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Abstract
Weprove that the space of pairs (X , l) formedby a real non-singular cubic hypersurface
X ⊂ P4 with a real line l ⊂ X has 18 connected components and give for them several
quite explicit interpretations. The first one relates these components to the orbits of
the monodromy action on the set of connected components of the Fano surface FR(X)

formed by real lines on X . For another interpretation we associate with each of the 18
components a well defined real deformation class of real non-singular plane quintic
curves and show that this deformation class together with the real deformation class
of X characterizes completely the component.
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La dernière chose qu’on trouve en faisant un ouvrage, est de savoir celle qu’il
faut mettre la première.

Blaise Pascal, Pensées (1670), 19.

1 Introduction

1.1 Sketch of Principal Results

The study of lines on projective hypersurfaces had started from discovery of 27 com-
plex lines by Cayley and Salmon. It followed by an analysis of reality of these lines
performed by Schläfli, which in its turn motivated Klein’s interpretation of 5 species
of cubic surfaces introduced by Schläfli as a classification of non-singular real cubic
surfaces X up to deformation (here and further on, by deformation we mean varia-
tions preserving non-singularity). A major step in further analysis of the real aspects
of the theory of cubic surfaces was made by B. Segre. Among other results, he deter-
mined, for each of the 5 deformation classes, the group of substitutions induced by
the monodromy action on the set of real lines l ⊂ X , which implies, in particular,
the deformation classification of the pairs (X , l), where X is a real non-singular cubic
surface and l ⊂ X is a real line. For a modern view and contemporary further spec-
tacular development, as well as a correction of one of Segre’s results on monodromy,
we send the reader to Allcock et al. (2010).

The real aspects of the theory of cubic projective hypersurfaces of higher dimensions
are less studied. Recent advance in the case of real cubic threefolds X ⊂ P4 is due
to Krasnov who gave their deformation classification (see Krasnov 2006) along with
a description of how the topology of the real locus FR(X) of the Fano surface of
X formed by the lines on X depends on the deformation class of X (see Krasnov
2007).

Here, we make the next step and perform the deformation classification of the pairs
(X , l), where X is a real non-singular cubic hypersurface in P4 and l ⊂ X is a real
line.
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348 S. Finashin, V. Kharlamov

Fig. 1 H states for a handle, H = S1 × S2, and�(2, 4, 6) denotes a Seifert manifold with 3 multiple fibers
of multiplicities 2, 4, 6; the double occurrence of the type RP3#3H means that the real non-singular cubics
with this topological type of the real locus form two distinct deformation classes

Our interest to this problem has grown, indeed, from a wish to disclose a puzzling
coincidence of two graphs: the adjacency graph of the deformation classes of real
non-singular cubic threefolds and a similar graph for real non-singular plane quintic
curves, see Fig. 1. The vertices of these graphs represent the deformation classes of
real non-singular cubic threefolds X at the top graph and those of real non-singular
plane quintics at the bottom one. For greater clarity, the vertices are shown as circles
containing inside an indication of the topological type of the locus of real points in
the case of cubics and a schematic picture of position of the locus of real points in
the real plane in the case of quintics. Two vertices are connected by an edge if the
corresponding deformation classes are adjacent through a wall, that is if these classes
can be joined by a continuous family of real cubic threefolds or, respectively, real
plane quintics, such that all but one element of the family is non-singular, the singular
one (cubic or quintic) has only one singular point, and this singular point is a simple
double point.

Due to the classical correspondence between cubic threefolds and plane quintics
that associates to a cubic threefold X a plane quintic S (we call S the spectral quintic)
arising as the discriminant locus of the projection X → P2 with a chosen line l ⊂ X
as the center, it was natural to expect that such a coincidence should not be accidental.
However, two difficulties obstruct an immediate application of this correspondence.
The first difficulty is in degenerating of S for some choices of l even on a non-singular
X . The second one is due to presence of several connected components in the real
locus FR(X) of the Fano surface of X . For most of the deformation classes of X ,
this leads to dependence of the deformation class of S on the choice of a connected
component of FR(X) that contains l.

The first difficulty turns out to be inessential: we show that despite such degenera-
tions the deformation class [S] of S is not changing under deformations of pairs (X , l).
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Furthermore, we prove (see Theorem 4.2, parts (1-2)) that deformation classes of pairs
(X , l) are completely determined by matchings ([X ], [S]) between the deformation
classes [X ] and [S]. The second difficulty happens to be a more subtle issue.

We present the final deformation classification in a form of a complete list of
possible matchings in terms of simple topological invariants of X and S, such as
Smith discrepancy and Klein type, see Theorem 4.2 (part (3)) and Corollary 4.2.
Accordingly, the number of deformation classes happens to be 18.

In fact, the set of matchings, and hence the set of deformation classes, turns out to be
in 1–1 correspondence with the set of orbits of the monodromy action induced by real
deformations on the sets of connected components of the real loci of Fano surfaces.
In particular, each real Fano surface has a unique connected component whose Euler
characteristic is odd, this component is preserved by the monodromy, and, as we
show, it is the choice of l on these components that establishes a natural isomorphism
between the mentioned above two graphs (see Theorem 4.3). The monodromy on the
set of toric components is less trivial, and we give a full explicit description of these
orbits in Theorem 4.4.

For example, if XR = RP3#5H (the case of so-called maximal cubic threefolds),
then FR(X) is formed by a non-orientable component N5 = #5RP2 (of Euler charac-
teristic−3) and 15 torus-components, and, according to Theorem 4.4, the monodromy
action on these tori has two orbits: 6 torus components in one and 9 components in
another orbit; namely, a choice of a line l ⊂ X on a torus gives an (M − 2)-quintic,
which is of Klein type I for tori from the first orbit, and of type II for the second orbit.

1.2 Main Tools and Constructions

The key tools involved traditionally in studying complex cubic threefolds X are Fano
surfaces, Jacobian and Prym varieties, conic bundles that project X from lines l ⊂ X
to P

2, and discriminant loci of these projections (spectral quintics) equipped with odd
theta-characteristics. Over the reals they are not well studied (if at all), and our first
task was to develop them accordingly disclosing an interaction between geometrical
and topological properties of these tools over the reals.

In particular, it is the interplay between the arithmetics of the action of the complex
conjugation on the homology of the cubic threefolds and that of the action on the
homology of the associated plane quintics that helped us to give a complete effec-
tive description of the relations between Klein types and Smith discrepancies of a
real cubic threefold X and its spectral quintic S (see Lemma 5.2 and Corollary 5.1),
and as a consequence, allowed us to obtain a strong lower bound on the number of
matchings. This description, which plays a crucial role in our paper, is achieved by
developing a technique that discloses the above relations in arithmetic terms via the
homological representative of a theta-characteristic (Sects. 5.1–5.6) and, alternatively,
in geometric terms via themutual position of the theta-conic and the ovals of the quintic
(Sects. 5.7–5.8).

In showing that it is a sharp bound, it is the geometric methods that prevail. For
example, to determine the orbits of themonodromyaction on the set of real components
of Fano surfaces of maximal cubic threefolds X we make use of their degeneration
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to remarkable 6-nodal cubic threefolds X0 studied by C. Segre (see Sect. 9.5). Such
a degeneration establishes a 1–1 correspondence between the 15 torus components
of FR(X) we are interested in, the 15 lines connecting pairwise the 6 nodes of X0,
and the 15 real lines on some real (M − 1)-cubic surface Y that can be associated to
F(X0). To conclude, we make appeal to the fundamental bipartition of these 15 lines
in two groups (due to B. Segre): 9 hyperbolic and 6 elliptic lines.

In addition to extending classical tools to the real setting, we develop also certain
tools looking a somewhat unconventional, like, for example, the conormal projection
of Fano surface F(X) to P

2 (see Sect. 6). The latter is crucial in out study of what
we call exotic cubics (the case XR = �(2, 4, 6)). In this regard, let us note also that,
as it is underlined in Sect. 10.3, this new tool is not only crucial in our study of real
cubic threefolds but also allows us to disclose new geometric properties of real plane
quintics.

