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Abstract
We present an upper bound on the number of solutions of an algebraic equation
P(x, y) = 0 where x and y belong to the union of cosets of some subgroup of the
multiplicative group κ∗ of some field of positive characteristic. This bound generalizes
the bound of Corvaja and Zannier (J EurMath Soc 15(5):1927–1942, 2013) to the case
of union of cosets. We also obtain the upper bounds on the generalization of additive
energy.

Keywords Polynomial · Algebraic equation · Field of positive characteristic ·
Subgroup

1 Introduction

1.1 Background

Let κ be a field of characteristic p, κ be its algebraic closure, κ∗ be the multiplicative
group of κ , and G be a subgroup of multiplicative group κ∗. For example κ = Fp.

Garcia and Voloch constructed estimates on the number of solutions of the linear
equations on subgroups. They considered the equation

Dedicated to the 70th anniversary of Rafail Kalmanovich Gordin.

The work of I.V. Vyugin is supported by the Russian Science Foundation grant RSF 19-11-00001 and
performed in Steklov Mathematical Institute of Russian Academy of Sciences.

B Ilya Vyugin
vyugin@gmail.com

Sergei Makarychev
svmakarychev@yandex.ru

1 Skolkovo Institute of Science and Technology, National Research University Higher School
of Economics, Moscow, Russia

2 Institute for Information Transmission Problems RAS, National Research University Higher School
of Economics, Steklov Mathematical Institute RAS, Moscow, Russia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40598-019-00112-z&domain=pdf
http://orcid.org/0000-0002-7430-9006


106 S. Makarychev, I. Vyugin

y = x + μ, μ �= 0. (1)

They proved that for an arbitrary subgroup G ∈ F
∗
p, such that

|G| < (p − 1)/((p − 1)1/4 + 1),

the number of solutions (x, y) ∈ G ×G of the Eq. (1) is less than or equal to 4|G|2/3.
Heath-BrownandKonyagin (seeHeath-BrownandKonyagin 2000; Stepanov1969)

generalized the Garcia–Voloch result using Stepanovmethod. They have obtained that
the number of solutions (x, y) ∈ ∪h

i=1G
1
i × G2

i of the Eq. (1) is less than or equal
to C(h|G|)2/3, where |G| < (p − 1)/((p − 1)1/4 + 1), G1

i = g′
i G, G2

i = g′′
i G are

cosets of G, such that Gk
i �= Gk

j if i �= j , i = 1, . . . , h, k = 1, 2, C is a constant. The
case of systems of linear equations has been studied in Vyugin and Shkredov (2012)
and Shkredov et al. (2015).

The Garcia–Voloch result has been generalized to the case of algebraic curves by
Corvaja and Zannier (2013).

Theorem 1 (Corvaja and Zannier) Let X be a smooth projective absolutely irreducible
curve over a field κ of characteristic p. Let u, v ∈ κ(X) be rational functions, multi-
plicatively independent modulo κ∗, and with non-zero differentials; let S be the set of
their zeros and poles; and let χ = |S| + 2g − 2 be the Euler characteristic of X\S.
Then

∑

ν∈X(κ)\S
min{ν(1 − u), ν(1 − v)} �

(
3 3
√
2(deg u deg vχ)1/3, 12

deg u deg v

p

)
,

(2)

where ν( f ) denotes the multiplicity of the vanishing of f at the point ν.

It follows from Corollary 2 of Corvaja and Zannier (2013) that

#{(x, y) | (x, y) ∈ X , x, y ∈ G} � max

(
3 3
√
2χ1/3|G|2/3, 12 |G|2

p

)
.

The estimates on the number of solutions of polynomial equations have found wide
applications in related areas of mathematics. In particular, some specific case of the
theory that was developed by the authors of this article, recently has been applied
to improve the bounds of Bourgain et al. (2016) on the possible number of nodes
outside the “giant component” and on the size of individual connected components
in the suitably defined functional graph of Markoff triples modulo p. The results can
be found in the joint work of Konyagin et al. “On the new bound for the number of
solutions of polynomial equations in subgroups and the structure of graphs of Markoff
triples” (see Konyagin et al. 2017).
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1.2 Notation

Let us consider an algebraic equation

P(x, y) = 0, P ∈ κ[x, y], (3)

where

P(x, y) =
m∑

i=1

n∑

j=1

ai, j x
i y j . (4)

Let us introduce the set of polynomials P:

P = {Pq ′,q ′′(x, y) | Pq ′,q ′′ = P(q ′x, q ′′y), q ′, q ′′ ∈ κ∗}

and the subset

Pk(x, y) = P(q ′
k x, q

′′
k y), k = 1, . . . , h.

