and Voronov (1988).
- (2) In Heckenberger and Yamane (2008), Heckenberger and Yamane answered the question (18) Serganova formulated in Serganova (1996): they introduced Weyl groupoids. Cuntz and Heckenberger reformulated the definition of Weyl groupoids in terms of Cartan schemes, see Cuntz and Heckenberger (2009).
- (3) Sergeev and Veselov (2017) and references therein, gave a *non-equivalent*, as far as we understand, definition of the Weyl groupoid in the super case.
- (4) It is interesting to extend the question (18) to modular Lie (super)algebras. We would like to draw attention of the reader to an under-appreciated paper Skryabin (1993), where the analog of Weyl group was considered in relation with bt(3). This analog seems to be most close to the groupoid defined by Sergeev and Veselov.
- (5) Completely independent approach to analogs of "Weyl group" for modular Lie algebras without Cartan matrix is due to Premet, see Bois et al. (2014) and references therein. This approach is meaningful for vectorial and periplectic (preserving an odd non-degenerate symmetric bilinear form) Lie superalgebras over fields of any characteristic.

#### 2.6.2 How Reflections Act on Chevalley Generators

If  $\sigma_i$  is an **odd** isotropic root, then the corresponding reflection  $r_i$  sends one set of Chevalley generators into a new one:

$$\tilde{X}_i^{\pm} = X_i^{\mp}; \quad \tilde{X}_j^{\pm} = \begin{cases} [X_i^{\pm}, X_j^{\pm}] & \text{if } A_{ij} \neq 0, \\ X_j^{\pm} & \text{otherwise.} \end{cases}$$
(19)

If  $\sigma_k$  is an **even** isotropic root (i.e.,  $i_k = 0$ ) and p > 0, then the corresponding reflection  $r_k$  acts as follows: for  $j \neq k$ , we have:

$$\tilde{X}_{k}^{\pm} = X_{k}^{\mp}; \quad \tilde{X}_{j}^{\pm} = \begin{cases} (\text{ad }_{\tilde{X}_{k}^{\pm}})^{p-1}\tilde{X}_{j}^{\pm} & \text{if } A_{kj} \neq 0, \\ X_{j}^{\pm} & \text{otherwise.} \end{cases}$$
(20)

The Cartan matrix  $r_i(A)$  corresponding to the Chevalley generators (19) should be obtained as described above: set

$$\tilde{H}_i := [\tilde{X}_i^+, \tilde{X}_i^-]$$

and compute

$$[\tilde{H}_i, \tilde{X}_j^+] = \tilde{B}_{ij}\tilde{X}_j^+.$$

D Springer

Normalize the matrix *B* as we agreed, see Sect. 2.4; let *B* be the normalized matrix. Then,  $r_k(A) := B = (B_{ij})$ .

## 2.6.3 How Reflections Act on Cartan Matrices ([Lebedev 2008, Chapovalov et al. 2010])

Let *A* be a Cartan matrix of size *n* and  $I = (p_1, ..., p_n)$  the vector of parities. If  $p_k = \overline{1}$  and  $A_{kk} = 0$ , then the reflection in the *k*th simple **odd** root sends *A* to  $r_k(A)$ , and *I* to  $r_k(I)$ , where

$$(r_k(A))_{ij} = A_{ij} + c_i A_{kj} + b_j A_{ik}, \quad r_k(p_j) \equiv p_j + b_j \pmod{2}$$
 (21)

and where

$$c_i = \begin{cases} -2 & \text{if } i = k, \\ 0 & \text{if } i \neq k \text{ and } A_{ik} = 0, \\ \frac{A_{ik}}{A_{ki}} & \text{if } i \neq k \text{ and } A_{ik} \neq 0; \end{cases} \text{ and } b_j = \begin{cases} -2 & \text{if } j = k, \\ 0 & \text{if } j \neq k \text{ and } A_{jk} = 0, \\ 1 & \text{if } j \neq k \text{ and } A_{jk} \neq 0. \end{cases}$$

This can be expressed in terms of matrices as

$$r_k(A) = (E + \mathcal{C})A(E + \mathcal{B}),$$

where all columns of the matrix C, except the *k*th one, are zero, whereas the *i*th coordinate of the *k*th column-vector is  $c_i$ , the *i*th coordinate of the *k*th row-vector of  $\mathcal{B}$  is  $b_i$ , the other rows of  $\mathcal{B}$  being zero; E is the unit matrix.

## **3 Lebedev's Comments**

Serganova (1984) proved (for p = 0) that for two systems of simple roots  $B_1$  and  $B_2$ , there is always a chain of reflections connecting a system of simple roots  $B_1$  with either some system of simple roots  $B'_2$  equivalent to a system of simple roots  $B_2$  in the sense of definition in Sect. 2.4 or with  $-B'_2$ . Here is a version of Serganova's statement suitable for any p.

## 3.1 Lemma

(Any two systems of simple roots are connected by a chain of reflections) For any two systems of simple roots  $B_1$  and  $B_2$  of any finite-dimensional Lie superalgebra with Cartan matrix, there is always a chain of reflections connecting  $B_1$  with  $B_2$ .

Let me start with a statement I am certain of. I will formulate it in terms which I will define without any relation to Lie superalgebras with Cartan matrices (CM LSA), so that the proof wouldn't rely on any properties of CM LSA I am not sure about. But I will use terms which are also used for concepts related to CM LSA.

Let *R* be a non-empty finite subset of the vector space  $V = \mathbb{R}^n$  such that  $0 \notin R$  and  $-r \in R$  for all  $r \in R$ . We will call such a set *R* a system of roots; compare this definition with that in Serganova (1996, p. 4298).

A subset  $P \subset R$  will be called a *system of positive roots* if there is an  $h \in V^*$  such that  $h(r) \neq 0$  for all  $r \in R$  and  $P = \{r \in R \mid h(r) > 0\}$ .

A non-empty subset  $L \subset R$  will be called a *root ray* if it is a maximal subset of R such that all of its elements are positive multiples of each other, or, equivalently, if there is an  $r_0 \in R$  such that  $L = \{r \in R \mid r = cr_0 \text{ for some } c \in \mathbb{R}_{>0}\}$ ; for an element  $r \in R$ , we will denote the root ray it belongs to by  $L_r$ .

Clearly, if *P* is a system of positive roots and  $r \in P$ , then  $L_r \subset P$ . If *P* is a system of positive roots, we will call a root ray  $L \subset P$  simple in *P* if there is an  $h \in V^*$  such that h(r) = 0 for all  $r \in L$  and h(r) > 0 for all  $r \in P \setminus L$ .

## 3.2 Statement

(On chains of positive root systems) Let  $P', P'' \subset R$  be two system of positive roots. Then, there is a finite sequence of positive systems of roots

$$P_1 = P', P_2, \ldots, P_m = P''$$

such that each next one is obtained from the previous one by removing a simple root ray and adding the opposite ray, i.e., for every k = 1, ..., m - 1, there is a root ray L simple in  $P_k$  such that  $P_{k+1} = (P \setminus L) \sqcup -L$ , where  $-L = \{-x \mid x \in L\}$ .

**Proof** We will prove it by induction on  $|P' \setminus P''|$ . If it is equal to 0, i.e.,  $P' \subset P''$ , then P' = P'', and the fact is trivial.

Now, let  $|P' \setminus P''| > 0$ . Let  $h', h'' \in V^*$  be two elements which define P' and P''. Consider the convex envelope of  $P' \cup \{0\}$ . It is a bounded convex polytope, and 0 is one of its vertices, since the (n - 1)-dimensional plane h'(x) = 0 passes through 0 and the rest of the polytope lies on one side of the plane. At least one of the vertices connected to 0 by an edge must lie outside of the half-space h''(x) > 0, because otherwise the whole polytope lies within that half-space, which would mean that  $P' \subset P''$ ; let us denote this vertex  $r_0$ .

Then, the root ray  $L_{r_0}$  is simple in P', since there is a half-plane containing the edge connecting  $r_0$  and 0 such that the rest of the polytope lies on one side of it, i.e., there is  $h_1 \in V^*$  such that  $h_1(r) = 0$  for all  $r \in L_{r_0}$  and  $h_1(r) > 0$  for all  $r \in P \setminus L_{r_0}$ . Then, for a sufficiently small  $\varepsilon > 0$ , the element  $h_1 - \varepsilon h'$  determines positive system  $P_2 := (P' \setminus L_{r_0}) \sqcup -L_{r_0}$ . Since  $L_{r_0} \subset P'$ , it follows that  $(-L_{r_0}) \cap P' = \emptyset$ , so

$$|P_2 \setminus P''| = |P' \setminus P''| - |L_{r_0}| < |P' \setminus P''|,$$

and by the induction hypothesis, there is a sequence of systems of positive roots of the required form connecting  $P_2$  and P'', and by prepending P' to it, we get a sequence of systems of positive roots connecting P' and P''.

## 3.2.1 Proof of Lemma 3.1

The system of roots of any finite-dimensional Lie superalgebra  $\mathfrak{g}(A)$  is a system of roots in the sense of the definition in Sect. 3, and its subset is a system of positive roots if and only if it is a system of positive roots in the above sense. Assuming that Conjecture 2.3.1.1) is true, there is a one-to-one correspondence between systems of positive roots and systems of simple roots, and a simple root ray has to contain a simple root. So if we define reflections as "removing a root ray with a simple root (i.e., all positive multiples of a given simple root) and adding the opposite root ray", then the above argument proves Lemma 3.1 in view of Conjecture 2.3.1.1).

## 3.2.2 On Conjecture 2.3.1.2

When we construct the Lie superalgebra  $\mathfrak{g} = \mathfrak{g}(A, I)$ , we start with elements  $e_i^{\pm}$ . Let me call the roots which correspond to  $e_i^+$  basic roots. The basic roots form a system of simple roots in the sense of definition in Subsect. 2.3; but we can choose some other system of simple roots, let us denote them  $\sigma_1, \ldots, \sigma_n$ . Conjecture 2.3.1.2 claims that all systems of simple roots are equally suitable for constructing  $\mathfrak{g}$  as a Lie superalgebra with Cartan matrix, i.e., that we could construct  $\mathfrak{g}$  so that  $\sigma_1, \ldots, \sigma_n$  would be basic roots, with some other pair (A', I').

## 3.2.3 On the Reviewer's Question: "Aren't All Root Spaces 1-dimensional?"

Assume definitions of Sect. 3; then, since in the above proof (Sect. 3.2.1) we change one system of positive roots into another by replacing root rays with their opposites one by one, and at each step, the root ray we replace is simple in the current system of positive roots, it means that every root of g(A, I) is a multiple of a simple one. If we assume that Conjecture 2.3.1.2 holds, then every root space is 1-dimensional.

# **4 Roots and Root Vectors**

Let the  $\pi_i$  be the fundamental weights relative to a fixed system of simple roots. For any simple Lie algebra with Cartan matrix, let  $R(\sum a_i \pi_i)$  denote both the irreducible representation with highest weight  $(a_1, a_2, ...)$  and the respective module. The tautological module over the Lie algebra of series  $\mathfrak{sl}$ ,  $\mathfrak{o}$  or  $\mathfrak{sp}$  is denoted by id :=  $R(\pi_1)$ .

By  $N\mathfrak{g}(A)$  we denote the realization of  $\mathfrak{g}(A)$  corresponding to the *N*th Cartan matrix *A* as listed in Bouarroudj et al. (2009). The odd root vectors are boxed and isotropic roots are <u>underlined</u>.

## 4.1 $\mathfrak{osp}(4|2; a)$ , $\mathfrak{ag}(2)$ , and $\mathfrak{ab}(3)$ for $p \geq 5$

The answer is the same as is well-known for p = 0, namely (here  $\mathfrak{sl}_i(2)$  is the *i*th copy of  $\mathfrak{sl}(2)$  with the tautological module  $\mathrm{id}_i$ ):

| $\mathfrak{osp}(4 2;a)_{\bar{0}} = \mathfrak{sl}_1(2) \oplus \mathfrak{sl}_2(2) \oplus \mathfrak{sl}_3(2)$ | $\mathfrak{osp}(4 2; a)_{\overline{1}} = \mathrm{id}_1 \boxtimes \mathrm{id}_2 \boxtimes \mathrm{id}_3$ |
|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| $\mathfrak{ag}(2)_{\bar{0}} = \mathfrak{sl}(2) \oplus \mathfrak{g}(2)$                                     | $\mathfrak{ag}(2)_{\overline{1}} = \mathrm{id} \boxtimes R(\pi_1)$                                      |
| $\mathfrak{ab}(3)_{\overline{0}} = \mathfrak{sl}(2) \oplus \mathfrak{o}(7)$                                | $\mathfrak{ab}(3)_{\overline{1}} = \mathrm{id} \boxtimes R(\pi_1)$                                      |

Each of the other exceptional Lie superalgebras  $\mathfrak{g}(A)$  with indecomposable Cartan matrix A exists only in characteristics 2, 3 and 5. The Lie superalgebras  $\mathfrak{3g}(2, 3)$  and  $\mathfrak{1g}(3, 3)$  (indigenous to p = 3) resemble  $\mathfrak{3ag}(2)$  and  $\mathfrak{6ab}(3)$  (existing for p = 0 and any p > 3), respectively, other exceptional Lie superalgebras  $\mathfrak{g}(A)$  have no analogs except for two pairs  $\mathfrak{brj}(2; 5) \leftrightarrow \mathfrak{brj}(2; 3)$  and  $\mathfrak{el}(5; 5) \leftrightarrow \mathfrak{el}(5; 3)$  (existing for  $p = 5 \leftrightarrow p = 3$ ) which we consider one after the other for clarity.

Every Cartan matrix is considered only once, for p declared. More precisely, certain Lie (super)algebras have incarnations in several characteristics their elements being integers of parameter a evaluated in K. For example,  $\mathfrak{osp}(4|2; a)$ ,  $\mathfrak{ag}(2)$ , and  $\mathfrak{ab}(3)$ have incarnations for  $p \ge 5$  and 0 and two pairs of exceptions ( $\mathfrak{brj}(2; 5) \leftrightarrow \mathfrak{brj}(2; 3)$ and  $\mathfrak{el}(5; 5) \leftrightarrow \mathfrak{el}(5; 3)$ ) have incarnations for p = 3 and 5. A version of  $\mathfrak{osp}(4|2; a)$ for p = 2 is called  $\mathfrak{bgl}(3; a)$ ; its desuperization— $\mathfrak{tot}(3; a)$ —has the "same" Cartan matrix, but with different diagonal elements ( $\overline{0}$  instead of 0). One can not consider any of the Cartan matrices for values of p different from those declared (if one does, one gets an infinite-dimensional algebra: thanks to the classification).

Recall that the Cartan matrix of the Brown algebra  $\mathfrak{br}(2; \varepsilon)$  is  $\begin{pmatrix} 2 & -1 \\ -2 & 1-\varepsilon \end{pmatrix}$ , where  $\varepsilon \neq 0$ .

## 4.2 1brj(2; 5) of sdim 10|12, p = 5

For  $\mathfrak{g} = \mathfrak{brj}(2; 5)$ , we have  $\mathfrak{g}_{\bar{0}} = \mathfrak{sp}(4) = \mathfrak{br}(2; -1)$  and  $\mathfrak{g}_{\bar{1}} = R(\pi_1 + \pi_2)$  is irreducible  $\mathfrak{g}_{\bar{0}}$ -module. We consider the Cartan matrix and basis elements

|                                        | the root vectors                                          | the roots                          |
|----------------------------------------|-----------------------------------------------------------|------------------------------------|
|                                        | $x_1$ , $x_2$                                             | $\underline{\alpha_1}, \alpha_2$   |
|                                        | $x_3 = [x_1, x_2], x_4 = [x_2, x_2]$                      | $\alpha_1 + \alpha_2, 2\alpha_2$   |
| (0 -1)                                 | $x_5 = [x_2, [x_1, x_2]]$                                 | $\alpha_1 + 2\alpha_2$             |
| $\begin{pmatrix} -2 & 1 \end{pmatrix}$ | $x_6 = [[x_1, x_2], [x_2, x_2]]$                          | $\alpha_1 + 3\alpha_2$             |
| ( = - )                                | $x_7 = [[x_1, x_2], [x_2, [x_1, x_2]]],$                  | $\underline{2\alpha_1+3\alpha_2},$ |
|                                        | $x_8 = [[x_2, x_2], [x_2, [x_1, x_2]]]$                   | $\alpha_1 + 4\alpha_2$             |
|                                        | $\overline{x_9} = [[x_1, x_2], [[x_1, x_2], [x_2, x_2]]]$ | $2\alpha_1 + 4\alpha_2$            |
|                                        | $x_{10} = [[x_2, [x_1, x_2]], [[x_1, x_2], [x_2, x_2]]]$  | $\underline{2\alpha_1+5\alpha_2}$  |

## 4.3 1brj(2; 3) of sdim 10|8, p = 3

For  $\mathfrak{g} = \mathfrak{br}(2; 3)$ , we have  $\mathfrak{g}_{\bar{0}} = \mathfrak{br}(2; 1)$  and  $\mathfrak{g}_{\bar{1}} = R(2\pi_2)$  as  $\mathfrak{g}_{\bar{0}}$ -module. We consider the Cartan matrix and basis elements

|                                                  | the root vectors                                                                                                                                                                                                                                    | the roots                                                                                                                                                            |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{pmatrix} 0 & -1 \\ -2 & 1 \end{pmatrix}$ | $ \begin{array}{c} x_1, x_2 \\ x_3 = [x_1, x_2], x_4 = [x_2, x_2] \\ \hline x_5 = [x_2, [x_1, x_2]] \\ x_6 = [[x_1, x_2], [x_2, x_2]] \\ \hline x_7 = [[x_2, x_2], [x_2, [x_1, x_2]]] \\ x_8 = [[x_1, x_2], [[x_1, x_2], [x_2, x_2]]] \end{array} $ | $\frac{\alpha_1, \alpha_2}{\alpha_1 + \alpha_2, 2\alpha_2}$ $\frac{\alpha_1 + 2\alpha_2}{\alpha_1 + 3\alpha_2}$ $\frac{\alpha_1 + 4\alpha_2}{2\alpha_1 + 4\alpha_2}$ |

# 4.4 1 $\mathfrak{el}(5; 5)$ of sdim = 55|32, p = 5

For  $\mathfrak{g} = \mathfrak{el}(5; 5)$ , we have  $\mathfrak{g}_{\bar{0}} = \mathfrak{o}(11)$  and  $\mathfrak{g}_{\bar{1}} = R(\pi_5)$  as  $\mathfrak{g}_{\bar{0}}$ -module. We consider the Cartan matrix

| $\int 2$    | 0  | -1 | 0  | 0) |
|-------------|----|----|----|----|
|             |    |    |    | -1 |
| <b> </b> -1 | 0  | 0  | -4 | -4 |
| 0           | 0  | -4 | 0  | -2 |
| 0 /         | -1 | -4 | -2 | 0/ |

the Chevalley basis and the root system are:

| the root vectors                                                                                                                                                                                               | the roots                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x_1, x_2, \overline{x_3}, \overline{x_4}, \overline{x_5}$                                                                                                                                                     | $\alpha_1, \alpha_2, \underline{\alpha_3}, \underline{\alpha_4}, \underline{\alpha_5}$                                                                                                                                            |
| $ \begin{bmatrix} x_6 \\ = [x_1, x_3], \\ x_7 \\ = [x_2, x_5], \\ x_8 = [x_3, x_4], \\ x_9 = [x_3, x_5], \\ x_{10} = [x_4, x_5] $                                                                              | $\frac{\alpha_1 + \alpha_3}{\alpha_3 + \alpha_5}, \frac{\alpha_2 + \alpha_5}{\alpha_4 + \alpha_5}, \frac{\alpha_3 + \alpha_4}{\alpha_3 + \alpha_5}, \frac{\alpha_4 + \alpha_5}{\alpha_4 + \alpha_5}$                              |
| $ \begin{array}{l} x_{11} = [x_3, [x_2, x_5]], x_{12} = [x_4, [x_1, x_3]], \\ x_{13} = [x_4, [x_2, x_5]], x_{14} = [x_5, [x_1, x_3]], \\ \hline x_{15} = [x_5, [x_3, x_4]] \end{array} $                       | $ \begin{array}{l} \alpha_2 + \alpha_3 + \alpha_5, \alpha_1 + \alpha_3 + \alpha_4, \\ \alpha_2 + \alpha_4 + \alpha_5, \alpha_1 + \alpha_3 + \alpha_5, \\ \underline{\alpha_3 + \alpha_4 + \alpha_5} \end{array} $                 |
| $ \begin{aligned} x_{16} &= [[x_1, x_3], [x_2, x_5]], \\ \hline x_{17} &= [[x_1, x_3], [x_4, x_5]], \\ \hline x_{18} &= [[x_2, x_5], [x_3, x_4]], \\ \hline x_{19} &= [[x_2, x_5], [x_4, x_5]] \end{aligned} $ | $ \begin{array}{l} \alpha_1 + \alpha_2 + \alpha_3 + \alpha_5, \\ \alpha_1 + \alpha_3 + \alpha_4 + \alpha_5, \\ \overline{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5}, \\ \overline{\alpha_2 + \alpha_4 + 2\alpha_5}, \end{array} $ |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                        | $\frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5}{\alpha_1 + 2\alpha_3 + \alpha_4 + \alpha_5,}$<br>$\alpha_2 + \alpha_3 + \alpha_4 + 2\alpha_5,$<br>$\alpha_2 + 2\alpha_4 + 2\alpha_5$                                 |
| $ \begin{array}{c} x_{24} = [[x_3, [x_2, x_5]], [x_4, [x_1, x_3]]], \\ x_{25} = [[x_4, [x_2, x_5]], [x_5, [x_1, x_3]]], \\ \hline x_{26} = [[x_4, [x_2, x_5]], [x_5, [x_3, x_4]]] \end{array} $                | $ \begin{array}{c} \alpha_1 + \alpha_2 + 2\alpha_3 + \alpha_4 + \alpha_5, \\ \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + 2\alpha_5, \\ \underline{\alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5} \end{array} $                      |

| $ \begin{array}{c} x_{27} \\ \hline x_{28} \\ \hline x_{28} \\ \hline x_{29} \\ \hline x_{21} \\ \hline x_{21} \\ \hline x_{22} \\ \hline x_{22} \\ \hline x_{21} \\ \hline x_{22} \\ \hline x_{22} \\ \hline x_{21} \\ \hline x_{22} \\ \hline x_{21} \\ \hline x_{22} \\ \hline x_{21} \\ \hline x_{22} \\ \hline x_{22} \\ \hline x_{21} \\ \hline x_{22} \\ \hline x_{22} \\ \hline x_{21} \\ \hline x_{22} \\ \hline x_{22} \\ \hline x_{21} \\ \hline x_{22} \\ \hline x_{22} \\ \hline x_{21} \\ \hline x_{22} \\ \hline x_{22} \\ \hline x_{22} \\ \hline x_{21} \\ \hline x_{22} \\ x_{22} \\ \hline x_{22} \\ \hline x_{22} \\ x_{22}$ | $\frac{\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 + 2\alpha_5}{\alpha_1 + \alpha_2 + 2\alpha_3 + \alpha_4 + 2\alpha_5},$ $\frac{\alpha_1 + \alpha_2 + 2\alpha_3 + \alpha_4 + 2\alpha_5}{\alpha_2 + \alpha_3 + 2\alpha_4 + 3\alpha_5}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{aligned} x_{30} &= [[[x_1, x_3], [x_4, x_5]], [[x_2, x_5], [x_3, x_4]]], \\ x_{31} &= [[[x_1, x_3], [x_4, x_5]], [[x_2, x_5], [x_4, x_5]]], \\ x_{32} &= [[[x_2, x_5], [x_3, x_4]], [[x_2, x_5], [x_4, x_5]]] \end{aligned} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ \begin{array}{l} \alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4 + 2\alpha_5, \\ \alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 + 3\alpha_5, \\ 2\alpha_2 + \alpha_3 + 2\alpha_4 + 3\alpha_5 \end{array} $                                  |
| $ \begin{array}{c} x_{33} = [[[x_2, x_5], [x_4, x_5]], [[x_2, x_5], [x_4, [x_1, x_3]]]], \\ \hline x_{34} = [[[x_2, x_5], [x_4, x_5]], [[x_3, x_5], [x_4, [x_1, x_3]]]] \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c} \alpha_1 + 2\alpha_2 + \alpha_3 + 2\alpha_4 + 3\alpha_5, \\ \alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4 + 3\alpha_5 \end{array} $                                                                                  |
| $\begin{bmatrix} x_{35} \\ x_{36} \end{bmatrix} = [[[x_2, x_5], [x_4, [x_1, x_3]]], [[x_4, x_5], [x_3, [x_2, x_5]]]], \\ x_{36} = [[[x_3, x_5], [x_4, [x_1, x_3]]], [[x_4, x_5], [x_4, [x_2, x_5]]]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{\alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4 + 3\alpha_5}{\alpha_1 + \alpha_2 + 2\alpha_3 + 3\alpha_4 + 3\alpha_5},$                                                                                                           |
| $ \begin{array}{l} x_{37} = [[[x_4, x_5], [x_3, [x_2, x_5]]], [[x_4, [x_2, x_5]], [x_5, [x_1, x_3]]]], \\ x_{38} = [[[x_4, x_5], [x_4, [x_2, x_5]]], [[x_3, [x_2, x_5]], [x_4, [x_1, x_3]]]] \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4 + 4\alpha_5,\alpha_1 + 2\alpha_2 + 2\alpha_3 + 3\alpha_4 + 3\alpha_5$                                                                                                                   |
| $\boxed{x_{39}} = [[[x_4, [x_2, x_5]], [x_5, [x_1, x_3]]], [[x_4, [x_2, x_5]], [x_5, [x_3, x_4]]]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\underline{\alpha_1 + 2\alpha_2 + 2\alpha_3 + 3\alpha_4 + 4\alpha_5}$                                                                                                                                                                |
| $ \begin{array}{c} x_{40} = [[[x_4, [x_2, x_5]], [x_5, [x_3, x_4]]], \\ [[x_5, [x_3, x_4]], [[x_1, x_3], [x_2, x_5]]]] \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\alpha_1 + 2\alpha_2 + 3\alpha_3 + 3\alpha_4 + 4\alpha_5$                                                                                                                                                                            |
| $ \begin{aligned} x_{41} &= [[[x_4, [x_2, x_5]], [[x_1, x_3], [x_4, x_5]]], \\ [[x_5, [x_3, x_4]], [[x_1, x_3], [x_2, x_5]]]] \end{aligned} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2\alpha_1 + 2\alpha_2 + 3\alpha_3 + 3\alpha_4 + 4\alpha_5$                                                                                                                                                                           |

# 4.5 7el(5; 3) of sdim = 39|32, p = 3

For  $\mathfrak{g} = \mathfrak{el}(5; 3)$ , we have  $\mathfrak{g}_{\bar{0}} = \mathfrak{o}(9) \oplus \mathfrak{sl}(2)$  and  $\mathfrak{g}_{\bar{1}} = R(\pi_4) \boxtimes \text{ id as } \mathfrak{g}_{\bar{0}}$ -module. We consider the Cartan matrix and Chevalley basis elements

| ( | 0  | 0  | 0  | -2 | 0) |
|---|----|----|----|----|----|
|   | 0  | 2  | 0  | -1 | 0  |
|   | 0  | 0  | 0  | -1 | -2 |
| - | -2 | -1 | -1 | 0  | 0  |
|   | 0  | 0  | -2 | 0  | 0/ |

| the root vectors                                                                                                                                                        | the roots                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x_1$ , $x_2$ , $x_3$ , $x_4$ , $x_5$ ,                                                                                                                                 | $\underline{\alpha_1}, \alpha_2, \underline{\alpha_3}, \underline{\alpha_4}, \underline{\alpha_5},$                                                                       |
| $x_{6} = [x_{1}, x_{4}],$<br>$[x_{7}] = [x_{2}, x_{4}],$<br>$x_{8} = [x_{3}, x_{4}],$<br>$x_{9} = [x_{3}, x_{5}],$                                                      | $ \begin{array}{l} \alpha_1 + \alpha_4, \\ \alpha_2 + \alpha_4, \\ \alpha_3 + \alpha_4, \\ \alpha_3 + \alpha_5, \end{array} $                                             |
| $ \begin{array}{l} x_{10} = [x_2, [x_1, x_4]], \\ \hline x_{11} = [x_3, [x_1, x_4]], \\ x_{12} = [x_3, [x_2, x_4]], \\ \hline x_{13} = [x_5, [x_3, x_4]], \end{array} $ | $ \begin{array}{l} \alpha_1 + \alpha_2 + \alpha_4, \\ \alpha_1 + \alpha_3 + \alpha_4, \\ \alpha_2 + \alpha_3 + \alpha_4, \\ \alpha_3 + \alpha_4 + \alpha_5, \end{array} $ |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4}{\alpha_1 + \alpha_3 + \alpha_4 + \alpha_5},$<br>$\frac{2\alpha_4 + \alpha_2 + \alpha_3}{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5},$           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} x_{18} = [[x_2, x_4], [x_5, [x_3, x_4]]], \\ x_{19} = [[x_3, x_4], [x_2, [x_1, x_4]]], \\ x_{20} = [[x_3, x_4], [x_3, [x_2, x_4]]], \\ x_{21} = [[x_3, x_5], [x_2, [x_1, x_4]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2\alpha_4 + \alpha_2 + \alpha_3 + \alpha_5,$<br>$2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_3,$<br>$2\alpha_3 + 2\alpha_4 + \alpha_2,$<br>$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5,$ |
| $ \begin{array}{c} \hline x_{22} \\ \hline x_{23} \\ \hline x_{24} \\ x_{24} \\ \hline x_{24} \\ x_{24} \\$ | $\frac{\frac{2\alpha_4 + \alpha_1 + \alpha_2}{+\alpha_3 + \alpha_5}}{\frac{2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_2}{+\alpha_2 + \alpha_2 + \alpha_5}},$                                      |
| $ \begin{array}{l} x_{25} = [[x_3, [x_1, x_4]], [[x_2, x_4], [x_3, x_4]]], \\ x_{26} = [[x_5, [x_3, x_4]], [x_3, [x_2, [x_1, x_4]]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $2\alpha_3 + 3\alpha_4 + \alpha_1 + \alpha_2, 2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_5,$                                                                                           |
| $x_{27} = [[x_3, [x_2, [x_1, x_4]]], [[x_2, x_4], [x_3, x_4]]],$ $x_{28} = [[[x_1, x_4], [x_3, x_5]], [[x_2, x_4], [x_3, x_4]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{r} 2\alpha_2 + 2\alpha_3 + 3\alpha_4 + \alpha_1, \\ \underline{2\alpha_3 + 3\alpha_4 + \alpha_1} \\ \underline{+\alpha_2 + \alpha_5}, \end{array} $                              |
| $x_{29} = [[[x_1, x_4], [x_3, x_5]], [[x_3, x_4], [x_3, [x_2, x_4]]]],$<br>$x_{30} = [[[x_2, x_4], [x_3, x_5]], [[x_3, x_4], [x_2, [x_1, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{3\alpha_3+3\alpha_4+\alpha_1+\alpha_2+\alpha_5,}{2\alpha_2+2\alpha_3+3\alpha_4}$ $\frac{2\alpha_2+2\alpha_3+3\alpha_4}{+\alpha_1+\alpha_5},$                                              |
| $x_{31} = [[[x_3, x_4], [x_3, [x_2, x_4]]]], \\ [[x_3, x_5], [x_2, [x_1, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 2\alpha_2 + 3\alpha_3 + 3\alpha_4 + \\ \alpha_1 + \alpha_5, \end{array}$                                                                                                       |
| $\boxed{x_{32}} = [[[x_3, x_4], [x_3, [x_2, x_4]]], \\ [[x_2, [x_1, x_4]], [x_5, [x_3, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\underline{2\alpha_2+3\alpha_3+4\alpha_4+\alpha_1+\alpha_5},$                                                                                                                                   |
| $x_{33} = [[[x_2, [x_1, x_4]], [x_5, [x_3, x_4]]]], [[x_3, [x_1, x_4]], [x_3, [x_2, x_4]]]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2\alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4 + \alpha_5$                                                                                                                                       |

# 4.6 1g(1, 6) of sdim 21|14, p = 3

For  $\mathfrak{g} = \mathfrak{g}(1, 6)$ , we have  $\mathfrak{g}_{\bar{0}} = \mathfrak{sp}(6)$  and  $\mathfrak{g}_{\bar{1}} = R(\pi_3)$  as  $\mathfrak{g}_{\bar{0}}$ -module. We consider the Cartan matrix  $\begin{pmatrix} 2 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & -1 & 0 \end{pmatrix}$  and the Chevalley basis elements

| the root vectors                                                                                                                 | the roots                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| $x_1, \overline{x_2}, \overline{x_3},$                                                                                           | $\alpha_1, \alpha_2, \underline{\alpha_3},$                                                       |
| $\boxed{x_4} = [x_1, x_2], x_5 = [x_2, x_2], x_6 = [x_2, x_3],$                                                                  | $\alpha_1 + \alpha_2, 2\alpha_2, \alpha_2 + \alpha_3,$                                            |
| $ \begin{array}{c} x_7 = [x_2, [x_1, x_2]], x_8 = [x_3, [x_1, x_2]], \\ \hline x_9 = [x_3, [x_2, x_2]], \end{array} $            | $\frac{2\alpha_2 + \alpha_1, \alpha_1 + \alpha_2 + \alpha_3,}{\underline{2\alpha_2 + \alpha_3},}$ |
| $ \begin{array}{c} x_{10} = [[x_1, x_2], [x_1, x_2]], \\ \hline x_{11} = [[x_1, x_2], [x_2, x_3]], \end{array} $                 | $2\alpha_1+2\alpha_2, 2\alpha_2+\alpha_1+\alpha_3,$                                               |
| $\begin{bmatrix} x_{12} \\ x_{13} \end{bmatrix} = [[x_1, x_2], [x_3, [x_1, x_2]]], \\ x_{13} = [[x_2, x_3], [x_2, [x_1, x_2]]],$ | $\frac{2\alpha_1+2\alpha_2+\alpha_3}{3\alpha_2+\alpha_1+\alpha_3},$                               |
| $x_{14} = [[x_2, [x_1, x_2]], [x_3, [x_1, x_2]]],$                                                                               | $2\alpha_1+3\alpha_2+\alpha_3,$                                                                   |
| $\boxed{x_{15}} = [[x_3, [x_2, x_2]], [[x_1, x_2], [x_1, x_2]]],$                                                                | $\underline{2\alpha_1+4\alpha_2+\alpha_3},$                                                       |
| $x_{16} = [[[x_1, x_2], [x_2, x_3]], [[x_1, x_2], [x_2, x_3]]]$                                                                  | $2\alpha_1 + 2\alpha_3 + 4\alpha_2$                                                               |