1.3 Structure of the Paper

Our proof of themain results splits into two separate parts.We start with a lower bound
for the number of deformation classes in terms of matchings (Sects. 2–5), and then
respond to the question of how many deformation classes correspond to each of the
matchings (Sects. 6–9). The techniques used in different parts are of different nature,
and we develop them as we go along.

In Sect. 2 we recall some basic constructions associated to a cubic threefold X with
a chosen line l, like those of the conic bundle, the spectral quintic S ⊂ P2 and the
theta-conic �. We review their principal properties (which are mostly well-known)
and adapt them to our real setting.

In Sect. 3, we interpret theta-conics as odd non-degenerate theta-characteristics,
relate them to spectral coverings, and elaborate the real spectral correspondencewhich
is a real version of classical White’s theorem that ensures a recovery of a pair (X , l)
from a pair (S,�). Moreover, we prove the invariance of the deformation class of S
under deformations of the pair (X , l).

In Sect. 4 we review the deformation classification of real cubic threefolds and real
plane quintics, and in particular, discuss the topological invariants involved in these
classifications (Smith discrepancy and Klein’s type). We review also basic facts on the
Fano surfaces F(X) and, in particular, recall the description of their real loci FR(X).
Finally, we introduce the key notion of spectral matching and formulate our main
results: Theorem 4.2, that describes the deformation classification of pairs (X , l) in
terms of matchings, Theorem 4.3 relating the Smith discrepancy and Klein’s type
under the spectral matching correspondence, and Theorem 4.4 describing the orbits
of the monodromy action on the set of torus components of Fano surfaces FR(X).

In Sect. 5 we compare the Smith discrepancies and Klein’s types of X and S and
prove part (3) of Theorem 4.2. This gives a lower bound to the number of deformation
classes of pairs (X , l).

In Sect. 6 we treat a special kind of real cubic threefolds. These cubics, that we
call exotic are exceptional in several respects. For instance, topology of XR is more
sophisticated for them than for the other types of real non-singular cubic threefolds,
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namely, it is diffeomorphic to a Seifert manifold �(2, 4, 6), and the Fano surface
FR(X) has two non-orientable real components instead of one (see Sect. 4). We end
Sect. 6 by provingTheorem4.3 for exotic threefolds. This is done through the conormal
projection of F(X) to the projective plane.

In Sect. 7 we analyze real nodal cubic threefolds X0 and study their quadrocubics,
that is the curves of bidegree (2, 3) in P3 associated to each of the nodes of X0. In
particular, we express in terms of quadrocubics some topological and monodromy
properties of cubic threefolds X obtained by perturbation of X0. We relate quadrocu-
bics to the spectral curves S0 of X0 and analyze how the latter are perturbed into the
spectral curves S of X .

In Sect. 8 we study the Fano surfaces F(X0) of real nodal cubic threefolds X0 and
relate them to the symmetric square of quadrocubics. Our key example is the case of
real 6-nodal Segre cubic threefolds X0, in which we find the monodromy action on the
nodes of X0. This allows us to find the monodromy of torus components of FR(X),
where X is the maximal cubic threefold obtained by perturbation of X0.

In Sect. 9 we complete the proof of the main results: Theorems 4.2, 4.3, and 4.4.
Section10 contains a few additional remarks and applications: on the spectral cor-

respondence in terms of the moduli spaces (in a setting a bit more general that we use
in our paper), on the permutation groups realized by the monodromy action on the
set of real components of the Fano surfaces, and on some topological and geomet-
rical information that one can obtain about real non-singular quintics using methods
developed.

1.4 Conventions

In this paper algebraic varieties by default are complex, for example, Pn stands for
the complex projective space. Such a variety X ⊂ Pn is real if it is invariant under the
complex conjugation in Pn . In the case of abstract complex varieties X not embedded
in Pn a real structure on X is usually defined as an anti-holomorphic involution
conj : X → X , but in this work we deal mostly with subvarieties of Pn or other
Grassmannians, and the involution conj on X is then induced from there.

We denote by XR the fixed-point-set of the real structure, XR = Fix(conj), and
call it the real locus of X . Speaking on non-singular real varieties, we mean that the
whole X (not only XR) has no singular points.

We prefer to use classical rather than scheme-theoretic viewpoint and terminology,
allowing, for example, to use, whenever possible, the same notation for polynomials
and for varieties that they represent, as well as the same notation both for the variety
and its complex point set.

By a nodal singularity (a node) we mean a singularity of type A1, that is a simple
double point. A nodal variety (curve, surface, threefold) is a one whose singular locus
contains only nodes.

Recall that the space Cd,n formed by hypersurfaces Z ⊂ Pn+1 of degree d is a pro-
jective space of dimension

(d+n+1
n+1

)
where the singular Z form a so-called discriminant

hypersurface �d,n ⊂ Cd,n . The real locus Cd,n
R

is constituted by real hypersurfaces Z .

The connected components of the complement Cd,n
R

��
d,n
R

are called real deformation

123
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classes: they can be viewed as chambers separated bywalls, that is the connected com-
ponents of the space of one-nodal real hypersurfaces (the principal stratum of �

d,n
R

).
The mutual position of the chambers can be characterized by the adjacency graph
�d,n whose vertex set Vd,n is the set of chambers and an edge between two vertices
means that the corresponding chambers lie on the opposite sides of some wall (note
that �d,n indicates only existence of walls and not their number). We have already
presented such graphs �3,3 and �5,1 on Fig. 1 (and in this paper we are not concerned
about any other values of d and n).

In accordance with the above definition, by a real deformation of non-singular
hypersurfaces we mean simply a continuous path [0, 1] → Cd,n

R
� �

d,n
R

, t �→ Zt . By
a real equisingular deformation of a nodal hypersurface Z wemean a continuous path
in the stratum of �

d,n
R

parameterizing hypersurfaces Z with a fixed number of nodes.
A nodal degeneration of a non-singular hypersurface Z is a continuous family Zt ,

0 ≤ t ≤ 1, Z = Z1, of varieties which are non-singular for t > 0 and nodal for t = 0.
The same family Zt can be called also a real perturbation of a real nodal variety Z0.

Curves of degree 6 in P3 which are complete intersections of a cubic hypersurface
with a quadric will be called quadrocubics. By a conic we mean a plane curve of
degree 2.

Whenever an equivalence relation is clear from the context, we use notation [X ]
for the equivalence class of X .

If the most of the content of a section, or a subsection, is well known, we put at the
beginning of it a reference to sources containing the corresponding results and provide
proofs only for those ones for which we did not find an appropriate reference.

2 Spectral Quintics and Theta-Conics of Cubic Threefold

2.1 Conic Bundles: Generalities

By a conic bundle we mean a nonsingular irreducible projective variety X equipped
with a regular map π : X → P2 such that each scheme theoretic fiber is isomorphic
to a plane conic.

Proposition 2.1 (Beauville 1977) Let π : X → P2 be a conic bundle. Then:

(1) There exists a rank 3 vector bundle E over P2 and an integer k such that the conic
bundle is defined in the associated projective fibration P(E) by a quadratic form
h ∈ H0(P2, Sym2(E∗) ⊗O(k)). The equation det h = 0 defines either an empty
set or a curve in P2.