We call these polynomials G-independent if for any integers 1 � i < j � h ratios
q ′
i/q

′
j and q

′′
i /q ′′

j do not belong to G simultaneously.
Let us put by definition

Nh =
h⋃

k=1

{(x, y) ∈ G × G | Pk(x, y) = 0}. (5)

In other words,Nh is the set of solutions (x, y) ∈ ⋃h
k=1 G

1
k ×G2

k of the Eq. (3), where
G1

k = q ′
kG, G2

k = q ′′
k G.

Denote by g the greatest common divisor of the following set of differences:

g = g(P) = gcd{ j1 − j2 | ∃i1, i2 : ai1 j1ai2 j2 �= 0}. (6)

It is obvious, that g � n.

2 Results

Theorem 2 Consider the following assumptions:

• P(x, y) ∈ Fp[x, y] is an irreducible polynomial (4) having bidegree (m, n) such
that P(0, 0) �= 0 and degx P(x, 0) � 1, n � 1;

• polynomials P1, . . . , Ph ∈ P are G-independent;
• G is a subgroup of F

∗
p such that 103 < |G| < 1

3 p
3/4h−1/4, where h <

(40mn2)−3|G|2.
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Then the following bound

#Nh � 12mng(m + n)h2/3|G|2/3 (7)

holds.

Let A, B be subsets of the field Fp. The additive energy is defined by

E(A, B) = #{(x1, y1, x2, y2) ∈ (A × B)2 | x1 + y1 = x2 + y2},

and we denote E(A, A) by E(A). The additive energy plays an important role in many
problems of additive combinatorics as well as in number theory (see Tao and Vu 2006;
Schoen and Shkredov 2013).

We introduce some generalizations of the additive energy which we call the poly-
nomial energy. Let P(x, y) be a polynomial and q be a positive integer. We define
two types of polynomial q-energy Eq

P (A) with respect to polynomial P by

Eq
P (A) = #{(x1, y1, . . . , xq , yq) ∈ A2q | P(x1, y1) = · · · = P(xq , yq)}

and by

Êq
P (A) = #{(x1, y1, . . . , xq , yq) ∈ A2q | P(x1, y1) = · · · = P(xq , yq) �= 0}.

We will consider polynomials P(x, y) of bidegree (m, n) such that deg P(x, 0) � 1.

Theorem 3 Suppose that the polynomial P(x, y) ∈ Fp[x, y] is homogeneous of
degree n,deg P(x, 0) �= 0,degy P(x, y) � 1and the polynomial f (x, y) = P(x, y)−
1 is irreducible over Fp. Let G be a subgroup of F

∗
p such that 103 < |G| < 1

3 p
1/2.

Then the following holds:
if q = 2, then

Ê2
P (G) � 103n8|G|5/2;

if q = 3, then

Ê3
P (G) � 173n12(n)|G|3 ln |G|;

if q � 4, then

Êq
P (G) � 17q3n4q |G|1+ 2q

3 ,

and for all q holds

Eq
P (G) � Êq

P (G) + |G|qnq .
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3 Stepanov’s Method with Polynomials of Two Variables

Let us consider a polynomial � ∈ κ[x, y, z] such that

degx �(x, y, z) < A, degy �(x, y, z) < B, degz �(x, y, z) < C,

or in other words

�(x, y, z) =
∑

a,b,c

λa,b,cx
a ybzc, a ∈ A, b ∈ B, c ∈ C, λa,b,c ∈ Fp (8)

A = {0, . . . , A − 1}, B = {0, . . . , B − 1}, C = {0, . . . ,C − 1}. (9)

Consider the following polynomial

�(x, y) = �(x, xt , yt ). (10)

Then let us require that the polynomial �, defined by (10) satisfies the following
conditions:

1. all pairs (x, y) ∈ Nh\Nsing are zeros of order at least D of the function �(x, y)
on the curve P(x, y) = 0.