# 4.7 2g(2, 3) of sdim 12/10|14, p = 3

For  $\mathfrak{g} = \mathfrak{g}(2, 3)$ , we have  $\mathfrak{g}_{\bar{0}} = \mathfrak{gl}(3) \oplus \mathfrak{sl}(2)$  and  $\mathfrak{g}_{\bar{1}} = \mathfrak{psl}(3) \boxtimes \mathrm{id} \mathrm{as} \, \mathfrak{g}_{\bar{0}}$ -module. Clearly,  $(\mathfrak{g}^{(1)}(2, 3)/\mathfrak{c})_{\bar{0}} = \mathfrak{psl}(3) \oplus \mathfrak{sl}(2)$ . We consider the Cartan matrix  $\begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$  and

the Chevalley basis elements

| the root vectors                                                                                                                   | the roots                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| $x_1$ , $x_2$ , $x_3$ ,                                                                                                            | $\underline{\alpha_1}, \underline{\alpha_2}, \underline{\alpha_3},$          |
| $x_4 = [x_1, x_3], x_5 = [x_2, x_3],$                                                                                              | $\alpha_1 + \alpha_3, \alpha_2 + \alpha_3,$                                  |
| $x_6 = [x_2, [x_1, x_3]],$                                                                                                         | $\alpha_1 + \alpha_2 + \alpha_3,$                                            |
| $x_7 = [[x_1, x_3], [x_2, x_3]],$                                                                                                  | $2\alpha_3 + \alpha_1 + \alpha_2,$                                           |
| $ \begin{array}{c} \hline x_8 = [[x_1, x_3], [x_2, [x_1, x_3]]], \\ \hline x_9 = [[x_2, x_3], [x_2, [x_1, x_3]]], \\ \end{array} $ | $\frac{2\alpha_1 + 2\alpha_3 + \alpha_2}{2\alpha_2 + 2\alpha_3 + \alpha_1},$ |
| $x_{10} = [[x_2, [x_1, x_3]], [x_2, [x_1, x_3]]],$                                                                                 | $2\alpha_1+2\alpha_2+2\alpha_3,$                                             |
| $\boxed{x_{11}} = [[x_2, [x_1, x_3]], [[x_1, x_3], [x_2, x_3]]]$                                                                   | $\underline{2\alpha_1 + 2\alpha_2 + 3\alpha_3}$                              |

## 4.8 2g(2, 6) of sdim 36/34|20, p = 3

We have  $\mathfrak{g}(2, 6)_{\bar{0}} = \mathfrak{gl}(6)$  and  $\mathfrak{g}(2, 6)_{\bar{1}} = R(\pi_3)$  as  $\mathfrak{g}(2, 6)_{\bar{0}}$ -module. Clearly,  $(\mathfrak{g}^{(1)}(2, 6)/\mathfrak{c})_{\bar{0}} = \mathfrak{psl}(6)$ . We consider the Cartan matrix

$$\begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 0 & -2 & -2 & 0 \\ 0 & -2 & 0 & -2 & -1 \\ 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 2 \end{pmatrix}$$

and the Chevalley basis elements

| the root vectors                                                  | the roots                                                                               |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| $x_1, \overline{x_2}, \overline{x_3}, \overline{x_4}, x_5,$       | $\alpha_1, \underline{\alpha_2}, \underline{\alpha_3}, \underline{\alpha_4}, \alpha_5,$ |
| $x_6 = [x_1, x_2], x_7 = [x_2, x_3], x_8 = [x_2, x_4],$           | $\underline{\alpha_1 + \alpha_2}, \alpha_2 + \alpha_3, \alpha_2 + \alpha_4,$            |
| $x_9 = [x_3, x_4], x_{10} = [x_3, x_5],$                          | $\alpha_3 + \alpha_4, \underline{\alpha_3 + \alpha_5},$                                 |
| $x_{11} = [x_3, [x_1, x_2]], x_{12} = [x_4, [x_1, x_2]],$         | $\alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_4,$                       |
| $x_{13} = [x_4, [x_2, x_3]], x_{14} = [x_5, [x_2, x_3]],$         | $\underline{\alpha_2 + \alpha_3 + \alpha_4}, \alpha_2 + \alpha_3 + \alpha_5,$           |
| $\overline{x_{15}} = [x_5, [x_3, x_4]],$                          | $\alpha_3 + \alpha_4 + \alpha_5,$                                                       |
| $\boxed{x_{16}} = [[x_1, x_2], [x_3, x_4]],$                      | $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4,$                                            |
| $\overline{x_{17}} = [[x_1, x_2], [x_3, x_5]],$                   | $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_5,$                                            |
| $x_{18} = [[x_2, x_4], [x_3, x_5]],$                              | $\underline{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5},$                                |
| $x_{19} = [[x_2, x_4], [x_3, [x_1, x_2]]],$                       | $2\alpha_2 + \alpha_1 + \alpha_3 + \alpha_4,$                                           |
| $x_{20} = [[x_3, x_5], [x_4, [x_1, x_2]]],$                       | $\underline{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5},$                     |
| $\overline{x_{21}} = [[x_3, x_5], [x_4, [x_2, x_3]]],$            | $2\alpha_3+\alpha_2+\alpha_4+\alpha_5,$                                                 |
| $x_{22} = [[x_3, [x_1, x_2]], [x_5, [x_3, x_4]]],$                | $2\alpha_3 + \alpha_1 + \alpha_2 + \alpha_4 + \alpha_5,$                                |
| $x_{23} = [[x_4, [x_1, x_2]], [x_5, [x_2, x_3]]],$                | $2\alpha_2 + \alpha_1 + \alpha_3 + \alpha_4 + \alpha_5,$                                |
| $\boxed{x_{24}} = [[x_5, [x_2, x_3]], [[x_1, x_2], [x_3, x_4]]],$ | $\underline{2\alpha_2+2\alpha_3+\alpha_1+\alpha_4+\alpha_5},$                           |
| $x_{25} = [[[x_1, x_2], [x_3, x_4]], [[x_2, x_4], [x_3, x_5]]]$   | $2\alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_5$                               |

#### 4.9 7g(3, 3) of sdim 23/21|16, p = 3

Let spin<sub>7</sub> :=  $R(\pi_3)$ . For  $\mathfrak{g} = \mathfrak{g}(3,3)$ , we have  $\mathfrak{g}_{\bar{0}} = (\mathfrak{o}(7) \oplus \mathbb{K}z) \oplus \mathbb{K}d$  and  $\mathfrak{g}_{\bar{1}} = (\operatorname{spin}_7)_+ \oplus (\operatorname{spin}_7)_-$  as  $\mathfrak{g}_{\bar{0}}$ -module. The action of *d*—the outer derivative of  $\mathfrak{g}^{(1)}$ —separates the identical  $\mathfrak{o}(7)$ -modules spin<sub>7</sub> by acting on these modules as the scalar multiplication by  $\pm 1$ , as indicated by subscripts, *z* spans the center of  $\mathfrak{g}(3,3)$ .

We consider the Cartan matrix 
$$\begin{pmatrix} 0 & -1 & 0 & 0 \\ -1 & 0 & -1 & -2 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$$
 and the Chevalley basis elements

| the root vectors                                                | the roots                                                                      |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------|
| $x_1$ , $x_2$ , $x_3$ , $x_4$ ,                                 | $\underline{\alpha_1}, \underline{\alpha_2}, \alpha_3, \underline{\alpha_4},$  |
| $x_5 = [x_1, x_2], \ x_6 = [x_2, x_3], x_7 = [x_2, x_4],$       | $\alpha_1 + \alpha_2, \underline{\alpha_2 + \alpha_3}, \alpha_2 + \alpha_4,$   |
| $x_8 = [x_3, [x_1, x_2]], x_9 = [x_4, [x_1, x_2]],$             | $\alpha_1 + \alpha_2 + \alpha_3,  \underline{\alpha_1 + \alpha_2 + \alpha_4},$ |
| $x_{10} = [x_4, [x_2, x_3]],$                                   | $\alpha_2 + \alpha_3 + \alpha_4,$                                              |
| $x_{11} = [x_4, [x_3, [x_1, x_2]]],$                            | $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4,$                                   |
| $\boxed{x_{12}} = [[x_1, x_2], [x_2, x_3]],$                    | $\underline{2\alpha_2 + \alpha_1 + \alpha_3},$                                 |
| $x_{13} = [[x_1, x_2], [x_3, [x_1, x_2]]],$                     | $2\alpha_1+2\alpha_2+\alpha_3,$                                                |
| $x_{14} = [[x_2, x_4], [x_3, [x_1, x_2]]],$                     | $2\alpha_2 + \alpha_1 + \alpha_3 + \alpha_4,$                                  |
| $\boxed{x_{15}} = [[x_3, [x_1, x_2]], [x_4, [x_1, x_2]]],$      | $\underline{2\alpha_1+2\alpha_2+\alpha_3+\alpha_4},$                           |
| $x_{16} = [[x_4, [x_1, x_2]], [[x_1, x_2], [x_2, x_3]]],$       | $2\alpha_1+3\alpha_2+\alpha_3+\alpha_4,$                                       |
| $x_{17} = [[x_4, [x_3, [x_1, x_2]]], [[x_1, x_2], [x_2, x_3]]]$ | $2\alpha_1 + 2\alpha_3 + 3\alpha_2 + \alpha_4$                                 |

# 4.10 2g(3, 6) of sdim 36|40, p = 3

For  $\mathfrak{g} = \mathfrak{g}(3, 6)$ , we have  $\mathfrak{g}_{\bar{0}} = \mathfrak{sp}(8)$  and  $\mathfrak{g}_{\bar{1}} = R(\pi_3)$  as  $\mathfrak{g}_{\bar{0}}$ -module. We consider the Cartan matrix

$$\begin{pmatrix} 0 & -1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

and the Chevalley basis elements

| the root vectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the roots                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x_1$ , $x_2$ , $x_3$ , $x_4$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\underline{\alpha_1}, \underline{\alpha_2}, \alpha_3, \underline{\alpha_4},$                                                                                                                          |
| $ \begin{aligned} x_5 &= [x_1, x_2], \\ x_6 &= [x_2, x_3], \\ x_7 &= [x_3, x_3], \\ x_8 &= [x_3, x_4], \end{aligned} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\alpha_1 + \alpha_2, \\ \alpha_2 + \alpha_3, \\ 2\alpha_3, \\ \alpha_3 + \alpha_4, $                                                                                                                  |
| $ \begin{array}{c} x_9 \\ \hline x_9 \\ \hline x_{10} \\ \hline x_{11} \\ \hline x_{11} \\ \hline x_{12} \\ \hline x_{12} \\ \hline x_{11} \\ \hline x_{12} \\ \hline x_{11} \\ \hline x_{12} \\ x_{12} \\ \hline x_{12} \\ x_{12}$ | $ \frac{\alpha_1 + \alpha_2 + \alpha_3,}{\frac{2\alpha_3 + \alpha_2}{\alpha_2 + \alpha_3 + \alpha_4},} $ $ \frac{\alpha_1 + \alpha_2 + \alpha_3,}{\frac{2\alpha_3 + \alpha_4}{\alpha_3 + \alpha_4},} $ |
| $ \begin{array}{l} x_{13} = [[x_1, x_2], [x_3, x_3]], \\ x_{14} = [[x_1, x_2], [x_3, x_4]], \\ x_{15} = [[x_2, x_3], [x_3, x_4]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2\alpha_3 + \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4, 2\alpha_3 + \alpha_2 + \alpha_4,$                                                                                         |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \frac{2\alpha_2 + 2\alpha_3 + \alpha_1,}{2\alpha_3 + \alpha_1 + \alpha_2 + \alpha_4,} \frac{3\alpha_3 + \alpha_2 + \alpha_4,}{3\alpha_3 + \alpha_2 + \alpha_4,} $ $ \frac{2\alpha_1 + 2\alpha_2 + 2\alpha_3,}{2\alpha_2 + 2\alpha_3 + \alpha_1 + \alpha_4,} \frac{3\alpha_3 + \alpha_1 + \alpha_2 + \alpha_4,}{3\alpha_3 + \alpha_1 + \alpha_2 + \alpha_4,} $ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} x_{21} \\ \hline x_{22} \\ \hline x_{23} \\ x_{23} \\ \hline x_{23} \\ x$ | $\frac{2\alpha_1 + 2\alpha_2 + 2\alpha_3 + \alpha_4}{2\alpha_2 + 3\alpha_3 + \alpha_1 + \alpha_4},$                                                                                                                                                                                                                                                             |
| $ \begin{array}{l} x_{24} = [[[x_1, x_2], [x_3, x_3]], [[x_1, x_2], [x_3, x_4]]], \\ x_{25} = [[[x_1, x_2], [x_3, x_3]], [[x_2, x_3], [x_3, x_4]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2\alpha_1 + 2\alpha_2 + 3\alpha_3 + \alpha_4, 2\alpha_2 + 4\alpha_3 + \alpha_1 + \alpha_4,$                                                                                                                                                                                                                                                                    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{2\alpha_1 + 2\alpha_2 + 4\alpha_3 + \alpha_4,}{2\alpha_1 + 3\alpha_2 + 3\alpha_3 + \alpha_4,}$ $\frac{2\alpha_2 + 2\alpha_4 + 4\alpha_3 + \alpha_1}{2\alpha_2 + 2\alpha_4 + 4\alpha_3 + \alpha_1},$                                                                                                                                                      |
| $ \begin{array}{l} x_{29} = [[[x_2, x_3], [x_3, [x_1, x_2]]], [[x_3, x_4], [x_3, [x_1, x_2]]]], \\ x_{30} = [[[x_3, x_4], [x_3, [x_1, x_2]]], [[x_3, x_4], [x_3, [x_1, x_2]]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + \alpha_4, \\ 2\alpha_1 + 2\alpha_2 + 2\alpha_4 + 4\alpha_3, \end{array}$                                                                                                                                                                                                                                  |
| $\begin{bmatrix} x_{31} \\ x_{32} \end{bmatrix} = [[[x_3, x_4], [x_3, [x_1, x_2]]], [[x_3, [x_1, x_2]], [x_4, [x_2, x_3]]]], \\ x_{32} \end{bmatrix} = [[[x_3, x_4], [x_3, [x_2, x_3]]], [[x_3, [x_1, x_2]], [x_3, [x_1, x_2]]]], \\ x_{33} = [[[x_3, x_4], [x_3, [x_2, x_3]]], [[x_3, [x_1, x_2]], [x_3, [x_1, x_2]]]], \\ x_{33} = [[[x_3, x_4], [x_3, [x_2, x_3]]], [[x_3, [x_1, x_2]], [x_3, [x_1, x_2]]]], \\ x_{33} = [[x_3, x_4], [x_3, [x_3, [x_2, x_3]]], [[x_3, [x_1, x_2]], [x_3, [x_1, x_2]]]], \\ x_{33} = [[x_3, x_4], [x_3, [x_3, [x_2, x_3]]], [[x_3, [x_3, [x_1, x_2]]], [x_3, [x_1, x_2]]]], \\ x_{33} = [[x_3, x_4], [x_3, [x_3, [x_2, x_3]]], [[x_3, [x_3, [x_1, x_2]]], [x_3, [x_1, x_2]]]], \\ x_{33} = [[x_3, x_4], [x_3, [x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{2\alpha_1+2\alpha_4+3\alpha_2+4\alpha_3}{2\alpha_1+3\alpha_2+5\alpha_3+\alpha_4},$                                                                                                                                                                                                                                                                       |
| $x_{33} = [[[x_3, [x_1, x_2]], [x_4, [x_2, x_3]]], [[x_3, [x_1, x_2]], [x_4, [x_3, x_3]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2\alpha_1+2\alpha_4+3\alpha_2+5\alpha_3,$                                                                                                                                                                                                                                                                                                                      |
| $\boxed{x_{34}} = [[[x_3, [x_1, x_2]], [x_4, [x_3, x_3]]], [[x_4, [x_2, x_3]], [[x_1, x_2], [x_3, x_3]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\underline{2\alpha_1+2\alpha_4+3\alpha_2+6\alpha_3},$                                                                                                                                                                                                                                                                                                          |
| $ \begin{array}{c} x_{35} = [[[x_4, [x_2, x_3]], [[x_1, x_2], [x_3, x_3]]], [[x_4, [x_2, x_3]], \\ [[x_1, x_2], [x_3, x_3]]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2\alpha_1 + 2\alpha_4 + 4\alpha_2 + 6\alpha_3,$                                                                                                                                                                                                                                                                                                                |
| $\boxed{\begin{bmatrix} x_{36} \\ [x_3, x_3] \end{bmatrix}} = [[[x_4, [x_2, x_3]], [[x_1, x_2], [x_3, x_3]]], [[[x_1, x_2], [x_3, x_4]]]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\underline{2\alpha_4 + 3\alpha_1 + 4\alpha_2 + 6\alpha_3}$                                                                                                                                                                                                                                                                                                     |

# 4.11 6g(4, 3) of sdim 24|26, p = 3

For  $\mathfrak{g} = \mathfrak{g}(4, 3)$ , we have  $\mathfrak{g}_{\bar{0}} = \mathfrak{sp}(6) \oplus \mathfrak{sl}(2)$  and  $\mathfrak{g}_{\bar{1}} = R(\pi_2) \boxtimes \text{id as } \mathfrak{g}_{\bar{0}}$ -module. We consider the Cartan matrix

$$\begin{pmatrix} 0 & -1 & 0 & 0 \\ -1 & 0 & -2 & 0 \\ 0 & -1 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

and the Chevalley basis elements

| the root vectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the roots                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| $x_1$ , $x_2$ , $x_3$ , $x_4$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\underline{\alpha_1}, \underline{\alpha_2}, \underline{\alpha_3}, \underline{\alpha_4},$                                                   |
| $x_5 = [x_1, x_2], x_6 = [x_2, x_3], x_7 = [x_3, x_4],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{l} \alpha_1 + \alpha_2, \\ \alpha_2 + \alpha_3, \\ \alpha_3 + \alpha_4, \end{array}$                                         |
| $ \begin{array}{c} x_8 = [x_3, [x_1, x_2]], \\ x_9 = [x_4, [x_2, x_3]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{\alpha_1 + \alpha_2 + \alpha_3}{\alpha_2 + \alpha_3 + \alpha_4},$                                                                    |
| $x_{10} = [[x_1, x_2], [x_3, x_4]], x_{11} = [[x_2, x_3], [x_3, x_4]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4, \\ 2\alpha_3 + \alpha_2 + \alpha_4,$                                                            |
| $ \begin{array}{c} \hline x_{12} = [[x_2, x_3], [x_4, [x_2, x_3]]], \\ x_{13} = [[x_3, x_4], [x_3, [x_1, x_2]]], \\ x_{14} = [[x_3, x_4], [x_4, [x_2, x_3]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{2\alpha_2 + 2\alpha_3 + \alpha_4}{2\alpha_3 + \alpha_1 + \alpha_2 + \alpha_4},$<br>$2\alpha_3 + 2\alpha_4 + \alpha_2,$               |
| $x_{15} = [[x_3, x_4], [[x_1, x_2], [x_3, x_4]]], x_{16} = [[x_3, [x_1, x_2]], [x_4, [x_2, x_3]]], x_{17} = [[x_4, [x_2, x_3]], [x_4, [x_2, x_3]]], \\x_{17} = [[x_4, [x_2, x_3]], [x_4, [x_2, x_3$ | $2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_2, 2\alpha_2 + 2\alpha_3 + \alpha_1 + \alpha_4, \underline{2\alpha_2 + 2\alpha_3 + 2\alpha_4}, $ |
| $x_{18} = [[x_4, [x_2, x_3]], [[x_1, x_2], [x_3, x_4]]], x_{19} = [[x_4, [x_2, x_3]], [[x_2, x_3], [x_3, x_4]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2\alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_1,$<br>$2\alpha_2 + 2\alpha_4 + 3\alpha_3,$                                                     |
| $\boxed{x_{20}} = [[[x_1, x_2], [x_3, x_4]], [[x_2, x_3], [x_3, x_4]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\underline{2\alpha_2+2\alpha_4+3\alpha_3+\alpha_1},$                                                                                       |
| $x_{21} = [[[x_1, x_2], [x_3, x_4]], [[x_2, x_3], [x_4, [x_2, x_3]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2\alpha_4+3\alpha_2+3\alpha_3+\alpha_1,$                                                                                                   |
| $\begin{bmatrix} x_{22} \\ x_{3}, [x_1, x_2] \end{bmatrix}], [x_4, [x_2, x_3]]], [[x_3, x_4], [x_3, [x_1, x_2]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\underline{2\alpha_4+3\alpha_2+4\alpha_3+\alpha_1},$                                                                                       |
| $x_{23} = [[[x_3, x_4], [x_4, [x_2, x_3]]], [[x_3, [x_1, x_2]], [x_4, [x_2, x_3]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $3\alpha_2+3\alpha_4+4\alpha_3+\alpha_1,$                                                                                                   |

# 4.12 $13\mathfrak{g}(8, 3)$ of sdim 55|50, p = 3

For  $\mathfrak{g} = \mathfrak{g}(8, 3)$ , we have  $\mathfrak{g}_{\bar{0}} = \mathfrak{f}(4) \oplus \mathfrak{sl}(2)$  and  $\mathfrak{g}_{\bar{1}} = R(\pi_4) \boxtimes \text{ id as } \mathfrak{g}_{\bar{0}}$ -module. We consider the Cartan matrix

$$\begin{pmatrix} 2 & -1 & -1 & 0 & 0 \\ -1 & 0 & -1 & -2 & 0 \\ -1 & -1 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 \end{pmatrix}$$

# and the Chevalley basis elements

| the root vectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the roots                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| the root vectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the roots                                                                                                                                                                                                                                           |
| $x_1, x_2, x_3, x_4, x_5,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\alpha_1, \underline{\alpha_2}, \underline{\alpha_3}, \underline{\alpha_4}, \underline{\alpha_5},$                                                                                                                                                 |
| $\begin{bmatrix} x_6 \\ x_9 \end{bmatrix} = [x_1, x_2], \begin{bmatrix} x_7 \\ x_7 \end{bmatrix} = [x_1, x_3], x_8 = [x_2, x_3], x_8 = [x_2, x_3], x_8 = [x_2, x_3], x_9 = [x_2, x_4], x_{10} = [x_4, x_5],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{\alpha_1 + \alpha_2}{\alpha_2 + \alpha_4}, \frac{\alpha_1 + \alpha_3}{\alpha_4 + \alpha_5}, \alpha_2 + \alpha_3,$                                                                                                                            |
| $ \begin{array}{c} x_{11} = [x_3, [x_1, x_2]], x_{12} = [x_4, [x_1, x_2]], \\ \hline x_{13} = [x_4, [x_2, x_3]], \hline x_{14} = [x_5, [x_2, x_4]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{l} \alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + \alpha_2 + \alpha_4, \\ \underline{\alpha_2 + \alpha_3 + \alpha_4}, \\ \underline{\alpha_2 + \alpha_4 + \alpha_5}, \end{array} $                                                      |
| $ \begin{array}{c} x_{15} = [[x_1, x_2], [x_1, x_3]], \\ \hline x_{16} = [[x_1, x_2], [x_4, x_5]], \\ \hline x_{17} = [[x_1, x_3], [x_2, x_4]], \\ x_{18} = [[x_2, x_3], [x_4, x_5]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2\alpha_1 + \alpha_2 + \alpha_3,  \frac{\alpha_1 + \alpha_2 + \alpha_4 + \alpha_5,}{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4,}  \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5,$                                                                       |
| $ \begin{array}{c} \hline x_{19} \\ x_{20} = [[x_1, x_3], [x_4, [x_1, x_2]]], \\ x_{21} = [[x_2, x_4], [x_3, [x_1, x_2]]], \\ x_{21} = [[x_4, x_5], [x_3, [x_1, x_2]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{2\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4}{2\alpha_2 + \alpha_1 + \alpha_3 + \alpha_4,}$<br>$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5,$                                                                                         |
| $ \begin{array}{l} x_{22} = [[x_4, x_5], [[x_1, x_2], [x_1, x_3]]], \\ x_{23} = [[x_3, [x_1, x_2]], [x_4, [x_1, x_2]]], \\ \hline x_{24} = [[x_3, [x_1, x_2]], [x_5, [x_2, x_4]]], \\ \hline \hline x_{25} = [[x_4, [x_1, x_2]], [x_4, [x_2, x_3]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{2\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5}{2\alpha_1 + 2\alpha_2 + \alpha_3 + \alpha_4},$<br>$\frac{2\alpha_2 + \alpha_1 + \alpha_3 + \alpha_4 + \alpha_5}{2\alpha_2 + 2\alpha_4 + \alpha_1 + \alpha_3},$                        |
| $ \begin{array}{c} x_{26} = [[x_4, [x_1, x_2]], [[x_1, x_3], [x_2, x_4]]], \\ \hline x_{27} = [[x_4, [x_2, x_3]], [[x_1, x_2], [x_1, x_3]]], \\ \hline x_{28} = [[x_5, [x_2, x_4]], [[x_1, x_2], [x_1, x_3]]], \\ x_{29} = [[x_5, [x_2, x_4]], [[x_1, x_3], [x_2, x_4]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{2\alpha_1 + 2\alpha_2 + 2\alpha_4 + \alpha_3}{2\alpha_1 + 2\alpha_2 + 2\alpha_3 + \alpha_4},$<br>$\frac{2\alpha_1 + 2\alpha_2 + 2\alpha_3 + \alpha_4}{2\alpha_1 + 2\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5},$                              |
| $ \begin{array}{l} x_{30} = [[x_4, [x_1, x_2]], [[x_2, x_4], [x_3, [x_1, x_2]]]], \\ x_{31} = [[[x_1, x_2], [x_1, x_3]], [[x_2, x_3], [x_4, x_5]]], \\ x_{32} = [[[x_1, x_2], [x_4, x_5]], [[x_1, x_3], [x_2, x_4]]], \\ x_{33} = [[[x_1, x_3], [x_2, x_4]], [[x_1, x_3], [x_2, x_4]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{l} 2\alpha_1 + 2\alpha_4 + 3\alpha_2 + \alpha_3,\\ 2\alpha_1 + 2\alpha_2 + 2\alpha_3 + \alpha_4 + \alpha_5,\\ 2\alpha_1 + 2\alpha_2 + 2\alpha_4 + \alpha_3 + \alpha_5,\\ 2\alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4, \end{array}$ |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{2\alpha_1 + 2\alpha_4 + 3\alpha_2 + \alpha_3 + \alpha_5}{2\alpha_1 + 2\alpha_3 + 2\alpha_4 + 3\alpha_2},}{\frac{2\alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_5}{2\alpha_1 + 2\alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_5}},$       |
| $ \begin{array}{c} x_{37} = [[[x_1, x_2], [x_4, x_5]], [[x_4, [x_1, x_2]], [x_4, [x_2, x_3]]]], \\ \hline x_{38} = [[[x_1, x_3], [x_4, [x_1, x_2]]], [[x_2, x_4], [x_3, [x_1, x_2]]]], \\ x_{39} = [[[x_2, x_4], [x_3, [x_1, x_2]]], [[x_4, x_5], [x_3, [x_1, x_2]]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{2\alpha_1 + 3\alpha_2 + 3\alpha_4 + \alpha_3 + \alpha_5}{2\alpha_3 + 2\alpha_4 + 3\alpha_1 + 3\alpha_2},$<br>$\frac{2\alpha_1 + 2\alpha_3 + 2\alpha_4 + 3\alpha_2 + \alpha_5}{2\alpha_1 + 2\alpha_3 + 2\alpha_4 + 3\alpha_2 + \alpha_5},$    |
| $ \begin{array}{c} x_{40} = [[[x_4, x_5], [x_3, [x_1, x_2]]], [[x_3, [x_1, x_2]], [x_4, [x_1, x_2]]]], \\ \hline x_{41} = [[[x_4, x_5], [x_3, [x_1, x_2]]], [[x_4, [x_1, x_2]], [x_4, [x_2, x_3]]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{2\alpha_3 + 2\alpha_4 + 3\alpha_1 + 3\alpha_2 + \alpha_5}{2\alpha_1 + 2\alpha_3 + 3\alpha_2 + 3\alpha_4 + \alpha_5},$                                                                                                                        |
| $ \begin{array}{c} \hline x_{42} \\ \hline x_{42} \\ \hline x_{42} \\ \hline x_{43} \\ \hline x$ | $\frac{2\alpha_3 + 3\alpha_1 + 3\alpha_2 + 3\alpha_4 + \alpha_5}{2\alpha_1 + 2\alpha_3 + 3\alpha_4 + 4\alpha_2 + \alpha_5},$                                                                                                                        |

| $x_{44} = [[[x_4, [x_1, x_2]], [x_4, [x_2, x_3]]], [[x_5, [x_2, x_4]], [[x_1, x_2], [x_1, x_3]]]],$                                                                                                                                                                 | $2\alpha_3+3\alpha_1+3\alpha_4+4\alpha_2+\alpha_5,$                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{l} x_{45} = [[[x_4, [x_1, x_2]], [[x_1, x_3], [x_2, x_4]]], [[x_5, [x_2, x_4]], \\ [[x_1, x_2], [x_1, x_3]]]], \\ \hline x_{46} = [[[x_4, [x_2, x_3]]], [[x_1, x_2], [x_1, x_3]]], [[x_5, [x_2, x_4]], \\ [[x_1, x_3], [x_2, x_4]]]], \end{array} $ | $\frac{2\alpha_3 + 3\alpha_4 + 4\alpha_1 + 4\alpha_2 + \alpha_5}{3\alpha_1 + 3\alpha_3 + 3\alpha_4 + 4\alpha_2 + \alpha_5},$ |
| $\boxed{x_{47}} = [[[x_5, [x_2, x_4]], [[x_1, x_2], [x_1, x_3]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_1, x_3], [x_2, x_4]]]],$                                                                                                                                        | $\underline{3\alpha_3+3\alpha_4+4\alpha_1+4\alpha_2+\alpha_5},$                                                              |
| $x_{48} = [[[x_4, [x_1, x_2]], [[x_2, x_4], [x_3, [x_1, x_2]]]]], \\[[[x_1, x_2], [x_1, x_3]], [[x_2, x_3], [x_4, x_5]]]],$                                                                                                                                         | $3\alpha_3 + 3\alpha_4 + 4\alpha_1 + 5\alpha_2 + \alpha_5,$                                                                  |
| $\boxed{x_{49}} = [[[[x_1, x_3], [x_2, x_4]], [[x_1, x_3], [x_2, x_4]]], \\[[[x_1, x_2], [x_4, x_5]], [[x_2, x_4], [x_3, [x_1, x_2]]]]],$                                                                                                                           | $\underline{3\alpha_3+4\alpha_1+4\alpha_4+5\alpha_2+\alpha_5},$                                                              |
| $x_{50} = [[[[x_1, x_2], [x_4, x_5]], [[x_2, x_4], [x_3, [x_1, x_2]]]], \\ [[[x_2, x_3], [x_4, x_5]], [[x_1, x_3], [x_4, [x_1, x_2]]]]]$                                                                                                                            | $2\alpha_5 + 3\alpha_3 + 4\alpha_1 + 4\alpha_4 + 5\alpha_2$                                                                  |