(2) The curve S ⊂ P2 defined by det h = 0 has at most nodes as singular points.
(3) At each point s ∈ Sing S there exist local coordinates u, v such that over a neigh-

borhood U of s the conic bundle is isomorphic to a conic bundle given in U × P2

by equation ux2 + vy2 + z2 = 0; at each point s ∈ S � Sing S there exist local
coordinates u, v such that over a neighborhood U of s the local model in U × P2 is
given by equation ux2+ y2+z2 = 0; while for s ∈ P2

� S there exist local models
given by equation x2+y2+z2 = 0. In particular, the fibers Xs = π−1(s) ⊂ P(Es)
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are non-singular conics for s ∈ P2
� S, reduced singular conics for s ∈ S, and

double lines for s ∈ Sing S. ��
The curve S described in this Proposition is called the discriminant curve of the

conic bundle π : X → P2.
Each conic bundle π : X → P2 gives rise to a ramified double covering pS : S̃ →

S, where for each s ∈ S the points of p−1
S (s) ⊂ S̃ ⊂ Gr(E, 1) are the lines contained

in the fibers Xs ⊂ P(Es). This covering is unramified over S \ Sing S, and it has a
simple ramification over each branch at each node.

2.2 The Conic Bundle for a Line on a Cubic Threefold

Consider a non-singular cubic threefold X ⊂ P4 and a line l ⊂ X . The net of planes
{Ps}s∈P2 passing through l induces a conic bundle πl : Xl → P2 whose fibers are
residual conics rs traced by X in the net of planes, namely, Ps ∩ X = l + rs (as a
divisor). Here Xl is obtained by blowing up X along l. The discriminant curve S = Sl

of this conic bundle will be called the spectral curve of (X , l).
Let us choose projective coordinates (x, y, z, u, v) in P4 so that l is defined by

equations x = y = z = 0. Then, the equation of X can be written as

u2L11 + 2uvL12 + v2L22 + 2uQ1 + 2vQ2 + C = 0, (2.1)

where Li j , Qi , C stand for homogeneous polynomials in x, y, z of degrees 1,2, and 3
respectively. Next, the residual conic rs , for each point s = [x : y : z] ∈ P2, is defined
by the symmetric fundamental matrix

As =
⎛

⎝
L11 L12 Q1
L12 L22 Q2
Q1 Q2 C

⎞

⎠ (2.2)

and the spectral curve S is defined by a degree 5 equation

det As = 0. (2.3)

The conic defined by equation

det

(
L11 L12
L12 L22

)
= 0, (2.4)

will be called the theta-conic and denoted by �.
Note that for the definition of the fundamental matrix non-singularity of the cubic

X is not required, but for certain degenerations of X the conic � or/and the quintic
S may be not well-defined (if their equations identically vanish). For non-singular or
one-nodal X this cannot happen: for S it follows, for instance, from (Clemens and
Griffiths 1972, Lemma 8.1). For �, it is straightforward; for nonsingular X it follows,
for example, from the next Lemma.
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Lemma 2.1 The cubic threefold X given by equation u2L11 + 2uvL12 + v2L22 +
2uQ1 + 2vQ2 + C = 0 is nonsingular along the line l = {x = y = z = 0} if and
only if the quadratic form Q� = L11L22 − L2

12 is neither a complete square nor zero.
If X contains a singular point outside l, then either det As is zero for every s ∈ P2 or
the curve det As = 0 has a singular point.

Proof At the points of the line l we have d f = u2 d L11 + 2uv d L12 + v2 d L22. If
d f vanishes for some (u, v) �= (0, 0), then by a projective [u : v]-coordinate change
we can obtain vanishing at [u : v] = [0 : 1], that is equivalent to L22 = 0, which in
its turn implies that Q� is a complete square −L2

12, if L12 �= 0, or zero otherwise.
Conversely, assume that Q� = L11L22 − L2

12 is a complete square, say −L2. If
L = L12, then either L11 or L22 vanishes, which implies that the point of l with
[u : v] = [1 : 0] or [0 : 1] respectively is a singular point of X . If L �= L12, then
L11L22 = (L12+L)(L12−L) fromwhere L11 = λ(L12±L) and L22 = λ−1(L12∓L)

for some λ ∈ C � {0}. Then it is the point [1 : −λ] ∈ l that is singular in X .
To check the second statement, let us select projective coordinates in a way that it

is the point u = 0, v = 0, x = 0, y = 0, z = 1 which is a singular point of X and
assume that det As is not identically zero. Then, C, Q1, Q2, and dC are zero at this
point. This immediately implies that det As is zero at s = (0, 0, 1), and after taking
the differential of the matrix determinant line by line we observe that this differential
is also zero at this point. ��

Proposition 2.2 For any non-singular cubic threefold X ⊂ P4 and any line l ⊂ X,
the following properties hold:

(1) the spectral quintic S cannot have singularities other than nodes;
(2) the associated curve � is a conic which is not a double line;
(3) the conic � passes through every node of S;
(4) the local intersection index inds(S,�) at a common point s ∈ S ∩ � is even for

any s not belonging to a common irreducible component of S and �.

Proof The fact that S may have only nodes as singular points follows from Proposition
2.1 applied to the blow-up of X along l. Lemma 2.1 implies (2).

To prove (3) note that according to Proposition 2.1 if a point s ∈ S is a node, then
the residual conic rs is a double line, which means that As is of rank 1 and thus implies

the vanishing of det

(
L11 L12
L12 L22

)
at s.

The property (4) is well-known for generic lines on X (see, for example, White
1930; in particular, for a generic line the quintic S is non-singular (see Murre 1972)
and then (4) can be derived from the Laplace formula

L11� = �22�33 − �2
23,

where � is the determinant defining the quintic S and �i j are the i j-cofactors in the
matrix (2.2), among which�33 defines�). After that the property (4) can be extended
to any line l ⊂ X by continuity. ��
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2.3 Multiple Lines and a Characterization of the Nodes of S and2

We say that a plane P ⊂ P4 is tritangent to X if X cuts on P a triple of lines:
P ∩ X = l + l ′ + l ′′. By definition, S parameterizes the tritangent planes of the net
{Ps}s∈P2 .

If for a line l there exists a plane P containing it such that P ∩ X = 2l + l ′, we say
that l is a multiple line and l ′ the residual line. If l = l ′ (that is P ∩ X = 3l), then l
is called a triple line, and if l �= l ′ then a double line. Non-multiple lines l ⊂ X (for
which such a plane P does not exist) will be called simple lines.

Proposition 2.3 For any non-singular cubic X ⊂ P4 and a line l ⊂ X, with the
associated spectral curve S and the theta-conic �, the following holds:

(1) s ∈ P2 is a node of S if and only if Ps ∩ X = l + 2l ′ for some line l ′; hence, S has
≥ 1 nodes if and only if l is a residual line;

(2) s ∈ P2 is a node of � if and only if Ps ∩ X = 2l + l ′ for some line l ′; hence, �

splits into two lines if and only if l is a multiple line;
(3) s ∈ P2 is a common node of S and � if and only if Ps ∩ X = 3l; in this case the

two lines forming � are tangent to the two branches of S at the node.

Proof Item (1) follows from Proposition 2.1.
For proving items (2) and (3) choose the coordinates so that s = [x : y : z] = [1 :0 :

0], then in the plane Ps with coordinates [u :v : x] the equation of the residual conic is
rs = u2Lx

11 + 2uvLx
12 + v2Lx

22 + 2ux Qxx
1 + 2vx Qxx

2 + x2Cxxx = 0,

where Lx
i j = Li j (1, 0, 0), Qxx

i = Qi (1, 0, 0), and Cxxx = C(1, 0, 0) are respectively

the x-coefficients of Li j , the x2-coefficient of Qi , and the x3-coefficient of C .
The line l in Ps has equation x = 0, thus, it is double, namely, Ps ∩ X = 2l + l ′, if

and only if x divides rs , that is iff Lx
11 = Lx

12 = Lx
22 = 0. This vanishing implies that

the equation of � in the affine chart {x �= 0},
L11(1, y, z)L22(1, y, z) − L2

12(1, y, z),

has no linear terms, which shows that s = [1 : 0 : 0] is a node of �. Conversely, if �

has a node at s, then, as is evident, L11, L12 and L22 are linearly dependent and each
of these linear forms is vanishing at s; therefore, the coefficients Lx

11 = Lx
12 = Lx

22
vanish, which shows that l is a double line. This proves item (2).