2. the polynomials �(x, y) and P(x, y) are relatively prime.

Let us define coefficients λa,b,c such that the elements of the set

N ′
h = Nh\Nsing, Nsing =

{
(x, y) | P(x, y) = 0 ∧

(
x = 0 ∨ y = 0 ∨ ∂P

∂ y
(x, y) = 0

)}

be zeros of the system

{
�(x, y) = 0

P(x, y) = 0
(11)

of orders at least D. Lemma 5 gives us the bound

Nsing � (m + n)2.

If polynomials �(x, y) and P(x, y) are relatively prime, then the generalized Bézout
theorem (see Shafarevich 2013,Chapter 4, §2.1) gives us the upper bound (12) for #Nh .
An upper bound for D is given by the number of coefficients λa,b,c. Themain difficulty
in the application of Stepanov’s method is proving that the polynomials �(x, y) and
P(x, y) are relatively prime. We prove that the polynomial (10) is nonzero using
Lemmas 1 and 3.

If these conditions are satisfied, then the generalized Bézout’s theorem gives us an
upper bound of the number #Nh :
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#Nh � #Nsing + deg�(x, y) · deg P(x, y)

D

� (m + n)2 + (A − 1 + (B − 1)t + (C − 1)t)(m + n)

D
. (12)

A pair (x, y) is a root of �(x, y) order at least D on the curve P(x, y) = 0, if
P(x, y) = 0 and �(x, y) = 0 and if the derivatives

dk

dxk
�(x, y) = 0, k = 1, . . . , D − 1

vanish on the curve P(x, y) = 0 (see 4.1).
Let us apply the Lemma 3 to test the second condition. If P(x, y) is irreducible,

then P(x, y) and �(x, y) are relatively prime if P(x, y) � �(x, y).

4 Lemmas

Lemma 1 Let Q(x, y) ∈ κ[x, y] be a polynomial and let

P(x, y) = fn(x)y
n + · · · + f1(x)y + f0(x),

be an irreducible polynomial of bidegree (m, n). If P(x, y) | Q(x, yt ) and t = |G| <

p is the order of subgroup G ⊂ κ∗, then P(x, 0)[t/g] | Q(x, 0),1 where g defined in
(6).

Proof We have P(x, y) | Q(x, yt ) by assumption. Let us substitute y = q ỹ in the
polynomial P(x, y) �−→ Pq(x, ỹ) = P(x, q ỹ), where q ∈ G. Actually,

Pq(x, y) | Q(x, yt ),

because qt = 1 and Pq(x, y) | Q(x, (qy)t ) = Q(x, yt ). For any q ∈ G polyno-
mials Pq(x, y) are irreducible, because P(x, y) is irreducible by assumption. The
leading coefficient of the polynomial Pq(x, y) is fn(x)qn . There exist at least [t/n]
elements q1, . . . , q[t/g] ∈ G such that qn1 , . . . , qn[t/g] are pairwise distinct. Note that
the following polynomials

Pq1(x, 0) = · · · = Pq[t/g](x, 0) = f0(x)

are the same and f0(x) �≡ 0 (if f0(x) ≡ 0, then y | P(x, y)), but the leading terms
fn(x)qgn yn of polynomials Pq(x, y), q = q1, . . . , q[t/g] are distinct. Consequently,
the polynomials Pq1(x, y), . . . , Pq[t/g](x, y) are distinct. These polynomials are rela-
tively prime, because they are distinct and irreducible. Further, we have

(Pq1(x, y) · · · · · Pq[t/g](x, y)) | Q(x, yt ),

1 [x]—the integer part of x .
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and

(Pq1(x, 0) · · · · · Pq[t/g](x, 0)) | Q(x, 0).

Note that P(x, 0) = Pq(x, 0) for any q ∈ G and we obtain the statement of the
Lemma

P(x, 0)[t/g] | Q(x, 0).

��
We present Lemma 6 of Heath-Brown and Konyagin (2000) with minimal correc-

tions (in Heath-Brown and Konyagin (2000) polynomial f (x) belongs to Fp[x]).
Lemma 2 Let f (x) ∈ κ[x] be a sum of N � 1 distinct monomials. Suppose further
that deg f (x) < p. Then (x − α)N , α ∈ κ∗ cannot divide f (x).