# 4.13 2g(4, 6) of sdim 66|32, p = 3

For  $\mathfrak{g} = \mathfrak{g}(4, 6)$ , we have  $\mathfrak{g}_{\bar{0}} = \mathfrak{o}(12)$  and  $\mathfrak{g}_{\bar{1}} = R(\pi_5)$  as  $\mathfrak{g}_{\bar{0}}$ -module. We consider the Cartan matrix

| (2) | -1 | 0  | 0  | 0  | 0 ) |
|-----|----|----|----|----|-----|
| -1  | 2  | -1 | 0  | 0  | 0   |
|     |    |    |    |    | 0   |
| 0   | 0  | -1 | 0  | -1 | -2  |
| 0   | 0  | -1 | -1 | 0  | 0   |
|     |    |    |    | ~  | 2 ) |

and the Chevalley basis elements

| the root vectors                                                                                                                                                                                                                          | the roots                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x_1, x_2, x_3, x_4, x_5, x_6,$                                                                                                                                                                                                           | $\alpha_1, \alpha_2, \underline{\alpha_3}, \underline{\alpha_4}, \underline{\alpha_5}, \alpha_6,$                                                                                                                                                                   |
| $ \begin{array}{l} x_7 = [x_1, x_2], \ \overline{x_8} = [x_2, x_3], \ x_9 = [x_3, x_4], \\ x_{10} = [x_3, x_5], \ x_{11} = [x_4, x_5], \ \overline{x_{12}} = [x_4, x_6], \end{array} $                                                    | $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \\ \alpha_3 + \alpha_5, \alpha_4 + \alpha_5, \alpha_4 + \alpha_6, $                                                                                                                                 |
| $ \begin{bmatrix} x_{13} \\ x_{15} \end{bmatrix} = [x_3, [x_1, x_2]], x_{14} = [x_4, [x_2, x_3]],  x_{15} = [x_5, [x_2, x_3]], x_{16} \end{bmatrix} = [x_5, [x_3, x_4]],  x_{17} = [x_6, [x_3, x_4]], x_{18} = [x_6, [x_4, x_5]], $       | $\frac{\alpha_1 + \alpha_2 + \alpha_3}{\alpha_2 + \alpha_3 + \alpha_5}, \frac{\alpha_2 + \alpha_3 + \alpha_4}{\alpha_3 + \alpha_4 + \alpha_5}, \frac{\alpha_3 + \alpha_4 + \alpha_5}{\alpha_4 + \alpha_5 + \alpha_6},$                                              |
| $ \begin{array}{c} x_{19} = [[x_1, x_2], [x_3, x_4]], \\ x_{20} = [[x_1, x_2], [x_3, x_5]], \\ \hline x_{21} = [[x_2, x_3], [x_4, x_5]], \\ x_{22} = [[x_2, x_3], [x_4, x_6]], \\ \hline x_{23} = [[x_3, x_5], [x_4, x_6]], \end{array} $ | $ \begin{array}{l} \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4, \\ \alpha_1 + \alpha_2 + \alpha_3 + \alpha_5, \\ \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5, \\ \alpha_2 + \alpha_3 + \alpha_4 + \alpha_6, \\ \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6, \end{array} $ |

| $ \begin{array}{l} x_{24} = [[x_3, x_5], [x_4, [x_2, x_3]]], \\ \hline x_{25} = [[x_4, x_5], [x_3, [x_1, x_2]]], \\ x_{26} = [[x_4, x_6], [x_3, [x_1, x_2]]], \\ \hline x_{27} = [[x_4, x_6], [x_5, [x_2, x_3]]], \\ x_{28} = [[x_4, x_6], [x_5, [x_3, x_4]]], \end{array} $     | $2\alpha_3 + \alpha_2 + \alpha_4 + \alpha_5,$<br>$\frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5,}{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6,}$<br>$\frac{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6,}{2\alpha_4 + \alpha_3 + \alpha_5 + \alpha_6,}$                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} x_{29} = [[x_3, [x_1, x_2]], [x_5, [x_3, x_4]]], \\ \hline x_{30} = [[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]], \\ x_{31} = [[x_4, [x_2, x_3]], [x_6, [x_4, x_5]]], \\ x_{32} = [[x_5, [x_2, x_3]], [x_6, [x_3, x_4]]], \end{array} $                             | $\begin{array}{c} 2\alpha_{3} + \alpha_{1} + \alpha_{2} + \alpha_{4} + \alpha_{5}, \\ \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4} + \alpha_{5} + \alpha_{6}, \\ 2\alpha_{4} + \alpha_{2} + \alpha_{3} + \alpha_{5} + \alpha_{6}, \\ 2\alpha_{3} + \alpha_{2} + \alpha_{4} + \alpha_{5} + \alpha_{6}, \end{array}$ |
| $ \begin{array}{l} x_{33} = [[x_5, [x_2, x_3]], [[x_1, x_2], [x_3, x_4]]], \\ x_{34} = [[x_6, [x_3, x_4]], [[x_1, x_2], [x_3, x_5]]], \\ \hline x_{35} = [[x_6, [x_3, x_4]], [[x_2, x_3], [x_4, x_5]]], \\ x_{36} = [[x_6, [x_4, x_5]], [[x_1, x_2], [x_3, x_4]]], \end{array} $ | $\begin{array}{c} 2\alpha_2 + 2\alpha_3 + \alpha_1 + \alpha_4 + \alpha_5, \\ 2\alpha_3 + \alpha_1 + \alpha_2 + \alpha_4 + \alpha_5 + \alpha_6, \\ \underline{2\alpha_3 + 2\alpha_4 + \alpha_2 + \alpha_5 + \alpha_6}, \\ \overline{2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_5 + \alpha_6}, \end{array}$      |
| $\begin{bmatrix} x_{37} \\ x_{38} \end{bmatrix} = [[[x_1, x_2], [x_3, x_4]], [[x_3, x_5], [x_4, x_6]]],$<br>$x_{38} = [[[x_1, x_2], [x_3, x_5]], [[x_2, x_3], [x_4, x_6]]],$<br>$x_{39} = [[[x_2, x_3], [x_4, x_5]], [[x_3, x_5], [x_4, x_6]]],$                                 | $\frac{2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_5 + \alpha_6}{2\alpha_2 + 2\alpha_3 + \alpha_1 + \alpha_4 + \alpha_5 + \alpha_6},\\ 2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_2 + \alpha_6,$                                                                                                               |
| $ \begin{bmatrix} x_{40} \\ x_{41} \end{bmatrix} = [[[x_2, x_3], [x_4, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]], \\ x_{41} = [[[x_3, x_5], [x_4, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]], $                                                                                       | $\frac{2\alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_5 + \alpha_6}{2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_1 + \alpha_2 + \alpha_6},$                                                                                                                                                                        |
| $ \begin{array}{l} x_{42} = [[[x_3, x_5], [x_4, [x_2, x_3]]], [[x_4, x_6], [x_3, [x_1, x_2]]]], \\ x_{43} = [[[x_4, x_5], [x_3, [x_1, x_2]]], [[x_4, x_6], [x_5, [x_2, x_3]]]], \end{array} $                                                                                    | $2\alpha_{2}+2\alpha_{4}+3\alpha_{3}+\alpha_{1}+\alpha_{5}+\alpha_{6},2\alpha_{2}+2\alpha_{3}+2\alpha_{4}+2\alpha_{5}+\alpha_{1}+\alpha_{6},$                                                                                                                                                                           |
| $\boxed{x_{44}} = [[[x_4, x_6], [x_5, [x_2, x_3]]], [[x_3, [x_1, x_2]], [x_5, [x_3, x_4]]]],$                                                                                                                                                                                    | $\underline{2\alpha_2 + 2\alpha_4 + 2\alpha_5 + 3\alpha_3 + \alpha_1 + \alpha_6}$                                                                                                                                                                                                                                       |
| $x_{45} = [[[x_3, [x_1, x_2]], [x_5, [x_3, x_4]]], [[x_4, [x_2, x_3]], [x_6, [x_4, x_5]]]],$                                                                                                                                                                                     | $2\alpha_2+2\alpha_5+3\alpha_3+3\alpha_4+\alpha_1+\alpha_6,$                                                                                                                                                                                                                                                            |
| $x_{46} = [[[x_5, [x_2, x_3]], [x_6, [x_3, x_4]]], [[x_6, [x_4, x_5]], [[x_1, x_2], [x_3, x_4]]]]$                                                                                                                                                                               | $\frac{2\alpha_2 + 2\alpha_5 + 2\alpha_6 + 3\alpha_3 +}{3\alpha_4 + \alpha_1}$                                                                                                                                                                                                                                          |

# 4.14 4g(6, 6) of sdim 78|64, p = 3

For  $\mathfrak{g} = \mathfrak{g}(6, 6)$ , we have  $\mathfrak{g}_{\bar{0}} = \mathfrak{o}(13)$  and  $\mathfrak{g}_{\bar{1}} = \operatorname{spin}_{13} := R(\pi_6)$  as  $\mathfrak{g}_{\bar{0}}$ -module. We consider the Cartan matrix

| ( 0                                   | -1 | 0  | 0  | 0  | 0 ) |
|---------------------------------------|----|----|----|----|-----|
|                                       | 0  |    |    |    | 0   |
|                                       | -2 |    |    |    |     |
| 0                                     | 0  | -1 | 0  | -1 | -2  |
| 0                                     | 0  | -1 | -1 |    |     |
| $\begin{pmatrix} 0\\ 0 \end{pmatrix}$ | 0  | 0  | -1 | 0  | 2 J |

and the Chevalley basis elements

| the root vectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | the roots                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x_1$ , $x_2$ , $x_3$ , $x_4$ , $x_5$ , $x_6$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\underline{\alpha_1}, \underline{\alpha_2}, \underline{\alpha_3}, \underline{\alpha_4}, \underline{\alpha_5}, \alpha_6,$                                                                                                                                                                                                                    |
| $ \begin{array}{c} x_7 = [x_1, x_2], x_8 = [x_2, x_3], x_9 = [x_3, x_4], \\ x_{10} = [x_3, x_5], x_{11} = [x_4, x_5], \hline x_{12} = [x_4, x_6], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \\ \alpha_3 + \alpha_5, \alpha_4 + \alpha_5, \underline{\alpha_4 + \alpha_6}, $                                                                                                                                                                                              |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{\alpha_1 + \alpha_2 + \alpha_3, \alpha_2 + \alpha_3 + \alpha_4,}{\alpha_2 + \alpha_3 + \alpha_5, \alpha_3 + \alpha_4 + \alpha_5, \alpha_3 + \alpha_4 + \alpha_5, \alpha_4 + \alpha_5 + \alpha_6,}$                                                                                                                                    |
| $ \begin{array}{l} x_{19} = [[x_1, x_2], [x_3, x_4]], \\ x_{20} = [[x_1, x_2], [x_3, x_5]], \\ x_{21} = [[x_2, x_3], [x_4, x_5]], \\ \hline x_{22} = [[x_2, x_3], [x_4, x_6]], \\ \hline \hline x_{23} = [[x_3, x_5], [x_4, x_6]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{l} \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4, \\ \alpha_1 + \alpha_2 + \alpha_3 + \alpha_5, \\ \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5, \\ \frac{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_6}{\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6}, \end{array} $                                                                      |
| $ \begin{bmatrix} x_{24} \\ x_{25} \end{bmatrix} = [[x_3, x_5], [x_4, [x_2, x_3]]], \\ \hline x_{25} \end{bmatrix} = [[x_4, x_5], [x_3, [x_1, x_2]]], \\ x_{26} = [[x_4, x_6], [x_3, [x_1, x_2]]], \\ x_{27} = [[x_4, x_6], [x_5, [x_2, x_3]]], \\ x_{28} = [[x_4, x_6], [x_5, [x_3, x_4]]], $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{2\alpha_3 + \alpha_2 + \alpha_4 + \alpha_5,}{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5,}$ $\frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5,}{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6,}$ $\frac{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6,}{\alpha_4 + \alpha_3 + \alpha_5 + \alpha_6,}$ |
| $ \begin{array}{l} x_{29} = [[x_3, [x_1, x_2]], [x_5, [x_3, x_4]]], \\ \hline x_{30} = [[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]], \\ x_{31} = [[x_4, [x_2, x_3]], [x_5, [x_2, x_3]]], \\ \hline \hline x_{32} = [[x_4, [x_2, x_3]], [x_6, [x_4, x_5]]], \\ \hline \hline x_{33} = [[x_5, [x_2, x_3]], [x_6, [x_3, x_4]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2\alpha_3 + \alpha_1 + \alpha_2 + \alpha_4 + \alpha_5,$<br>$\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6,$<br>$2\alpha_2 + 2\alpha_3 + \alpha_4 + \alpha_5,$<br>$2\alpha_4 + \alpha_2 + \alpha_3 + \alpha_5 + \alpha_6,$<br>$2\alpha_3 + \alpha_2 + \alpha_4 + \alpha_5 + \alpha_6,$                                     |
| $ \begin{bmatrix} x_{34} \\ x_{35} \end{bmatrix} = [[x_5, [x_2, x_3]], [[x_1, x_2], [x_3, x_4]]], \\ x_{35} = [[x_5, [x_2, x_3]], [[x_2, x_3], [x_4, x_6]]], \\ x_{36} = [[x_6, [x_3, x_4]], [[x_1, x_2], [x_3, x_5]]], \\ x_{37} = [[x_6, [x_3, x_4]], [[x_2, x_3], [x_4, x_5]]], \\ x_{38} = [[x_6, [x_4, x_5]], [[x_1, x_2], [x_3, x_4]]], $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{2\alpha_2 + 2\alpha_3 + \alpha_1 + \alpha_4 + \alpha_5}{2\alpha_2 + 2\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6}, \\ 2\alpha_3 + \alpha_1 + \alpha_2 + \alpha_4 + \alpha_5 + \alpha_6, \\ 2\alpha_3 + 2\alpha_4 + \alpha_2 + \alpha_5 + \alpha_6, \\ 2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_5 + \alpha_6, \\ \end{array}$ |
| $ \begin{array}{c} \hline x_{39} \\ \hline x_{40} \\ \hline = [[[x_1, x_2], [x_3, x_4]], [[x_3, x_5], [x_4, x_6]]], \\ \hline x_{40} \\ \hline = [[[x_1, x_2], [x_3, x_5]], [[x_2, x_3], [x_4, x_6]]], \\ \hline \hline x_{41} \\ \hline = [[[x_2, x_3], [x_4, x_5]], [[x_2, x_3], [x_4, x_6]]], \\ \hline \hline x_{42} \\ \hline = [[[x_2, x_3], [x_4, x_5]], [[x_3, x_5], [x_4, x_6]]], \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_5 + \alpha_6}{2\alpha_2 + 2\alpha_3 + \alpha_1 + \alpha_4 + \alpha_5 + \alpha_6},$<br>$\frac{2\alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_5 + \alpha_6}{2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_2 + \alpha_6},$                                                                 |
| $ \begin{array}{l} x_{43} = [[[x_2, x_3], [x_4, x_5]], [[x_4, x_6], [x_5, [x_2, x_3]]]], \\ x_{44} = [[[x_2, x_3], [x_4, x_6]], [[x_3, x_5], [x_4, [x_2, x_3]]]], \\ x_{45} = [[[x_2, x_3], [x_4, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]], \\ x_{46} = [[[x_3, x_5], [x_4, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2\alpha_{2} + 2\alpha_{3} + 2\alpha_{4} + 2\alpha_{5} + \alpha_{6}, 2\alpha_{2} + 2\alpha_{4} + 3\alpha_{3} + \alpha_{5} + \alpha_{6}, 2\alpha_{2} + 2\alpha_{3} + 2\alpha_{4} + \alpha_{1} + \alpha_{5} + \alpha_{6}, 2\alpha_{3} + 2\alpha_{4} + 2\alpha_{5} + \alpha_{1} + \alpha_{2} + \alpha_{6},$                                     |
| $ \begin{array}{c} x_{47} \\ \hline x_{48} \\ \hline x_{49} \\ x_{49}$ | $\frac{2\alpha_2 + 2\alpha_4 + 3\alpha_3 + \alpha_1 + \alpha_5 + \alpha_6}{2\alpha_2 + 2\alpha_4 + 2\alpha_5 + 3\alpha_3 + \alpha_6},$<br>$\frac{2\alpha_2 + 2\alpha_4 + 2\alpha_5 + 3\alpha_3 + \alpha_6}{2\alpha_2 + 2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_1 + \alpha_6},$                                                            |
| $ \begin{aligned} x_{50} &= \left[ \left[ \left[ x_4, x_6 \right], \left[ x_3, \left[ x_1, x_2 \right] \right] \right], \left[ \left[ x_4, \left[ x_2, x_3 \right] \right] \right], \\ \left[ x_5, \left[ x_2, x_3 \right] \right] \right], \\ x_{51} &= \left[ \left[ \left[ \left[ x_4, x_6 \right], \left[ x_5, \left[ x_2, x_3 \right] \right] \right], \left[ \left[ x_3, \left[ x_1, x_2 \right] \right] \right], \\ \left[ x_5, \left[ x_3, x_4 \right] \right] \right] \right], \\ x_{52} &= \left[ \left[ \left[ \left[ x_4, x_6 \right], \left[ x_5, \left[ x_3, x_4 \right] \right] \right], \left[ \left[ x_4, \left[ x_2, x_3 \right] \right] \right], \\ \left[ x_5, \left[ x_2, x_3 \right] \right] \right] \right], \end{aligned} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2\alpha_4 + 3\alpha_2 + 3\alpha_3 + \alpha_1 + \alpha_5 + \alpha_6,$<br>$2\alpha_2 + 2\alpha_4 + 2\alpha_5 + 3\alpha_3 + \alpha_1 + \alpha_6,$<br>$2\alpha_2 + 2\alpha_5 + 3\alpha_3 + 3\alpha_4 + \alpha_6,$                                                                                                                               |

| $\begin{bmatrix} x_{53} \\ \vdots \end{bmatrix} = [[[x_3, [x_1, x_2]], [x_5, [x_3, x_4]]], [[x_4, [x_2, x_3]], \\ \vdots \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2\alpha_2 + 2\alpha_5 + 3\alpha_3 + 3\alpha_4 + \alpha_1 + \alpha_6,$                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| $ \begin{bmatrix} x_6, [x_4, x_5]] \end{bmatrix}, \\ \hline x_{54} = [[[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]], [[x_4, [x_2, x_3]], \\ \hline x_{54} = [[[x_5, [x_1, x_2]], [x_6, [x_4, x_5]]], [[x_5, [x_5, x_5]]], \\ \hline x_{54} = [[x_5, [x_5, x_5]], \\ \hline x_{54} = [x_5, x_5] = [x_5, x_5], \\ \hline x_{54} = [x_5, x_5] = [x_5, x_5], \\ \hline x_{54} = [x_5, x_5] = [x_5, x_5], \\ \hline x_{54} = [x_5, x_5] = [x_5, x_5], \\ \hline x_{54} = [x_5, x_5] = [x_5, x_5], \\ \hline x_{54} = [x_5, x_5] = [x_5, x_5], \\ \hline x_{54} = [x_5, x_5] = [x_5, x_5], \\ \hline x_{54} = [x_5, x_5]$ | $\frac{2u_2 + 2u_5 + 5u_3 + 5u_4 + u_1 + u_6}{2u_2 + 2u_5 + 5u_3 + 5u_4 + u_1 + u_6},$ |
| $[x_{5}, [x_{2}, x_{3}]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2\alpha_4+2\alpha_5+3\alpha_2+3\alpha_3+\alpha_1+\alpha_6,$                           |
| $x_{55} = [[[x_4, [x_2, x_3]], [x_6, [x_4, x_5]]], [[x_5, [x_2, x_3]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\overline{2\alpha_2+2\alpha_5+2\alpha_6+3\alpha_3+3\alpha_4,}$                        |
| $[x_6, [x_3, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                        |
| $x_{56} = [[[x_4, [x_2, x_3]], [x_6, [x_4, x_5]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2\alpha_5+3\alpha_2+3\alpha_3+3\alpha_4+\alpha_1+\alpha_6,$                           |
| $[[x_5, [x_2, x_3]], [[x_1, x_2], [x_3, x_4]]]],$<br>$x_{57} = [[[x_5, [x_2, x_3]], [x_6, [x_3, x_4]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2\alpha_4 + 2\alpha_5 + 3\alpha_2 + 4\alpha_3 + \alpha_1 + \alpha_6,$                 |
| $x_{5}^{\prime} = [[(x_{5}^{\prime}, [x_{2}^{\prime}, x_{3}]), [(x_{6}^{\prime}, [x_{5}^{\prime}, x_{4}])], [[x_{5}^{\prime}, [x_{2}^{\prime}, x_{3}]], [[x_{1}^{\prime}, x_{2}], [x_{3}^{\prime}, x_{4}]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $2u_4 + 2u_5 + 5u_2 + 4u_5 + u_1 + u_6$                                                |
| $x_{58} = [[[x_5, [x_2, x_3]], [x_6, [x_3, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        |
| $[[x_6, [x_4, x_5]], [[x_1, x_2], [x_3, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\underline{2\alpha_2+2\alpha_5+2\alpha_6+3\alpha_3+3\alpha_4+\alpha_1}$               |
| $x_{59} = [[[x_5, [x_2, x_3]], [[x_1, x_2], [x_3, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |
| $[[x_6, [x_3, x_4]], [[x_2, x_3], [x_4, x_5]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\underline{2\alpha_5+3\alpha_2+3\alpha_4+4\alpha_3+\alpha_1+\alpha_6},$               |
| $x_{60} = [[[x_5, [x_2, x_3]], [[x_2, x_3], [x_4, x_6]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2\alpha_5+2\alpha_6+3\alpha_2+3\alpha_3+3\alpha_4+\alpha_1,$                          |
| $[[x_6, [x_4, x_5]], [[x_1, x_2], [x_3, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |
| $x_{61} = [[[x_5, [x_2, x_3]], [[x_1, x_2], [x_3, x_4]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3\alpha_2 + 3\alpha_4 + 3\alpha_5 + 4\alpha_3 + \alpha_1 + \alpha_6,$                 |
| $[[[x_2, x_3], [x_4, x_5]], [[x_3, x_5], [x_4, x_6]]]],$<br>$[x_{62}] = [[[x_6, [x_3, x_4]], [[x_2, x_3], [x_4, x_5]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        |
| $[[[x_1, x_2], [x_3, x_5]], [[x_2, x_3], [x_4, x_6]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\underline{2\alpha_5 + 2\alpha_6 + 3\alpha_2 + 3\alpha_4 + 4\alpha_3 + \alpha_1}$     |
| $x_{63} = [[[[x_1, x_2], [x_3, x_4]], [[x_3, x_5], [x_4, x_6]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $2\alpha_5 + 2\alpha_6 + 3\alpha_2 + 4\alpha_3 + 4\alpha_4 + \alpha_1,$                |
| $[[[x_2, x_3], [x_4, x_5]], [[x_2, x_3], [x_4, x_6]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        |
| $x_{64} = [[[[x_1, x_2], [x_3, x_5]], [[x_2, x_3], [x_4, x_6]]], \\ [[[x_2, x_3], [x_4, x_5]], [[x_3, x_5], [x_4, x_6]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2\alpha_6+3\alpha_2+3\alpha_4+3\alpha_5+4\alpha_3+\alpha_1,$                          |
| $[[(x_2, x_3], [x_4, x_5]], [[x_3, x_5], [x_4, x_6]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |
| $\begin{bmatrix} x_{65} \\ - [[[(x_2, x_3], [x_4, x_5]], [[x_4, x_5], [x_4, x_6]]], \\ [[[x_2, x_3], [x_4, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]]], \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2\alpha_6 + 3\alpha_2 + 3\alpha_5 + 4\alpha_3 + 4\alpha_4 + \alpha_1$                 |
| $x_{66} = [[[[x_2, x_3], [x_4, x_6]], [[x_4, x_5], [x_4, [x_2, x_3]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{2}{2\alpha_6+3\alpha_2+3\alpha_5+4\alpha_4+5\alpha_3+\alpha_1},$                |
| $[[[x_3, x_5], [x_4, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |
| $x_{67} = [[[[x_2, x_3], [x_4, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                        |
| $[[[x_3, x_5], [x_4, [x_2, x_3]]], [[x_4, x_6], [x_5, [x_2, x_3]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\underline{2\alpha_6+3\alpha_5+4\alpha_2+4\alpha_4+5\alpha_3+\alpha_1}$               |
| $x_{68} = [[[[x_3, x_5], [x_4, [x_2, x_3]]], [[x_4, x_6], [x_3, [x_1, x_2]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2\alpha_1 + 2\alpha_6 + 3\alpha_5 + 4\alpha_2 + 4\alpha_4 + 5\alpha_3$                |
| $[[[x_4, x_5], [x_3, [x_1, x_2]]], [[x_4, x_6], [x_5, [x_2, x_3]]]]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                        |

# 4.15 5g(8, 6) of sdim 133|56, p = 3

For  $\mathfrak{g} = \mathfrak{g}(8, 6)$ , we have  $\mathfrak{g}_{\bar{0}} = \mathfrak{e}(7)$  and  $\mathfrak{g}_{\bar{1}} = R(\pi_1)$  as  $\mathfrak{g}_{\bar{0}}$ -module. We consider the following Cartan matrix and the Chevalley basis elements

| (2 | 0  | -1 | 0  | 0  | 0  | 0 ) |
|----|----|----|----|----|----|-----|
| 0  | 0  | -1 | -1 | 0  | 0  | 0   |
| -2 | -1 | 0  | -1 | 0  |    | 0   |
| 0  | -1 | -1 | 0  | -2 | 0  | 0   |
| 0  | 0  | 0  | -1 | 2  | -1 | 0   |
| 0  | 0  | 0  | 0  | -1 | 2  | -1  |
| 0  | 0  | 0  | 0  | 0  | -1 | 2 J |

| the root vectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x_1, x_2, x_3, x_4, x_5, x_6, x_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\alpha_1, \underline{\alpha_2}, \underline{\alpha_3}, \underline{\alpha_4}, \alpha_5, \alpha_6, \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{\alpha_1 + \alpha_3, \alpha_2 + \alpha_3, \alpha_2 + \alpha_4,}{\alpha_3 + \alpha_4, \alpha_4 + \alpha_5, \alpha_5 + \alpha_6,}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $ \begin{array}{c} x_{11} = (x_5, x_{4}), \ x_{12} = (x_4, x_5), \ x_{13} = (x_5, x_6), \\ x_{14} = [x_6, x_7], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\alpha_6 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $ \begin{array}{c} x_{15} = [x_2, [x_1, x_3]], x_{16} = [x_4, [x_1, x_3]], \\ \hline x_{17} = [x_4, [x_2, x_3]], x_{18} = [x_5, [x_2, x_4]], \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} \alpha_1 + \alpha_2 + \alpha_3, \alpha_1 + \alpha_3 + \alpha_4, \\ \alpha_2 + \alpha_3 + \alpha_4, \alpha_2 + \alpha_4 + \alpha_5, \\ \overline{\alpha_3 + \alpha_4 + \alpha_5}, \alpha_4 + \alpha_5 + \alpha_6, \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $ \begin{array}{c} x_{19} = [x_5, [x_3, x_4]], [x_{20}] = [x_6, [x_4, x_5]], \\ x_{21} = [x_7, [x_5, x_6]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\alpha_5 + \alpha_6 + \alpha_7$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c} \frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4,}{\alpha_1 + \alpha_3 + \alpha_4 + \alpha_5,} \\ \frac{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5,}{\alpha_2 + \alpha_4 + \alpha_5 + \alpha_6,} \\ \frac{\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6,}{\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7,} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $ \begin{array}{c} x_{28} = [[x_3, x_4], [x_2, [x_1, x_3]]], \\ \hline x_{29} = [[x_4, x_5], [x_2, [x_1, x_3]]], \\ x_{30} = [[x_4, x_5], [x_4, [x_2, x_3]]], \\ \hline x_{31} = [[x_5, x_6], [x_4, [x_1, x_3]]], \\ \hline \hline x_{32} = [[x_5, x_6], [x_4, [x_2, x_3]]], \\ \hline x_{33} = [[x_6, x_7], [x_5, [x_2, x_4]]], \\ x_{34} = [[x_6, x_7], [x_5, [x_3, x_4]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 2\alpha_3 + \alpha_1 + \alpha_2 + \alpha_4, \\ \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5, \\ \overline{2\alpha_4 + \alpha_2 + \alpha_3 + \alpha_5}, \\ \alpha_1 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6, \\ \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7, \\ \overline{\alpha_2 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7}, \\ \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7, \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $ \begin{array}{c} x_{35} = [[x_2, [x_1, x_3]], [x_5, [x_3, x_4]]], \\ \hline x_{36} = [[x_2, [x_1, x_3]], [x_6, [x_4, x_5]]], \\ x_{37} = [[x_4, [x_1, x_3]], [x_5, [x_2, x_4]]], \\ x_{38} = [[x_4, [x_1, x_3]], [x_7, [x_5, x_6]]], \\ x_{39} = [[x_4, [x_2, x_3]], [x_6, [x_4, x_5]]], \\ \hline x_{40} = [[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]], \\ \hline x_{41} = [[x_2, [x_1, x_3]], [[x_3, x_4], [x_5, x_6]]], \\ x_{42} = [[x_4, [x_2, x_3]], [[x_4, x_5], [x_6, x_7]]], \\ \hline x_{43} = [[x_5, [x_3, x_4]], [[x_1, x_3], [x_2, x_4]]], \\ x_{44} = [[x_6, [x_4, x_5]], [[x_1, x_3], [x_2, x_4]]], \\ x_{45} = [[x_6, [x_4, x_5]], [[x_1, x_3], [x_4, x_5]]], \\ \hline \end{array} $                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 2\alpha_{3} + \alpha_{1} + \alpha_{2} + \alpha_{4} + \alpha_{5}, \\ \frac{\alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4} + \alpha_{5} + \alpha_{6},}{2\alpha_{4} + \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{5},} \\ \alpha_{1} + \alpha_{3} + \alpha_{4} + \alpha_{5} + \alpha_{6} + \alpha_{7}, \\ 2\alpha_{4} + \alpha_{2} + \alpha_{3} + \alpha_{5} + \alpha_{6}, \\ \frac{\alpha_{2} + \alpha_{3} + \alpha_{4} + \alpha_{5} + \alpha_{6} + \alpha_{7},}{2\alpha_{3} + \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{5} + \alpha_{6} + \alpha_{7},} \\ 2\alpha_{3} + \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{5} + \alpha_{6} + \alpha_{7}, \\ \frac{2\alpha_{3} + \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{5} + \alpha_{6} + \alpha_{7},}{2\alpha_{4} + \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{5} + \alpha_{6},} \\ \alpha_{4} + \alpha_{2} + \alpha_{3} + \alpha_{4} + \alpha_{5} \\ \end{array}$                              |
| $ \begin{array}{l} x_{46} = [[x_7, [x_5, x_6]], [[x_1, x_3], [x_2, x_4]]], \\ \hline x_{47} = [[x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]], \\ x_{48} = [[[x_1, x_3], [x_2, x_4]], [[x_2, x_3], [x_4, x_5]]], \\ \hline x_{49} = [[[x_1, x_3], [x_2, x_4]], [[x_3, x_4], [x_5, x_6]]], \\ x_{50} = [[[x_1, x_3], [x_2, x_4]], [[x_4, x_5], [x_6, x_7]]], \\ x_{51} = [[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]], \\ x_{52} = [[[x_2, x_3], [x_4, x_5]], [[x_4, x_5], [x_6, x_7]]], \\ \hline x_{53} = [[[x_2, x_4], [x_5, x_6]], [[x_4, x_5], [x_6, x_7]]], \\ \hline x_{53} = [[[x_2, x_4], [x_5, x_6]], [[x_4, x_5], [x_2, [x_1, x_3]]]], \\ \hline x_{54} = [[[x_4, x_5], [x_6, x_7]], [[x_3, x_4], [x_2, [x_1, x_3]]]], \\ \hline x_{55} = [[[x_4, x_5], [x_6, x_7]], [[x_4, x_5], [x_2, [x_1, x_3]]]], \\ x_{57} = [[[x_4, x_5], [x_6, x_7]], [[x_4, x_5], [x_2, [x_1, x_3]]]], \\ x_{57} = [[[x_4, x_5], [x_6, x_7]], [[x_4, x_5], [x_2, [x_1, x_3]]]], \\ \end{array}$ | $\frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5}{+\alpha_6 + \alpha_7,}$ $\frac{2\alpha_3 + \alpha_1 + \alpha_2 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7,}{2\alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_2,}$ $\frac{2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_5 + \alpha_6,}{2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_5 + \alpha_6,}$ $\frac{2\alpha_4 + 2\alpha_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_6 + \alpha_7,}{2\alpha_4 + 2\alpha_5 + \alpha_2 + \alpha_3 + \alpha_6 + \alpha_7,}$ $\frac{2\alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_5 + \alpha_6,}{2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_2}$ $\frac{2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_1}{2\alpha_4 + 2\alpha_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_6 + \alpha_7,}$ $\frac{2\alpha_4 + 2\alpha_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_6 + \alpha_7,}{2\alpha_4 + 2\alpha_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_6 + \alpha_7,}$ |