The first part of item (3) follows from items (1) and (2). For proving the second part
of (3), note that Ps ∩ X = 3l if and only if rs is a multiple of x2, that is iff in addition
to Lx

11 = Lx
12 = Lx

22 = 0 we have Qxx
1 = Qxx

2 = 0, whereas Cxxx �= 0 (the latter is
due to non-singularity of X ). These conditions imply that the degree ≤ 2 truncation
of equation (2.3) of S in the above affine (y, z)-chart reduces to

Cxxx (L11L22 − L2
12),

where Li j depend only on y and z. Thus, S and� both have nodes at s and the branches
of S are tangent to those of �. ��
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2.4 The Exceptional Divisor El

Simple lines l ⊂ X can be also distinguished from multiple ones by their normal
bundles in X , or equivalently, by the exceptional divisor El of blowing up Xl → X .

Proposition 2.4 (Clemens and Griffiths 1972) If a line l on a non-singular cubic three-
fold X is simple, then its normal bundle in X is trivial (a sum of trivial line bundles
Ol ⊕ Ol) and El ∼= P1 × P1. Otherwise, the normal bundle is isomorphic to the sum
of line bundles Ol(1) ⊕ Ol(−1) and El is a geometrically ruled surface �2. ��
Proposition 2.5 In the case of a simple line l the theta-conic � is non-singular and
the restriction

El ∼= P1 × P1
πEl−−−−→ P2

of the canonical projection πl : Xl → P2 is a double covering branched along �.
In the case of a multiple line l, conic � splits in two lines and such a restriction

El ∼= �2
πEl−−−−→ P2

is composed of a contraction of the (−2)-curve of �2 and subsequent double covering
over P2 branched along �. The two lines of � are the images of two fibers of the
ruling �2 → P1 and the node of � is the image of the (−2)-curve.

Proof The points of El can be viewed as pairs (Ps, t), where s ∈ P2 and Ps is the
plane passing through s, containing the line l and tangent to X at the point t ∈ l.
Projection πEl sending (Ps, t) to s = Ps ∩ P2 is generically two-to-one, because Ps

is generically tangent at a pair of points of l, namely, at the common points of l with
the residual conic rs (see Sect. 2.2). It is one-to one over the non-singular points of �,
since for them the intersection rs ∩ l consists of one point. This gives item (1), and for
proving item (2) it remains to notice that for a nodal point s0 of �, Ps0 ∩ X = 2l + l ′,
and so, the preimage of s0 consists of all the pairs (Ps0 , t), t ∈ l. ��

Proposition 2.5 together with Lemma 2.1 imply the following statement.

Corollary 2.1 For a non-singular cubic threefold X and a line l ⊂ X the following
properties are equivalent:

(1) The line l is multiple.
(2) There is a plane passing through l which is tangent to X at each point of l.
(3) The linear forms L11, L12, L22 are linearly dependent.
(4) The linear forms L11, L12, L22 forms a rank 2 linear system.
(5) The theta-conic � corresponding to l splits into two lines.

��
Proposition 2.6 The theta-conic � is formed by the points s ∈ P2 for which the binary
quadric ls = rs |l is degenerate, that is a square or identically zero. If � is non-singular,
then ls is non zero for any s ∈ �, and the map sending s ∈ � to p ∈ l such that
rs(p) = 0 gives an isomorphism between � and l. The inverse map sends p ∈ l to the
point s ∈ � where the hyperplane Tp tangent to X at p is tangent to �.
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Proof By definition, ls = L11u2 + 2L12uv + L22v
2 and degeneration of ls means

vanishing on l of the determinant that defines �. Non-singularity of � means linear
independence of the linear forms L11, L12, L22 (see Corollary 2.1), and we can choose
our coordinates so that x = L11, y = L12 and z = L22. Then the inverse map l → �

to the above correspondence is defined by [u : v] → [x : y : z], where x = v2,
y = −uv, z = u2. It remains to notice that x = v2, y = −uv, z = u2 is the only point
of intersection of � with the hyperplane Tp, p = [u : v], since the latter is given by
equation u2x + 2uvy + v2z = 0. ��

2.5 Fano Surface and Curves 0res, 0II

The lines on a non-singular cubic threefold, X , form a surface, F(X), named after
Fano (1904), who established its following properties (see also Clemens and Griffiths
1972).

Theorem 2.1 For any non-singular cubic threefold X, the Fano surface F(X) is irre-
ducible, non-singular and has the following numerical characteristics:

h1,0 = h0,1 = h1,2 = h2,1 = 5, h2,0 = h0,2 = 10, h1,1 = 25.

As is known (see, for example, Murre 1972), the multiple lines l ⊂ X form a curve
on F(X) that we denote �II , the residual lines form a residual curve, �res ⊂ F(X),
and the triple lines form a finite subset VIII ⊂ �res ∩ �II ⊂ F(X).

Proposition 2.7 The spectral curve S is non-singular if and only if l /∈ �res .

Proof Straightforward from definition of �res and Proposition 2.3. ��

2.6 The Spectral Covering via Theta-Conics

Consider a non-singular cubic threefold X and a line l ⊂ X that is neither multiple nor
residual, and so the spectral curve S and the theta-conic � are non-singular. The set
of lines on X that intersect l form a curve S̃ ⊂ F(X) and its projection pS : S̃ → S
induced by the conic bundle πl is clearly a double covering that will be called the
spectral covering (cf., Sect. 2.1).

On the other hand, we consider the pull-back SEl = π−1
El

(S) where πEl : El → P2

is the double covering branched along � (cf., Sect. 2.4). This pull-back curve has
π−1

El
(S ∩ �) as the singular locus. Namely, for a point x ∈ S ∩ �, with the local

intersection index indx (S,�) being 2k, the pull-back SEl has at the point of π−1
El

(x)

two local branches that intersect with the local intersection index k.
Note also that for any line l ′ ∈ S̃, its proper image in Xl intersects the exceptional

divisor El ⊂ Xl at a point of SEl , which yields a map gl : S̃ → SEl . Non-singularity
of S̃ implies the following.

Proposition 2.8 The spectral covering S̃ → S is the composition πEl ◦ gl where
gl : S̃ → SEl coincides with the normalization map and πEl : El → P2 is the double
covering of P2 branched along �. ��
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2.7 The Case of Real Pairs (X, l)

If a cubic threefold X and line l ⊂ X are real, then the associated spectral quintic S
and theta-conic � are also real. In the most of constructions we assume that X and
S are non-singular, then �R �= ∅ may be either (1) non-singular or (2) split into a
pair of distinct lines, which can be either (2a) both real, or (2b) form an imaginary
complex-conjugate pair. By a region bounded by �R we mean the closure of a con-
nected component of RP2 � �R; there are two such regions in the cases (1) and (2a)
and one region in the case (2b). A non-singular quintic SR contains always a one-
sided connected component, J ⊂ RP2, and may have in addition, a few two-sided
components, called ovals. Since conic � has with S even local intersection indices at
the common points, each connected component of SR is contained precisely in one
region bounded by�R, and the region containing J -component is denoted by F+

� and
called the exterior of �R, while the other region (non-empty in the cases (1) and (2a))
is denoted by F−

� and called the interior of �R.
We say that an oval of S is visible (respectively, invisible) if it lies in the exterior

(respectively, interior) of�R. Let W +
S = πl(XlR) ⊂ RP2 and W −

S = Cl(RP2 � W +
S ).

Proposition 2.9 If X is a real non-singular cubic threefold and l ∈ FR(X) � �res ,
then W +

S , W −
S are compact surfaces with common boundary W +

S ∩ W −
S which is the

union of invisible ovals.