Proof Let us consider an arbitrary polynomial g(x) in the following form

g(x) =
s∑

j=1

C j x
i j , i1 > · · · > is .

Let us define the operator D : κ[x] → κ[x] such that

Dg(x) = d

dx

(
g(x)

xis

)
.

The operator D satisfies to the following conditions:

1. D maps polynomials with s monomials to polynomials with s − 1 monomials;
2. if α �= 0 is a root of g(x) of order l, then α is a root of Dg(x) of order l − 1.

Let us apply the operator DN−1 to the polynomial f (x). The polynomial
DN−1 f (x) is a monomial, consequently, it has the only zero root. Hence we
obtain that the order of root α is less than or equal to N − 1.

��
Lemma 3 Let

�(x, y) =
∑

a,b,c

λa,b,cx
axbt yct , a ∈ A, b ∈ B, c ∈ C

be a polynomial such that nAB � t , coefficients λa,b,c ∈ κ do not vanish simulta-
neously, A,B,C are sets defined at (9). Further, let P ∈ κ[x, y] be an irreducible
polynomial and assume that degy P(x, y) = n � 1, P(0, 0) �= 0. Then P(x, y) does
not divide �(x, y).
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Proof Put cmin = min{c ∈ C | ∃a, b : λa,b,c �= 0, a ∈ A, b ∈ B} (such c exists
because all λa,b,c do not vanish simultaneously). Let us represent the polynomial
�(x, y) in the form

�(x, y) = ycmin t �̃(x, y).

Now, let us rewrite the polynomial �̃(x, y) in the form

�̃(x, y) =
∑

a,b,c:c>cmin

λa,b,cx
axbt y(c−cmin)t +

∑

a,b

λa,b,cmin x
axbt ,

a ∈ A, b ∈ B, c ∈ C. (13)

So, if P(x, y) | �(x, y), then P(x, y) | �̃(x, y). By Lemma 1 with Q(x, yt ) =
�̃(x, y) we obtain

P(x, 0)[t/n] | �̃(x, 0). (14)

�̃(x, 0) is a nonzero polynomial, because coefficients λa,b,cmin , a ∈ A, b ∈ B in
(13) do not vanish simultaneously. Consider the roots α1, . . . , αk ∈ Fp of polynomial
P(x, 0), k = deg P(x, 0). Then

∏k
i=1 αi = P(0, 0) �= 0, and consequently αi �= 0,

i = 1, . . . , k. If (14) holds, then

(x − α1)
[t/n] | �̃(x, 0).

Now we use Lemma 2. But since the number of nonzero terms of polynomial �̃(x, 0)
is less than or equal to t/n (t � nAB), Lemma 2 gives us that

(x − α1)
[t/n]

� �̃(x, 0),

a contradiction. ��
Lemma 4 Let Q ∈ κ[x, y] be a polynomial such that

degx Q(x, y) � μ, degy Q(x, y) � ν (15)

and P ∈ κ[x, y] be a polynomial such that

degx P(x, y) � m, degy P(x, y) � n. (16)

Then the condition

P(x, y) | Q(x, y) (17)

can be given by n((ν − n + 2)m + μ) homogeneous linear equations on coefficients
of the polynomial Q(x, y).
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Proof The dimension of the vector space L of polynomials Q(x, y) that satisfy (16)
is equal to (μ+1)(ν +1). Let us call the vector subspace of polynomials Q(x, y) that
satisfy (15) and (17) by L′. As well as Q(x, y) = P(x, y)R(x, y) where polynomial
R(x, y) such that

degX R(X ,Y ) ≤ μ − m, degY R(X ,Y ) ≤ ν − n,

than the vector space L′ isomorphic to the vector space of polynomials R(x, y). The
dimension of the vector space L′ is equal to (μ − m + 1)(ν − n + 1). It means that
the subspace L′ of the space L is given by a system of

(μ + 1)(ν + 1) − (μ − m + 1)(ν − n + 1) = μn + νm − mn + m + n + 1 ≤
≤ (μ + ν + 1)mn

homogeneous linear equations. ��

4.1 Orders of Roots of the Polynomial9(x, y) on a Curve P(x, y) = 0

In this section we present bounds on the number of equations that we have to set
for existence of a polynomial �(x, y) such that all points of set M1 without maybe
(m + n)2 points would be roots of �(x, y) of orders at least D on a given curve
P(x, y) = 0.