| $x_{58} = [[[x_3, x_4], [x_2, [x_1, x_3]]], [[x_6, x_7], [x_5, [x_2, x_4]]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\underline{x_{59}} = [[[x_4, x_5], [x_2, [x_1, x_3]]], [[x_5, x_6], [x_4, [x_2, x_3]]]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $]]],  2\alpha_2 + 2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_1 + \alpha_6,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $ x_{60}  =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $[[[x_4, x_5], [x_2, [x_1, x_3]]], [[x_6, x_7], [x_5, [x_3, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $+\alpha_2 + \alpha_6 + \alpha_7$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $x_{61} = [[[x_4, x_5], [x_4, [x_2, x_3]]], [[x_5, x_6], [x_4, [x_1, x_3]]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\boxed{2\alpha_3 + 2\alpha_5 + 3\alpha_4 + \alpha_1 + \alpha_2 + \alpha_6},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $x_{62} = [[[x_5, x_6], [x_4, [x_1, x_3]]], [[x_6, x_7], [x_5, [x_2, x_4]]]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ x_{63}  =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{2\alpha_2+2\alpha_3+2\alpha_5+3\alpha_4}{2\alpha_5+3\alpha_4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\overline{[[[x_5, x_6], [x_4, [x_2, x_3]]], [[x_4, [x_1, x_3]], [x_5, [x_2, x_4]]]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ], $\underline{+\alpha_1+\alpha_6}, 2\alpha_2+2\alpha_3+2\alpha_4+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $x_{64} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\overline{2\alpha_5 + \alpha_1} + \alpha_6 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $[[[x_6, x_7], [x_5, [x_2, x_4]]], [[x_2, [x_1, x_3]], [x_5, [x_3, x_4]]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2\alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $x_{65} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $+\alpha_1 + \alpha_2 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\overline{2\alpha_3+2\alpha_5+3\alpha_4}+\alpha_1+\alpha_2+\alpha_6+\alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $[[[x_6, x_7], [x_5, [x_3, x_4]]], [[x_2, [x_1, x_3]], [x_6, [x_4, x_5]]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $x_{66} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $[[[x_6, x_7], [x_5, [x_3, x_4]]], [[x_4, [x_1, x_3]], [x_5, [x_2, x_4]]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $x_{67} = [[[x_2, [x_1, x_3]], [x_5, [x_3, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2\alpha_2 + 2\alpha_5 + 3\alpha_3 + 3\alpha_4 + \alpha_1 + \alpha_6,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $[[x_4, [x_2, x_3]], [x_6, [x_4, x_5]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2\alpha_2+2\alpha_3+2\alpha_4+2\alpha_5+2\alpha_6+\alpha_1+\alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $x_{68} = [[[x_2, [x_1, x_3]], [x_6, [x_4, x_5]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2\alpha_2 + 2\alpha_3 + 2\alpha_5 + 3\alpha_4 + \alpha_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $[[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{1}{+\alpha_6+\alpha_7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\boxed{x_{69}} = [[[x_4, [x_1, x_3]], [x_5, [x_2, x_4]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{1}{2\alpha_3+2\alpha_5}+2\alpha_6+3\alpha_4+\alpha_1+\alpha_2+\alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $[[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ \begin{bmatrix} [x_4, [x_2, x_3]], [x_7, [x_5, x_6]]]], \\ x_{70} = [[[x_4, [x_1, x_3]], [x_7, [x_5, x_6]]], [[x_4, [x_4, [x_6, x_6]]]], [[x_6, [x_6, x_6]]], \\ x_{70} = [[x_{70}, [x_{70}, [x_{70}, x_{70}]], [x_{70}, [x_{70}, x_{70}]], \\ x_{70} = [[x_{70}, [x_{70}, x_{70}]], \\ x_{70} = [x_{70}, [x_{70},$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $[x_2, x_3]], [x_6, [x_4, x_5]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $x_{71} = [[[x_4, [x_1, x_3]], [x_5, [x_2, x_4]]], [[x_2, [x_1, x_3]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2\alpha_1 + 2\alpha_2 + 2\alpha_5 + 3\alpha_3 + 3\alpha_4 + \alpha_6,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $[[x_3, x_4], [x_5, x_6]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2\alpha_3 + 2\alpha_6 + 3\alpha_4 + 3\alpha_5 + \alpha_1 + \alpha_2 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $x_{72} = [[[x_4, [x_1, x_3]], [x_7, [x_5, x_6]]], [[x_6, [x_4, x_5]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2\alpha_2 + 2\alpha_5 + 3\alpha_3 + 3\alpha_4 + \alpha_1 + \alpha_6 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $[[x_2, x_3], [x_4, x_5]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{2\alpha_2 + 2\alpha_3 + 2\alpha_5 + 2\alpha_6 + 3\alpha_4}{2\alpha_5 + 2\alpha_6 + 3\alpha_4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $x_{73} = [[[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]], [[x_5, [x_3, x_4]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $+\alpha_1+\alpha_7$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $[[x_1, x_3], [x_2, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ x_{74}  =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $[[[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]], [[x_6, [x_4, x_5]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $[[x_1, x_3], [x_2, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $x_{75} = [[[x_2, [x_1, x_3]], [[x_3, x_4], [x_5, x_6]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2\alpha_2 + 2\alpha_5 + 2\alpha_6 + 3\alpha_3 + 3\alpha_4 + \alpha_1 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $[[x_4, [x_2, x_3]], [[x_4, x_5], [x_6, x_7]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2\alpha_1+2\alpha_2+2\alpha_5+3\alpha_3+3\alpha_4+\alpha_6+\alpha_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $x_{76} = [[[x_5, [x_3, x_4]], [[x_1, x_3], [x_2, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2\alpha_2 + 2\alpha_3 + 2\alpha_6 + 3\alpha_4 + 3\alpha_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $[[x_7, [x_5, x_6]], [[x_1, x_3], [x_2, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{2}{+\alpha_1+\alpha_7}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\boxed{x_{77}} = [[[x_6, [x_4, x_5]], [[x_2, x_3], [x_4, x_5]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $[[x_7, [x_5, x_6]], [[x_1, x_3], [x_2, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $12\alpha_{2} + 2\alpha_{3} + 3\alpha_{2} + 3\alpha_{4} + 3\alpha_{5} + \alpha_{7} + \alpha_{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $x_{78} = [[[x_6, [x_4, x_5]], [[x_2, x_3], [x_4, x_5]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2\alpha_2 + 2\alpha_6 + 3\alpha_3 + 3\alpha_4 + 3\alpha_5 + \alpha_1 + \alpha_7,$<br>$2\alpha_2 + 2\alpha_2 + 2\alpha_5 + 3\alpha_5 + 4\alpha_4 + \alpha_1 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $[[x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2\alpha_2+2\alpha_3+2\alpha_6+3\alpha_5+4\alpha_4+\alpha_1+\alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $ [[x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]]],  x_{79} = [[[x_6, [x_4, x_5]], [[x_2, x_3], [x_4, x_5]]], $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ \begin{bmatrix} [x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]]], \\ x_{79} = [[[x_6, [x_4, x_5]], [[x_2, x_3], [x_4, x_5]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_4, x_5], [x_6, x_7]]]], \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2\alpha_2+2\alpha_3+2\alpha_6+3\alpha_5+4\alpha_4+\alpha_1+\alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $ \begin{bmatrix} [x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]]], \\ x_{79} = [[[x_6, [x_4, x_5]], [[x_2, x_3], [x_4, x_5]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_4, x_5], [x_6, x_7]]]], \\ x_{80} = [[[x_7, [x_5, x_6]], [[x_1, x_3], [x_2, x_4]]], \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $2\alpha_2+2\alpha_3+2\alpha_6+3\alpha_5+4\alpha_4+\alpha_1+\alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $ \begin{bmatrix} [x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]]], \\ x_{79} = [[[x_6, [x_4, x_5]], [[x_2, x_3], [x_4, x_5]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_4, x_5], [x_6, x_7]]]], \\ x_{80} = [[[x_7, [x_5, x_6]], [[x_1, x_3], [x_2, x_4]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_3, x_4], [x_5, x_6]]]], \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2\alpha_2 + 2\alpha_3 + 2\alpha_6 + 3\alpha_5 + 4\alpha_4 + \alpha_1 + \alpha_7,$<br>$2\alpha_1 + 2\alpha_2 + 2\alpha_5 + 2\alpha_6 + 3\alpha_3 + 3\alpha_4 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{l} [[x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]]], \\ x_{79} = [[[x_6, [x_4, x_5]], [[x_2, x_3], [x_4, x_5]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_4, x_5], [x_6, x_7]]]], \\ x_{80} = [[[x_7, [x_5, x_6]], [[x_1, x_3], [x_2, x_4]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_3, x_4], [x_5, x_6]]]], \\ \hline x_{81} = [[[x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2\alpha_2 + 2\alpha_3 + 2\alpha_6 + 3\alpha_5 + 4\alpha_4 + \alpha_1 + \alpha_7,$<br>$2\alpha_1 + 2\alpha_2 + 2\alpha_5 + 2\alpha_6 + 3\alpha_3 + 3\alpha_4 + \alpha_7,$<br>$2\alpha_1 + 2\alpha_2 + 2\alpha_6 + 3\alpha_3 + 3\alpha_4 + 3\alpha_5 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{bmatrix} [x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]]], \\ x_{79} = [[[x_6, [x_4, x_5]], [[x_2, x_3], [x_4, x_5]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_4, x_5], [x_6, x_7]]]], \\ x_{80} = [[[x_7, [x_5, x_6]], [[x_1, x_3], [x_2, x_4]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_3, x_4], [x_5, x_6]]]], \\ x_{81} = [[[x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]], \\ [[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]]], \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2\alpha_2 + 2\alpha_3 + 2\alpha_6 + 3\alpha_5 + 4\alpha_4 + \alpha_1 + \alpha_7,$<br>$2\alpha_1 + 2\alpha_2 + 2\alpha_5 + 2\alpha_6 + 3\alpha_3 + 3\alpha_4 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{l} [[x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]]], \\ x_{79} = [[[x_6, [x_4, x_5]], [[x_2, x_3], [x_4, x_5]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_4, x_5], [x_6, x_7]]]], \\ x_{80} = [[[x_7, [x_5, x_6]], [[x_1, x_3], [x_2, x_4]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_3, x_4], [x_5, x_6]]]], \\ \hline x_{81} = [[[x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2\alpha_2 + 2\alpha_3 + 2\alpha_6 + 3\alpha_5 + 4\alpha_4 + \alpha_1 + \alpha_7,$<br>$2\alpha_1 + 2\alpha_2 + 2\alpha_5 + 2\alpha_6 + 3\alpha_3 + 3\alpha_4 + \alpha_7,$<br>$2\alpha_1 + 2\alpha_2 + 2\alpha_6 + 3\alpha_3 + 3\alpha_4 + 3\alpha_5 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{l} [[x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]]], \\ x_{79} = [[[x_6, [x_4, x_5]], [[x_2, x_3], [x_4, x_5]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_4, x_5], [x_6, x_7]]]], \\ x_{80} = [[[x_7, [x_5, x_6]], [[x_1, x_3], [x_2, x_4]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_3, x_4], [x_5, x_6]]]], \\ \hline x_{81} = [[[x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]], \\ [[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]]], \\ \hline x_{82} = [[[[x_1, x_3], [x_2, x_4]], [[x_3, x_4], [x_5, x_6]]]], \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2\alpha_{2}+2\alpha_{3}+2\alpha_{6}+3\alpha_{5}+4\alpha_{4}+\alpha_{1}+\alpha_{7},$<br>$2\alpha_{1}+2\alpha_{2}+2\alpha_{5}+2\alpha_{6}+3\alpha_{3}+3\alpha_{4}+\alpha_{7},$<br>$2\alpha_{1}+2\alpha_{2}+2\alpha_{6}+3\alpha_{3}+3\alpha_{4}+3\alpha_{5}+\alpha_{7},$<br>$2\alpha_{2}+2\alpha_{6}+3\alpha_{3}+3\alpha_{5}+4\alpha_{4}$                                                                                                                                                                                                                                                                                             |
| $ \begin{split} & [[x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]]], \\ & x_{79} = [[[x_6, [x_4, x_5]], [[x_2, x_3], [x_4, x_5]]], \\ & [[[x_1, x_3], [x_2, x_4]], [[x_4, x_5], [x_6, x_7]]]], \\ & x_{80} = [[[x_7, [x_5, x_6]], [[x_1, x_3], [x_2, x_4]]], \\ & [[[x_1, x_3], [x_2, x_4]], [[x_3, x_4], [x_5, x_6]]]], \\ & x_{81} = [[[x_7, [x_5, x_6]], [[x_3, x_4], [x_5, x_6]]]], \\ & [[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]]], \\ & [[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]]], \\ & [[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]]], \\ & [[[x_1, x_3], [x_4, x_5]], [[x_4, x_5], [x_6, x_7]]]], \\ \hline \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2\alpha_{2} + 2\alpha_{3} + 2\alpha_{6} + 3\alpha_{5} + 4\alpha_{4} + \alpha_{1} + \alpha_{7},$<br>$2\alpha_{1} + 2\alpha_{2} + 2\alpha_{5} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{4} + \alpha_{7},$<br>$2\alpha_{1} + 2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{4} + 3\alpha_{5} + \alpha_{7},$<br>$2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{5} + 4\alpha_{4} + \alpha_{1} + \alpha_{7},$                                                                                                                                                                                                                      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2\alpha_{2} + 2\alpha_{3} + 2\alpha_{6} + 3\alpha_{5} + 4\alpha_{4} + \alpha_{1} + \alpha_{7},$ $2\alpha_{1} + 2\alpha_{2} + 2\alpha_{5} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{4} + \alpha_{7},$ $2\alpha_{1} + 2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{4} + 3\alpha_{5} + \alpha_{7},$ $2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{5} + 4\alpha_{4} + \alpha_{1} + \alpha_{7},$ $2\alpha_{1} + 2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{5} + 4\alpha_{4} + \alpha_{1} + \alpha_{7},$ $2\alpha_{1} + 2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{5} + 4\alpha_{4} + \alpha_{1} + \alpha_{1},$ |
| $ \begin{array}{l} [[x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]]], \\ x_{79} = [[[x_6, [x_4, x_5]], [[x_2, x_3], [x_4, x_5]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_4, x_5], [x_6, x_7]]]], \\ x_{80} = [[[x_7, [x_5, x_6]], [[x_1, x_3], [x_2, x_4]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_3, x_4], [x_5, x_6]]]], \\ x_{81} = [[[x_7, [x_5, x_6]], [[x_3, x_4], [x_5, x_6]]]], \\ [[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]]], \\ [[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]]], \\ [[[x_2, x_3], [x_4, x_5]], [[x_4, x_5], [x_6, x_7]]]], \\ [[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]], \\ [[[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]], \\ [[[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]], \\ [[[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]], \\ [[[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]], \\ [[[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]], \\ [[[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]], \\ [[[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]], \\ [[[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]], \\ [[[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]], \\ [[[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]], \\ [[[[x_4, x_5], [x_4, x_5]], [[x_4, x_5]], [[x_4, x_5]], [[x_4, x_5]]], \\ \\ \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2\alpha_{2} + 2\alpha_{3} + 2\alpha_{6} + 3\alpha_{5} + 4\alpha_{4} + \alpha_{1} + \alpha_{7},$ $2\alpha_{1} + 2\alpha_{2} + 2\alpha_{5} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{4} + \alpha_{7},$ $2\alpha_{1} + 2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{4} + 3\alpha_{5} + \alpha_{7},$ $2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{5} + 4\alpha_{4} + \alpha_{7},$ $\frac{2\alpha_{1} + 2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{5} + 4\alpha_{4}}{+\alpha_{1} + \alpha_{7},}$                                                                                                                      |
| $ \begin{array}{l} [[x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]]], \\ x_{79} = [[[x_6, [x_4, x_5]], [[x_2, x_3], [x_4, x_5]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_4, x_5], [x_6, x_7]]]], \\ x_{80} = [[[x_7, [x_5, x_6]], [[x_1, x_3], [x_2, x_4]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_3, x_4], [x_5, x_6]]]], \\ \hline x_{81} = [[[x_7, [x_5, x_6]], [[x_3, x_4], [x_5, x_6]]]], \\ [[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]]], \\ \hline x_{82} = [[[[x_1, x_3], [x_2, x_4]], [[x_3, x_4], [x_5, x_6]]]], \\ [[[x_2, x_3], [x_4, x_5]], [[x_4, x_5], [x_6, x_7]]]], \\ \hline x_{83} = \\ \hline [[[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]], [[[x_4, x_5], [x_6, x_7]]]], \\ \hline x_{83} = \\ \hline [[[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]], [[[x_4, x_5], [x_6, x_7]]]], \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2\alpha_{2} + 2\alpha_{3} + 2\alpha_{6} + 3\alpha_{5} + 4\alpha_{4} + \alpha_{1} + \alpha_{7},$ $2\alpha_{1} + 2\alpha_{2} + 2\alpha_{5} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{4} + \alpha_{7},$ $2\alpha_{1} + 2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{4} + 3\alpha_{5} + \alpha_{7},$ $2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{5} + 4\alpha_{4} + \alpha_{1} + \alpha_{7},$ $2\alpha_{1} + 2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{5} + 4\alpha_{4} + \alpha_{1} + \alpha_{7},$ $2\alpha_{1} + 2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{5} + 4\alpha_{4} + \alpha_{1} + \alpha_{1},$ |
| $ \begin{array}{l} [[x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]]], \\ x_{79} = [[[x_6, [x_4, x_5]], [[x_2, x_3], [x_4, x_5]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_4, x_5], [x_6, x_7]]]], \\ x_{80} = [[[x_7, [x_5, x_6]], [[x_1, x_3], [x_2, x_4]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_3, x_4], [x_5, x_6]]]], \\ \hline x_{81} = [[[x_7, [x_5, x_6]], [[x_3, x_4], [x_5, x_6]]]], \\ [[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]]], \\ [[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]]], \\ [[[x_2, x_3], [x_4, x_5]], [[x_4, x_5], [x_6, x_7]]]], \\ \hline x_{83} = \\ [[[[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]], [[[x_4, x_5], [x_6, x_7]]]], \\ \hline x_{84} = \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $2\alpha_{2} + 2\alpha_{3} + 2\alpha_{6} + 3\alpha_{5} + 4\alpha_{4} + \alpha_{1} + \alpha_{7},$ $2\alpha_{1} + 2\alpha_{2} + 2\alpha_{5} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{4} + \alpha_{7},$ $2\alpha_{1} + 2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{4} + 3\alpha_{5} + \alpha_{7},$ $2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{5} + 4\alpha_{4} + \alpha_{7},$ $\frac{2\alpha_{1} + 2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{5} + 4\alpha_{4}}{+\alpha_{1} + \alpha_{7},}$                                                                                                                      |
| $ \begin{array}{l} [[x_7, [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]]], \\ x_{79} = [[[x_6, [x_4, x_5]], [[x_2, x_3], [x_4, x_5]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_4, x_5], [x_6, x_7]]]], \\ x_{80} = [[[x_7, [x_5, x_6]], [[x_1, x_3], [x_2, x_4]]], \\ [[[x_1, x_3], [x_2, x_4]], [[x_3, x_4], [x_5, x_6]]]], \\ x_{81} = [[[x_7, [x_5, x_6]], [[x_3, x_4], [x_5, x_6]]]], \\ [[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]]], \\ [[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]]], \\ [[[x_2, x_3], [x_4, x_5]], [[x_4, x_5], [x_6, x_7]]]], \\ [[[x_83] = \\ [[[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]], [[[x_4, x_5], [x_6, x_7]]]], \\ [[[x_83] = \\ [[[[[x_1, x_3], [x_4, x_5]], [[x_2, x_4], [x_5, x_6]]], [[[x_4, x_5], [x_6, x_7]]]], \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2\alpha_{2} + 2\alpha_{3} + 2\alpha_{6} + 3\alpha_{5} + 4\alpha_{4} + \alpha_{1} + \alpha_{7},$ $2\alpha_{1} + 2\alpha_{2} + 2\alpha_{5} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{4} + \alpha_{7},$ $2\alpha_{1} + 2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{4} + 3\alpha_{5} + \alpha_{7},$ $2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{5} + 4\alpha_{4} + \alpha_{7},$ $\frac{2\alpha_{1} + 2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{5} + 4\alpha_{4}}{+\alpha_{1} + \alpha_{7},}$                                                                                                                      |

| $x_{85} = [[[[x_2, x_4], [x_5, x_6]], [[x_3, x_4], [x_2, [x_1, x_3]]]]],$         | $2\alpha_1+2\alpha_6+3\alpha_2+3\alpha_3+3\alpha_5+4\alpha_4+\alpha_7,$             |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| $[[[x_4, x_5], [x_6, x_7]], [[x_4, x_5], [x_2, [x_1, x_3]]]]],$                   | $2\alpha_1+2\alpha_2+2\alpha_6+3\alpha_5+4\alpha_3+4\alpha_4+\alpha_7,$             |
| $x_{86} = [[[[x_3, x_4], [x_5, x_6]], [[x_4, x_5], [x_2, [x_1, x_3]]]]],$         |                                                                                     |
| $[[[x_4, x_5], [x_6, x_7]], [[x_3, x_4], [x_2, [x_1, x_3]]]]],$                   |                                                                                     |
| $\boxed{x_{87}} = [[[[x_4, x_5], [x_6, x_7]], [[x_3, x_4], [x_2, [x_1, x_3]]]]],$ | $2\alpha_1 + 2\alpha_6 + 3\alpha_2 + 3\alpha_5 + 4\alpha_3$                         |
| $[[[x_4, x_5], [x_2, [x_1, x_3]]], [[x_5, x_6],$                                  | $+4\alpha_4+\alpha_7,$                                                              |
| $[x_4, [x_2, x_3]]]],$                                                            |                                                                                     |
| $x_{88} = [[[[x_3, x_4], [x_2, [x_1, x_3]]], [[x_6, x_7]],$                       |                                                                                     |
| $[x_5, [x_2, x_4]]], [[[x_4, x_5], [x_4, [x_2, x_3]]],$                           | $2\alpha_1+2\alpha_6+3\alpha_2+3\alpha_5+4\alpha_3+5\alpha_4+\alpha_7,$             |
| $[[x_5, x_6], [x_4, [x_1, x_3]]]]],$                                              |                                                                                     |
| $x_{89} = [[[[x_4, x_5], [x_4, [x_2, x_3]]], [[x_5, x_6]],$                       |                                                                                     |
| $[x_4, [x_1, x_3]]], [[[x_6, x_7], [x_5, [x_2, x_4]]],$                           | $2\alpha_1+2\alpha_6+3\alpha_2+4\alpha_3+4\alpha_5+5\alpha_4+\alpha_7,$             |
| $[[x_2, [x_1, x_3]], [x_5, [x_3, x_4]]]]],$                                       |                                                                                     |
| $x_{90} = [[[[x_5, x_6], [x_4, [x_2, x_3]]], [[x_4, [x_1, x_3]]],$                |                                                                                     |
| $[x_5, [x_2, x_4]]]], [[[x_6, x_7], [x_5, [x_3, x_4]]],$                          | $2\alpha_1+3\alpha_2+3\alpha_6+4\alpha_3+4\alpha_5+5\alpha_4+\alpha_7,$             |
| $[[x_2, [x_1, x_3]], [x_6, [x_4, x_5]]]]],$                                       |                                                                                     |
| $x_{91} = [[[[x_6, x_7], [x_5, [x_3, x_4]]], [[x_4, [x_1, x_3]],$                 |                                                                                     |
| $[x_5, [x_2, x_4]]], [[[x_2, [x_1, x_3]], [x_6, [x_4, x_5]]],$                    | $2\alpha_1 + 2\alpha_7 + 3\alpha_2 + 3\alpha_6 + 4\alpha_3 + 4\alpha_5 + 5\alpha_4$ |
| $[[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]]]]$                                        |                                                                                     |
|                                                                                   |                                                                                     |

## 4.16 *p* = 2

## 4.16.1 Notation $\mathfrak{A} \oplus_{\mathfrak{c}} \mathfrak{B}$ needed to describe $\mathfrak{bgl}(4; \alpha)$ , $\mathfrak{e}(6, 6)$ , $\mathfrak{e}(7, 6)$ , and $\mathfrak{e}(8, 1)$

This notation describes the case where  $\mathfrak{A}$  and  $\mathfrak{B}$  are nontrivial central extensions of the Lie algebras  $\mathfrak{a}$  and  $\mathfrak{b}$ , respectively, and  $\mathfrak{A} \oplus_c \mathfrak{B}$ —a nontrivial central extension of  $\mathfrak{a} \oplus \mathfrak{b}$  (or, perhaps, a more complicated  $\mathfrak{a} \oplus \mathfrak{b}$ ) with 1-dimensional center spanned by *c*—is such that the restriction of the extension of  $\mathfrak{a} \oplus \mathfrak{b}$  to  $\mathfrak{a}$  gives  $\mathfrak{A}$  and that to  $\mathfrak{b}$  gives  $\mathfrak{B}$ .

In these four cases,  $\mathfrak{g}(A)_{\bar{0}}$  is of the form

$$\mathfrak{g}(B) \oplus_c \mathfrak{hei}(2) \simeq \mathfrak{g}(B) \oplus \operatorname{Span}(X^+, X^-),$$

where the matrix *B* is not invertible (so  $\mathfrak{g}(B)$  has a grading element *d* and a central element *c*), and where  $X^+$ ,  $X^-$  and *c* span the Heisenberg Lie algebra  $\mathfrak{hei}(2)$ . The brackets are:

$$[\mathfrak{g}^{(1)}(B), X^{\pm}] = 0; [d, X^{\pm}] = X^{\pm}; \qquad ([d, X^{\pm}] = \alpha X^{\pm} \text{ for } \mathfrak{bgl}(4; \alpha)) [X^{+}, X^{-}] = c.$$
 (22)

The odd part of  $\mathfrak{g}(A)$  (at least in two of the four cases) consists of two copies of the same  $\mathfrak{g}(B)$ -module *N*, the operators ad  $_{X^{\pm}}$  permute these copies, and ad  $_{X^{\pm}}^2 = 0$ , so each of the operators maps one of the copies to the other, and this other copy to zero.

## 4.16.2 bgl(3; $\alpha$ ), where $\alpha \neq 0$ , 1; sdim = 10/8|8

The roots of  $\mathfrak{g} = \mathfrak{bgl}(3; \alpha)$  are the same as those of  $\mathfrak{osp}(4|2; \alpha)$  (or, more correctly, of  $\mathfrak{w\ell}(3; \alpha)$ ), with the same division into even and odd ones;  $\mathfrak{g}_{\bar{0}} \simeq \mathfrak{gl}(3) \oplus \mathbb{K}Z$  and the

 $\mathfrak{g}_{\bar{0}}$ -module  $\mathfrak{g}_{\bar{1}}$  is the sum of two irreducibles whose highest weight vectors are  $x_7$  and  $y_1$ , where the roots corresponding to  $x_i$  and  $y_i$  are opposite.

We consider the Cartan matrix and the Chevalley basis elements

|                                                | the root vectors                            | the roots                                                            |
|------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|
| $\begin{pmatrix} 0 & \alpha & 0 \end{pmatrix}$ | $x_1$ , $x_2$ , $x_3$ ,                     | $\underline{\alpha_1}, \ \underline{\alpha_2}, \underline{\alpha_3}$ |
| α01                                            | $x_4 = [x_1, x_2], x_5 = [x_2, x_3],$       | $\alpha_1 + \alpha_2, \ \alpha_2 + \alpha_3,$                        |
| $(0 \ 1 \ 0)$                                  | $x_6 = [x_3, [x_1, x_2]]$                   | $\alpha_1 + \alpha_2 + \alpha_3$                                     |
|                                                | $\overline{x_7} = [[x_1, x_2], [x_2, x_3]]$ | $\alpha_1 + 2\alpha_2 + \alpha_3$                                    |

## 4.16.3 $\mathfrak{bgl}(4; \alpha)$ , where $\alpha \neq 0, 1$ ; sdim = 18|16

The roots of  $\mathfrak{bgl}(4; \alpha)$  are the same as those of  $\mathfrak{wl}(4; \alpha)$ , but divided into even and odd ones:  $\mathfrak{bgl}(4; \alpha)_{\bar{0}} = \mathfrak{gl}(4) \oplus_c \mathfrak{hei}(2)$  and  $\mathfrak{bgl}(4; \alpha)_{\bar{1}} = N \boxtimes \mathfrak{id}$ , where N is an 8-dimensional  $\mathfrak{gl}(4)$  module, and id is the irreducible 2-dimensional  $\mathfrak{hei}(2)$ -module. We consider the Cartan matrix and the Chevalley basis elements

|                                                                | root vectors                                                                          | roots                                                                                          |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                                | $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} x_3 \\ x_4 \end{bmatrix}$ , | $\underline{\alpha_1}, \underline{\alpha_2}, \underline{\alpha_3}, \underline{\alpha_4}$       |
|                                                                | $x_5 = [x_1, x_2], x_6 = [x_1, x_3],$                                                 | $\alpha_1 + \alpha_2, \ \alpha_1 + \alpha_3,$                                                  |
|                                                                | $x_7 = [x_3, x_4],$                                                                   | $\alpha_3 + \alpha_4$                                                                          |
| $\begin{pmatrix} 0 & \alpha & 0 & 0 \end{pmatrix}$             | $x_8 = [x_3, [x_1, x_2]],$                                                            | $\underline{\alpha_1 + \alpha_2 + \alpha_3},$                                                  |
| $\alpha 0 1 0$                                                 | $x_9 = [x_4, [x_1, x_3]],$                                                            | $\alpha_1 + \alpha_3 + \alpha_4$                                                               |
| $\begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$ | $\overline{x_{10}} = [[x_1, x_2], [x_1, x_3]],$                                       | $2\alpha_1 + \alpha_2 + \alpha_3,$                                                             |
| $\left(0\ 0\ 1\ 0\right)$                                      | $x_{11} = [[x_1, x_2], [x_3, x_4]]$                                                   | $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$                                                    |
|                                                                | $x_{12} = [[x_1, x_2], [x_4, [x_1, x_3]]],$                                           | $\frac{2\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4}{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4}$ |
|                                                                | $x_{13} = [[x_3, [x_1, x_2]], [x_4, [x_1, x_3]]],$                                    | $2\alpha_1 + \alpha_2 + 2\alpha_3 + \alpha_4$                                                  |
|                                                                | $x_{14} = [[x_4, [x_1, x_3]], [[x_1, x_2], [x_1, x_3]]]$                              | $3\alpha_1 + \alpha_2 + 2\alpha_3 + \alpha_4$                                                  |
|                                                                | $x_{15} = [[[x_1, x_2], [x_1, x_3]], [[x_1, x_2], [x_3, x_4]]]$                       | $3\alpha_1 + 2\alpha_2 + 2\alpha_3 + \alpha_4$                                                 |

#### 4.16.4 e(6, 1) of sdim = 46|32

We have  $\mathfrak{g}_{\bar{0}} \simeq \mathfrak{oc}(2; 10) \oplus \mathbb{K}_z$  and  $\mathfrak{g}_{\bar{1}}$  is a reducible module of the form  $R(\pi_4) \oplus R(\pi_5)$  with the two highest weight vectors

$$x_{36} = [[[x_4, x_5], [x_6, [x_2, x_3]]], [[x_3, [x_1, x_2]], [x_6, [x_3, x_4]]]]]$$

and  $y_5$ . We consider the Cartan matrix of e(6) with parities of simple roots 111100. The Chevalley basis elements are

| the root vectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the roots                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x_1$ , $x_2$ , $x_3$ , $x_4$ , $x_5$ , $x_6$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\underline{\alpha_1}, \underline{\alpha_2}, \underline{\alpha_3}, \underline{\alpha_4}, \alpha_5, \alpha_6,$                                                                                                                                                                                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4,}{\underline{\alpha_3 + \alpha_6}, \underline{\alpha_4 + \alpha_5},}$                                                                                                                                                   |
| $\begin{bmatrix} x_{12} \\ x_{14} \end{bmatrix} = [x_3, [x_1, x_2]], \begin{bmatrix} x_{13} \\ x_{14} \end{bmatrix} = [x_4, [x_2, x_3]], \\ x_{16} = [x_5, [x_3, x_4]], x_{15} = [x_6, [x_2, x_3]], \\ x_{16} = [x_6, [x_3, x_4]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{\alpha_1 + \alpha_2 + \alpha_3, \alpha_2 + \alpha_3 + \alpha_4,}{\alpha_3 + \alpha_4 + \alpha_5, \alpha_2 + \alpha_3 + \alpha_6,}$<br>$\alpha_3 + \alpha_4 + \alpha_6,$                                                                                                               |
| $ \begin{array}{c} \hline x_{17} \\ x_{18} = [[x_1, x_2], [x_3, x_4]], \\ \hline x_{18} = [[x_1, x_2], [x_3, x_4]], \\ \hline \hline x_{19} \\ x_{20} \\ x_{20} \\ x_{21} \\ x_{$ | $\frac{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_6}{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4},$ $\frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_6}{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5},$ $\frac{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5}{\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6},$ |
| $ \begin{array}{c} x_{22} = [[x_1, x_2], [x_6, [x_3, x_4]]], \\ x_{23} = [[x_3, x_6], [x_4, [x_2, x_3]]], \\ x_{24} = [[x_4, x_5], [x_3, [x_1, x_2]]], \\ \hline x_{25} = [[x_4, x_5], [x_6, [x_2, x_3]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{aligned} \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_6, \\ 2\alpha_3 + \alpha_2 + \alpha_4 + \alpha_6, \\ \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5, \\ \underline{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6}, \end{aligned}$                           |
| $ \begin{array}{l} x_{26} = [[x_4, x_5], [[x_1, x_2], [x_3, x_6]]], \\ \hline x_{27} = [[x_3, [x_1, x_2]], [x_6, [x_3, x_4]]], \\ x_{28} = [[x_5, [x_3, x_4]], [x_6, [x_2, x_3]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6}{2\alpha_3 + \alpha_1 + \alpha_2 + \alpha_4 + \alpha_5 + \alpha_6},$                                                                                                                                                  |
| $ \begin{bmatrix} x_{29} \\ x_{30} \end{bmatrix} = [[x_5, [x_3, x_4]], [[x_1, x_2], [x_3, x_6]]], \\ x_{30} = [[x_6, [x_2, x_3]], [[x_1, x_2], [x_3, x_4]]], \\ \hline x_{31} \end{bmatrix} = [[x_6, [x_3, x_4]], [[x_2, x_3], [x_4, x_5]]], $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{2\alpha_3 + \alpha_1 + \alpha_2 + \alpha_4 + \alpha_5 + \alpha_6}{2\alpha_2 + 2\alpha_3 + \alpha_1 + \alpha_4 + \alpha_6,}$<br>$\frac{2\alpha_3 + 2\alpha_4 + \alpha_2 + \alpha_5 + \alpha_6}{2\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6},$                                           |
| $x_{32} = [[[x_1, x_2], [x_3, x_4]], [[x_3, x_6], [x_4, x_5]]], x_{33} = [[[x_1, x_2], [x_3, x_6]], [[x_2, x_3], [x_4, x_5]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_5 + \alpha_6, 2\alpha_2 + 2\alpha_3 + \alpha_1 + \alpha_4 + \alpha_5 + \alpha_6,$                                                                                                                                                      |
| $\boxed{x_{34}} = [[[x_2, x_3], [x_4, x_5]], [[x_1, x_2], [x_6, [x_3, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\underline{2\alpha_2+2\alpha_3+2\alpha_4+\alpha_1+\alpha_5+\alpha_6},$                                                                                                                                                                                                                      |
| $x_{35} = [[[x_3, x_6], [x_4, [x_2, x_3]]], [[x_4, x_5], [x_3, [x_1, x_2]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2\alpha_2+2\alpha_4+3\alpha_3+\alpha_1+\alpha_5+\alpha_6,$                                                                                                                                                                                                                                  |
| $x_{36} = [[[x_4, x_5], [x_6, [x_2, x_3]]], [[x_3, [x_1, x_2]], [x_6, [x_3, x_4]]]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2\alpha_2 + 2\alpha_4 + 2\alpha_6 + 3\alpha_3 + \alpha_1 + \alpha_5$                                                                                                                                                                                                                        |

#### 4.16.5 e(6, 6) of sdim = 38|40

In this case,  $\mathfrak{g}(B) \simeq \mathfrak{gl}(6)$ , see (4.16.1). The  $\mathfrak{g}_{\bar{0}}$ -module  $\mathfrak{g}_{\bar{1}}$  is irreducible with the highest weight vector

 $x_{35} = [[[x_3, x_6], [x_4, [x_2, x_3]]], [[x_4, x_5], [x_3, [x_1, x_2]]]] \text{ of weight } (0, 0, 1, 0, 0, 1).$ 

We consider the Cartan matrix of e(6) with parities of simple roots 111111. The Chevalley basis elements are

| the root vectors                                                                                                                                                                                                                                                                                                                                                                         | the roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x_1$ , $x_2$ , $x_3$ , $x_4$ , $x_5$ , $x_6$ ,                                                                                                                                                                                                                                                                                                                                          | $\underline{\alpha_1}, \underline{\alpha_2}, \underline{\alpha_3}, \underline{\alpha_4}, \underline{\alpha_5}, \underline{\alpha_6},$                                                                                                                                                                                                                                                                                                                                                           |
| $x_7 = [x_1, x_2], x_8 = [x_2, x_3], x_9 = [x_3, x_4], x_{10} = [x_3, x_6], x_{11} = [x_4, x_5],$                                                                                                                                                                                                                                                                                        | $ \begin{array}{c} \alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \\ \alpha_3 + \alpha_6, \alpha_4 + \alpha_5, \end{array} $                                                                                                                                                                                                                                                                                                                                                    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                  | $\frac{\alpha_1 + \alpha_2 + \alpha_3}{\alpha_3 + \alpha_4 + \alpha_5}, \frac{\alpha_2 + \alpha_3 + \alpha_4}{\alpha_2 + \alpha_3 + \alpha_6}, \frac{\alpha_2 + \alpha_3 + \alpha_6}{\alpha_3 + \alpha_4 + \alpha_6},$                                                                                                                                                                                                                                                                          |
| $ \begin{aligned} x_{17} &= [x_6, [x_4, [x_2, x_3]]], x_{18} = [[x_1, x_2], [x_3, x_4]], \\ x_{19} &= [[x_1, x_2], [x_3, x_6]], x_{20} = [[x_2, x_3], [x_4, x_5]], \\ x_{21} &= [[x_3, x_6], [x_4, x_5]], \end{aligned} $                                                                                                                                                                | $ \begin{array}{l} \alpha_2 + \alpha_3 + \alpha_4 + \alpha_6, \\ \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4, \\ \alpha_1 + \alpha_2 + \alpha_3 + \alpha_6, \\ \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5, \\ \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6, \end{array} $                                                                                                                                                                                                                             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                  | $\frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_6}{2\alpha_3 + \alpha_2 + \alpha_4 + \alpha_6},$<br>$\frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5}{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6},$                                                                                                                                                                                                                                                              |
| $ \begin{aligned} x_{26} &= [[x_4, x_5], [[x_1, x_2], [x_3, x_6]]], \\ x_{27} &= [[x_3, [x_1, x_2]], [x_6, [x_3, x_4]]], \\ x_{28} &= [[x_5, [x_3, x_4]], [x_6, [x_2, x_3]]], \end{aligned} $                                                                                                                                                                                            | $ \begin{array}{l} \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6, \\ 2\alpha_3 + \alpha_1 + \alpha_2 + \alpha_4 + \alpha_6, \\ 2\alpha_3 + \alpha_2 + \alpha_4 + \alpha_5 + \alpha_6, \end{array} $                                                                                                                                                                                                                                                                           |
| $ \begin{array}{c} \hline x_{29} = [[x_5, [x_3, x_4]], [[x_1, x_2], [x_3, x_6]]], \\ \hline x_{30} = [[x_6, [x_2, x_3]], [[x_1, x_2], [x_3, x_4]]], \\ \hline x_{31} = [[x_6, [x_3, x_4]], [[x_2, x_3], [x_4, x_5]]], \\ \hline x_{32} = [[[x_1, x_2], [x_3, x_4]], [[x_3, x_6], [x_4, x_5]]], \\ \hline x_{33} = [[[x_1, x_2], [x_3, x_6]], [[x_2, x_3], [x_4, x_5]]], \\ \end{array} $ | $\frac{2\alpha_{3} + \alpha_{1} + \alpha_{2} + \alpha_{4} + \alpha_{5} + \alpha_{6}}{2\alpha_{2} + 2\alpha_{3} + \alpha_{1} + \alpha_{4} + \alpha_{6}},$<br>$\frac{2\alpha_{3} + 2\alpha_{4} + \alpha_{2} + \alpha_{5} + \alpha_{6}}{2\alpha_{3} + 2\alpha_{4} + \alpha_{1} + \alpha_{2} + \alpha_{5} + \alpha_{6}},$<br>$\frac{2\alpha_{3} + 2\alpha_{4} + \alpha_{1} + \alpha_{2} + \alpha_{5} + \alpha_{6}}{2\alpha_{2} + 2\alpha_{3} + \alpha_{1} + \alpha_{4} + \alpha_{5} + \alpha_{6}},$ |
| $\boxed{x_{33} - [[(x_1, x_2), [x_3, x_6]], [[x_2, x_3], [x_4, x_5]]],}$ $\boxed{x_{34}} = [[[x_2, x_3], [x_4, x_5]], [[x_1, x_2], [x_6, [x_3, x_4]]]],$                                                                                                                                                                                                                                 | $\frac{2\alpha_2 + 2\alpha_3 + \alpha_1 + \alpha_4 + \alpha_5 + \alpha_6}{2\alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_5 + \alpha_6},$                                                                                                                                                                                                                                                                                                                                                 |
| $x_{35} = [[[x_3, x_6], [x_4, [x_2, x_3]]], [[x_4, x_5], [x_3, [x_1, x_2]]]],$                                                                                                                                                                                                                                                                                                           | $2\alpha_2 + 2\alpha_4 + 3\alpha_3 + \alpha_1 + \alpha_5 + \alpha_6,$                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{bmatrix} x_{36} \\ x_{6}, [x_{3}, x_{5}], [x_{6}, [x_{2}, x_{3}]]], [[x_{3}, [x_{1}, x_{2}]], [x_{6}, [x_{3}, x_{4}]]] $                                                                                                                                                                                                                                                        | $\frac{2\alpha_2+2\alpha_4+2\alpha_6+3\alpha_3+\alpha_1+\alpha_5}{2\alpha_2+2\alpha_4+2\alpha_6+3\alpha_3+\alpha_1+\alpha_5}$                                                                                                                                                                                                                                                                                                                                                                   |