Proof By Proposition 2.7, the spectral curve S is non-singular. According to Propo-
sition 2.1, a point s ∈ RP2 � SR is an interior point of W +

S (respectively, W −
S ) if the

real part of the residual conic rs is a topological circle (respectively, empty), while for
s passing from one side of SR to another the conic rs experiences a Morse transfor-
mation. The latter implies that a point s ∈ SR is an interior point of W +

S (respectively,
belongs W +

S ∩ W −
S ) if rs is a pair of real lines (respectively, a pair of imaginary lines).

Thus, it remains to notice that, for s belonging to the J -component, the conic rs is
a pair of real lines, since the J -component being one-sided, the topology of the real
locus of the residual conics is the same on the both sides of this component. ��

3 Theta-Characteristics and the Spectral Correspondence

3.1 Theta-Conics and Theta-Characteristics

Recall that a theta-characteristic on a smooth projective curve S overC is defined as the
isomorphism class of pairs θ = (L, φ) formed by a line bundle L and a quadratic map
φ : L → KS to the canonical bundle KS that provides an isomorphism L⊗2 ∼= KS (in
other words, that are solutions of equation 2D = KS in the divisor class group).

Since the quadratic map L → KS can be viewed as a double covering between
the associated U (1)-bundles, theta-characteristics can be seen as Spin-structures in
the general context of Spin-manifolds (see Atiyah 1971; Mumford 1971). There is
also a well-known bijection (see Johnson 1980) between the set of Spin-structures
on S and the set of quadratic extensions of the intersection form on H1(S; Z/2),
that is the set Quadr(S) of functions q : H1(S; Z/2) → Z/2 satisfying the relation
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q(x + y) = q(x) + q(y) + xy for all x, y ∈ H1(S; Z/2), where xy ∈ Z/2 is
the intersection index of x and y. Possibility to identify these three objects, theta-
characteristics, Spin-structures, and quadratic functions, will let us easily switch from
one language to another.

Curves endowed with a theta-characteristic are called Spin-curves, and the set of all
the theta-characteristics for a given S is denoted�(S). A theta-characteristic θ ∈ �(S)

can be even or odd, depending on the parity of h0(θ) = dim H0(L), and we denote by
�0(S) and �1(S) the sets of even and odd theta-characteristics. In terms of quadratic
functions the parity coincides with the Arf-invariant.

The set�(S) has a natural free transitive action of H1(S; Z/2): in terms of quadratic
functions an element h∗ ∈ H1(S; Z/2) acts on q ∈ Quadr(S) by addition q �→ q+h∗,
if h∗ is interpreted as a linear function h∗ : H1(S; Z/2) → Z/2. By the difference
θ1−θ2 of θ1, θ2 ∈ �(S) (or equivalently, the difference q1−q2 of q1, q2 ∈ Quadr(S))
we mean the class h∗ ∈ H1(S; Z/2) such that θ1 = θ2 + h∗ (respectively, q1 =
q2 + h∗). Such a difference class defines the difference double covering S̃ → S.
When θ1, θ2 are represented by divisor classes D1, D2 (with 2D1 = 2D2 = KS)
this difference class h∗ is Poincaré dual to h ∈ H1(S, Z/2) represented (via the
natural identification of the 2-torsion part of the Jacobian with H1(S; Z/2)) by the
image [D1 − D2] of the order two divisor class D1 − D2 under the Abel-Jacobi map
(extended to arbitrary divisors by linearity).

A real structure conj : S → S on a curve S induces an involution c� : �(S) →
�(S) on the set of its theta-characteristics, and we call θ ∈ �(S) real if it is a fixed
point of c�, and use notation �R(S) = Fix(c�) for the set of all real θ . In terms of
the quadratic function qθ , this is equivalent to qθ (x) = qθ (c(x)), for all x ∈ H1(S),
where c denotes conj∗ : H1(S) → H1(S).

As is known (see, for example, Atiyah 1971), for real curves S with non-empty SR
a theta-characteristic θ = (L, φ) is real if and only if there exists a fiberwise antilinear
involution of the line bundle L → L that covers conj : S → S.

Plane curves S of an odd degree d carry a special theta-characteristic, θ0 = θ0(S),
traced on S by curves of degree d−3

2 . If S is real, then θ0 is real too. In the language
of quadratic functions this theta-characteristic was introduced by Rokhlin (1972),
who also observed that q0 takes value 1 on every vanishing cycle of S and its parity is
1
8 (d

2−1) mod 2.We name θ0 Rokhlin’s theta-characteristic and denote�1(S)\{θ0}
by �∗

1(S). If S is real, then �∗
R1(S) states for �R(S) ∩ �∗

1(S).
For h ∈ H1(S; Z/2), we let qh = q0 + h∗, θh = θ0 + h∗ where h∗ is the Poincaré

dual to h, and conclude that h �→ qh �→ θh identifies H1(S; Z/2) with Quadr(S) and
�(S). We say that h∗ is the difference class associated with the theta-characteristic
θ = θh .

3.2 Spectral Theta-Characteristic

Given a non-singular plane quintic S, a conic� is said to be contact to S if� is reduced
and at every common points s ∈ S ∩� the local intersection index inds(S,�) is even.
To each conic � contact to S we associate its contact divisor on S defined as the half
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of the intersection divisor S · �. Each contact divisor is a theta-characteristic, since
S · � represents the canonical divisor class of S.

Proposition 3.1 For any non-singular quintic S, the correspondence defined by taking
the contact divisor of a contact conic gives a bijection between �∗

1(S) and the set of
contact conics to S. If S is real, this correspondence gives also a bijection between
�∗

R1(S) and the set of real contact conics.

Proof Each odd theta-characteristic of S is represented by a divisor D such that 2D
is cut on S by a conic. If the latter conic is not reduced, the corresponding theta-
characteristic is Rokhlin’s one q0, and then h0(θ0) = 3 > 1. On the other hand,
according to Beauville (2000, Proposition 4.2), a theta-characteristic θ ∈ �∗

1(S) does
correspond to a contact conic, if h0(θ) = 1. Hence, to prove the first statement it is
sufficient to show that twodistinct contact divisors cannot be linear equivalent on S. Let
us assume on the contrary that two distinct contact divisors belong to the same divisor
class, that is provide two distinct sections of the same square root θ of the canonical
bundle of S. Bydefinition of contact divisors, the contact conics are reduced.Hence, the
linear combinations of the given sections provide, by squaring, a local one-parameter
family of equisingular reduced conics �t having the same number of tangencies with
S such that the order of tangencies is preserved in the family. Then, we can apply the
Gudkov–Shustin inequality to this family (its idea goes back to Gudkov and Shustin
1984, Theorem2; a bit more elaborated version that wemake use of appeared inGreuel
et al. 2007, Lemma II.2.18) that gives a bound �s ◦ �t ≥ ∑

((�t ◦ S)z − 1), where
the sum is taken over all the points z ∈ �t ∩ S. This bound leads to a contradiction,
since �s ◦ �t = 4 but

∑
((�t ◦ S)z − 1) ≥ 2 × 5 − 5 = 5.

Since the real part of a real quintic is always non empty, for each θ = (L, φ) ∈
�∗

R1(S) there exists an antilinear involution L → L which covers conj : S → S, and
therefore the second statement follows from the first one. ��
Proposition 3.2 Let S and � be the spectral quintic and the theta-conic associated
with a line l on a non-singular cubic threefold X. Assume that l /∈ �res. Then the
difference class h∗ ∈ H1(S; Z/2) associated with the theta-characteristic θ defined
by � is non-zero. The difference double covering S̃ → S defined by the difference
class h∗ is non-trivial and coincides with the spectral covering associated with (X , l).

Proof The first statement follows from θ ∈ �∗
1(S) (see Proposition 3.1). Since, by

definition, the difference class h∗ associated with the theta-characteristic θ defined by
� (that is h∗ = θ − θ0) is Poincaré dual to h = [D − H ], where D is the contact
divisor and H stands for a hyperplane (i.e., line) section, the second statement is a
straightforward consequence of the first one and Proposition 2.8. ��

The odd theta-characteristic θ ∈ �∗
1(S) corresponding to � will be called the

spectral theta-characteristic.