Let us find an inductive formula for the derivatives dk

dxk
y of the function y(x) defined

by P(x, y) = 0. Consider the polynomials qk(x, y) and rk(x, y), k ∈ N, which are
defined inductively as

q1(x, y) = − ∂

∂x
P(x, y), r1(x, y) = ∂

∂ y
P(x, y),

and

qk+1(x, y) = ∂qk
∂x

(
∂P

∂ y

)2

− ∂qk
∂ y

∂P

∂x

∂P

∂ y
− (2k − 1)qk(x, y)

∂2P

∂x∂ y

∂P

∂ y

+(2k − 1)qk(x, y)
∂2P

∂ y2
∂P

∂x
,

rk+1(x, y) = rk(x, y)

(
∂P

∂ y

)2

=
(

∂P

∂ y

)2k+1

.

Then dk

dxk
y = qk (x,y)

rk (x,y)
, k ∈ N. Indeed, by the implicit function theorem we have

d

dx
y = −

∂
∂x P(x, y)
∂
∂ y P(x, y)

= q1(x, y)

r1(x, y)
.
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Then

dk+1

dxk+1 y = d

dx

(
qk(x, y)

rk (x, y)

)

=
(

∂qk
∂x + ∂qk

∂ y
d
dx y

)
rk (x, y) −

(
∂rk
∂x + ∂rk

∂ y
d
dx y

)
qk (x, y)

rk (x, y)2

=

(
∂qk
∂x + ∂qk

∂ y

−∂P
∂x
∂P
∂ y

)(
∂P
∂ y

)2k−1 −
(

(2k − 1)
(

∂P
∂ y

)2k−2
∂2P
∂ y∂x + (2k − 1) ∂2P

∂ y2

(
∂P
∂ y

)2k−2 −∂P
∂x
∂P
∂ y

)
qk (x, y)

(
∂P
∂ y

)2(2k−1)

=
∂qk
∂x

(
∂P
∂ y

)2 − ∂qk
∂ y

∂P
∂x

∂P
∂ y −

(
(2k − 1)

(
∂P
∂ y

)
∂2P
∂ y∂x − (2k − 1) ∂2P

∂ y2
∂P
∂x

)
qk(x, y)

(
∂P
∂ y

)2 (
∂P
∂ y

)2k−1 = qk+1(x, y)

rk+1(x, y)

The implicit function theorem gives us the derivatives dk+1

dxk+1 y in a point (x, y) on
the algebraic curve (3) if the denominator rk(x, y) is not equal to zero. Otherwise
rk(x, y) = 0 if and only if the following system holds

⎧
⎨

⎩

P(x, y) = 0

∂P

∂ y
(x, y) = 0.

(18)

If the polynomial P(x, y) is irreducible, then the polynomials P(x, y) and ∂P
∂ y (x, y)

are relatively prime. ThusBézout’s theoremgives us the bound L � (m+n)(m+n−1),
where L is the number of roots of the system (18) (see Shafarevich 2013, Chapter 4,
§2.1).

Define the differential operators Dk on the algebraic curve (3). Let D0 be identity
operator and

Dk =
(

∂P

∂ y

)2k−1

xk yk
dk

dxk
, k ∈ N. (19)

Let �(x, y) be the polynomial (10). Let us obtain the following relations

Dkx
axbt yct = Rk,a,b,c(x, y)x

axbt yct ,

Dk�(x, y)|x∈q ′
l G,y∈q ′′

l G
= Rk,l(x, y)|x∈q ′

l G,y∈q ′′
l G

, l = 1, . . . , h (20)

for some polynomials Rk,a,b,c(x, y) and Rk,l(x, y), l = 1, . . . , h using formulas of
derivatives on the algebraic curve P(x, y) = 0.

Let us obtain the following lemma.