# 4.16.6 e(7, 1) of sdim = 80/78|54

We consider the Cartan matrix of  $\mathfrak{e}(7)$  with the parities of simple roots 1111001. The Chevalley basis elements are

| the root vectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | the roots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x_1$ , $x_2$ , $x_3$ , $x_4$ , $x_5$ , $x_6$ , $x_7$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $ \begin{array}{c} x_8 = [x_1, x_2], x_9 = [x_2, x_3], x_{10} = [x_3, x_4], \\ \hline x_{11} = [x_4, x_5], x_{12} = [x_4, x_7], x_{13} = [x_5, x_6], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \hline \alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \underline{\alpha_4 + \alpha_5}, \\ \alpha_4 + \alpha_7, \alpha_5 + \alpha_6, \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $ \begin{bmatrix} x_{14} \\ = [x_3, [x_1, x_2]], \\ x_{15} \\ = [x_4, [x_2, x_3]], \\ x_{16} \\ = [x_5, [x_3, x_4]], \\ \hline x_{17} \\ = [x_6, [x_4, x_5]], \\ \hline x_{18} \\ = [x_7, [x_3, x_4]], \\ x_{19} \\ = [x_7, [x_4, x_5]], $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{\alpha_1 + \alpha_2 + \alpha_3}{\alpha_3 + \alpha_4 + \alpha_5, \frac{\alpha_2 + \alpha_3 + \alpha_4}{\alpha_4 + \alpha_5 + \alpha_6, \frac{\alpha_3 + \alpha_4 + \alpha_7}{\alpha_4 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_5 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_7 + \alpha_7, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_7 + \alpha_7, \frac{\alpha_5 + \alpha_7}{\alpha_7 + \alpha_7, \frac{\alpha_7 + \alpha_7}{\alpha_7 + \alpha_7$ |
| $ \begin{array}{c} \hline x_{20} \\ \hline x_{20} \\ \hline x_{22} \\ \hline x_{24} \\ \hline x_{25} \\ \hline x_{26} \\ \hline x_{27} \\ \hline x$ | $\frac{\alpha_3 + \alpha_4 + \alpha_5 + \alpha_7,}{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4,}$ $\frac{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5,}{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_7,}$ $\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6,$ $\alpha_4 + \alpha_5 + \alpha_6 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_7, \\ \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5, \\ \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_7, \\ 2\alpha_4 + \alpha_3 + \alpha_5 + \alpha_7, \\ \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6, \\ \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7, \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $ \begin{array}{c} x_{32} = [[x_5, x_6], [[x_2, x_3], [x_4, x_7]]], \\ x_{33} = [[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]], \\ \hline x_{34} = [[x_3, [x_1, x_2]], [x_7, [x_4, x_5]]], \\ \hline x_{35} = [[x_4, [x_2, x_3]], [x_7, [x_4, x_5]]], \\ x_{36} = [[x_6, [x_4, x_5]], [x_7, [x_3, x_4]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $ \begin{bmatrix} x_{37} \\ x_{38} \end{bmatrix} = [[x_3, [x_1, x_2]], [[x_4, x_7], [x_5, x_6]]], \\ \hline x_{38} \end{bmatrix} = [[x_6, [x_4, x_5]], [[x_2, x_3], [x_4, x_7]]], \\ x_{39} = [[x_7, [x_3, x_4]], [[x_2, x_3], [x_4, x_5]]], \\ x_{40} = [[x_7, [x_4, x_5]], [[x_1, x_2], [x_3, x_4]]], \\ x_{41} = [[x_7, [x_4, x_5]], [[x_3, x_4], [x_5, x_6]]], $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7}{2\alpha_4 + \alpha_2 + \alpha_3 + \alpha_5 + \alpha_6 + \alpha_7,}$<br>$\frac{2\alpha_4 + \alpha_2 + \alpha_3 + \alpha_5 + \alpha_7,}{2\alpha_3 + 2\alpha_4 + \alpha_2 + \alpha_3 + \alpha_5 + \alpha_7,}$<br>$2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_6 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $ \begin{bmatrix} x_{42} \\ x_{43} = [[x_7, [x_5, [x_3, x_4]]], [[x_1, x_2], [x_3, x_4]]], \\ x_{43} = [[[x_1, x_2], [x_3, x_4]], [[x_4, x_7], [x_5, x_6]]], \\ x_{44} = [[[x_2, x_3], [x_4, x_5]], [[x_4, x_7], [x_5, x_6]]], \\ x_{45} = [[[x_2, x_3], [x_4, x_7]], [[x_3, x_4], [x_5, x_6]]], $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_5 + \alpha_7,}{2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_5 + \alpha_6 + \alpha_7,}$ $\frac{2\alpha_4 + 2\alpha_5 + \alpha_2 + \alpha_3 + \alpha_6 + \alpha_7,}{2\alpha_3 + 2\alpha_4 + \alpha_2 + \alpha_5 + \alpha_6 + \alpha_7,}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ \begin{array}{l} x_{46} = [[[x_2, x_3], [x_4, x_7]], [[x_4, x_5], [x_3, [x_1, x_2]]]], \\ x_{47} = [[[x_3, x_4], [x_5, x_6]], [[x_2, x_3], [x_7, [x_4, x_5]]]], \\ \hline x_{48} = [[[x_3, x_4], [x_5, x_6]], [[x_4, x_7], [x_3, [x_1, x_2]]]], \\ x_{49} = [[[x_4, x_7], [x_5, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 2\alpha_2+2\alpha_3+2\alpha_4+\alpha_1+\alpha_5+\alpha_7,\\ 2\alpha_3+2\alpha_4+2\alpha_5+\alpha_2+\alpha_6+\alpha_7,\\ \underline{2\alpha_3+2\alpha_4+\alpha_1+\alpha_2+\alpha_5+\alpha_6+\alpha_7,}\\ 2\alpha_4+2\alpha_5+\alpha_1+\alpha_2+\alpha_3+\alpha_6+\alpha_7, \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \begin{bmatrix} x_{50} \\ [[[x_4, x_5], [x_3, [x_1, x_2]]], [[x_5, x_6], [x_7, [x_3, x_4]]]], \\ x_{51} = [[[x_4, x_7], [x_3, [x_1, x_2]]], [[x_5, x_6], [x_4, [x_2, x_3]]]], \\ \hline x_{52} = \\ [[[x_4, x_7], [x_5, [x_3, x_4]]], [[x_5, x_6], [x_4, [x_2, x_3]]]], $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_1 + \alpha_2 + \alpha_6 + \alpha_7,}{2\alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_5 + \alpha_6 + \alpha_7,}$ $\frac{2\alpha_3 + 2\alpha_5 + 3\alpha_4 + \alpha_2 + \alpha_6 + \alpha_7,}{2\alpha_3 + 2\alpha_5 + 3\alpha_4 + \alpha_2 + \alpha_6 + \alpha_7,}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| $ \begin{aligned} x_{53} &= \\ & [[[x_4, x_7], [x_5, [x_3, x_4]]], [[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]]], \\ & x_{54} &= \\ & [[[x_5, x_6], [x_4, [x_2, x_3]]], [[x_3, [x_1, x_2]], [x_7, [x_4, x_5]]]], \\ & x_{55} &= \\ & [[[x_5, x_6], [x_7, [x_3, x_4]]], [[x_4, [x_2, x_3]], [x_7, [x_4, x_5]]]], \end{aligned} $ | $2\alpha_3 + 2\alpha_5 + 3\alpha_4 + \alpha_1 + \alpha_2 + \alpha_6 + \alpha_7,$<br>$2\alpha_2 + 2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_1 + \alpha_6 + \alpha_7,$<br>$2\alpha_3 + 2\alpha_5 + 2\alpha_7 + 3\alpha_4 + \alpha_2 + \alpha_6,$ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} \hline x_{56} = [[[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]], [[x_4, [x_2, x_3]], \\ [x_7, [x_4, x_5]]]], \\ \hline x_{57} = [[[x_3, [x_1, x_2]], [x_7, [x_4, x_5]]], [[x_6, [x_4, x_5]], \\ [x_7, [x_3, x_4]]]], \end{array} $                                                                             | $\frac{2\alpha_2 + 2\alpha_3 + 2\alpha_5 + 3\alpha_4 + \alpha_1}{\frac{+\alpha_6 + \alpha_7}{2\alpha_3 + 2\alpha_5 + 2\alpha_7 + 3\alpha_4 + \alpha_1}}$                                                                                        |
| $ \begin{aligned} x_{58} &= [[[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]], [[x_7, [x_3, x_4]], \\ [[x_2, x_3], [x_4, x_5]]]], \\ x_{59} &= [[[x_4, [x_2, x_3]], [x_7, [x_4, x_5]]], [[x_3, [x_1, x_2]], \\ [[x_4, x_7], [x_5, x_6]]]], \end{aligned} $                                                                          | $2\alpha_2 + 2\alpha_5 + 3\alpha_3 + 3\alpha_4 + \alpha_1 + \alpha_6 + \alpha_7,$<br>$2\alpha_2 + 2\alpha_3 + 2\alpha_5 + 2\alpha_7 + 3\alpha_4 + \alpha_1 + \alpha_6,$                                                                         |
| $ \boxed{x_{60}} = [[[x_3, [x_1, x_2]], [[x_4, x_7], [x_5, x_6]]], \\ [[x_7, [x_3, x_4]], [[x_2, x_3], [x_4, x_5]]]], $                                                                                                                                                                                                   | $\frac{2\alpha_2 + 2\alpha_5 + 2\alpha_7 + 3\alpha_3 + 3\alpha_4}{+\alpha_1 + \alpha_6},$                                                                                                                                                       |
| $x_{61} = [[[x_7, [x_4, x_5]], [[x_1, x_2], [x_3, x_4]]], \\ [[[x_2, x_3], [x_4, x_7]], [[x_3, x_4], [x_5, x_6]]]]],$                                                                                                                                                                                                     | $2\alpha_2+2\alpha_5+2\alpha_7+3\alpha_3+4\alpha_4+\alpha_1+\alpha_6,$                                                                                                                                                                          |
| $ \begin{aligned} x_{62} = & [[[x_7, [x_5, [x_3, x_4]]], [[x_1, x_2], [x_3, x_4]]], \\ & [[[x_2, x_3], [x_4, x_5]], [[x_4, x_7], [x_5, x_6]]]], \end{aligned} $                                                                                                                                                           | $2\alpha_2+2\alpha_7+3\alpha_3+3\alpha_5+4\alpha_4+\alpha_1+\alpha_6,$                                                                                                                                                                          |
| $ \begin{aligned} x_{63} &= [[[[x_2, x_3], [x_4, x_7]], [[x_3, x_4], [x_5, x_6]]], \\ & [[[x_4, x_7], [x_5, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]]] \end{aligned} $                                                                                                                                                      | $2\alpha_2 + 2\alpha_6 + 2\alpha_7 + 3\alpha_3 + 3\alpha_5 + 4\alpha_4 + \alpha_1$                                                                                                                                                              |

# 4.16.7 e(7, 6) of sdim = 70/68|64

We consider the Cartan matrix of  $\mathfrak{e}(7)$  with the parities of simple roots 0101010 and the Chevalley basis elements

| the root vectors                                                                                                                                                                                                                                                                                                   | the roots                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x_1, \overline{x_2}, x_3, \overline{x_4}, x_5, \overline{x_6}, x_7,$                                                                                                                                                                                                                                              | $\alpha_1, \underline{\alpha_2}, \alpha_3, \underline{\alpha_4}, \alpha_5, \underline{\alpha_6}, \alpha_7,$                                                                                                                                                                                                                                                                          |
| $ \begin{bmatrix} x_8 \\ = [x_1, x_2], \\ \hline x_9 \\ = [x_2, x_3], \\ \hline x_{10} \\ = [x_4, x_5], \\ \hline x_{12} \\ = [x_4, x_7], \\ \hline x_{13} \\ = [x_5, x_6], $                                                                                                                                      | $\frac{\alpha_1 + \alpha_2}{\alpha_4 + \alpha_5}, \frac{\alpha_2 + \alpha_3}{\alpha_4 + \alpha_7}, \frac{\alpha_3 + \alpha_4}{\alpha_5 + \alpha_6},$                                                                                                                                                                                                                                 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                            | $\frac{\alpha_1 + \alpha_2 + \alpha_3}{\alpha_3 + \alpha_4 + \alpha_5}, \alpha_2 + \alpha_3 + \alpha_4, \\ \frac{\alpha_3 + \alpha_4 + \alpha_5}{\alpha_3 + \alpha_4 + \alpha_7}, \frac{\alpha_4 + \alpha_5 + \alpha_7}{\alpha_4 + \alpha_5 + \alpha_7},$                                                                                                                            |
| $ \begin{bmatrix} x_{20} \\ x_{20} \end{bmatrix} = [x_7, [x_5, [x_3, x_4]]], x_{21} = [[x_1, x_2], [x_3, x_4]], \\ x_{22} = [[x_2, x_3], [x_4, x_5]], x_{23} = [[x_2, x_3], [x_4, x_7]], \\ x_{24} = [[x_3, x_4], [x_5, x_6]], x_{25} = [[x_4, x_7], [x_5, x_6]], $                                                | $\frac{\alpha_3 + \alpha_4 + \alpha_5 + \alpha_7, \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4,}{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5, \alpha_2 + \alpha_3 + \alpha_4 + \alpha_7,}$ $\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6, \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7,$                                                                                                        |
| $ \begin{array}{l} x_{26} = [[x_2, x_3], [x_7, [x_4, x_5]]], \\ x_{27} = [[x_4, x_5], [x_3, [x_1, x_2]]], \\ x_{28} = [[x_4, x_7], [x_3, [x_1, x_2]]], \\ x_{29} = [[x_4, x_7], [x_5, [x_3, x_4]]], \\ \hline x_{30} = [[x_5, x_6], [x_4, [x_2, x_3]]], \\ x_{31} = [[x_5, x_6], [x_7, [x_3, x_4]]], \end{array} $ | $\begin{aligned} &\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_7, \\ &\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5, \\ &\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_7, \\ &2\alpha_4 + \alpha_3 + \alpha_5 + \alpha_7, \\ &\frac{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6, \\ &\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7, \end{aligned}$ |

| $x_{32} = [[x_5, x_6], [[x_2, x_3], [x_4, x_7]]],$                                                                                                   | $\frac{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7}{\alpha_1 + \alpha_2 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_7 + \alpha_7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x_{33} = [[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]],$                                                                                                   | $\frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6}{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_7},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $x_{34} = [[x_3, [x_1, x_2]], [x_7, [x_4, x_5]]],$                                                                                                   | $2\alpha_4 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_3 + \alpha_7,$<br>$2\alpha_4 + \alpha_2 + \alpha_3 + \alpha_5 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $x_{35} = [[x_4, [x_2, x_3]], [x_7, [x_4, x_5]]],$                                                                                                   | $\overline{2\alpha_4 + \alpha_3 + \alpha_5 + \alpha_6 + \alpha_7},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $x_{36} = [[x_6, [x_4, x_5]], [x_7, [x_3, x_4]]],$                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $x_{37} = [[x_3, [x_1, x_2]], [[x_4, x_7], [x_5, x_6]]],$                                                                                            | $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\overline{x_{38}} = [[x_6, [x_4, x_5]], [[x_2, x_3], [x_4, x_7]]],$                                                                                 | $\overline{2\alpha_4 + \alpha_2 + \alpha_3 + \alpha_5 + \alpha_6 + \alpha_7},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $x_{39} = [[x_7, [x_3, x_4]], [[x_2, x_3], [x_4, x_5]]],$                                                                                            | $\frac{2\alpha_3 + 2\alpha_4 + \alpha_2 + \alpha_5 + \alpha_7}{2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_5 + \alpha_7},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $x_{40} = [[x_7, [x_4, x_5]], [[x_1, x_2], [x_3, x_4]]],$                                                                                            | $\frac{2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_5 + \alpha_7}{2\alpha_4 + 2\alpha_5 + \alpha_3 + \alpha_6 + \alpha_7,}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\boxed{x_{41}} = [[x_7, [x_4, x_5]], [[x_3, x_4], [x_5, x_6]]],$                                                                                    | <u>244 + 245 + 45 + 46 + 47</u> ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\boxed{x_{42}} = [[x_7, [x_5, [x_3, x_4]]], [[x_1, x_2], [x_3, x_4]]],$                                                                             | $2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_5 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $x_{43} = [[[x_1, x_2], [x_3, x_4]], [[x_4, x_7], [x_5, x_6]]],$                                                                                     | $\overline{2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_5 + \alpha_6 + \alpha_7},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $x_{44} = [[[x_2, x_3], [x_4, x_5]], [[x_4, x_7], [x_5, x_6]]],$                                                                                     | $2\alpha_4 + 2\alpha_5 + \alpha_2 + \alpha_3 + \alpha_6 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $x_{45} = [[[x_2, x_3], [x_4, x_7]], [[x_3, x_4], [x_5, x_6]]],$                                                                                     | $2\alpha_3+2\alpha_4+\alpha_2+\alpha_5+\alpha_6+\alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $x_{46} = [[[x_2, x_3], [x_4, x_7]], [[x_4, x_5], [x_3, [x_1, x_2]]]],$                                                                              | $2\alpha_2+2\alpha_3+2\alpha_4+\alpha_1+\alpha_5+\alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $x_{47} = [[[x_3, x_4], [x_5, x_6]], [[x_2, x_3], [x_7, [x_4, x_5]]]],$                                                                              | $2\alpha_3+2\alpha_4+2\alpha_5+\alpha_2+\alpha_6+\alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $x_{48} = [[[x_3, x_4], [x_5, x_6]], [[x_4, x_7], [x_3, [x_1, x_2]]]],$                                                                              | $2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_5 + \alpha_6 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $x_{49} = [[[x_4, x_7], [x_5, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]],$                                                                              | $2\alpha_4 + 2\alpha_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_6 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $x_{50} =$                                                                                                                                           | $2\alpha_3+2\alpha_4+2\alpha_5+\alpha_1+\alpha_2+\alpha_6+\alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $[[[x_4, x_5], [x_3, [x_1, x_2]]], [[x_5, x_6], [x_7, [x_3, x_4]]]],$                                                                                | $\frac{2\alpha_2+2\alpha_3+2\alpha_4+\alpha_1+\alpha_5+\alpha_6+\alpha_7}{2\alpha_1+\alpha_2+\alpha_2+\alpha_3+\alpha_4+\alpha_1+\alpha_5+\alpha_6+\alpha_7},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $x_{51} =$                                                                                                                                           | $\underline{2\alpha_3+2\alpha_5+3\alpha_4+\alpha_2+\alpha_6+\alpha_7},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $[[[x_4, x_7], [x_3, [x_1, x_2]]], [[x_5, x_6], [x_4, [x_2, x_3]]]],$                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $x_{52} =$                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $[[[x_4, x_7], [x_5, [x_3, x_4]]], [[x_5, x_6], [x_4, [x_2, x_3]]]],$                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $x_{53} = [[[x_4, x_7], [x_5, [x_3, x_4]]],$                                                                                                         | $2\alpha_3 + 2\alpha_5 + 3\alpha_4 + \alpha_1 + \alpha_2 + \alpha_6 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $[[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]]],$<br>$[x_{54}] = [[[x_5, x_6], [x_4, [x_2, x_3]]],$                                                         | $\frac{2u_3 + 2u_3 + 5u_4 + u_1 + u_2 + u_0 + u_7}{2u_3 + 2u_3 + 5u_4 + u_1 + u_2 + u_0 + u_7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $[x_{34}] = [(x_{5}, x_{6}], (x_{4}, (x_{2}, x_{3})]], [[x_{3}, [x_{1}, x_{2}]], [x_{7}, [x_{4}, x_{5}]]]],$                                         | $2\alpha_2 + 2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_1 + \alpha_6 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{bmatrix} [x_3, [x_1, x_2]], [x_7, [x_4, x_5]]] \end{bmatrix},$<br>$\begin{bmatrix} x_{55} \end{bmatrix} = [[[x_5, x_6], [x_7, [x_3, x_4]]],$ | $\frac{2\alpha_2 + 2\alpha_3 + 2\alpha_4 + 2\alpha_3 + \alpha_1 + \alpha_0 + \alpha_7}{2\alpha_3 + 2\alpha_5 + 2\alpha_7 + 3\alpha_4 + \alpha_2 + \alpha_6},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $[[x_4, [x_2, x_3]], [x_7, [x_4, x_5]]]],$                                                                                                           | $\frac{2\alpha_{3}+2\alpha_{3}+2\alpha_{4}+\alpha_{4}+\alpha_{2}+\alpha_{0}}{2\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{4}+\alpha_{$ |
| $x_{56} = [[[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]]],$                                                                                                 | $2\alpha_2 + 2\alpha_3 + 2\alpha_5 + 3\alpha_4 + \alpha_1 + \alpha_6 + \alpha_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\begin{bmatrix} x_{56} - [[[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]], \\ [[x_4, [x_2, x_3]], [x_7, [x_4, x_5]]]], \end{bmatrix}$                        | $\begin{bmatrix} 2u_2 + 2u_3 + 2u_3 + 3u_4 + u_1 + u_6 + u_7, \\ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{bmatrix} x_{57} \\ = [[[x_3, [x_1, x_2]], [x_7, [x_4, x_5]]], \\ \end{bmatrix}]$                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $[[x_6, [x_4, x_5]], [x_7, [x_3, x_4]]]],$                                                                                                           | $\underline{2\alpha_3+2\alpha_5+2\alpha_7+3\alpha_4+\alpha_1+\alpha_2+\alpha_6},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $x_{58} = [[[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]]],$                                                                                                 | $2\alpha_2 + 2\alpha_5 + 3\alpha_3 + 3\alpha_4 + \alpha_1 + \alpha_6 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $[[x_7, [x_3, x_4]], [[x_2, x_3], [x_4, x_5]]]],$                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $x_{59} = [[[x_4, [x_2, x_3]], [x_7, [x_4, x_5]]]],$                                                                                                 | $2\alpha_2+2\alpha_3+2\alpha_5+2\alpha_7+3\alpha_4+\alpha_1+\alpha_6,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $[[x_3, [x_1, x_2]], [[x_4, x_7], [x_5, x_6]]]],$                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $x_{60} = [[[x_3, [x_1, x_2]], [[x_4, x_7], [x_5, x_6]]],$                                                                                           | $2\alpha_2+2\alpha_5+2\alpha_7+3\alpha_3+3\alpha_4+\alpha_1+\alpha_6,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $[[x_7, [x_3, x_4]], [[x_2, x_3], [x_4, x_5]]]],$                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $x_{61} = [[[x_7, [x_4, x_5]], [[x_1, x_2], [x_3, x_4]]],$                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $[[[x_2, x_3], [x_4, x_7]], [[x_3, x_4], [x_5, x_6]]]],$                                                                                             | $\underline{2\alpha_2+2\alpha_5+2\alpha_7+3\alpha_3+4\alpha_4+\alpha_1+\alpha_6},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\boxed{x_{62}} = [[[x_7, [x_5, [x_3, x_4]]], [[x_1, x_2], [x_3, x_4]]],$                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $[[[x_2, x_3], [x_4, x_5]], [[x_4, x_7], [x_5, x_6]]]],$                                                                                             | $\underline{2\alpha_2+2\alpha_7+3\alpha_3+3\alpha_5+4\alpha_4+\alpha_1+\alpha_6},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $x_{63} = [[[[x_2, x_3], [x_4, x_7]], [[x_3, x_4], [x_5, x_6]]]],$                                                                                   | $2\alpha_2 + 2\alpha_6 + 2\alpha_7 + 3\alpha_3 + 3\alpha_5 + 4\alpha_4 + \alpha_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $[[[x_4, x_7], [x_5, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]]]$                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

## 4.16.8 e(7, 7) of sdim = 64/62|70

We consider the Cartan matrix of  $\mathfrak{e}(7)$  with the parities of simple roots 1111111 and the Chevalley basis elements

| the root vectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the roots                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\boxed{x_1, x_2, x_3, x_4, x_5, x_6, x_7},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\underline{\alpha_1, \underline{\alpha_2}, \underline{\alpha_3}, \underline{\alpha_4}, \underline{\alpha_5}, \underline{\alpha_6}, \underline{\alpha_7},}$                                                                                                                                                                                                                                                                      |
| $x_8 = [x_1, x_2], x_9 = [x_2, x_3], x_{10} = [x_3, x_4], x_{11} = [x_4, x_5], x_{12} = [x_4, x_7], x_{13} = [x_5, x_6],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_5, \\ \alpha_4 + \alpha_7, \alpha_5 + \alpha_6,$                                                                                                                                                                                                                                                                                               |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{\alpha_1 + \alpha_2 + \alpha_3}{\alpha_3 + \alpha_4 + \alpha_5}, \frac{\alpha_2 + \alpha_3 + \alpha_4}{\alpha_4 + \alpha_5 + \alpha_6}, \frac{\alpha_4 + \alpha_5 + \alpha_6}{\alpha_4 + \alpha_5 + \alpha_7},$                                                                                                                                                                                                           |
| $ \begin{array}{l} x_{20} = [x_7, [x_5, [x_3, x_4]]], x_{21} = [[x_1, x_2], [x_3, x_4]], \\ x_{22} = [[x_2, x_3], [x_4, x_5]], x_{23} = [[x_2, x_3], [x_4, x_7]], \\ x_{24} = [[x_3, x_4], [x_5, x_6]], x_{25} = [[x_4, x_7], [x_5, x_6]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c} \alpha_3 + \alpha_4 + \alpha_5 + \alpha_7, \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4, \\ \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5, \alpha_2 + \alpha_3 + \alpha_4 + \alpha_7, \\ \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6, \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7, \end{array} $                                                                                                                         |
| $ \begin{array}{c} x_{26} \\ x_{27} \\ x_{28} \\ x_{29} \\ x_{30} \\ x_{31} \\ x_{32} \\ x_{31} \\ x_{32} \\ x_{31} \\ x_{32} \\ x_{31} \\ x_{32} \\ x_{33} \\ x_{33} \\ x_{34} \\ x_{35} \\ x_{3$ | $\frac{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_7}{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5},$ $\frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_7}{2\alpha_4 + \alpha_3 + \alpha_5 + \alpha_7},$ $\frac{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6}{\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7},$                                                                             |
| $ \begin{array}{l} x_{32} = [[x_5, x_6], [[x_2, x_3], [x_4, x_7]]], \\ x_{33} = [[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]], \\ x_{34} = [[x_3, [x_1, x_2]], [x_7, [x_4, x_5]]], \\ x_{35} = [[x_4, [x_2, x_3]], [x_7, [x_4, x_5]]], \\ x_{36} = [[x_6, [x_4, x_5]], [x_7, [x_3, x_4]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{l} \alpha_{2} + \alpha_{3} + \alpha_{4} + \alpha_{5} + \alpha_{6} + \alpha_{7}, \\ \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4} + \alpha_{5} + \alpha_{6}, \\ \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{4} + \alpha_{5} + \alpha_{7}, \\ 2\alpha_{4} + \alpha_{2} + \alpha_{3} + \alpha_{5} + \alpha_{5} + \alpha_{7}, \\ 2\alpha_{4} + \alpha_{3} + \alpha_{5} + \alpha_{6} + \alpha_{7}, \end{array}$ |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7,}{2\alpha_4 + \alpha_2 + \alpha_3 + \alpha_5 + \alpha_6 + \alpha_7,}$ $\frac{2\alpha_3 + 2\alpha_4 + \alpha_2 + \alpha_5 + \alpha_7,}{2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_5 + \alpha_7,}$ $\frac{2\alpha_4 + 2\alpha_5 + \alpha_3 + \alpha_6 + \alpha_7,}{2\alpha_4 + 2\alpha_5 + \alpha_3 + \alpha_6 + \alpha_7,}$            |
| $ \begin{array}{c} x_{42} = [[x_7, [x_5, [x_3, x_4]]], [[x_1, x_2], [x_3, x_4]]], \\ x_{43} = [[[x_1, x_2], [x_3, x_4]], [[x_4, x_7], [x_5, x_6]]], \\ x_{44} = [[[x_2, x_3], [x_4, x_5]], [[x_4, x_7], [x_5, x_6]]], \\ x_{45} = [[[x_2, x_3], [x_4, x_7]], [[x_3, x_4], [x_5, x_6]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 2\alpha_{3} + 2\alpha_{4} + \alpha_{1} + \alpha_{2} + \alpha_{5} + \alpha_{7}, \\ 2\alpha_{4} + \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{5} + \alpha_{6} + \alpha_{7}, \\ 2\alpha_{4} + 2\alpha_{5} + \alpha_{2} + \alpha_{3} + \alpha_{6} + \alpha_{7}, \\ 2\alpha_{3} + 2\alpha_{4} + \alpha_{2} + \alpha_{5} + \alpha_{6} + \alpha_{7}, \end{array}$                                                  |
| $ \begin{bmatrix} x_{46} \\ x_{47} \\ x_{48} \\ x_{49} \end{bmatrix} = [[[x_2, x_3], [x_4, x_7]], [[x_4, x_5], [x_3, [x_1, x_2]]]], \\ [x_{48} \\ x_{49} \\ x_{49} \end{bmatrix} = [[[x_3, x_4], [x_5, x_6]], [[x_2, x_3], [x_7, [x_4, x_5]]]], \\ [x_4, x_7], [x_3, [x_1, x_2]]]], \\ [x_4, x_7], [x_5, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]], \\ [x_4, x_7], [x_5, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]], \\ [x_4, x_7], [x_5, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]], \\ [x_4, x_7], [x_5, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]], \\ [x_4, x_7], [x_5, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]], \\ [x_4, x_7], [x_5, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]], \\ [x_4, x_7], [x_5, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]], \\ [x_4, x_7], [x_5, x_6]], [[x_4, x_5], [x_5, [x_3, [x_1, x_2]]]], \\ [x_4, x_7], [x_5, x_6]], [[x_4, x_5], [x_5, [x_3, [x_1, x_2]]]], \\ [x_4, x_7], [x_5, x_6]], [[x_4, x_5], [x_5, [x_5, [x_3, [x_1, x_2]]]], \\ [x_4, x_7], [x_5, x_6]], [[x_4, x_5], [x_5, [x_5, [x_5, [x_5]], [x_5, [x_5]]], \\ [x_4, x_5], [x_5, [x_5, [x_5]], [x_5, [x_5]], [x_5, [x_5]], \\ [x_5, [x_5, [x_5]], [x_5, [x_5]], [x_5, [x_5]], \\ \\ [x_5, [x_5]],$                                                                                                                         | $\frac{2\alpha_2 + 2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_5 + \alpha_7,}{2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_2 + \alpha_6 + \alpha_7,}$<br>$\frac{2\alpha_3 + 2\alpha_4 + \alpha_1 + \alpha_2 + \alpha_5 + \alpha_6 + \alpha_7,}{2\alpha_4 + 2\alpha_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_6 + \alpha_7,}$                                                                                                       |

| $ \begin{array}{l} x_{50} = \\ [[[x_4, x_5], [x_3, [x_1, x_2]]], [[x_5, x_6], [x_7, [x_3, x_4]]]], \\ x_{51} = \\ [[[x_4, x_7], [x_3, [x_1, x_2]]], [[x_5, x_6], [x_4, [x_2, x_3]]]], \\ x_{52} = \\ [[[x_4, x_7], [x_5, [x_3, x_4]]], [[x_5, x_6], [x_4, [x_2, x_3]]]], \end{array} $                                                                                                                                         | $\begin{array}{c} 2\alpha_{3} + 2\alpha_{4} + 2\alpha_{5} + \alpha_{1} + \alpha_{2} + \alpha_{6} + \alpha_{7}, \\ 2\alpha_{2} + 2\alpha_{3} + 2\alpha_{4} + \alpha_{1} + \alpha_{5} + \alpha_{6} + \alpha_{7}, \\ 2\alpha_{3} + 2\alpha_{5} + 3\alpha_{4} + \alpha_{2} + \alpha_{6} + \alpha_{7}, \end{array}$                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{bmatrix} x_{53} \\ x_{53} \end{bmatrix} = [[[x_4, x_7], [x_5, [x_3, x_4]]], \\ [[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]]], \\ x_{54} \end{bmatrix} = [[[x_5, x_6], [x_4, [x_2, x_3]]], \\ [[x_3, [x_1, x_2]], [x_7, [x_4, x_5]]]], \\ x_{55} \end{bmatrix} = [[[x_5, x_6], [x_7, [x_3, x_4]]], \\ x_{55} \end{bmatrix} = [[[x_5, x_6], [x_7, [x_3, x_4]]], \\ x_{55} \end{bmatrix} = [[[x_5, x_6], [x_7, [x_4, x_5]]]] $ | $\frac{2\alpha_3 + 2\alpha_5 + 3\alpha_4 + \alpha_1 + \alpha_2 + \alpha_6 + \alpha_7}{2\alpha_2 + 2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_1 + \alpha_6 + \alpha_7},$<br>$\frac{2\alpha_2 + 2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_1 + \alpha_6 + \alpha_7}{2\alpha_3 + 2\alpha_5 + 2\alpha_7 + 3\alpha_4 + \alpha_2 + \alpha_6},$ |
| $ \begin{array}{c} [[x_4, [x_2, x_3]], [x_7, [x_4, x_5]]]], \\ x_{56} = [[[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]], \\ [[x_4, [x_2, x_3]], [x_7, [x_4, x_5]]]], \\ x_{57} = [[[x_3, [x_1, x_2]], [x_7, [x_4, x_5]]], \\ [[x_6, [x_4, x_5]], [x_7, [x_3, x_4]]]] \end{array} $                                                                                                                                                     | $2\alpha_{2} + 2\alpha_{3} + 2\alpha_{5} + 3\alpha_{4} + \alpha_{1} + \alpha_{6} + \alpha_{7},$<br>$2\alpha_{3} + 2\alpha_{5} + 2\alpha_{7} + 3\alpha_{4} + \alpha_{1} + \alpha_{2} + \alpha_{6},$                                                                                                                                       |
| $ \begin{array}{c} \hline x_{58} = [[[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]], \\ &  [[x_7, [x_3, x_4]], [[x_2, x_3], [x_4, x_5]]]], \\ \hline x_{59} = [[[x_4, [x_2, x_3]], [x_7, [x_4, x_5]]], \\ &  [[x_3, [x_1, x_2]], [[x_4, x_7], [x_5, x_6]]]], \end{array} $                                                                                                                                                              | $\frac{2\alpha_2+2\alpha_5+3\alpha_3+3\alpha_4+\alpha_1+\alpha_6+\alpha_7,}{2\alpha_2+2\alpha_3+2\alpha_5+2\alpha_7+3\alpha_4+\alpha_1+\alpha_6,}$                                                                                                                                                                                       |
| $x_{60} = [[[x_3, [x_1, x_2]], [[x_4, x_7], [x_5, x_6]]], \\ [[x_7, [x_3, x_4]], [[x_2, x_3], [x_4, x_5]]]],$                                                                                                                                                                                                                                                                                                                  | $2\alpha_2 + 2\alpha_5 + 2\alpha_7 + 3\alpha_3 + 3\alpha_4 + \alpha_1 + \alpha_6,$                                                                                                                                                                                                                                                       |
| $\boxed{x_{61}} = [[[x_7, [x_4, x_5]], [[x_1, x_2], [x_3, x_4]]], \\ [[[x_2, x_3], [x_4, x_7]], [[x_3, x_4], [x_5, x_6]]]],$                                                                                                                                                                                                                                                                                                   | $\underline{2\alpha_2+2\alpha_5+2\alpha_7+3\alpha_3+4\alpha_4+\alpha_1+\alpha_6}$                                                                                                                                                                                                                                                        |
| $x_{62} = [[[x_7, [x_5, [x_3, x_4]]], [[x_1, x_2], [x_3, x_4]]], \\ [[[x_2, x_3], [x_4, x_5]], [[x_4, x_7], [x_5, x_6]]]],$                                                                                                                                                                                                                                                                                                    | $2\alpha_2+2\alpha_7+3\alpha_3+3\alpha_5+4\alpha_4+\alpha_1+\alpha_6,$                                                                                                                                                                                                                                                                   |
| $\boxed{x_{63}} = [[[[x_2, x_3], [x_4, x_7]], [[x_3, x_4], [x_5, x_6]]], \\ [[[x_4, x_7], [x_5, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]]]$                                                                                                                                                                                                                                                                                      | $\underline{2\alpha_2 + 2\alpha_6 + 2\alpha_7 + 3\alpha_3 + 3\alpha_5 + 4\alpha_4 + \alpha_1}$                                                                                                                                                                                                                                           |