3.3 Recovery of (X, l) from S and2

The following result belongs essentially to White (1930).

123



Deformation Classification of Real Non-singular Cubic… 361

Theorem 3.1 Given a non-singular quintic S ⊂ P2 and a conic � ⊂ P2 contact to
S, there exists a non-singular cubic threefold X and a line l ⊂ X whose associated
spectral curve is S and the theta-conic is �. Such a pair (X , l) is unique up to a
projective equivalence.

If S and � are real, then X and l can be chosen real, and they are defined uniquely
up to a real projective equivalence.

Proof Over C, the existence statement is proved in White (1930) by an explicit con-
structionof the polynomials Li j , Qi , i, j ∈ {1, 2}, andC of degrees 1, 2, 3 respectively,
such that� and S are given byEqs. (2.4) and (2.3) (amodern proof is given inBeauville
2000). If S and� are real, then by choosing the auxiliary lines and auxiliary collections
of points involved in this construction to be invariant under the complex conjugation
one makes the above polynomials, and hence the above equations, real. The absence
of singular points on the cubics X constructed in this way follows from Lemma 2.1.

The uniqueness statement is also well known, see, for example, Appendix C in
Clemens and Griffiths (1972). Unfortunately, the proof is not explicit there, and we
could not find any complete one elsewhere. The proof that we give below is different
(although should be known to experts) and can be easier adapted to the real setting.

Let S and� be the spectral quintic and the spectral conic associated with a real line
l on a real non-singular cubic threefold X ⊂ P4.We assume, like in the statement, that
S is non-singular and show how to reconstruct the pair (X , l) from (S,�) canonically
up to real projective equivalence.

Recall, first, that for each s ∈ S the projective plane Ps generated by s and l
intersects X along l + l ′s + l ′′s where l, l ′s , and l ′′s are three distinct lines unless � is
singular and s is its node: in this exceptional case l is equal to one of l ′s, l ′′s . Consider the
mapping φ : S → P4 that sends s ∈ S to the intersection point l ′s ∩ l ′′s ∈ P4. It is well
known to be an embedding associated with the linear system |L + D|, where L stands
for sections of S by the lines in P2 ⊃ S and D is the contact divisor, D = 1

2 (S ·�) cf.,
Beauville (1977, Remarque 6.27). So, the pair (S,�) determines the curve φ(S) up
to real projective equivalence. Furthermore, since l ′s ∩ l ′′s ∈ l if and only if s ∈ S ∩ �,
we can also reconstruct the line l from φ(S) as the unique line passing through φ(D).

Next, we consider the projection πEl : El → P2 given in Proposition 2.5. In the
case of non-singular �, it identifies the line l with � so that the two points, t ′ = l ∩ l ′s
and t ′′ = l ∩l ′′s , coincide with the tangency points to� of the two tangent lines through
the point s. If the conic � has a node at s0, then El can be obtained by blowing up
P̂2 → P2 at s0 and then taking the double covering El → P̂2 branched along the
proper image of�. The line l is then identifiedwith the (−2)-curveC2 ⊂ El that covers
the exceptional (−1)-curve C1 ⊂ P̂2, and the points t ′, t ′′ ∈ l become represented by
the inverse image under the covering C2 → C1 of the point corresponding to the line
s0s.

Thus, we have reconstructed the lines l ′s, l ′′s ⊂ X for each generic s ∈ S. Finally,
we can conclude that this collection of lines determines the whole X , because it
determines all its generic hyperplane sections passing through l as it follows from
Schläfli’s theorem (Schläfli 1858): given five skew lines in P3 and a line intersecting
them all, there exists a unique cubic surface containing these six lines. ��
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3.4 Deformation Class [S] as a Real Deformation Invariant of (X, l)

Consider the variety C formed by pairs (X , l) where X ⊂ P4 is a non-singular cubic
3-fold and l is a line on it, as well as its two hypersurfaces

�res
C = {(X , l) ∈ C | l ∈ �res(X)}, �II

C = {(X , l) ∈ C | l ∈ �II (X)}

which are responsible for the associated spectral curve and theta-conic being singular.
Put C∗ = C � �res

C .
In addition, consider the variety S formed by pairs (S,�) where S ⊂ P2 is a

non-singular quintic and � is a conic contact to S.
The spectral correspondence associates to (X , l) ∈ C∗ its spectral curve and

theta-conic, that is a pair (S,�) ∈ S. The latter pair depends of course on the
choice of a plane P2 chosen as the target of the central projection from l. So,
it is natural to pass to the varieties of projective classes (moduli spaces), and to
speak of the spectral correspondence as a well-defined regular morphism between
C∗/PGL(5; C) and S/PGL(3; C). This morphism is defined over the reals. Accord-
ing to Theorem 3.1, both morphisms, 
 : C∗/PGL(5; C) → S/PGL(3; C) and

R : C∗

R
/PGL(5; R) → SR/PGL(3; R), are bijective (in fact, the both are isomor-

phisms; this stronger statement will be commented a bit more in Sect. 10.1, but not
actually used in our paper).

The rest of this section is devoted to proving the following result.

Proposition 3.3 If (Xi , li ) ∈ C∗
R
, i = 0, 1, are real deformation equivalent (can be

connected by a path in CR) and (Si ,�i ) ∈ 
R[(Xi , li )], i = 0, 1, then Si are also
real deformation equivalent (can be connected by a path in C5,1

R
� �

5,1
R

).

First, we introduce and analyze codimension in C of the following subvarieties:

�III
C = {(X , l) ∈ C | l ∈ VIII (X)} (where VIII (X) is defined in Sect. 2.5)

that is responsible for S and � sharing a common nodal point, and

�
split
C = {(X , l) ∈ C | S and � have a common irreducible component}.

Lemma 3.1 The codimension of the varieties �III
C and �

split
C in C is ≥ 3.

Proof If (X , l) belongs to �III
C or �

split
C then either � splits into two lines or � is

an irreducible component of S. Indeed, if � belongs to �III
C , then � and S have a

common node (see Proposition 2.3(3)), and in particular, � is reducible.
Consider first the case of � splitting into a pair of lines. Let us choose a coordinate

system [x : y : z :u :v] in P4 so that the line l is given by equations x = y = z = 0 and
the conic� in P2 with coordinates [x : y : z] by equation xy = 0. Then, after a suitable
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linear coordinate change in u and v, the definingminor (2.4) of the fundamental matrix
(2.2) of X can be transformed into

(
L11 L12
L12 L22

)
=

(
x 0
0 y

)
.

Thereby, in the affine chart (x, y) in P2 the linear part of the polynomial (2.3) defining
S is equal to −(x Qzz

2 + yQzz
1 ), where Qzz

i is the coefficient of Qi , i = 1, 2, at z2. So,
S is singular at (x, y) = (0, 0) if and only if Qzz

1 = Qzz
2 = 0. These two conditions

along with the third condition of nodality of� (that is a linear dependence of the three
linear forms Li j ) are independent, and thus we conclude that �III

C has codimension 3.
If S and� have a common line-component, for instance in the above coordinates, S

contains line x = 0, then the summand yQ2
1 in the determinant equation of S must be

divisible by x , which means vanishing of the three coefficients Qyy
1 , Qyz

1 , and Qzz
1 in

the monomials that do not contain x . Independence of these three coefficients implies
that�split

C has codimension≥ 3 (in fact, 4 because of an extra condition of reducibility
of �) in the case of a common line component.

At last, we consider the case of � being an irreducible component of S. Then, by
a coordinate change the theta-conic minor (2.4) can be transformed into

(
L11 L12
L12 L22

)
=

(
x z
z y

)
.