Lemma 5 If P(x, y) | �(x, y) and P(x, y) | Dj�(x, y) = 0, j = 1, . . . , k − 1, then
at least one of the following alternatives holds: either

• (x, y) is a root of order at least k of �(x, y) on the algebraic curve P(x, y) = 0;
or

• x = 0 or y = 0 or ∂P
∂ y (x, y) = 0 on the algebraic curve P(x, y) = 0.
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Proof If Dl�(x, y) is equal to zero on the curve P(x, y), then dl

dxl
�(x, y) = 0

or x = 0 or y = 0 or ∂P
∂ y (x, y) = 0 on the curve P(x, y). If �(x, y) = 0 and

dl

dxl
�(x, y) = 0 for l = 1, . . . , k − 1, then the pair (x, y) satisfies the first case of

conditions of Lemma 5. If x = 0 or y = 0 or ∂P
∂ y (x, y) = 0 on the curve P(x, y), then

the pair (x, y) satisfies the second case of conditions of Lemma 5. ��
Let us count the number of pairs (x, y) that satisfy to the second case of conditions

of Lemma 5. Actually, the number of pairs (x, 0) on the curve (3) is less than or equal
to degx P(x, y) = m, the number of pairs (0, y) on the curve (3) is less than or equal
to degy P(x, y) = n, the number of pairs (x, y) such that ∂P

∂ y (x, y) = 0 on the curve
(3) is less than or equal to (m + n)(m + n − 1). The sum of numbers of such pairs is
less than or equal to (m + n)2.

Let us prove the following lemma.

Lemma 6 The degrees of the polynomials qk(x, y) and rk(x, y) satisfy the bounds:

degx qk(x, y) � (2k − 1)m − k, degy qk(x, y) � (2k − 1)n − 2k + 2,

degx rk(x, y) � (2k − 1)m, degy rk(x, y) � (2k − 1)(n − 1), k ∈ N. (21)

Proof For polynomials rk(x, y) the statement of Lemma 6 is obvious. Let us
obtain bounds of degrees of polynomials qk(x .y). Direct calculations gives us that
degx q1(x, y) � m − 1, degy q1(x, y) � n. To obtain bounds (21) let us apply the
induction by k. The base of induction k = 1 is already obtained. The step of induction
is here:

degx qk(x, y) � degx qk−1(x, y) + 2m − 1 � (2k − 1)m − k,

degy qk(x, y) � degy qk−1(x, y) + 2n − 2 � (2k − 1)n − 2k + 2.

��
Lemma 7 Degrees of the polynomials Rk,a,b,c(x, y) and Rk,l(x, y), l = 1, . . . , h,
k ∈ N satisfy to the bounds

degx Rk,a,b,c(x, y) � 2(2k − 1)m � 4km,

degy Rk,a,b,c(x, y) � (2k − 1)(2n − 1) − k + 2 � 4kn,

degx Rk,l(x, y) � A + 4km, degy Rk,l(x, y) � 4kn. (22)

Proof Consider the operator (19):

Dkx
a+bt yct =

(
∂P

∂ y

)2k−1

xk yk
dk

dxk
xa+bt yct = Rk,a,b,c(x, y)x

axbt yct . (23)
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Let us represent the derivative dk

dxk
xa+bt yct in the form:

dk

dxk
xa+bt yct =

∑

(l1,...,ls )

Cl1,...,ls x
a+bt−k+

s∑
i=1

li
yct−s

(
dl1 y

dxl1

)
· · ·

(
dls y

dxls

)
, (24)

where (l1, . . . , ls) are all tuples such that li > 0, i = 1, . . . , s, l1 + · · · + ls � k,
s = 0, . . . , k, Cl1,...,ls are some constant coefficients. Lemma 6 gives us that

s∏

i=1

dli y

dxli
=

s∏

i=1

qli (x, y)

rli (x, y)
.

Dkx
a+bt yct =

(
∂P

∂ y

)2k−1

xk yk
dk

dxk
xa+bt yct

=
(

∂P

∂ y

)2k−1

xk yk
s∏

i=1

qli (x, y)

rli (x, y)
= Rk,a,b,c(x, y)x

axbt yct .