# 4.16.9 e(8, 1) of sdim = 136|112

We have (cf. Sect. 4.16.1)  $\mathfrak{g}(B) \simeq \mathfrak{e}(7)$ . We consider the Cartan Matrix of  $\mathfrak{e}(8)$  with the parities of simple roots 11001111 and the Chevalley basis elements

| the root vectors                                                                                                                                                                                                                                                                           | the roots                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x_1$ , $x_2$ , $x_3$ , $x_4$ , $x_5$ , $x_6$ , $x_7$ , $x_8$ ,                                                                                                                                                                                                                            | $\underline{\alpha_1}, \underline{\alpha_2}, \alpha_3, \alpha_4, \underline{\alpha_5}, \underline{\alpha_6}, \underline{\alpha_7}, \underline{\alpha_8},$                                                                                           |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                    | $ \begin{array}{l} \alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \\ \alpha_4 + \alpha_5, \alpha_5 + \alpha_6, \alpha_5 + \alpha_8, \\ \overline{\alpha_6 + \alpha_7}, \end{array} $                                                |
| $ \begin{array}{c} x_{16} = [x_3, [x_1, x_2]], \ \overline{x_{17}} = [x_4, [x_2, x_3]], \\ \hline x_{18} = [x_5, [x_3, x_4]], x_{19} = [x_6, [x_4, x_5]], \\ \hline x_{20} = [x_7, [x_5, x_6]], x_{21} = [x_8, [x_4, x_5]], \\ \hline \overline{x_{22}} = [x_8, [x_5, x_6]], \end{array} $ | $\frac{\alpha_1 + \alpha_2 + \alpha_3, \alpha_2 + \alpha_3 + \alpha_4,}{\alpha_3 + \alpha_4 + \alpha_5, \alpha_4 + \alpha_5 + \alpha_6,}$ $\frac{\alpha_5 + \alpha_6 + \alpha_7, \alpha_4 + \alpha_5 + \alpha_8,}{\alpha_5 + \alpha_6 + \alpha_8,}$ |

| $\begin{bmatrix} x_{23} \\ x_{24} \end{bmatrix} = [x_8, [x_6, [x_4, x_5]]], \\ x_{24} = [[x_1, x_2], [x_3, x_4]], \\ x_{25} = [[x_2, x_3], [x_4, x_5]], \end{bmatrix}$                                                                                                                                                                                                                                                                                     | $\frac{\alpha_4 + \alpha_5 + \alpha_6 + \alpha_8, \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4,}{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5, \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6,}$ $\alpha_3 + \alpha_4 + \alpha_5 + \alpha_8, \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7,$                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} x_{23} & ((x_2, x_3), (x_4, x_5)), \\ x_{26} & = [[x_3, x_4], [x_5, x_6]], \\ x_{27} & = [[x_3, x_4], [x_5, x_8]], \\ \hline x_{28} & = [[x_4, x_5], [x_6, x_7]], \end{array} $                                                                                                                                                                                                                                                         | $\alpha_5 + \alpha_6 + \alpha_7 + \alpha_8$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\overline{x_{29}} = [[x_5, x_8], [x_6, x_7]],$                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{bmatrix} x_{30} \\ x_{31} \end{bmatrix} = [[x_3, x_4], [x_8, [x_5, x_6]]], \\ x_{31} \end{bmatrix} = [[x_4, x_5], [x_3, [x_1, x_2]]],$                                                                                                                                                                                                                                                                                                             | $\frac{\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_8}{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{bmatrix} x_{31} \\ x_{32} \end{bmatrix} = [[x_5, x_6], [x_4, [x_2, x_3]]],$                                                                                                                                                                                                                                                                                                                                                                        | $\frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5}{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $x_{33} = [[x_5, x_8], [x_4, [x_2, x_3]]],$                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_8},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $x_{34} = [[x_5, x_8], [x_6, [x_4, x_5]]],$                                                                                                                                                                                                                                                                                                                                                                                                                | $\overline{2\alpha_5 + \alpha_4 + \alpha_6 + \alpha_8},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $x_{35} = [[x_6, x_7], [x_5, [x_3, x_4]]],$                                                                                                                                                                                                                                                                                                                                                                                                                | $\underline{\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $x_{36} = [[x_6, x_7], [x_8, [x_4, x_5]]],$                                                                                                                                                                                                                                                                                                                                                                                                                | $\alpha_4 + \alpha_5 + \alpha_6 + \alpha_7 + \alpha_8,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $ \begin{array}{c} x_{37} = [[x_6, x_7], [[x_3, x_4], [x_5, x_8]]], \\ x_{38} = [[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]], \\ x_{39} = [[x_3, [x_1, x_2]], [x_8, [x_4, x_5]]], \\ x_{40} = [[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]], \\ x_{41} = [[x_4, [x_2, x_3]], [x_8, [x_5, x_6]]], \\ x_{42} = [[x_5, [x_3, x_4]], [x_8, [x_5, x_6]]], \\ \hline x_{43} = [[x_7, [x_5, x_6]], [x_8, [x_4, x_5]]], \\ \hline \end{array} $                                 | $\begin{array}{l} \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7 + \alpha_8, \\ \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6, \\ \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_8, \\ \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7, \\ \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_8, \\ 2\alpha_5 + \alpha_3 + \alpha_4 + \alpha_6 + \alpha_7 + \alpha_8, \\ \underline{2\alpha_5 + \alpha_4 + \alpha_6 + \alpha_7 + \alpha_8}, \end{array}$                                                                    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7 + \alpha_8}{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7},$ $\frac{2\alpha_5 + \alpha_3 + \alpha_4 + \alpha_6 + \alpha_7 + \alpha_8}{2\alpha_4 + 2\alpha_5 + \alpha_3 + \alpha_6 + \alpha_8},$ $\frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_8}{2\alpha_5 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_6 + \alpha_8},$ $\frac{2\alpha_5 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_7 + \alpha_8}{2\alpha_5 + 2\alpha_6 + \alpha_4 + \alpha_7 + \alpha_8},$ |
| $ \begin{array}{l} x_{51} = [[x_8, [x_5, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]], \\ \hline x_{52} = [[x_8, [x_6, [x_4, x_5]]], [[x_2, x_3], [x_4, x_5]]], \\ x_{53} = [[[x_1, x_2], [x_3, x_4]], [[x_5, x_8], [x_6, x_7]]], \\ x_{54} = [[[x_2, x_3], [x_4, x_5]], [[x_5, x_8], [x_6, x_7]]], \\ x_{55} = [[[x_3, x_4], [x_5, x_6]], [[x_5, x_8], [x_6, x_7]]], \\ \hline x_{56} = [[[x_3, x_4], [x_5, x_8]], [[x_4, x_5], [x_6, x_7]]], \\ \end{array} $ | $\begin{array}{l} 2\alpha_5+\alpha_1+\alpha_2+\alpha_3+\alpha_4+\alpha_6+\alpha_8,\\ \underline{2\alpha_4+2\alpha_5+\alpha_2+\alpha_3+\alpha_6+\alpha_8,}\\ \overline{\alpha_1+\alpha_2+\alpha_3+\alpha_4+\alpha_5+\alpha_6+\alpha_7+\alpha_8,}\\ 2\alpha_5+\alpha_2+\alpha_3+\alpha_4+\alpha_6+\alpha_7+\alpha_8,\\ \underline{2\alpha_5+2\alpha_6+\alpha_3+\alpha_4+\alpha_7+\alpha_8,}\\ \underline{2\alpha_4+2\alpha_5+\alpha_3+\alpha_6+\alpha_7+\alpha_8,} \end{array}$                                                                                                                 |
| $ \begin{array}{l} x_{57} = \\ [[[x_1, x_2], [x_3, x_4]], [[x_5, x_8], [x_6, [x_4, x_5]]]], \\ [x_{58}] = \\ [[[x_3, x_4], [x_5, x_8]], [[x_5, x_6], [x_4, [x_2, x_3]]]], \\ x_{59} = \\ [[[x_4, x_5], [x_6, x_7]], [[x_3, x_4], [x_8, [x_5, x_6]]]], \\ x_{60} = \\ [[[x_4, x_5], [x_6, x_7]], [[x_5, x_8], [x_4, [x_2, x_3]]]], \\ [x_{61}] = \\ \end{array} $                                                                                           | $\frac{2\alpha_4 + 2\alpha_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_6 + \alpha_8}{2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_2 + \alpha_6 + \alpha_8},$<br>$\frac{2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_2 + \alpha_6 + \alpha_7 + \alpha_8}{2\alpha_4 + 2\alpha_5 + \alpha_2 + \alpha_3 + \alpha_6 + \alpha_7 + \alpha_8},$<br>$\frac{2\alpha_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_6 + \alpha_7 + \alpha_8}{2\alpha_5 + 2\alpha_6 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_7 + \alpha_8},$                                                                         |
| $ \begin{bmatrix} [[x_5, x_8], [x_6, x_7]], [[x_4, x_5], [x_3, [x_1, x_2]]]], \\ \hline x_{62} = \\ [[[x_5, x_8], [x_6, x_7]], [[x_5, x_6], [x_4, [x_2, x_3]]]], \\ \end{bmatrix} $                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| $x_{63} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2\alpha_5 + 2\alpha_6 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_7 + \alpha_8,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $[[[x_5, x_8], [x_6, x_7]], [[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2\alpha_3+2\alpha_4+2\alpha_5+\alpha_1+\alpha_2+\alpha_6+\alpha_8,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $x_{64} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2\alpha_4 + 2\alpha_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_6 + \alpha_7 + \alpha_8,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $[[[x_3, x_4], [x_8, [x_5, x_6]]], [[x_4, x_5], [x_3, [x_1, x_2]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\overline{2\alpha_4+2\alpha_5+2\alpha_6+\alpha_2+\alpha_3+\alpha_7+\alpha_8},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $x_{65} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\overline{2\alpha_3+2\alpha_4+2\alpha_5+\alpha_2+\alpha_6+\alpha_7+\alpha_8},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $[[[x_4, x_5], [x_3, [x_1, x_2]]], [[x_6, x_7], [x_8, [x_4, x_5]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2\alpha_4 + 2\alpha_6 + 3\alpha_5 + \alpha_3 + \alpha_7 + \alpha_8,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $x_{66} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $[[[x_5, x_6], [x_4, [x_2, x_3]]], [[x_6, x_7], [x_8, [x_4, x_5]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $x_{67} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{bmatrix} x_6 & - \\ [[[x_5, x_8], [x_4, [x_2, x_3]]], [[x_6, x_7], [x_5, [x_3, x_4]]]], \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $x_{68} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $[[[x_5, x_8], [x_6, [x_4, x_5]]], [[x_6, x_7], [x_5, [x_3, x_4]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $x_{69} = [[[x_5, x_8], [x_4, [x_2, x_3]]], [[x_3, [x_1, x_2]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2\alpha_2+2\alpha_3+2\alpha_4+2\alpha_5+\alpha_1+\alpha_6+\alpha_8,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $[x_6, [x_4, x_5]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $x_{70} = [[[x_5, x_8], [x_6, [x_4, x_5]]], [[x_4, [x_2, x_3]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2\alpha_4 + 2\alpha_6 + 3\alpha_5 + \alpha_2 + \alpha_3 + \alpha_7 + \alpha_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $[x_7, [x_5, x_6]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\boxed{x_{71}} = [[[x_6, x_7], [x_5, [x_3, x_4]]], [[x_3, [x_1, x_2]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $[x_8, [x_4, x_5]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_1 + \alpha_2 + \alpha_6 + \alpha_7 + \alpha_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{bmatrix} x_{0}, [x_{4}, x_{5}] \\ x_{72} \end{bmatrix} = [[[x_{6}, x_{7}], [x_{5}, [x_{3}, x_{4}]]], [[x_{4}, [x_{2}, x_{3}]], [[x_{1}, [x_{2}, x_{3}]], [[x_{1}, [x_{2}, x_{3}]], [[x_{2}, [x_{2}, x_{3}]], [[x_{2}, [x_{2}, x_{3}]], [[x_{2}, [x_{2}, x_{3}]], [[x_{2}, [x_{3}, [x_{3}$ | $\frac{1}{2\alpha_3+2\alpha_4+2\alpha_5+2\alpha_6+\alpha_2+\alpha_7+\alpha_8,}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{2u_3 + 2u_4 + 2u_5 + 2u_6 + u_2 + u_7 + u_8}{2u_6 + u_2 + u_7 + u_8},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $[x_8, [x_5, x_6]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $x_{73} = [[[x_6, x_7], [x_8, [x_4, x_5]]], [[x_3, [x_1, x_2]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_7 + \alpha_8,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $[x_6, [x_4, x_5]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $x_{74} = [[[x_6, x_7], [x_8, [x_4, x_5]]], [[x_5, [x_3, x_4]], [x_7, [x_8, [x_1, x_2]]]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2\alpha_4+2\alpha_6+2\alpha_8+3\alpha_5+\alpha_3+\alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $[x_8, [x_5, x_6]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $x_{75} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2\alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_1 + \alpha_2 + \alpha_7 + \alpha_8,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $[[[x_6, x_7], [[x_3, x_4], [x_5, x_8]]], [[x_3, [x_1, x_2]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $[x_6, [x_4, x_5]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $x_{76} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2\alpha_4 + 2\alpha_6 + 3\alpha_5 + \alpha_1 + \alpha_2 + \alpha_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $[[[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]], [[x_7, [x_5, x_6]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $+\alpha_7 + \alpha_8$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $[x_8, [x_4, x_5]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $x_{77} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2\alpha_2+2\alpha_3+2\alpha_4+2\alpha_5+\alpha_1+\alpha_6+\alpha_7+\alpha_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $[[[x_3, [x_1, x_2]], [x_8, [x_4, x_5]]], [[x_4, [x_2, x_3]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $[x_7, [x_5, x_6]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $x_{78} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2\alpha_3 + 2\alpha_4 + 2\alpha_6 + 3\alpha_5 + \alpha_2 + \alpha_7 + \alpha_8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $[[[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]], [[x_5, [x_3, x_4]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $[x_8, [x_5, x_6]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\overline{x_{79}} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $2\alpha_4 + 2\alpha_6 + 2\alpha_8 + 3\alpha_5 + \alpha_2 + \alpha_3 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $[[[x_4, [x_2, x_3]], [x_8, [x_5, x_6]]], [[x_7, [x_5, x_6]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $[x_8, [x_4, x_5]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $x_{80} = [[[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2\alpha_3+2\alpha_6+3\alpha_4+3\alpha_5+\alpha_2+\alpha_7+\alpha_8,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $[[x_8, [x_4, x_5]], [[x_3, x_4], [x_5, x_6]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $x_{81} = [[[x_4, [x_2, x_3]], [x_8, [x_5, x_6]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{2\alpha_2 + 2\alpha_3 + 2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_1}{1 \alpha_2 + \alpha_3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $[[x_7, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $+\alpha_7+\alpha_8$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{vmatrix} x_{82} \end{vmatrix} = [[[x_5, [x_3, x_4]], [x_8, [x_5, x_6]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\underline{2\alpha_3+2\alpha_4+2\alpha_6+2\alpha_8+3\alpha_5}+\underline{\alpha_2+\alpha_7},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $[[x_4, [x_2, x_3]], [[x_5, x_8], [x_6, x_7]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\boxed{x_{83}} = [[[x_5, [x_3, x_4]], [x_8, [x_5, x_6]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2\alpha_3 + 2\alpha_4 + 2\alpha_6 + 3\alpha_5 + \alpha_1 + \alpha_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $[[x_7, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $+\alpha_7 + \alpha_8$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $x_{84} = [[[x_7, [x_5, x_6]], [x_8, [x_4, x_5]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\overline{2\alpha_4 + 2\alpha_6} + 2\alpha_8 + 3\alpha_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $[[x_8, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. 0. 0. 0. 0. 0. 1. 0. 2. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0. 1. 0 |
| (1.00, [203, 2011, [121, 221, [235, 2411]]],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| [                                                                                                                                                                                                                                   | 1                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| $x_{85} = [[[x_4, [x_2, x_3]], [[x_5, x_8], [x_6, x_7]]],$                                                                                                                                                                          | $\underline{2\alpha_3+2\alpha_6+2\alpha_8+3\alpha_4+3\alpha_5}\underline{+\alpha_2+\alpha_7},$        |
| $ \begin{bmatrix} [x_8, [x_4, x_5]], [[x_3, x_4], [x_5, x_6]]]], \\ \hline x_{86} \end{bmatrix} = \begin{bmatrix} [[x_7, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]], \\ [[x_8, [x_4, x_5]], [[x_3, x_4], [x_5, x_6]]]], \end{bmatrix} $ | $\frac{2\alpha_3 + 2\alpha_6 + 3\alpha_4 + 3\alpha_5 + \alpha_1 + \alpha_2}{+\alpha_7 + \alpha_8,}$   |
| $x_{87} = [[[x_7, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]], \\[[x_8, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]]], \\[[x_8, [x_5, x_6]], [[x_2, x_3], [x_4, x_5]]]]],$                                                                     | $\frac{1}{2\alpha_2+2\alpha_3+2\alpha_4+2\alpha_6+3\alpha_5+\alpha_1+\alpha_7+\alpha_8},$             |
| $x_{88} = [[[x_7, [x_5, x_6]], [[x_2, x_3], [x_4, x_5]]]], \\[[x_8, [x_5, x_6]], [[x_3, x_4], [x_5, x_8]]]], \\[[x_8, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]]]],$                                                                    | $2\alpha_3+2\alpha_4+2\alpha_6+2\alpha_8+3\alpha_5+\alpha_1+\alpha_2+\alpha_7,$                       |
| $x_{89} = [[[x_7, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]], \\ [[x_8, [x_6, [x_4, x_5]]], [[x_2, x_3], [x_4, x_5]]]]],$                                                                                                               | $2\alpha_2+2\alpha_3+2\alpha_6+3\alpha_4+3\alpha_5+\alpha_1+\alpha_7+\alpha_8,$                       |
| $x_{90} = [[[x_8, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]], \\ [[[x_3, x_4], [x_5, x_8]], [[x_4, x_5], [x_6, x_7]]]]],$                                                                                                               | $2\alpha_3+2\alpha_6+2\alpha_8+3\alpha_4+3\alpha_5+\alpha_1+\alpha_2+\alpha_7,$                       |
| $\boxed{x_{91}} = [[[x_8, [x_5, x_6]], [[x_2, x_3], [x_4, x_5]]]],$                                                                                                                                                                 | $\frac{2\alpha_2 + 2\alpha_3 + 2\alpha_4 + 2\alpha_6 + 2\alpha_8}{+3\alpha_5 + \alpha_1 + \alpha_7},$ |
| $ \begin{array}{c} [[[x_1, x_2], [x_3, x_4]], [[x_5, x_8], [x_6, x_7]]]], \\ x_{92} = [[[x_8, [x_5, x_6]], [[x_2, x_3], [x_4, x_5]]], \\ [[[x_3, x_4], [x_5, x_8]], [[x_4, x_5], [x_6, x_7]]]], \end{array} $                       | $2\alpha_3+2\alpha_6+2\alpha_8+3\alpha_4+4\alpha_5+\alpha_2+\alpha_7,$                                |
| $x_{93} = [[[x_7, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]], \\ [[[x_3, x_4], [x_5, x_8]], [[x_5, x_6], \\ [x_4, [x_5, x_7]]]]$                                                                                                        | $2\alpha_2+2\alpha_6+3\alpha_3+3\alpha_4+3\alpha_5+\alpha_1+\alpha_7+\alpha_8,$                       |
| $[x_4, [x_2, x_3]]]],$<br>$[x_{94}] = [[[x_8, [x_5, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]],$                                                                                                                                       | $\frac{2\alpha_3+2\alpha_6+2\alpha_8+3\alpha_4+4\alpha_5+\alpha_1}{+\alpha_2+\alpha_7,}$              |
| $[[[x_3, x_4], [x_5, x_8]], [[x_4, x_5], [x_6, x_7]]]]],$                                                                                                                                                                           | $2\alpha_2 + 2\alpha_3 + 2\alpha_6 + 2\alpha_8 + 3\alpha_4 + 3\alpha_5$                               |
| $x_{95} = [[[x_8, [x_6, [x_4, x_5]]], [[x_2, x_3], [x_4, x_5]]],$                                                                                                                                                                   | $\frac{2\alpha_2 + 2\alpha_3 + 2\alpha_6 + 2\alpha_8 + 3\alpha_4 + 3\alpha_5}{+\alpha_1 + \alpha_7},$ |
| $[[[x_1, x_2], [x_3, x_4]], [[x_5, x_8], [x_6, x_7]]]],$ $\boxed{x_{96}} = [[[x_8, [x_6, [x_4, x_5]]], [[x_2, x_3], [x_4, x_5]]],$                                                                                                  | $\underline{2\alpha_3+2\alpha_8+3\alpha_4+3\alpha_6}\underline{+4\alpha_5+\alpha_2+\alpha_7},$        |
| $[[[x_3, x_4], [x_5, x_6]], [[x_5, x_8], [x_6, x_7]]]]],$                                                                                                                                                                           |                                                                                                       |
| $[x_{97}] = [[[[x_1, x_2], [x_3, x_4]], [[x_5, x_8], [x_6, x_7]]],$                                                                                                                                                                 | $\frac{2\alpha_2 + 2\alpha_6 + 2\alpha_8 + 3\alpha_3 + 3\alpha_4 + 3\alpha_5}{+\alpha_1 + \alpha_7},$ |
| $[[[x_3, x_4], [x_5, x_8]], [[x_5, x_6], [x_4, [x_2, x_3]]]]],$<br>$x_{98} = [[[[x_2, x_3], [x_4, x_5]], [[x_5, x_8], [x_6, x_7]]], [[[x_1, x_2], [x_3, x_4]], [[x_5, x_8], [x_6, x_7]]]],$                                         | $2\alpha_2+2\alpha_3+2\alpha_6+2\alpha_8+3\alpha_4+4\alpha_5+\alpha_1+\alpha_7,$                      |
| $ \begin{array}{l} [x_6, [x_4, x_5]]]]],\\ x_{99} = [[[[x_3, x_4], [x_5, x_6]], [[x_5, x_8], [x_6, x_7]]],\\ [[[x_1, x_2], [x_3, x_4]], [[x_5, x_8],\\ [x_6, [x_4, x_5]]]]], \end{array} $                                          | $2\alpha_3+2\alpha_8+3\alpha_4+3\alpha_6+4\alpha_5+\alpha_1+\alpha_2+\alpha_7,$                       |
| $x_{100} = [[[[x_3, x_4], [x_5, x_8]], [[x_4, x_5], [x_6, x_7]]], \\[[[x_5, x_8], [x_6, x_7]], [[x_5, x_6], \\[x_4, [x_2, x_3]]]]],$                                                                                                | $2\alpha_3+2\alpha_7+2\alpha_8+3\alpha_4+3\alpha_6+4\alpha_5+\alpha_2,$                               |
| $\boxed{x_{101}} = [[[[x_1, x_2], [x_3, x_4]], [[x_5, x_8], [x_6, [x_4, x_5]]]], [[[x_5, x_8], [x_6, x_7]]],$                                                                                                                       | $\frac{2\alpha_2 + 2\alpha_3 + 2\alpha_8 + 3\alpha_4 + 3\alpha_6}{4\alpha_5 + \alpha_1 + \alpha_7},$  |
| $ \begin{bmatrix} [x_5, x_6], [x_4, [x_2, x_3]]]]], \\ x_{102} = [[[[x_3, x_4], [x_5, x_8]], [[x_5, x_6], \\ [x_4, [x_2, x_3]]]], [[[x_5, x_8], [x_6, x_7]], \end{bmatrix} $                                                        | $2\alpha_2+2\alpha_6+2\alpha_8+3\alpha_3+3\alpha_4+4\alpha_5+\alpha_1+\alpha_7,$                      |
| $ \begin{bmatrix} [x_4, x_5], [x_3, [x_1, x_2]]]]], \\ \hline x_{103} = [[[[x_4, x_5], [x_6, x_7]], [[x_3, x_4], \\ [x_8, [x_5, x_6]]]], [[[x_5, x_8], [x_6, x_7]], \\ [[x_4, x_5], [x_3, [x_1, x_2]]]]], $                         | $\frac{2\alpha_3+2\alpha_7+2\alpha_8+3\alpha_4+3\alpha_6}{\underline{+4\alpha_5+\alpha_1+\alpha_2}},$ |

| $ \begin{aligned} x_{104} &= [[[[x_4, x_5], [x_6, x_7]], [[x_5, x_8], \\ & [x_4, [x_2, x_3]]]], [[[x_3, x_4], [x_8, [x_5, x_6]]], \end{aligned} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2\alpha_2+2\alpha_6+2\alpha_8+3\alpha_3+4\alpha_4+4\alpha_5+\alpha_1+\alpha_7,$                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| $[[x_4, x_5], [x_3, [x_1, x_2]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 202 + 202 + 302 + 304 + 304                                                                               |
| $x_{105} = [[[[x_5, x_8], [x_6, x_7]], [[x_5, x_6],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{2\alpha_2+2\alpha_8+3\alpha_3+3\alpha_4+3\alpha_6}{+4\alpha_5+\alpha_1+\alpha_7,}$                 |
| $[x_4, [x_2, x_3]]], [[[x_3, x_4], [x_8, [x_5, x_6]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           |
| $[[x_4, x_5], [x_3, [x_1, x_2]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |
| $x_{106} = [[[[x_5, x_8], [x_6, x_7]], [[x_5, x_6], ]]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $2\alpha_2+2\alpha_3+2\alpha_7+2\alpha_8+3\alpha_4+3\alpha_6+4\alpha_5+\alpha_1,$                         |
| $[x_4, [x_2, x_3]]], [[[x_4, x_5], [x_3, [x_1, x_2]]], \\[[x_6, x_7], [x_8, [x_4, x_5]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                           |
| $x_{107} = [[[[x_5, x_8], [x_6, x_7]], [[x_3, [x_1, x_2]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2\alpha_2+2\alpha_7+2\alpha_8+3\alpha_3+3\alpha_4+3\alpha_6+4\alpha_5+\alpha_1,$                         |
| $[x_{6}, [x_{4}, x_{5}]]], [[[x_{5}, x_{8}], [x_{4}, [x_{2}, x_{3}]]], [[[x_{5}, x_{8}], [x_{4}, [x_{2}, x_{3}]]]], [[[x_{5}, x_{8}], [x_{4}, [x_{2}, x_{3}]]]], [[x_{5}, x_{8}], [x_{6}, [x_$ | $2a_2 + 2a_7 + 2a_8 + 5a_5 + 5a_4 + 5a_6 + 1a_5 + a_1$                                                    |
| $[[x_6, x_7], [x_5, [x_3, x_4]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{2\alpha_2 + 2\alpha_8 + 3\alpha_3 + 3\alpha_6 + 4\alpha_4}{4\alpha_4 + \alpha_5}$                  |
| $ \begin{array}{c} x_{108} \\ x_{108} \end{array} = [[[[x_3, x_4], [x_8, [x_5, x_6]]], [[x_4, x_5], \\ [x_3, [x_1, x_2]]]], [[[x_5, x_6], [x_4, [x_2, x_3]]], \end{array} ] $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\underline{+4\alpha_5+\alpha_1+\alpha_7},$                                                               |
| $[[x_3, [x_1, x_2]]]], [[[x_5, x_6], [x_4, [x_2, x_3]]]], [[[x_6, x_7], [x_8, [x_4, x_5]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                           |
| $x_{109} = [[[[x_5, x_8], [x_4, [x_2, x_3]]], [[x_6, x_7],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2\alpha_2+2\alpha_7+2\alpha_8+3\alpha_3+3\alpha_6+4\alpha_4+4\alpha_5+\alpha_1,$                         |
| $[x_5, [x_3, x_4]]], [[[x_6, x_7], [x_8, [x_4, x_5]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                           |
| $ [[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]]]], \\ x_{110} = [[[[x_5, x_8], [x_6, [x_4, x_5]]], [[x_6, x_7]], $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2\alpha_2+2\alpha_8+3\alpha_3+3\alpha_6+4\alpha_4+5\alpha_5+\alpha_1+\alpha_7,$                          |
| $[x_5, [x_3, x_4]]], [[[x_5, x_8], [x_4, [x_2, x_3]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2\alpha_2 + 2\alpha_3 + 2\alpha_3 + 2\alpha_0 + 1\alpha_4 + 2\alpha_3 + \alpha_1 + \alpha_7,$            |
| $[[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           |
| $x_{111} = [[[[x_5, x_8], [x_4, [x_2, x_3]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\underline{2\alpha_2+3\alpha_3+3\alpha_6+3\alpha_8+4\alpha_4+5\alpha_5}$                                 |
| $[[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\underline{+\alpha_1+\alpha_7},$                                                                         |
| $[[[x_6, x_7], [x_8, [x_4, x_5]]], \\ [[x_5, [x_3, x_4]], [x_8, [x_5, x_6]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                           |
| $\begin{bmatrix} x_{112} \\ x_{112} \end{bmatrix} = \begin{bmatrix} [[[x_5, x_8], [x_6, [x_4, x_5]]]], \\ x_{112} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2\alpha_2 + 2\alpha_7 + 2\alpha_8 + 3\alpha_3 + 3\alpha_6$                                               |
| $[[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{1}{+4\alpha_4+5\alpha_5+\alpha_1},$                                                                |
| $[[[x_6, x_7], [x_5, [x_3, x_4]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                           |
| $[[x_3, [x_1, x_2]], [x_8, [x_4, x_5]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           |
| $x_{113} = [[[[x_6, x_7], [x_8, [x_4, x_5]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $2\alpha_2+2\alpha_7+2\alpha_8+3\alpha_3+4\alpha_4+4\alpha_6+5\alpha_5+\alpha_1,$                         |
| $ [[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]]], \\ [[[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]], $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                           |
| $[[x_5, [x_3, x_4]], [x_8, [x_5, x_6]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           |
| $x_{114} = [[[[x_6, x_7], [x_8, [x_4, x_5]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2\alpha_2+2\alpha_7+3\alpha_3+3\alpha_6+3\alpha_8+4\alpha_4+5\alpha_5+\alpha_1,$                         |
| $ [[x_5, [x_3, x_4]], [x_8, [x_5, x_6]]]], \\ [[[x_3, [x_1, x_2]], [x_8, [x_4, x_5]]], $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                           |
| $[[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           |
| $x_{115} = [[[[x_6, x_7], [[x_3, x_4], [x_5, x_8]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2\alpha_2 + 2\alpha_7 + 3\alpha_3 + 3\alpha_8 + 4\alpha_4$                                               |
| $[[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{4\alpha_{0}+2\alpha_{1}+2\alpha_{3}+2\alpha_{3}+2\alpha_{4}}{4\alpha_{6}+5\alpha_{5}+\alpha_{1}},$ |
| $[[[x_4, [x_2, x_3]], [x_8, [x_5, x_6]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           |
| $[[x_7, [x_5, x_6]], [x_8, [x_4, x_5]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2\alpha_2+2\alpha_7+3\alpha_3+3\alpha_8+4\alpha_4+4\alpha_6+6\alpha_5+\alpha_1,$                         |
| $x_{116} = [[[[x_4, [x_2, x_3]], [x_8, [x_5, x_6]]], \\ [[x_7, [x_5, x_6]], [x_8, [x_4, x_5]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $2u_2+2u_7+3u_3+3u_8+4u_4+4u_6+0u_5+u_1,$                                                                 |
| $[[[x_5, [x_3, x_4]], [x_8, [x_5, x_6]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           |
| $[[x_7, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           |
| $x_{117} = [[[[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2\alpha_2+2\alpha_7+3\alpha_3+3\alpha_8+4\alpha_6+5\alpha_4+6\alpha_5+\alpha_1,$                         |
| $ [[x_8, [x_4, x_5]], [[x_3, x_4], [x_5, x_6]]]], \\ [[[x_7, [x_5, x_6]], [x_8, [x_4, x_5]]], $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |
| $[[x_7, [x_5, x_6]], [x_8, [x_4, x_5]]], [[x_8, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           |

| fill [ ]] [ [ ]]]                                             |                                                                                   |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------|
| $x_{118} = [[[[x_5, [x_3, x_4]], [x_8, [x_5, x_6]]]],$        | $2\alpha_2+2\alpha_7+3\alpha_8+4\alpha_3+4\alpha_6+5\alpha_4+6\alpha_5+\alpha_1,$ |
| $[[x_7, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]]],$             |                                                                                   |
| $[[[x_4, [x_2, x_3]], [[x_5, x_8], [x_6, x_7]]]],$            |                                                                                   |
| $[[x_8, [x_4, x_5]], [[x_3, x_4], [x_5, x_6]]]]],$            |                                                                                   |
| $x_{119} = [[[x_4, [x_2, x_3]], [[x_5, x_8], [x_6, x_7]]]],$  | $2\alpha_7 + 3\alpha_2 + 3\alpha_8 + 4\alpha_3 + 4\alpha_6$                       |
| $[[x_8, [x_4, x_5]], [[x_3, x_4], [x_5, x_6]]]],$             | $+5\alpha_4+6\alpha_5+\alpha_1,$                                                  |
| $[[[x_7, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]],$             |                                                                                   |
| $[[x_8, [x_5, x_6]], [[x_2, x_3], [x_4, x_5]]]]],$            |                                                                                   |
| $x_{120} = [[[[x_7, [x_5, x_6]], [[x_3, x_4], [x_5, x_8]]]],$ | $2\alpha_1 + 2\alpha_7 + 3\alpha_2 + 3\alpha_8 + 4\alpha_3 + 4\alpha_6 +$         |
| $[[x_8, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]]],$             | $5\alpha_4 + 6\alpha_5$                                                           |
| $[[[x_7, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]],$             |                                                                                   |
| $[[x_8, [x_6, [x_4, x_5]]], [[x_2, x_3], [x_4, x_5]]]]]$      |                                                                                   |