Whereafter vanishing of det As on � = {xy − z2} is equivalent to vanishing of
2zQ13Q23− x Q2

23− yQ2
13. To conclude the proof it is sufficient to notice that already

vanishing of it at the points (1, 0, 0), (0, 1, 0), and (1, 1, 1) imposes 3 independent
conditions. ��

Lemma 3.1 implies in particular that a generic path in the real locus CR does not
intersect �III

CR ∪ �
split
CR . We let

C∗∗
R

= CR �

(
�III

CR ∪ �
split
CR

)
.

Lemma 3.2 Let {(Xt , lt )}t∈[0,1] be a path in C∗∗
R

that intersects �res
CR just once, at

0 < t = t0 < 1, and not at a point of �I I
C , and let (S′

i ,�
′
i ) ∈ 
R[(Xi , li )], i = 0, 1.

Then S′
0 and S′

1 are non-singular and real deformation equivalent.

Proof Let us choose continuously varying with t projective coordinates (xt , yt , zt ,

ut , vt ) in P4 so that lt is defined by equations xt = yt = zt = 0. It associates
with {(Xt , lt )}t∈[0,1] a well defined path (St ,�t ) in SR. Connectedness of PGL(3; R)

allows us to adjust the path so that S0 = S′
0 and S1 = S′

1.
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Fig. 2 Forbidden smoothing

By assumption, and according to Propositions 2.2 and 2.3, the quintic St0 is nodal,
the other quintics St in the family are non-singular, and the conic �t0 is smooth at
the nodes of St0 . We need to justify that for each node of St0 the topological type of
smoothing for t < t0 and for t > t0 is the same.

In fact, if a node of St0 is cross-like, then smoothness of �t0 and the properties (3)–
(4) from Proposition 2.2 imply that �t0 has an odd local intersection index with each
of the real branches of St0 at the node. This forbids the topological type of smoothing
shown on Fig. 2, since it generates real points of odd intersection index between St

and �t near the node, for t �= t0 close to t0.
If a node is solitary, then at such a node the local intersection index indx (St0 ,�t0)

is equal to 2. Thus, in a small neighborhood of the node, for t �= t0 sufficiently close
to t0, the curves St ,�t have one and only one tangency point. Hence, this point is
real, which allows only the birth-of-an-oval type of smoothing both for t < t0 and for
t > t0. ��

One can say that the path {St } appearing in the proof of this Lemma is just a return
back after touching the discriminant (see Fig. 3).

Proof of Proposition 3.3 Clearly, C is a non-singular (quasi-projective) variety. Hence,
any path (Xt , �t ), t ∈ [0, 1], in CR with endpoints in C∗

R
can be approximated by a

smooth path in C∗∗
R

that intersects �res
CR at a finite number of points, none of which

belongs to�I I
C ∩�res

CR. By Lemma 3.2 the deformation class of the associated spectral
quintics remains the same after each crossing. ��

Fig. 3 Crossing of the walls in

CR and in C5,1
R
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4 Spectral Matching Correspondence

Throughout this section, for any given real algebraic curve X , we denote by c the
involution induced in H1(X; Z/2) by the complex conjugation, conj X → X .

4.1 Smith Discrepancy (Degtyarev and Kharlamov 2000)

The Smith theory yields the Smith inequality b∗(XR; Z/2) ≤ b∗(X; Z/2) for any real
algebraic variety X and its real locus XR, where b∗(�, Z/2) = dimZ/2 H∗(�; Z/2)
is the total Z/2-Betti number.

The gap b∗(X; Z/2) − b∗(XR; Z/2) is always even and we call its half dX =
1
2 (b∗(X; Z/2) − b∗(XR; Z/2)) the Smith discrepancy of X . We say that X is an M-
variety (an M-curve, an M-surface, etc.) if dX = 0, and in the case dX > 0, an
(M − d)-variety.

Proposition 4.1 For any real non-singular algebraic curve X with XR �= ∅ the Smith
discrepancy dX is equal to the rank of the homomorphism id +c in H1(X; Z/2).
For any real non-singular projective n-dimensional hypersurface X of odd degree
the Smith discrepancy dX is equal to the rank of the homomorphism id +c in
Hn(X; Z/2). ��

4.2 Klein Type (Degtyarev and Kharlamov 2000)

A real non-singular algebraic variety X is said to be of Klein type I if XR is null-
homologous in Hn(X; Z/2), n = dimC(X), and of Klein type II otherwise. Note that
a non-singular irreducible real algebraic curve X with XR �= ∅ is of type I if and only
if X � XR splits in two components.

One can reformulate this definition in terms of characteristic elements of the linear
map Hn(X; Z/2) → Z/2, x �→ x ◦ c(x), that (due to Poincaré duality) can be
represented by a unique homology class wc = wc(X) ∈ Hn(X; Z/2) such that
x ◦ c(x) = x ◦ wc for any x ∈ Hn(X; Z/2). By famous Arnold’s lemma, wc is given
by theZ/2-fundamental class [XR] ∈ Hn(X; Z/2), which implies the following result.

Proposition 4.2 A real non-singular algebraic variety X is of Klein type I if and only
if wc(X) = 0. ��

4.3 Topological and Deformation Classification of Non-singular Real Plane Quintic
Curves (Degtyarev and Kharlamov 2000)

The real locus A of a non-singular real plane curve A of odd degree has always one, and
only one, one-sided component, whichwe denote J . The other, two-sided, components
(if exist) are called ovals. Each oval bounds a disc in RP2 called its interior and the
complementary Möbious band called its exterior. A pair of ovals is said to be nested
if one of them contains the other in its interior, otherwise they are called disjoint.
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The Smith inequality applied to a non-singular real plane quintic says that the
number of its ovals is ≤ 6. We use the code J � k to refer to the case of k disjoint
ovals, and the code J � 1〈1〉 for the case of two nested ovals. No other arrangement is
possible.

Non-singular real plane quintics form 9 deformation classes. One of the classes is
formed by quintics of type J � 1〈1〉, quintics in the other 8 classes have no nested
ovals. Among them two “twin-classes” refer to quintics with 4 ovals, but in one class
the quintics are of Klein type I, and in the other of type II. We use the code J � 4I to
refer to the first of these classes and code J � 4I I for the second class of quintics. The
remaining 6 deformation classes of quintics are distinguished by the number k of ovals
and have the codes J � k, k = 0, 1, 2, 3, 5, 6. We frequently use J as abbreviation for
J � 0, and J � 4 for J � 4I I .

There is a simple criterion to distinguish quintics of types J � 4I and J � 4I I in
terms of convexity of the oval arrangement. Namely, we say that four ovals of a real
plane quintic are not in convex position, if, for three points A, B, C ∈ P2

R
chosen in

the interior of three distinct ovals between the four, the triangle ABC whose edges do
not intersect the J-component, contains the fourth oval in its interior. Otherwise, we
say that the four ovals are in convex position.

Lemma 4.1 (Fiedler 1983) A real plane nonsingular quintic having exactly four ovals
is of type I, if and only if its four ovals are not in a convex position. ��

4.4 Topological and Deformation Classification of Non-singular Real Cubic
Threefolds (Krasnov 2009)

Non-singular real cubic threefolds form 9 deformation classes. Two of these classes
are “twins” in the sense that they are formed by cubics X with the same topological
type of the real locus, XR = RP3#3(S1 × S2). These twins are distinguished by their
Klein type, and we denote by C3

I that twin-class which has cubics of Klein type I, and
reserve notation C3

I I for the other twin-class, with cubics of type II. We use also C3

as abbreviation for C3
I I .

For the other seven deformation classes of cubics, the topology of XR determines X
up to a real deformation. For five of these deformation classes, X = RP3#k(S1 × S2),
k = 0, 1, 2, 4, 5 and we notate them Ck . There is one deformation class, where the
real locus of cubics is disconnected, XR = RP3 � S3, and we denote it by C1

I (2). The

remaining deformation class is called exotic and is denoted by C1
I , in this case XR is

a Seifert manifold �(2, 4, 6).
The above classifications are summarized in the first two columns of Table 1 (see

also Fig. 4).