Bounds of Lemma 6 and direct calculation gives us the bounds (22).
Let us obtain formulas (22). Degrees of polynomials Rk,a,b,c(x, y) and Rk,l(x, y)

can be calculated by the formulas (23) and (24).
The result follows from Lemma 6 and formulas (19), (20). ��

4.2 Proof of Theorem 2

Put the following parameters:

A =
[
h−1/3t2/3

g

]
, B = C = [h1/3t1/3],

D =
[
h−1/3t2/3

4mng

]
. (25)

Let �(x, y) be the polynomial (10). Condition

Dk�(x, y) = 0 if P(x, y) = 0 and (x, y) ∈
h⋃

i=1

q ′
i G × q ′′

i G, k = 0, . . . , D − 1

(26)

holds if polynomials Rk,l(x, y), k = 0, . . . , D − 1, l = 1, . . . , h vanish on the curve
(3), it means that

P(x, y) | Rk,l(x, y), k = 0, . . . , D − 1, l = 1, . . . , h. (27)
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Degrees of polynomials Rk,l(x, y) are calculated in Lemma 7. Lemma 4 gives us that
the condition (27) is equivalent to a system of

hmn
D−1∑

k=0

(4km + 4kn + A + 1) = h((A + 1)Dmn + 2mn(m + n)D(D − 1))

� h(ADmn + 2mn(m + n)D2)

homogeneous linear equations on variables λa,b,c (we use Lemma 4 and inequality
n((ν − n + 2)m + μ) � (μ + ν + 1)mn).

This system has a nonzero solution if the following inequality holds

h(ADmn + 2mn(m + n)D2) < ABC, (28)

because it means that the number of variables λa,b,c is greater than the number of
equations of the linear system. Let us substitute the numbers A, B and C (from (25))
to the inequality (28) and obtain the following inequality

DmnAh + 2D2mn(m + n)h < h

[
h−1/3t2/3

g

] [
h−1/3t2/3

4mng

]
mn

+2mnh(m + n)

[
h−1/3t2/3

4mng

]2
< ABC (29)

for h < C1(m, n)t2, t > C2(m, n), where for example C1(m, n) = (40mn)−3

( h
−1/3t2/3
4mn > 10) and C2(m, n) = 103. The inequality

t � gAB = g

[
t2/3

g

]
[t1/3],

gives us conditions of Lemma 3. The condition

deg�(x, y) < A + Bt + Ct < p, deg P(x, y) < m + n < p

on the characteristic of the field κ holds too.
Lemma 5 gives us the upper bound of #Nh . Let us obtain by (12) the upper bound

on the number of elements of #Nh that satisfy the first case of statement of Lemma 5.
The upper bound of the number of elements of #Nh that satisfy the second case of
statement of Lemma 5 is less than or equal to (m + n)2. Thus we obtain the following
estimate

#Nh � h(m + n)2 + (m + n)(A − 1 + (B − 1)t + (C − 1)t)

D
� 12mng(m + n)h2/3t2/3. (30)
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The inequality (30) holds if h−1/3t2/3
4mng > 10, (it is implied if h < (40mng)−3t2) and

h < C2(m, n)t2. Now we obtain that the bound (30) is proved if h < (40mng)−3t2

and t > 103.
The proof of Theorem 2 is completed. �

5 Polynomial Energy for Homogeneous Polynomials

Let us consider a homogeneous polynomial

P(x, y) =
n∑

i=0

ai x
i yn−i (31)

and a set of equations

P(x, y) = li , li ∈ F
∗
p, i = 1, . . . , h. (32)

Lemma 8 Let P(x, y) be a homogeneous polynomial (31) and let P(x, y) − 1 be
absolutely irreducible over κ . Then polynomials (32) are also absolutely irreducible
over κ .

Proof Let us consider the equation

P(x, y) = l. (33)

We first prove that the polynomials fl(x, y) = P(x, y) − l are irreducible over κ for
any l �= 0. The polynomial f (x, y) = P(x, y)−1 is irreducible by assumption. Since

fl(x, y) = l f (λ−1x, λ−1y), (34)

where λn = l, λ ∈ κ , the polynomials fl(x, y) are irreducible for any l �= 0. �
Let us estimate the number

Nh =
h∑

i=1

#{(x, y) ∈ G × G | P(x, y) = li }, li ∈ F
∗
p, i = 1, . . . , h.

Theorem 2 and Lemma 8 gives us the the following corollary.