## 4.16.10 e(8, 8) of sdim = 120|128

In the  $\mathbb{Z}$ -grading with the 1st CM with deg  $e_8^{\pm} = \pm 1$  and deg  $e_i^{\pm} = 0$  for  $i \neq 8$ , we have  $\mathfrak{g}_0 = \mathfrak{gl}(8) = \mathfrak{gl}(V)$ . There are different isomorphisms between  $\mathfrak{g}_0$  and  $\mathfrak{gl}(8)$ ; using the one where  $h_i = E_{i,i} + E_{i+1,i+1}$  for all i = 1, ..., 7, and  $h_8 = E_{6,6} + E_{7,7} + E_{8,8}$ , we see that, as modules over  $\mathfrak{gl}(V)$ ,

$$\mathfrak{g}_1 = \bigwedge^5 V^*; \ \mathfrak{g}_2 = \bigwedge^6 V; \ \mathfrak{g}_3 = V; \\ \mathfrak{g}_{-1} = \bigwedge^5 V; \ \mathfrak{g}_{-2} = \bigwedge^6 V^*; \ \mathfrak{g}_{-3} = V^*$$

We can also set  $h_8 = E_{1,1} + E_{2,2} + E_{3,3} + E_{4,4} + E_{5,5}$ . Then we get

$$\mathfrak{g}_1 = \bigwedge^3 V; \quad \mathfrak{g}_2 = \bigwedge^6 V; \quad \mathfrak{g}_3 = \bigwedge^7 V^*; \\ \mathfrak{g}_{-1} = \bigwedge^3 V^*; \quad \mathfrak{g}_{-2} = \bigwedge^6 V^*; \quad \mathfrak{g}_{-3} = \bigwedge^7 V.$$

The algebra  $\mathfrak{g}_{\bar{0}}$  is isomorphic to  $\mathfrak{o}_{\Pi}^{(2)}(16) \oplus \mathbb{K}d$ , where  $d = E_{6,6} + \cdots + E_{13,13}$ , and  $\mathfrak{g}_{\bar{1}}$  is an irreducible  $\mathfrak{g}_{\bar{0}}$ -module with the highest weight element  $x_{120}$  of weight  $(1, 0, \ldots, 0)$  with respect to  $h_1, \ldots, h_8$ ;  $\mathfrak{g}_{\bar{1}}$  also possesses a lowest weight vector.

| the root vectors                                                                                                                                                                                                                                                                                  | the roots                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| x <sub>1</sub> , x <sub>2</sub> , x <sub>3</sub> , x <sub>4</sub> , x <sub>5</sub> , x <sub>6</sub> , x <sub>7</sub> , x <sub>8</sub> ,                                                                                                                                                           | $\underline{\alpha_1}, \underline{\alpha_2}, \underline{\alpha_3}, \underline{\alpha_4}, \underline{\alpha_5}, \underline{\alpha_6}, \underline{\alpha_7}, \underline{\alpha_8},$                                                                                                                                                                                     |
| $x_{9} = [x_{1}, x_{2}], x_{10} = [x_{2}, x_{3}], x_{11} = [x_{3}, x_{4}], x_{12} = [x_{4}, x_{5}], x_{13} = [x_{5}, x_{6}], x_{14} = [x_{5}, x_{8}], x_{15} = [x_{6}, x_{7}],$                                                                                                                   | $ \begin{array}{l} \alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \\ \alpha_4 + \alpha_5, \alpha_5 + \alpha_6, \alpha_5 + \alpha_8, \\ \alpha_6 + \alpha_7, \end{array} $                                                                                                                                                                             |
| $ \begin{array}{c} x_{16} = [x_3, [x_1, x_2]], \ x_{17} = [x_4, [x_2, x_3]], \\ \hline x_{18} = [x_5, [x_3, x_4]], \ x_{19} = [x_6, [x_4, x_5]], \\ \hline x_{20} = [x_7, [x_5, x_6]], \ \hline x_{21} = [x_8, [x_4, x_5]], \\ \hline x_{22} = [x_8, [x_5, x_6]], \end{array} $                   | $\frac{\alpha_1 + \alpha_2 + \alpha_3}{\alpha_3 + \alpha_4 + \alpha_5}, \frac{\alpha_2 + \alpha_3 + \alpha_4}{\alpha_4 + \alpha_5 + \alpha_6}, \frac{\alpha_4 + \alpha_5 + \alpha_6}{\alpha_4 + \alpha_5 + \alpha_8}, \frac{\alpha_4 + \alpha_5 + \alpha_8}{\alpha_5 + \alpha_6 + \alpha_8},$                                                                         |
| $\begin{aligned} x_{23} &= [x_8, [x_6, [x_4, x_5]]], x_{24} = [[x_1, x_2], [x_3, x_4]], \\ x_{25} &= [[x_2, x_3], [x_4, x_5]], x_{26} = [[x_3, x_4], [x_5, x_6]], \\ x_{27} &= [[x_3, x_4], [x_5, x_8]], x_{28} = [[x_4, x_5], [x_6, x_7]], \\ x_{29} &= [[x_5, x_8], [x_6, x_7]], \end{aligned}$ | $\begin{aligned} &\alpha_4 + \alpha_5 + \alpha_6 + \alpha_8, \\ &\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4, \\ &\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5, \\ &\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6, \\ &\alpha_3 + \alpha_4 + \alpha_5 + \alpha_8, \\ &\alpha_4 + \alpha_5 + \alpha_6 + \alpha_7, \\ &\alpha_5 + \alpha_6 + \alpha_7 + \alpha_8, \end{aligned}$ |

| $\boxed{x_{30}} = [[x_3, x_4], [x_8, [x_5, x_6]]],$                                                   | $\underline{\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_8},$                                                                                    |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x_{31} = [[x_4, x_5], [x_3, [x_1, x_2]]],$                                                           | $\underline{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5},$                                                                                    |
| $x_{32} = [[x_5, x_6], [x_4, [x_2, x_3]]],$                                                           | $\underline{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6},$                                                                                    |
| $\boxed{x_{33}} = [[x_5, x_8], [x_4, [x_2, x_3]]],$                                                   | $\underline{\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_8},$                                                                                    |
| $\boxed{x_{34}} = [[x_5, x_8], [x_6, [x_4, x_5]]],$                                                   | $\underline{2\alpha_5+\alpha_4+\alpha_6+\alpha_8},$                                                                                                    |
| $\boxed{x_{35}} = [[x_6, x_7], [x_5, [x_3, x_4]]],$                                                   | $\underline{\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7},$                                                                                    |
| $\boxed{x_{36}} = [[x_6, x_7], [x_8, [x_4, x_5]]],$                                                   | $\underline{\alpha_4 + \alpha_5 + \alpha_6 + \alpha_7 + \alpha_8},$                                                                                    |
| $x_{37} = [[x_6, x_7], [[x_3, x_4], [x_5, x_8]]],$                                                    | $\alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7 + \alpha_8,$                                                                                     |
| $x_{38} = [[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]],$                                                    | $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6,$                                                                                     |
| $x_{39} = [[x_3, [x_1, x_2]], [x_8, [x_4, x_5]]],$                                                    | $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_8$ ,                                                                                    |
| $x_{40} = [[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]],$                                                    | $\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7$ ,                                                                                    |
| $x_{41} = [[x_4, [x_2, x_3]], [x_8, [x_5, x_6]]],$                                                    | $\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_8$ ,                                                                                    |
| $x_{42} = [[x_5, [x_3, x_4]], [x_8, [x_5, x_6]]],$                                                    | $2\alpha_5 + \alpha_3 + \alpha_4 + \alpha_6 + \alpha_8$ ,                                                                                              |
| $x_{43} = [[x_7, [x_5, x_6]], [x_8, [x_4, x_5]]],$                                                    | $2\alpha_5 + \alpha_4 + \alpha_6 + \alpha_7 + \alpha_8,$                                                                                               |
| $\boxed{x_{44}} = [[x_4, [x_2, x_3]], [[x_5, x_8], [x_6, x_7]]],$                                     |                                                                                                                                                        |
|                                                                                                       | $\alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7 + \alpha_8,$                                                                          |
| $\boxed{x_{45}} = [[x_7, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]],$                                     |                                                                                                                                                        |
| $\boxed{x_{46}} = [[x_7, [x_5, x_6]], [[x_3, x_4], [x_5, x_8]]],$                                     | $\frac{\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_7}{2\alpha_5 + \alpha_3 + \alpha_4 + \alpha_6 + \alpha_7 + \alpha_8},$ |
|                                                                                                       |                                                                                                                                                        |
| $x_{47} = [[x_8, [x_4, x_5]], [[x_3, x_4], [x_5, x_6]]],$                                             | $\frac{2\alpha_4+2\alpha_5+\alpha_3+\alpha_6+\alpha_8}{2\alpha_4+\alpha_5+\alpha_6+\alpha_8},$                                                         |
| $x_{48} = [[x_8, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]],$                                             | $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + \alpha_8,$                                                                          |
| $x_{49} = [[x_8, [x_5, x_6]], [[x_2, x_3], [x_4, x_5]]],$                                             | $\frac{\alpha_1+\alpha_2+\alpha_3+\alpha_4+\alpha_5+\alpha_6+\alpha_8}{2\alpha_5+\alpha_2+\alpha_3+\alpha_4+\alpha_6+\alpha_8},$                       |
| $x_{50} = [[x_8, [x_5, x_6]], [[x_4, x_5], [x_6, x_7]]],$                                             | $\frac{1}{2\alpha_5+2\alpha_6+\alpha_4+\alpha_7+\alpha_8},$                                                                                            |
|                                                                                                       | <u></u>                                                                                                                                                |
| $x_{51} = [[x_8, [x_5, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]],$                                      | $2\alpha_5 + \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_6 + \alpha_8,$                                                                         |
| $x_{52} = [[x_8, [x_6, [x_4, x_5]]], [[x_2, x_3], [x_4, x_5]]],$                                      | $2\alpha_4 + 2\alpha_5 + \alpha_2 + \alpha_3 + \alpha_6 + \alpha_8,$                                                                                   |
| $x_{53} = [[[x_1, x_2], [x_3, x_4]], [[x_5, x_8], [x_6, x_7]]]],$                                     | $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_5 + \alpha_6 + $                                                                                   |
| $x_{54} = [[[x_2, x_3], [x_4, x_5]], [[x_5, x_8], [x_6, x_7]]]],$                                     | $\alpha_7 + \alpha_8$ ,                                                                                                                                |
| $x_{55} = [[[x_3, x_4], [x_5, x_6]], [[x_5, x_8], [x_6, x_7]]]],$                                     | $2\alpha_5+\alpha_2+\alpha_3+\alpha_4+\alpha_6+\alpha_7+\alpha_8,$                                                                                     |
| $x_{56} = [[[x_3, x_4], [x_5, x_8]], [[x_4, x_5], [x_6, x_7]]],$                                      | $2\alpha_5 + 2\alpha_6 + \alpha_3 + \alpha_4 + \alpha_7 + \alpha_8$ ,                                                                                  |
|                                                                                                       | $2\alpha_4 + 2\alpha_5 + \alpha_3 + \alpha_6 + \alpha_7 + \alpha_8,$                                                                                   |
| $\boxed{x_{57}} = [[[x_1, x_2], [x_3, x_4]], [[x_5, x_8], [x_6, [x_4, x_5]]]],$                       | $\frac{2\alpha_4 + 2\alpha_5 + \alpha_1 + \alpha_2 + \alpha_3}{1 + \alpha_2 + \alpha_3}$                                                               |
|                                                                                                       | $+\alpha_6+\alpha_8$ ,                                                                                                                                 |
| $x_{58} = [[[x_3, x_4], [x_5, x_8]], [[x_5, x_6], [x_4, [x_2, x_3]]]],$                               | $2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_2 + \alpha_6 + \alpha_8,$                                                                                  |
| $x_{59} = [[[x_4, x_5], [x_6, x_7]], [[x_3, x_4], [x_8, [x_5, x_6]]]],$                               |                                                                                                                                                        |
| $\begin{bmatrix} x_{60} \end{bmatrix} = [[[x_4, x_5], [x_6, x_7]], [[x_5, x_8], [x_4, [x_2, x_3]]]],$ | $\frac{2\alpha_4 + 2\alpha_5 + 2\alpha_6 + \alpha_3 + \alpha_7 + \alpha_8}{2\alpha_4 + 2\alpha_5 + \alpha_2 + \alpha_3 + \alpha_6}$                    |
|                                                                                                       | $\frac{1}{+\alpha_7+\alpha_8}$ ,                                                                                                                       |
| $\boxed{x_{61}} = [[[x_5, x_8], [x_6, x_7]], [[x_4, x_5], [x_3, [x_1, x_2]]]],$                       | $\overline{2\alpha_5 + \alpha_1} + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_6$                                                                          |
|                                                                                                       | $\frac{1}{+\alpha_7+\alpha_8}$ ,                                                                                                                       |
| $x_{62} = [[[x_5, x_8], [x_6, x_7]], [[x_5, x_6], [x_4, [x_2, x_3]]]],$                               | $\overline{2\alpha_5+2\alpha_6}+\alpha_2+\alpha_3+\alpha_4$                                                                                            |
|                                                                                                       | $\frac{3}{+\alpha_7+\alpha_8}$                                                                                                                         |
|                                                                                                       |                                                                                                                                                        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{l} 2\alpha_5+2\alpha_6+\alpha_1+\alpha_2+\alpha_3+\\ \alpha_4+\alpha_7+\alpha_8,2\alpha_3+2\alpha_4+\\ 2\alpha_5+\alpha_1+\alpha_2+\alpha_6+\alpha_8,\\ 2\alpha_4+2\alpha_5+\alpha_1+\alpha_2+\alpha_3+\\ \alpha_6+\alpha_7+\alpha_8,2\alpha_4+2\alpha_5+\\ 2\alpha_6+\alpha_2+\alpha_3+\alpha_7+\alpha_8,2\alpha_3+\\ 2\alpha_4+2\alpha_5+\alpha_2+\alpha_6+\alpha_7+\alpha_8,\\ 2\alpha_4+2\alpha_6+3\alpha_5+\alpha_3+\alpha_7+\alpha_8, \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{l} \hline x_{69} = \\ \hline [[[x_5, x_8], [x_4, [x_2, x_3]]], [[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]]], \\ \hline x_{70} = \\ \hline [[[x_5, x_8], [x_6, [x_4, x_5]]], [[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]]], \\ \hline x_{71} = \\ \hline [[[x_6, x_7], [x_5, [x_3, x_4]]], [[x_3, [x_1, x_2]], [x_8, [x_4, x_5]]]], \\ \hline x_{72} = \\ \hline [[[x_6, x_7], [x_5, [x_3, x_4]]], [[x_4, [x_2, x_3]], [x_8, [x_5, x_6]]]], \\ \hline x_{73} = \\ \hline [[[x_6, x_7], [x_8, [x_4, x_5]]], [[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]]], \\ \hline x_{74} = \\ \hline [[[(x_6, x_7], [x_8, [x_4, x_5]]], [[x_5, [x_3, x_4]], [x_8, [x_5, x_6]]]], \\ \hline x_{75} = \\ \hline [[[x_6, x_7], [[x_3, x_4], [x_5, x_8]]], [[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]]], \\ \hline x_{76} = \\ \hline [[[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]], [[x_7, [x_5, x_6]], [x_8, [x_4, x_5]]]], \\ x_{77} = \\ \hline [[[x_3, [x_1, x_2]], [x_8, [x_4, x_5]]], [[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]]], \\ x_{78} = \\ \hline [[[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]], [[x_5, [x_3, x_4]], [x_8, [x_5, x_6]]]], \\ x_{79} = \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} \frac{2\alpha_{2} + 2\alpha_{3} + 2\alpha_{4} + 2\alpha_{5} + \alpha_{1}}{+\alpha_{6} + \alpha_{8},} \\ \frac{2\alpha_{4} + 2\alpha_{6} + 3\alpha_{5} + \alpha_{2} + \alpha_{3}}{+\alpha_{7} + \alpha_{8},} \\ \frac{2\alpha_{3} + 2\alpha_{4} + 2\alpha_{5} + \alpha_{1} + \alpha_{2}}{+\alpha_{6} + \alpha_{7} + \alpha_{8},} \\ \frac{2\alpha_{3} + 2\alpha_{4} + 2\alpha_{5} + 2\alpha_{6}}{+\alpha_{2} + \alpha_{7} + \alpha_{8},} \\ \frac{2\alpha_{4} + 2\alpha_{5} + 2\alpha_{6} + \alpha_{1} + \alpha_{2}}{+\alpha_{3} + \alpha_{7} + \alpha_{8},} \\ \frac{2\alpha_{4} + 2\alpha_{5} + 2\alpha_{6} + \alpha_{1} + \alpha_{2}}{+\alpha_{3} + \alpha_{7} + \alpha_{8},} \\ \frac{2\alpha_{4} + 2\alpha_{5} + 2\alpha_{6} + \alpha_{1} + \alpha_{2}}{+\alpha_{3} + \alpha_{7} + \alpha_{8},} \\ \frac{2\alpha_{4} + 2\alpha_{5} + 2\alpha_{6} + 2\alpha_{8} + 3\alpha_{5}}{+\alpha_{3} + \alpha_{7},} \\ \hline \\ \hline \\ 2\alpha_{3} + 2\alpha_{4} + 2\alpha_{5} + 2\alpha_{6} + \alpha_{1} + \alpha_{2} + \alpha_{3} + \alpha_{7} + \alpha_{8}, \\ 2\alpha_{2} + 2\alpha_{3} + 2\alpha_{4} + 2\alpha_{5} + \alpha_{1} + \alpha_{6} + \alpha_{7} + \alpha_{8}, 2\alpha_{3} + 2\alpha_{4} + 2\alpha_{5} + \alpha_{1} + \alpha_{6} + \alpha_{7} + \alpha_{8}, 2\alpha_{3} + 2\alpha_{4} + 2\alpha_{5} + \alpha_{7} + \alpha_{8}, \\ 2\alpha_{4} + 2\alpha_{6} + 2\alpha_{8} + 3\alpha_{5} + \alpha_{2} + \alpha_{7} + \alpha_{8}, \\ 2\alpha_{4} + 2\alpha_{6} + 2\alpha_{8} + 3\alpha_{5} + \alpha_{2} + \alpha_{7} + \alpha_{8}, \\ 2\alpha_{4} + 2\alpha_{6} + 2\alpha_{8} + 3\alpha_{5} + \alpha_{2} + \alpha_{7} + \alpha_{8}, \\ 2\alpha_{4} + 2\alpha_{6} + 2\alpha_{8} + 3\alpha_{5} + \alpha_{2} + \alpha_{7} + \alpha_{8}, \\ 2\alpha_{4} + 2\alpha_{6} + 2\alpha_{8} + 3\alpha_{5} + \alpha_{2} + \alpha_{7} + \alpha_{8}, \\ 2\alpha_{4} + 2\alpha_{6} + 2\alpha_{8} + 3\alpha_{5} + \alpha_{2} + \alpha_{7} + \alpha_{8}, \\ 2\alpha_{4} + 2\alpha_{6} + 2\alpha_{8} + 3\alpha_{5} + \alpha_{2} + \alpha_{7} + \alpha_{8}, \\ 2\alpha_{4} + 2\alpha_{6} + 2\alpha_{8} + 3\alpha_{5} + \alpha_{2} + \alpha_{7} + \alpha_{8}, \\ 2\alpha_{4} + \alpha_{7} + \alpha_{8} + \alpha_{7} + \alpha_{7} + \alpha_{8} + \alpha_{7} + \alpha_{8} + \alpha_{7} + \alpha_{8} + \alpha_{7} + \alpha_{8} + \alpha_{7} + \alpha_{7} + \alpha_{8} + \alpha_{7} + \alpha_{8} + \alpha_{7} + \alpha_{7} + \alpha_{8} + \alpha_{7} + \alpha_{7} + \alpha_{7} + \alpha_{8} + \alpha_{7} + \alpha_{8} + \alpha_{8$ |
| $ \begin{array}{l} & [[[x_4, [x_2, x_3]], [x_8, [x_5, x_6]]], [[x_7, [x_5, x_6]], [x_8, [x_4, x_5]]]], \\ \hline & x_{80} = [[[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]], [[x_8, [x_4, x_5]]], \\ \hline & [[x_3, x_4], [x_5, x_6]]]], \\ \hline & x_{81} = [[[x_4, [x_2, x_3]], [x_8, [x_5, x_6]]], [[x_7, [x_5, x_6]]], \\ \hline & [[x_1, x_2], [x_3, x_4]]]], \\ \hline & x_{82} = [[[x_5, [x_3, x_4]]], [x_8, [x_5, x_6]]], [[x_4, [x_2, x_3]], \\ \hline & [[x_5, x_8], [x_6, x_7]]]]], \\ \hline & x_{83} = [[[x_5, [x_3, x_4]]], [x_8, [x_5, x_6]]], [[x_7, [x_5, x_6]]], \\ \hline & [[x_1, x_2], [x_3, x_4]]]], \\ \hline & x_{84} = [[[x_7, [x_5, x_6]], [x_8, [x_4, x_5]]], [[x_8, [x_5, x_6]]], \\ \hline & [[x_1, x_2], [x_3, x_4]]]], \\ \hline & x_{85} = [[[x_4, [x_2, x_3]], [[x_5, x_8], [x_6, x_7]]]], [[x_8, [x_4, x_5]]], \\ \hline & [[x_3, x_4], [x_5, x_6]]], [[x_1, x_2], [x_3, x_4]]], [[x_8, [x_4, x_5]]], \\ \hline & [[x_3, x_4], [x_5, x_6]]], [[x_1, x_2], [x_3, x_4]]], [[x_8, [x_4, x_5]]], \\ \hline & [[x_7, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]], [[x_8, [x_5, x_6]]], \\ \hline & [[x_7, [x_5, x_6]]], [[x_1, x_2], [x_3, x_4]]], [[x_8, [x_5, x_6]]], \\ \hline & [[x_7, [x_5, x_6]]], [[x_1, x_2], [x_3, x_4]]], [[x_8, [x_5, x_6]]], \\ \hline & [[x_7, [x_5, x_6]]], [[x_1, x_2], [x_3, x_4]]], [[x_8, [x_5, x_6]]], \\ \hline & [[x_7, [x_5, x_6]]], [[x_1, x_2], [x_3, x_4]]], [[x_8, [x_5, x_6]]], \\ \hline & [[x_7, [x_5, x_6]]], [[x_1, x_2], [x_3, x_4]]], [[x_8, [x_5, x_6]]], \\ \hline & [[x_7, [x_5, x_6]]], [[x_1, x_2], [x_3, x_4]]], [[x_8, [x_5, x_6]]], \\ \hline & x_{88} = [[[x_7, [x_5, x_6]]], [[x_3, x_4], [x_5, x_8]]], [[x_8, [x_5, x_6]]], \\ \hline & x_{81} = [[x_7, [x_5, x_6]]], [[x_3, x_4], [x_5, x_8]]], [[x_8, [x_5, x_6]]], \\ \hline & x_{81} = [[x_7, [x_5, x_6]]], [[x_3, x_4], [x_5, x_8]]], [[x_8, [x_5, x_6]]], \\ \hline & x_{81} = [[x_7, [x_5, x_6]]], [[x_3, x_4], [x_5, x_8]]], [[x_8, [x_5, x_6]]], \\ \hline & x_{81} = [[x_7, [x_5, x_6]]], [[x_3, x_4], [x_5, x_8]]], \\ \hline & x_{81} = [[x_7, [x_5, x_6]]], [[x_3, x_4], [x_5, x_8]]], \\ \hline & x_{81} = [[x_7, [x_5, x_6]]], \\ \hline & x_{81} = [[x_$ | $\frac{2\alpha_3 + 2\alpha_6 + 3\alpha_4 + 3\alpha_5}{+\alpha_2 + \alpha_7 + \alpha_8}, \\ \frac{2\alpha_2 + 2\alpha_3 + 2\alpha_4 + 2\alpha_5}{+2\alpha_6 + \alpha_1 + \alpha_7 + \alpha_8}, \\ \frac{2\alpha_3 + 2\alpha_4 + 2\alpha_6 + 2\alpha_8}{+3\alpha_5 + \alpha_2 + \alpha_7}, \\ \frac{2\alpha_3 + 2\alpha_4 + 2\alpha_6 + 3\alpha_5}{+\alpha_1 + \alpha_2 + \alpha_7 + \alpha_8}, \\ \frac{2\alpha_4 + 2\alpha_6 + 2\alpha_8 + 3\alpha_5}{+\alpha_1 + \alpha_2 + \alpha_7 + \alpha_8}, \\ \frac{2\alpha_4 + 2\alpha_6 + 2\alpha_8 + 3\alpha_4 + 3\alpha_5 + \alpha_2 + \alpha_7, 2\alpha_3 + 2\alpha_6 + 3\alpha_4 + 3\alpha_5 + \alpha_1 + \alpha_2 + \alpha_7 + \alpha_8, \\ 2\alpha_2 + 2\alpha_3 + 2\alpha_4 + 2\alpha_6 + 3\alpha_4 + 3\alpha_5 + \alpha_3 + 2\alpha_4 + 2\alpha_6 + 2\alpha_8 + 3\alpha_5 + \alpha_1 + \alpha_7 + \alpha_8, \\ 2\alpha_3 + 2\alpha_4 + 2\alpha_6 + 2\alpha_8 + 3\alpha_5 + \alpha_3 + 2\alpha_6 + 2\alpha_8 + 3\alpha_5 + \alpha_1 + \alpha_7 + \alpha_8, \\ 2\alpha_3 + 2\alpha_4 + 2\alpha_6 + 2\alpha_8 + 3\alpha_5 + \alpha_3 + 2\alpha_6 + 2\alpha_8 + 3\alpha_5 + \alpha_1 + \alpha_2 + \alpha_7, \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| $\begin{bmatrix} x_{89} \\ [[[x_7, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]], [[x_8, [x_6, [x_4, x_5]]], \\ [[x_2, x_3], [x_4, x_5]]]], \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\frac{2\alpha_2 + 2\alpha_3 + 2\alpha_6 + 3\alpha_4}{+3\alpha_5 + \alpha_1 + \alpha_7 + \alpha_8},$                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{bmatrix} x_{90} \\ [[[x_8, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]], [[[x_3, x_4], [x_5, x_8]], \\ [x_{90}] \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{2\alpha_3+2\alpha_6+2\alpha_8+3\alpha_4}{+3\alpha_5+\alpha_1+\alpha_2+\alpha_7},$                                                                                                                                                                                                                                                                                                                                              |
| $ \begin{bmatrix} [x_4, x_5], [x_6, x_7]] \end{bmatrix}, \\ \hline x_{91} = \\ \begin{bmatrix} [[x_8, [x_5, x_6]], [[x_2, x_3], [x_4, x_5]]], [[[x_1, x_2], [x_3, x_4]], \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{2\alpha_2+2\alpha_3+2\alpha_4+2\alpha_6}{+2\alpha_8+3\alpha_5+\alpha_1+\alpha_7},$                                                                                                                                                                                                                                                                                                                                             |
| $[[x_5, x_8], [x_6, x_7]]]],$<br>$[x_{92}] =$<br>$[[[x_8, [x_5, x_6]], [[x_2, x_3], [x_4, x_5]]], [[[x_3, x_4], [x_5, x_8]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{2\alpha_3+2\alpha_6+2\alpha_8+3\alpha_4}{+4\alpha_5+\alpha_2+\alpha_7,}$                                                                                                                                                                                                                                                                                                                                                       |
| $[[x_4, x_5], [x_6, x_7]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $ \begin{array}{l} x_{93} = \\ [[[x_7, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]], [[[x_3, x_4], [x_5, x_8]], \\ [[x_5, x_6], [x_4, [x_2, x_3]]]]], \\ x_{94} = [[[x_8, [x_5, x_6]], [[x_4, x_5], [x_3, [x_1, x_2]]]], [[[x_3, x_4], \\ [x_5, x_8]], [[x_4, x_5], [x_6, x_7]]]], \\ x_{95} = [[[x_8, [x_6, [x_4, x_5]]], [[x_2, x_3], [x_4, x_5]]], [[[x_1, x_2], \\ [x_3, x_4]], [[x_5, x_8], [x_6, x_7]]]], \\ x_{96} = [[[x_8, [x_6, [x_4, x_5]]], [[x_2, x_3], [x_4, x_5]]], [[[x_3, x_4], \\ [x_5, x_6]], [[x_5, x_8], [x_6, x_7]]]], \\ x_{96} = [[[x_8, [x_6, [x_4, x_5]]], [[x_2, x_3], [x_4, x_5]]], [[[x_3, x_4], \\ [x_5, x_6]], [[x_5, x_8], [x_6, x_7]]]], \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2\alpha_{2} + 2\alpha_{6} + 3\alpha_{3} + 3\alpha_{4} + 3\alpha_{5} + \alpha_{1} + \alpha_{7} + \alpha_{8}, 2\alpha_{3} + 2\alpha_{6} + 2\alpha_{8} + 3\alpha_{4} + 4\alpha_{5} + \alpha_{1} + \alpha_{2} + \alpha_{7}, 2\alpha_{2} + 2\alpha_{3} + 2\alpha_{6} + 2\alpha_{8} + 3\alpha_{4} + 3\alpha_{5} + \alpha_{1} + \alpha_{7}, 2\alpha_{3} + 2\alpha_{8} + 3\alpha_{4} + 3\alpha_{6} + 4\alpha_{5} + \alpha_{2} + \alpha_{7},$ |
| $\begin{bmatrix} x_{97} \\ \vdots \\ ([[[x_1, x_2], [x_3, x_4]], [[x_5, x_8], [x_6, x_7]]], [[[x_3, x_4], [x_5, x_8]], \\ [[x_7, x_4], [x_7, x_4]] \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{2\alpha_2 + 2\alpha_6 + 2\alpha_8 + 3\alpha_3 + 3\alpha_4}{+3\alpha_5 + \alpha_1 + \alpha_7},$                                                                                                                                                                                                                                                                                                                                 |
| $ \begin{bmatrix} [x_5, x_6], [x_4, [x_2, x_3]]] \end{bmatrix}, \\ \hline x_{98} = \\ \begin{bmatrix} [([x_2, x_3], [x_4, x_5]], [[x_5, x_8], [x_6, x_7]]], [[[x_1, x_2], [x_3, x_4]], \\ [[x_5, x_8], [x_6, [x_4, x_5]]]] \end{bmatrix}, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{2\alpha_2+2\alpha_3+2\alpha_6+2\alpha_8+3\alpha_4}{+4\alpha_5+\alpha_1+\alpha_7},$                                                                                                                                                                                                                                                                                                                                             |
| $ \begin{bmatrix} x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \end{bmatrix} = \\ \begin{bmatrix} [[[x_{3}, x_{4}], [x_{5}, x_{6}]], [[x_{5}, x_{8}], [x_{6}, x_{7}]]], [[[x_{1}, x_{2}], [x_{3}, x_{4}]], \\ [[x_{5}, x_{8}], [x_{6}, [x_{4}, x_{5}]]]]], \end{cases} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{2\alpha_3 + 2\alpha_8 + 3\alpha_4 + 3\alpha_6 + 4\alpha_5}{+\alpha_1 + \alpha_2 + \alpha_7,}$                                                                                                                                                                                                                                                                                                                                  |
| $ \begin{bmatrix} x_{100} \\ x_{100} \end{bmatrix} = \\ [[[[x_3, x_4], [x_5, x_8]], [[x_4, x_5], [x_6, x_7]]], [[[x_5, x_8], [x_6, x_7]]], \\ [[x_5, x_6], [x_4, [x_2, x_3]]]]], $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{2\alpha_3+2\alpha_7+2\alpha_8+3\alpha_4}{+3\alpha_6+4\alpha_5+\alpha_2},$                                                                                                                                                                                                                                                                                                                                                      |
| $ \begin{array}{c} x_{101} = \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] \\ [1] $ | $2\alpha_2 + 2\alpha_3 + 2\alpha_8 + 3\alpha_4 + 3\alpha_6 + 4\alpha_5 + \alpha_1 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                        |
| $ \begin{aligned} x_{102} &= \\ [[[[x_3, x_4], [x_5, x_8]], [[x_5, x_6], [x_4, [x_2, x_3]]]], [[[x_5, x_8], \\ [x_6, x_7]], [[x_4, x_5], [x_3, [x_1, x_2]]]]], \end{aligned} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2\alpha_2 + 2\alpha_6 + 2\alpha_8 + 3\alpha_3 + 3\alpha_4 + 4\alpha_5 + \alpha_1 + \alpha_7,$                                                                                                                                                                                                                                                                                                                                        |
| $ \begin{aligned} x_{103} &= \\ [[[[x_4, x_5], [x_6, x_7]], [[x_3, x_4], [x_8, [x_5, x_6]]]], [[[x_5, x_8], \\ [x_6, x_7]], [[x_4, x_5], [x_3, [x_1, x_2]]]]], \end{aligned} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $2\alpha_3 + 2\alpha_7 + 2\alpha_8 + 3\alpha_4 + 3\alpha_6 + 4\alpha_5 + \alpha_1 + \alpha_2,$                                                                                                                                                                                                                                                                                                                                        |
| $\begin{bmatrix} x_{104} \\ = \\ [[[[x_4, x_5], [x_6, x_7]], [[x_5, x_8], [x_4, [x_2, x_3]]]], [[[x_3, x_4], \\ [x_8, [x_5, x_6]]], [[x_4, x_5], [x_3, [x_1, x_2]]]]], \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{2\alpha_2+2\alpha_6+2\alpha_8+3\alpha_3}{+4\alpha_4+4\alpha_5+\alpha_1+\alpha_7},$                                                                                                                                                                                                                                                                                                                                             |
| $\begin{bmatrix} x_{105} \\ x_{105} \end{bmatrix} = \begin{bmatrix} ([[x_5, x_8], [x_6, x_7]], [[x_5, x_6], [x_4, [x_2, x_3]]]], [[[x_3, x_4], [x_8, [x_5, x_6]]], [[x_4, x_5], [x_3, [x_1, x_2]]]]], \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{2\alpha_2+2\alpha_8+3\alpha_3+3\alpha_4}{+3\alpha_6+4\alpha_5+\alpha_1+\alpha_7},$                                                                                                                                                                                                                                                                                                                                             |
| $\begin{bmatrix} x_{106} \\ = \\ [[[[x_5, x_8], [x_6, x_7]], [[x_5, x_6], [x_4, [x_2, x_3]]]], [[[x_4, x_5], [x_3, [x_1, x_2]]], [[x_6, x_7], [x_8, [x_4, x_5]]]]], \\ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{2\alpha_2+2\alpha_3+2\alpha_7+2\alpha_8}{+3\alpha_4+3\alpha_6+4\alpha_5+\alpha_1},$                                                                                                                                                                                                                                                                                                                                            |