Corollary 1 Let us consider a homogeneous polynomial P(x, y) ∈ κ[x, y] of degree n
such that the polynomial f (x, y) = P(x, y)−1 is irreducible over κ , deg P(x, 0) � 1,
degy P(x, y) � 1 and a set of Eq. (32) such that l1, . . . , lh belong to different cosets

giG, h < 403n6|G|2 and 103 < |G| < 1
3 p

3/4h−1/4. Then the bound

Nh < 24n4h2/3|G|2/3

holds.
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6 Proof of Theorem 3

Let us consider the trivial relation

Eq
P (G) = Êq

P (G) + (#L)q

where L = {(x, y) | P(x, y) = 0, x, y ∈ G}. We have the inequality

#L � n|G|,

because for each x ∈ G there are not grater than n different y ∈ G such that P(x, y) =
0. Consequently, we have

Eq
P (G) � Êq

P (G) + nq |G|q .

We will estimate Êq
P (G). Let us denote all non-zero elements of the set {P(x, y) |

x, y ∈ G} by αi , i = 1, . . . , N and consider such βi that βn
i = αi , i = 1, . . . , N .

Let us re-denote elements βi , i = 1, . . . , N by βi j , i = 1, . . . , k, j = 1, . . . , si so
that the following conditions are satisfied:

1. let βi j be elements of the Young tableau, where i is the number of string (i =
1, . . . , k), j is the number of column ( j = 1, . . . , si ), s1 � · · · � sk (si , i =
1, . . . , k, k are some numbers)

2. any elements βi1, j and βi2, j such that βi1, j/βi2, j /∈ G for each admissible i1 �=
i2, j .

3. ϕi, j � ϕi+1, j , j = 1, . . . , s1, i = 1, . . . , k j − 1.
Where ϕi j = #{(x, y) | P(x, y) = (βi j )

n, x, y ∈ G} and let k j be the number of
the last element j th column, for j = 1, . . . , s1. Obviously, the number of elements
of any string of this tableau does not greater than |G| (s1 � |G|).

4. Corollary 1 and condition 2 gives us the following inequality

h∑

i=1

ϕi j =
h∑

i=1

#{(x, y) | P(x, y) = β̃n
i j , x, y ∈ G} < 24n4h2/3|G|2/3,

h < 40−3n−9|G|2. (35)

for each j = 1, . . . , s1 and h = 1, . . . ,min(k j , 40−3n−9|G|2).
5.

∑s1
j=1

∑k j
i=1 ϕi j = |G|2 − #L .

The number Êq
P (G) has the form

Êq
P (G) =

s1∑

j=1

k j∑

i=1

(ϕi j )
q . (36)
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We have to obtain the upper bound of the sum (36) where the set {ϕi j } is satisfied
the restrictions 1–5. Let us describe such set of numbers ϕi j that it satisfy to
conditions 1–5 and the sum (36) is maximal.
It is easy to see that such ϕ̃i j have to be maximal. Such set satisfy to |ki − k j | � 1,
1 � i, j � |G|. We have

ϕ̃i j =
i∑

l=1

ϕ̃l j −
i−1∑

l=1

ϕ̃l j = 24n4i2/3|G|2/3 − 24n4(i − 1)2/3|G|2/3 + εi j

� 16n4i−1/3|G|2/3 + 1 < 17n4i−1/3|G|2/3,

where εi j ∈ {0,±1},

(ϕ̃i j )
q < (17n4i−1/3|G|2/3)q = 17qn4q |G|2q/3i−q/3

We have that
∑s1

j=1

∑k j
i=1 ϕi j � |G|2. We obtain that k̃ j � |G|1/2

243/2n6
+ 1 <[ |G|1/2

125n6

]
= k̃.

Let us estimate the maximal value of the sum (36)

Êq
P (G) � |G|

k̃∑

i=1

17qn4q |G|2q/3i−q/3.

Let us consider case q = 2.

Ê2
P (G) � |G| � 1723n8|G|7/3k̃1/3 < 103n8|G|5/2.

In the case q = 3 we have

Ê3
P (G) � 173n12|G|3 ln |G|.

In the case q > 3 we have

Êq
P (G) � 17q3n4q |G|1+2q/3.

Eq
P (G) is less than or equal to Êq

P (G) + |G|qnq .
��
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