| $ \begin{aligned} x_{107} &= [[[[x_5, x_8], [x_6, x_7]], [[x_3, [x_1, x_2]], [x_6, [x_4, x_5]]]], \\ & [[[x_5, x_8], [x_4, [x_2, x_3]]], [[x_6, x_7], [x_5, [x_3, x_4]]]]], \\ x_{108} &= [[[[x_3, x_4], [x_8, [x_5, x_6]]], [[x_4, x_5], [x_3, [x_1, x_2]]]], \\ & [[[x_5, x_6], [x_4, [x_2, x_3]]], [[x_6, x_7], [x_8, [x_4, x_5]]]]], \end{aligned} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2\alpha_{2} + 2\alpha_{7} + 2\alpha_{8} + 3\alpha_{3} + 3\alpha_{4} + 3\alpha_{6} + 4\alpha_{5} + \alpha_{1}, 2\alpha_{2} + 2\alpha_{8} + 3\alpha_{3} + 3\alpha_{6} + 4\alpha_{4} + 4\alpha_{5} + \alpha_{1} + \alpha_{7},$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{  c  c  c  c  c  c  c  c  c  c  c  c  c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{2\alpha_2 + 2\alpha_7 + 2\alpha_8 + 3\alpha_3}{+3\alpha_6 + 4\alpha_4 + 4\alpha_5 + \alpha_1},$ $\frac{2\alpha_2 + 2\alpha_8 + 3\alpha_3 + 3\alpha_6}{-2\alpha_2 + 2\alpha_3 + 3\alpha_3 + 3\alpha_6}$                |
| $[x_{6}, [x_{4}, x_{5}]]]],$ $x_{111} = [[[[x_{5}, x_{8}], [x_{4}, [x_{2}, x_{3}]]], [[x_{3}, [x_{1}, x_{2}]], [x_{6}, [x_{4}, x_{5}]]]],$ $[[[x_{5}, x_{8}], [x_{6}, [x_{6},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{+4\alpha_4 + 5\alpha_5 + \alpha_1 + \alpha_7}{2\alpha_2 + 3\alpha_3 + 3\alpha_6 + 3\alpha_8 + 4\alpha_4 + 5\alpha_5 + \alpha_1 + \alpha_7},$                                                                          |
| $ \begin{bmatrix} [[x_6, x_7], [x_8, [x_4, x_5]]], [[x_5, [x_3, x_4]], [x_8, [x_5, x_6]]]]], \\ x_{112} = [[[[x_5, x_8], [x_6, [x_4, x_5]]], [[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]]], \\ [[[x_6, x_7], [x_5, [x_3, x_4]]], [[x_3, [x_1, x_2]], [x_8, [x_4, x_5]]]]], \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $2\alpha_{2} + 2\alpha_{7} + 2\alpha_{8} + 3\alpha_{3} + 3\alpha_{6} + 4\alpha_{4} + 5\alpha_{5} + \alpha_{1},$                                                                                                              |
| $ \begin{array}{c} \hline x_{113} = [[[[x_6, x_7], [x_8, [x_4, x_5]]], [[x_3, [x_1, x_2]], \\ & [x_6, [x_4, x_5]]]], [[[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]], \\ & [[x_5, [x_3, x_4]], [x_8, [x_5, x_6]]]]], \\ \hline x_{114} = [[[[x_6, x_7], [x_8, [x_4, x_5]]], [[x_5, [x_3, x_4]], \\ & [x_8, [x_5, x_6]]]], [[[x_5, [x_1, x_2]], [x_8, [x_4, x_5]]], \\ \hline \\ & [x_8, [x_5, x_6]]], [[x_8, [x_8, [x_1, x_2]], [x_8, [x_4, x_5]]], \\ \hline \\ & [x_8, [x_5, x_6]]], [[x_8, [x_8, [x_1, x_2]]], [x_8, [x_4, x_5]]], \\ \hline \\ & [x_8, [x_8, [x_8, [x_8, [x_8, [x_8]]]], [x_8, [x_8, [x_8, [x_8]]], \\ \hline \\ & [x_8, [x_8, [x_8, [x_8, [x_8]]]], [x_8, [x_8, [x_8, [x_8]]], \\ \hline \\ & [x_8, [x_8, [x_8, [x_8]]], [x_8, [x_8, [x_8]]], \\ \hline \\ & [x_8, [x_8, [x_8, [x_8]]], [x_8, [x_8, [x_8]]], \\ \hline \\ & [x_8, [x_8, [x_8, [x_8]]], \\ \hline \\ & [x_8, [x_8]], \\ \hline \\ & [x_8, [x_8]]], \\ \hline \\ & [x_8, [x_8]], \\ \hline \\ & [x_8, [x_8]]], \\ \hline \\ & [x_8, [x_8]], \\ \hline \\ & [x_8, [x_8]]], \\ \hline \\ & [x_8, [x_8]]], \\ \hline \\ & [x_8, [x_8]], \\ \hline \\ & [x_8, [x_8]]], \\ \hline \\ & [x_8, [x_8]], \\ \hline \\ & [x_8, [x_8]]], \\ \hline \\ & [x_8, [x_8]]],$ | $\frac{2\alpha_2 + 2\alpha_7 + 2\alpha_8 + 3\alpha_3}{+4\alpha_4 + 4\alpha_6 + 5\alpha_5 + \alpha_1},$ $\frac{2\alpha_2 + 2\alpha_7 + 3\alpha_3 + 3\alpha_6}{+3\alpha_8 + 4\alpha_4 + 5\alpha_5 + \alpha_1},$                |
| $ \begin{bmatrix} [x_4, [x_2, x_3]], [x_7, [x_5, x_6]]]]], \\ x_{115} = [[[[x_6, x_7], [[x_3, x_4], [x_5, x_8]]], [[x_3, [x_1, x_2]], \\ [x_6, [x_4, x_5]]]], [[[x_4, [x_2, x_3]], [x_8, [x_5, x_6]]], \\ [[x_7, [x_5, x_6]], [x_8, [x_4, x_5]]]]], \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{2\alpha_2 + 2\alpha_7 + 3\alpha_3 + 3\alpha_8 + \alpha_1}{4\alpha_4 + 4\alpha_6 + 5\alpha_5 + \alpha_1},$                                                                                                             |
| $\boxed{x_{116}} = [[[[x_4, [x_2, x_3]], [x_8, [x_5, x_6]]], [[x_7, [x_5, x_6]], [x_8, [x_4, x_5]]]], [[[x_5, [x_3, x_4]], [x_8, [x_5, x_6]]], [[x_7, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{2\alpha_2 + 2\alpha_7 + 3\alpha_3 + 3\alpha_8}{+4\alpha_4 + 4\alpha_6 + 6\alpha_5 + \alpha_1},$                                                                                                                       |
| $ \begin{aligned} x_{117} &= [[[[x_4, [x_2, x_3]], [x_7, [x_5, x_6]]], [[x_8, [x_4, x_5]], \\ & [[x_3, x_4], [x_5, x_6]]]], [[[x_7, [x_5, x_6]], [x_8, [x_4, x_5]]], \\ & [[x_8, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]]]], \end{aligned} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2\alpha_2 + 2\alpha_7 + 3\alpha_3 + 3\alpha_8 + 4\alpha_6 + 5\alpha_4 + 6\alpha_5 + \alpha_1,$                                                                                                                              |
| $\boxed{x_{118}} = [[[[x_5, [x_3, x_4]], [x_8, [x_5, x_6]]], [[x_7, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]]], [[[x_4, [x_2, x_3]], [[x_5, x_8], [x_6, x_7]]], [[x_8, [x_4, x_5]], [[x_3, x_4], [x_5, x_6]]]]],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{2\alpha_2+2\alpha_7+3\alpha_8+4\alpha_3}{+4\alpha_6+5\alpha_4+6\alpha_5+\alpha_1},$                                                                                                                                   |
| $ \begin{array}{c} x_{119} = [[[[x_4, [x_2, x_3]], [[x_5, x_8], [x_6, x_7]]], [[x_8, [x_4, x_5]], \\ [[x_3, x_4], [x_5, x_6]]]], [[[x_7, [x_5, x_6]], [[x_1, x_2], [x_3, x_4]]], \\ [[x_8, [x_5, x_6]], [[x_2, x_3], [x_4, x_5]]]]], \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $2\alpha_7 + 3\alpha_2 + 3\alpha_8 + 4\alpha_3 + 4\alpha_6 + 5\alpha_4 + 6\alpha_5 + \alpha_1,$                                                                                                                              |
| $ \begin{bmatrix} x_{120} \\ = [[[[x_7, [x_5, x_6]], [[x_3, x_4], [x_5, x_8]]], [[x_8, [x_5, x_6]], \\ [[x_1, x_2], [x_3, x_4]]]], [[[x_7, [x_5, x_6]], [[x_1, x_2], \\ [x_3, x_4]]], [[x_8, [x_6, [x_4, x_5]]], [[x_2, x_3], [x_4, x_5]]]]] $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{2\alpha_1 + 2\alpha_7 + 3\alpha_2 + 3\alpha_8}{4\alpha_3 + 4\alpha_6 + 5\alpha_4 + 6\alpha_5}$                                                                                                                        |

# 5 Root Systems of Lie Algebras of the Form $\mathfrak{g}(A)$ with Indecomposable A

5.1  $\mathfrak{w}\mathfrak{k}(3; a)$  and  $\mathfrak{w}\mathfrak{k}(4; a)$ , Where  $\alpha \neq 0, 1$  and p = 2

These Lie algebras are desuperizations (which means we forget squaring and only consider the brackets, see Bouarroudj et al. 2015) of  $\mathfrak{bgl}(3; a)$  and  $\mathfrak{bgl}(4; a)$ , respectively, so they have the same root systems, see Sects. 4.16.2 and 4.16.3.

# 5.2 F(oo(1|2n)), where F is the Desuperization Functor, p = 2

(In Weisfeiler and Kac (1971), this simple Lie algebra is denoted  $\Delta_n$ .) Its root system is the same as that of o(2n + 1), see Bouarroudj et al. (2015).

# 5.3 $\mathfrak{br}(2; \varepsilon)$ , Where $\varepsilon \neq 0$ and p = 3

These Lie algebras (described in Bouarroudj et al. (2011)) have the same root system as o(5).

# 5.4 br(3), p = 3

We consider the following (one of the two) Cartan matrix (Skryabin was the first to describe the Cartan matrices of  $\mathfrak{br}(3)$ , see Skryabin (1993)). The corresponding Chevalley basis is

|                                                                 | the root vectors                                                       | the roots                                                |
|-----------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------|
|                                                                 | $x_1, x_2, x_3$                                                        | $\alpha_1, \alpha_2, \alpha_3$                           |
|                                                                 | $x_4 = [x_1, x_2],  x_5 = [x_2, x_3]$                                  | $\alpha_1 + \alpha_2, \ \alpha_2 + \alpha_3$             |
| (2 -1 0)                                                        | $x_6 = [x_3, [x_1, x_2]],  x_7 = [x_3, [x_2, x_3]]$                    | $\alpha_1 + \alpha_2 + \alpha_3, \ \alpha_2 + 2\alpha_3$ |
| $\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \end{pmatrix}$       | $x_8 = [x_3, [x_3, [x_1, x_2]]]$                                       | $\alpha_1 + \alpha_2 + 2\alpha_3$                        |
| $\begin{pmatrix} -1 & 2 & -1 \\ 0 & -1 & \bar{0} \end{pmatrix}$ | $x_9 = [[x_2, x_3], [x_3, [x_1, x_2]]]$                                | $\alpha_1 + 2\alpha_2 + 2\alpha_3$                       |
|                                                                 | $x_{10} = [[x_3, [x_1, x_2]], [x_3, [x_2, x_3]]]$                      | $\alpha_1 + 2\alpha_2 + 3\alpha_3$                       |
|                                                                 | $x_{11} = [[x_3, [x_2, x_3]], [x_3, [x_3, [x_1, x_2]]]]$               | $\alpha_1 + 2\alpha_2 + 4\alpha_3$                       |
|                                                                 | $x_{12} = [[x_3, [x_2, x_3]], [[x_2, x_3], [x_3, [x_1, x_2]]]]$        | $\alpha_1 + 3\alpha_2 + 4\alpha_3$                       |
|                                                                 | $x_{13} = [[x_3, [x_3, [x_1, x_2]]], [[x_2, x_3], [x_3, [x_1, x_2]]]]$ | $2\alpha_1 + 3\alpha_2 + 4\alpha_3$                      |

# 6 Appendix. On Restrictedness (from Bouarroudj et al. 2015)

In 2005, P. Deligne wrote several comments to a draft of Lebedev and Leites (2006), see his Appendix in Lebedev and Leites (2006). In particular, a part of his advice (in our words) was: "Over  $\mathbb{K}$ , to classify ALL simple Lie (super)algebras and their representations are, perhaps, not very reasonable problems, and definitely very tough; investigate first the **restricted** case: it is related to geometry, meaningful and of interest".

Having cited Deligne's words in our papers devoted to classification of simple finitedimensional modular Lie (super)algebras we were rebuffed by referees: non-restricted Lie (super)algebras are often needed as well, at least, to describe the restricted ones! See also studies of other topics, e.g., of *p*-groups, see Kostrikin (1996).

But what is restrictedness if p = 2? We consider here only the versions of restrictedness relevant for the exceptional cases; certain serial Lie (super)algebras can have still **other** types of restrictedness, see Bouarroudj et al. (2015).

#### 6.1 Restrictedness on Lie Algebras

- -

Let the ground field  $\mathbb{K}$  be of characteristic p > 0, and  $\mathfrak{g}$  a Lie algebra. For every  $x \in \mathfrak{g}$ , the operator  $(\operatorname{ad}_x)^p$  is a derivation of  $\mathfrak{g}$ . If this derivation is an inner one, i.e., there is a map (called *p*-structure)  $[p] : \mathfrak{g} \longrightarrow \mathfrak{g}, x \mapsto x^{[p]}$  such that

$$[x^{\lfloor p \rfloor}, y] = (\operatorname{ad}_{x})^{p}(y) \quad \text{for any } x, y \in \mathfrak{g},$$
(23)

$$(ax)^{\lfloor p \rfloor} = a^p x^{\lfloor p \rfloor} \quad \text{for any } a \in \mathbb{K}, \ x \in \mathfrak{g},$$
(24)

$$(x+y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{1 \le i \le p-1} s_i(x, y) \quad \text{for any } x, y \in \mathfrak{g},$$
(25)

where  $is_i(x, y)$  is the coefficient of  $\lambda^{i-1}$  in  $(ad_{\lambda x+y})^{p-1}(x)$ , then the Lie algebra  $\mathfrak{g}$  is said to be *restricted* or *having a p-structure*.

#### 6.1.1 Remarks

(1) If the Lie algebra  $\mathfrak{g}$  is centerless, then the condition (23) implies conditions (24) and (25).

A *p*-structure on a given Lie algebra  $\mathfrak{g}$  does not have to be unique; all *p*-structures on  $\mathfrak{g}$  agree modulo center. Hence, on any simple Lie algebra, there is not more than one *p*-structure.

(2) According to Strade and Farnsteiner (1988, Th. 2.3, p. 71), the following condition, due to Jacobson, is sufficient for a Lie algebra  $\mathfrak{g}$  to have a *p*-structure: for a basis  $\{g_i\}_{i \in I}$  of  $\mathfrak{g}$ , there exist elements  $g_i^{[p]}$  such that

$$[g_i^{[p]}, y] = (\text{ad }_{g_i})^p(y) \text{ for any } y \in \mathfrak{g}.$$

#### 6.1.2 Restricted Modules

A g-module *M* over a restricted Lie algebra g, and the representation  $\rho$  defining *M*, are said to be *restricted* or having a *p*-structure if

$$\rho(x^{\lfloor p \rfloor}) = (\rho(x))^p \text{ for any } x \in \mathfrak{g}.$$

#### 6.2 Lie Superalgebras

Naively, the definition of *Lie superalgebra* is the same for any  $p \neq 2$ . Let us point at the subtleties for p = 2. For any p, a *Lie superalgebra* is a superspace  $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$  such that the even part  $\mathfrak{g}_{\bar{0}}$  is a Lie algebra, the odd part  $\mathfrak{g}_{\bar{1}}$  is a  $\mathfrak{g}_{\bar{0}}$ -module (made into the two-sided one by *anti*-symmetry, i.e., [y, x] = -[x, y] for any  $x \in \mathfrak{g}_{\bar{0}}$  and  $y \in \mathfrak{g}_{\bar{1}}$ ), and a *squaring* defined on  $\mathfrak{g}_{\bar{1}}$  as a map  $S^2(\mathfrak{g}_{\bar{1}}) \longrightarrow \mathfrak{g}_{\bar{0}}$ :

$$x \mapsto x^2 \in \mathfrak{g}_{\bar{0}}$$
 such that  $(ax)^2 = a^2x^2$  for any  $x \in \mathfrak{g}_{\bar{1}}$  and  $a \in \mathbb{K}$ , and  $[x, y] := (x + y)^2 - x^2 - y^2$  is a bilinear form on  $\mathfrak{g}_{\bar{1}}$  with values in  $\mathfrak{g}_{\bar{0}}$ .

(This extra requirement on squaring is needed, say, over  $\mathbb{Z}/2$  where not any quadratic form that vanishes at the origin yields a bilinear form [-, -].)

The Jacobi identity involving odd elements takes the following form:

$$[x^2, y] = [x, [x, y]]$$
 for any  $x \in \mathfrak{g}_{\overline{1}}, y \in \mathfrak{g}$ .

For any Lie **super**algebra  $\mathfrak{g}$ , its *derived algebras* are defined to be (for  $i \ge 0$ )

$$\mathfrak{g}^{(0)} := \mathfrak{g}, \quad \mathfrak{g}^{(i+1)} = \begin{cases} [\mathfrak{g}^{(i)}, \mathfrak{g}^{(i)}] & \text{for } p \neq 2, \\ [\mathfrak{g}^{(i)}, \mathfrak{g}^{(i)}] + \operatorname{Span}\{g^2 \mid g \in \mathfrak{g}_{\bar{1}}^{(i)}\} & \text{for } p = 2. \end{cases}$$
(26)

#### 6.3 The p|2p-Structure or Restricted Lie Superalgebra

For a Lie superalgebra g of characteristic p > 0, let the Lie algebra  $g_{\bar{0}}$  be restricted and

$$[x^{\lfloor p \rfloor}, y] = (\operatorname{ad}_{x})^{p}(y) \quad \text{for any } x \in \mathfrak{g}_{\bar{0}}, \ y \in \mathfrak{g}.$$

$$(27)$$

This gives rise to the map (recall that the bracket of odd elements is the polarization of the squaring  $x \mapsto x^2$ )

$$[2p]:\mathfrak{g}_{\bar{1}}\to\mathfrak{g}_{\bar{0}}, \quad x\mapsto (x^2)^{\lfloor p\rfloor},$$

satisfying the condition

$$[x^{[2p]}, y] = (\operatorname{ad}_{x})^{2p}(y) \quad \text{for any } x \in \mathfrak{g}_{\bar{1}}, \ y \in \mathfrak{g}.$$

$$(28)$$

The pair of maps [p] and [2p] is called a *p*-structure (or, sometimes, a p|2p-structure) on g, and g is said to be *restricted*. It suffices to determine the p|2p-structure on any basis of g; on simple Lie superalgebras there are not more than one p|2p-structure.

## 6.3.1 Remark

If (28) is not satisfied, the *p*-structure on  $\mathfrak{g}_{\bar{0}}$  does not have to generate a p|2p-structure on  $\mathfrak{g}$ : even if the actions of  $(\operatorname{ad}_x)^p$  and  $\operatorname{ad}_{x^{[p]}}$  coincide on  $\mathfrak{g}_{\bar{0}}$ , they do not have to coincide on the whole of  $\mathfrak{g}$ . The *restricted universal enveloping algebra*  $U^{[p]}(\mathfrak{g})$ defined for Lie algebras  $\mathfrak{g}$  as the quotient of the universal enveloping  $U(\mathfrak{g})$  modulo the two-sided ideal generated by  $g^{\otimes p} - g^{[p]}$  for any  $g \in \mathfrak{g}$  should be defined for the Lie superalgebra  $\mathfrak{g}$  as the quotient of  $U(\mathfrak{g})$  modulo the two-sided ideal i generated by  $g^{\otimes p} - g^{[p]}$  for any  $g \in \mathfrak{g}_{\bar{0}}$ . The seemingly needed further factorization modulo the two-sided ideal generated by the elements  $g^{\otimes 2p} - g^{[2p]}$  for any  $g \in \mathfrak{g}_{\bar{1}}$  is not needed: these elements are in i automatically, as is not difficult to show.

## 6.3.2 Restricted Modules

A g-module *M* corresponding to a representation  $\rho$  of the restricted Lie superalgebra g is said to be *restricted* or having a p|2p-structure if

$$\rho(x^{[p]}) = (\rho(x))^p \text{ for any } x \in \mathfrak{g}_{\bar{0}},$$
  
$$\rho(x^{[2p]}) = (\rho(x))^{2p} \text{ for any } x \in \mathfrak{g}_{\bar{1}}.$$

## 6.4 On 2|2-Structures on Lie Superalgebras (for p = 2)

Let p = 2, a Lie superalgebra  $\mathfrak{g}$  have a 2|4-structure, and  $\mathbf{F}(\mathfrak{g})$  be the Lie algebra one gets from  $\mathfrak{g}$  by forgetting the squaring and considering only brackets by setting  $[x, x] := 2x^2 = 0$  for x odd. Then,  $\mathbf{F}(\mathfrak{g})$  has a 2-structure given by

the "2" part of 2|4-structure on 
$$\mathfrak{g}_{\bar{0}}$$
;  
the squaring on  $\mathfrak{g}_{\bar{1}}$ , i.e.,  $x^{[2]} := x^{2}$ ;  
the rule  $(x + y)^{[2]} := \begin{cases} x^{[2]} + y^{[2]} + [x, y] & \text{if } x, y \in \mathfrak{g}_{\bar{0}}, \\ x^{2} + y^{[2]} + [x, y] & \text{if } x \in \mathfrak{g}_{\bar{1}}, y \in \mathfrak{g}_{\bar{0}}, \\ x^{2} + y^{2} + [x, y] & \text{if } x, y \in \mathfrak{g}_{\bar{1}}. \end{cases}$ 
(29)

(Actually, the first and the third cases in (29) are redundant. If x and y are both in  $\mathfrak{g}_{\bar{0}}$  or both in  $\mathfrak{g}_{\bar{1}}$ , then x + y is homogenous, and  $(x + y)^{[2]}$  in  $\mathbf{F}(\mathfrak{g})$  is already given by  $(x + y)^{[2]}$  or  $(x + y)^2$ , accordingly.) So one can say that if p = 2, then the restricted Lie superalgebra (i.e., the one with a 2|4-structure) also has a 2|2-*structure* which is defined even on inhomogeneous elements (unlike p|2p-structures). In future, for Lie superalgebras with 2|2-structure, we write  $x^{[2]}$  instead of  $x^2$  for any odd or inhomogeneous  $x \in \mathfrak{g}$ . The analog of sufficient condition 2) of Remarks 6.1.1 holds.

## 6.4.1 Restricted Modules

A g-module *M* corresponding to a representation  $\rho$  of the Lie superalgebra g with 2|2-structure is said to be *restricted* or having a 2|2-*structure* if

$$\rho(x^{[2]}) = (\rho(x))^2 \text{ for any } x \in \mathfrak{g}.$$

## 6.5 Restrictedness of Lie (super)algebras with Cartan Matrix, and of Their Relatives

Let *R* be the set of all roots of  $\mathfrak{g}$  and  $\mathfrak{h}$  the maximal torus.

#### 6.5.1 Proposition

Bouarroudj et al. (2015) (1) If p > 2 (or p = 2 and  $A_{ii} \neq \overline{1}$  or 1 for any *i*) and  $\mathfrak{g}(A)$  is a Lie (super)algebra, then  $\mathfrak{g}(A)$  has a *p*-structure (resp. p|2p-structure) such that

$$(x_{\alpha})^{[p]} = 0 \text{ for any even } \alpha \in R \text{ and } x_{\alpha} \in \mathfrak{g}_{\alpha},$$
  

$$(x_{\alpha})^{[2p]} = 0 \text{ for any odd } \alpha \in R \text{ and } x_{\alpha} \in \mathfrak{g}_{\alpha},$$
  

$$\mathfrak{h}^{[p]} \subset \mathfrak{h}.$$
(30)

(2) If  $A_{ij} \in \mathbb{Z}/p$  for all i, j, then the derived Lie (super)algebra  $\mathfrak{g}^{(1)}(A)$  inherits the *p*-structure (resp. p|2p-structure) of  $\mathfrak{g}(A)$  (assuming  $\mathfrak{g}(A)$  has one), and we can make the 3rd line of Eq. (30) precise:

$$h_i^{[p]} = h_i \text{ for any basis element } h_i \in \mathfrak{h}.$$
 (31)

(3) The quotient modulo center of any Lie (super)algebra  $\mathfrak{g}$  with a *p*-structure (resp. p|2p-structure) always inherits the *p*-structure (resp. p|2p-structure) of  $\mathfrak{g}$ .

## References

- Bois, J.-M., Farnsteiner, R., Shu, B.: Weyl groups for non-classical restricted Lie algebras and the Chevalley restriction theorem. Forum Math. 26(5), 1333–1379 (2014). https://doi.org/10.1515/forum-2011-0145. arXiv:1003.4358
- Bouarroudj, S., Grozman, P., Lebedev, A., Leites, D.: Divided power (co)homology presentations of simple finite-dimensional modular Lie superalgebras with Cartan matrix. Homol. Homotopy Appl. 12(1), 237–278 (2010). arXiv:0911.0243
- Bouarroudj, S., Grozman, P., Lebedev, A., Leites, D., Shchepochkina, I.: Simple vectorial Lie algebras in characteristic 2 and their superizations (2015). arXiv:1510.07255
- Bouarroudj, S., Grozman, P., Leites, D.: Classification of finite-dimensional modular Lie superalgebras with indecomposable Cartan matrix. Symmetry. Integr. Geom. Methods Appl. (SIGMA) 5, 060, 63 (2009). arXiv:0710.5149
- Bouarroudj, S., Krutov, A., Leites, D., Shchepochkina, I.: Non-degenerate invariant (super)symmetric bilinear forms on simple Lie (super)algebras. Algebras Repr. Theory, 21(5), 897–941 (2018). arXiv:1806.05505
- Bouarroudj, S., Lebedev, A., Leites, D., Shchepochkina, I.: Classification of simple Lie superalgebras in characteristic 2; (2014). arXiv:1407.1695
- Bouarroudj, S., Lebedev, A., Wagemann, F.: Deformations of the Lie algebra o(5) in characteristics 3 and 2. Math. Notes 89(6), 777–791 (2011). arXiv:0909.3572
- Bouarroudj, S., Leites, D., Shang, J.: Computer-aided study of double extensions of restricted Lie superalgebras preserving the non-degenerate closed 2-forms in characteristic 2. Experimental Math. (2019). https://doi.org/10.1080/10586458.2019.1683102; arXiv:1904.09579

- Bourbaki, N.: Lie groups and Lie algebras. Chapters 4 6. Translated from the 1968 French original by Andrew Pressley. Elements of Mathematics (Berlin). Springer, Berlin, (2002). xii+300 pp
- Chapovalov, D., Chapovalov, M., Lebedev, A., Leites, D.: The classification of almost affine (hyperbolic) Lie superalgebras. J. Nonlinear Math. Phys., 17 (2010), Special issue 1, 103–161; arXiv:0906.1860
- Cohen, A.M., Roozemond, D.A.: Computing Chevalley bases in small characteristics. J. Algebra **322**(3), 703–721 (2009). arXiv:0901.1717
- Cuntz, M., Heckenberger, I.: Weyl groupoids with at most three objects. J. Pure Appl. Algebra 213(6), 1112–1128 (2009). arXiv:0805.1810
- Heckenberger, I., Welker, V.: Geometric combinatorics of Weyl groupoids. J. Algebr. Comb. 34(1), 115–139 (2011). arXiv:1003.3231
- Heckenberger, I., Yamane, H.: A generalization of Coxeter groups, root systems, and Matsumoto's theorem. Math. Z. 259(2), 255–276 (2008). arXiv:math/0610823
- Grozman, P.: SuperLie. (2013). http://www.equaonline.com/math/SuperLie
- Grozman, P., Leites, D.: Defining relations associated with the principal sl(2)-subalgebras. In: Dobrushin R., Minlos R., Shubin M. and Vershik A. (eds.) Contemporary Mathematical Physics (F. A. Berezin memorial volume), Amer. Math. Soc. Transl. Ser. 2, vol. 175, Amer. Math. Soc., Providence, RI (1996), 57–67; arXiv:math-ph/0510013
- Grozman, P., Leites, D.: Defining relations for classical Lie superalgebras with Cartan matrix. Czech J. Phys. **51**(1), 1–22 (2001). arXiv:hep-th/9702073
- Grozman, P., Leites, D.: Structures of *G*(2) type and nonintegrable distributions in characteristic *p*. Lett. Math. Phys. **74**(3), 229–262 (2005). arXiv:math.RT/0509400
- Kac, V.: Infinite-dimensional Lie Algebras. Third edition. Cambridge University Press, Cambridge, (1995). xxii+400 pp
- Kostrikin, A.I.: The beginnings of modular Lie algebra theory. In: Group Theory, Algebra, and Number Theory (Saarbrücken, 1993), de Gruyter, Berlin, (1996), 13–52
- Krutov, A., Leites, D., Lozhechnyk, O., Shang, J.: Duflo–Serganova homology for exceptional modular Lie superalgebras with Cartan matrix (2020)
- Kuznetsov, M.I., Chebochko, N.G.: Deformations of classical Lie algebras. Sb. Math. 191(7–8), 1171–1190 (2000)
- Lebedev, A.: Simple modular Lie superalgebras. Ph.D. thesis. Leipzig University, July, (2008)
- Lebedev, A., Leites, D.: (with an appendix by Deligne P.) On realizations of the Steenrod algebras. J. Prime Research in Mathematics, v. 2(1), 1–13 (2006). http://www.mis.mpg.de, Preprint MPIMIS 131/2006
- Leites, D.: Lie superalgebras. J. Soviet. Math. 30(6), 2481–2512 (1985)
- Leites, D., Saveliev, M.V., Serganova, V.V.: Embeddings of osp(N|2) and completely integrable systems. In: M. Markov, V. Man'ko (eds.) Proc. International Conf. Group-theoretical Methods in Physics, Yurmala, May, 1985. Nauka, Moscow, 1986, 377–394 (English translation: VNU Sci Press, 1987, 255–297)
- Manin, Y.I., Voronov, A.A.: Supercellular partitions of flag superspaces. Current problems in mathematics. Newest results, USSR Acad. Sci., Moscow. 32, 27–70 (1988). (in Russian). English translation: J. Soviet Math. 51(1), (1990) 2083–2108
- Serganova, V.: Automorphisms of simple Lie superalgebras. Izv. Akad. Nauk SSSR Ser. Mat. 48(3), 585–598 (1984); (Russian) English translation: Math. USSR-Izv. 24(3), 539–551 (1985)
- Serganova, V.: On generalizations of root systems. Commun. Algebra 24(13), 4281–4299 (1996)
- Serganova, V.: Kac–Moody Superalgebras and Integrability. In: K.-H. Neeb, A. Pianzola (Eds.), Developments and Trends in Infinite-Dimensional Lie Theory, Birkhäuser, (PM, volume 288), (2010), pp 169–218
- Sergeev, A.N., Veselov, A.P.: Orbits and invariants of super Weyl groupoid. International Mathematics Research Notices 2017(20), 6149–6167, (2017), https://doi.org/10.1093/imrn/rnw182; arXiv:1504.08310
- Skryabin, S.: A contragredient Lie algebra of dimension 29 over a field of characteristic 3. Sib. Math. J. 34(3), 548–554 (1993)
- Strade, H.: Simple Lie Algebras over Fields of Positive Characteristic. *I 111*. Structure theory. de Gruyter Expositions in Mathematics, v. 38. Walter de Gruyter & Co., Berlin, (2004) (2nd edition: 2017) viii+540 pp; (2009) vi+385pp; (2012) x+239pp
- Strade, H., Farnsteiner, R.: Modular Lie Algebras and their Representations. Marcel Dekker, (1988). viii+301pp

Weisfeiler, B. Ju.; Kac, V. G. Exponentials in Lie algebras of characteristic *p*. (Russian) Izv. Akad. Nauk SSSR Ser. Math. **35**, 762–788 (1971)

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.