123



Deformation Classification of Real Non-singular Cubic… 367

Table 1 Real cubic threefolds and their Fano surfaces

Deformation type Real cubic locus XR Real Fano locus FR(X)

Ck , 0 ≤ k ≤ 5 RP3#k(S1 × S2) N5 � (k+1
2

)
T 2

C3
I RP3#3(S1 × S2) N5 � 6T 2

C1
I �(2, 4, 6) RP2 � N6

C1
I (2) RP3 � S3 N5

Fig. 4 Adjacency graphs (vertices of type I are boxed)

4.5 Topology of Real Fano Surfaces

For any non-singular real threefold X of type Ck , 0 ≤ k ≤ 5, the real locus of the Fano
surface, FR(X) = N5�(k+1

2

)
T 2, is formed by disjoint union of

(k+1
2

)
copies of a torus

(in particular, no tori for k = 0) and a non-orientable surface N5 that is a connected
sum of 5 copies of RP2. For X of type C3

I the topological type FR(X) = N5 � 6T 2

is the same as for cubics of type C3. The case of type C1
I is the only one where

the Fano surface has two non-orientable components, FR(X) = N6 � RP2. Finally,
FR(X) = N5 for cubics of type C1

I (2). This classification is summarized in the third
column of Table 1.

4.6 Adjacency Graphs (Kharlamov 1981)

Our aim here is to relate two adjacency graphs (see their definition in “Conventions”
in Sect. 1): graphs �5,1 and �3,3 related to the plane quintics and cubic threefolds
respectively. These two graphs are shown on Fig. 4. They are combinatorially isomor-
phic although their additional decoration with the Smith discrepancies and Klein type,
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as indicated on this figure, makes a difference at one vertex. To explain this similar-
ity was actually one of our principal motivations for this research and the matching
correspondence theorem stated at the end of this section achieves this goal.

Note that these two examples demonstrate two fundamental properties of the graphs
�d,k that hold for many values of d and k:

(1) Smith adjacency: the endpoints of the edges have Smith discrepancies that differ
by 1; in particular, there is no loop-edges;

(2) Klein principle: if one of the endpoints of an edge has Klein type I, then its Smith
discrepancy is smaller than for the other endpoint.

4.7 Quadrocubics Representing Edges of 03,3

Consider a cubic threefold X ⊂ P4 with a singular point s, and choose coordinates
x, y, z, u, v in P4 so that s acquires the coordinates (0, 0, 0, 0, 1). Then X is defined
by equation f3 + v f2 = 0 where f2, f3 are homogeneous polynomials in x, y, z, u of
degree 2 and 3 respectively.

The intersection A of the quadric f2 = 0 with the cubic f3 = 0 in the local
projective 3-space, P3

s , centered at s describes the locus of lines contained in X and
passing through. We call A the quadrocubic associated with s. If X and s are real,
then A is real also, so that this correspondence provides a well defined map from the
space of real projective classes of real pairs (X , s) where X is a real cubic threefold
with a chosen real node s to the space of real projective classes of real pairs (Q, A)

where Q is a real non-singular quadric surface in P3 and A is a real curve traced on
Q by a real cubic surface.

Proposition 4.3 The map defined above is an isomorphism.

Lemma 4.2 Assume that real cubic threefolds X0 and X1 have a common node s0 and
that at this node both cubics have the same local quadric and the same quadrocubic.
Then there exists a continuous family of real projective transformations Tt : P4 → P4,
t ∈ [0, 1], such that T0 = id, T1(X0) = X1, and Tt (s0) = s0 for each t ∈ [0, 1].
Proof Consider a real affine chart centered at s0. The degree 3 real affine equations of
X0 and X1 can be chosen then in the form f2+ f3 = 0 for X0 and f2+(c f3+ f1 f2) = 0
for X1, where c �= 0 is a real constant and f1, f2, f3 are real homogeneous equations
in 4 variables of degrees 1, 2, 3 respectively. Affine homotheties include X0 into a
continuous family of cubics f2 + c f3 = 0, with c > 0. Alternation of the sign of c is
equivalent to a simultaneous alternation of sign for all the affine coordinates, which
can be achieved by a continuous family of rotations with center in s0. So, it is left to
eliminate the term f1 f3 by replacing the affine chart in a way that 1+ f1 = 0 becomes
“the infinity hyperplane”, which can be done via a continuous family of real projective
transformations. ��
Proof of Proposition 4.3 Straightforward consequence of Lemma 4.2. ��

If X is a one-nodal cubic, then the quadrocubic A is non-singular, it has genus 4,
and its embedding A ⊂ P3

s is canonical. Conversely, for any complex non-singular
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not hyperelliptic genus 4 projective curve A, its canonical embedding presents A as
a quadrocubic in P3

s (with not necessary degenerate f2). If A is real, then the latter
embedding can be made real and gives an intersection of a real quadric f2 = 0 with a
real cubic f3 = 0.

This observation implies that the edges of �3,3 are in one-to-one correspondence
with the deformation classes of real genus 4 projective curves (note that in genus 4
hyperelliptic ones form a codimension 2 subvariety, and therefore their removal does
not change the set of real deformation classes).

The deformation classification of real non-singular genus g projective curves is
well-known: the deformation class of such a curve is detected by the number 0 ≤ k ≤
g + 1 of components of its real locus and by its Klein type. In the case of g = 4, the
Klein type is determined by the number of components for k �= 1, 3: for k = 5 the
type has to be I (as it is always for M-curves), and for even k the type is I I (as it is
always if the number of components has the same parity as the genus of the curve).
For k = 1, 3 both Klein types are realizable, and so, we have 8 deformation classes
of real genus 4 real curves in total; they will be denoted by k and kI according to the
number k of real components, where subscript “I” will be used only for k = 1, 3 for
the curves of Klein type I.

Theorem 4.1 (Krasnov 2006) The edge in �3,3 represented by a quadrocubic of type
k, 1 ≤ k ≤ 5 connects the vertices Ck−1 and Ck. The edge of type 0 connects C0 with
C1

I (2). The edges of type kI , k = 1, 3, connect Ck−1 with Ck
I (see Fig. 5). ��

Among the two endpoints of the edge of �3,3, the one with the greater value of
the Smith discrepancy will be called ascending and the one with the lesser value
descending.

Corollary 4.1 If A is a non-singular quadrocubic with AR �= ∅ and X a real cubic
threefold representing the ascending endpoint of the edge of �3,3 given by A, then the
Smith discrepancy and the Klein type of A are the same as for X. ��

4.8 Spectral Matching Correspondence

By a matching we mean a pair of deformation classes ([X ], [S]), where [X ] ∈ V3,3
is represented by a non-singular cubic threefold X and [S] ∈ V5,1 by a non-singular
plane quintic S. A matching ([X ], [S]) is called spectral, if S is the spectral quintic
with respect to a real line l ⊂ X such that (X , l) ∈ C∗

R
, in this case we say that the line

l realizes the matching ([X ], [S]).

Fig. 5 Graph �3,3 with
indication of types of edges
(marked by k and kI ) and
vertices (type one classes are
shown in black) 1
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A matching ([X ], [S]) is called perfect, if X and S have the same Klein type and
same Smith discrepancy, dX = dS . If dX = dS − 2, the matching ([X ], [S]) is called
skew. We say that a skew matching is type-preserving, if both X and S are of the same
Klein type, and mixed otherwise. A mixed skew matching is called admissible, if X
is of Klein type I , XR is connected, and S is of Klein type I I .

Theorem 4.2 (1) The spectral matching ([X ], [S]) realized by a line l ⊂ X is a real
deformation invariant of the pair (X , l).

(2) This invariant is complete in the sense that all the pairs (X , l) that give the same
spectral matching belong to the same real deformation class.

(3) A matching is spectral if and only if it belongs to one of 3 types: perfect, type-
preserving skew, or admissible mixed skew.

Comparison of the graphs �3,3 and �5,1 (see Fig. 4) implies immediately that
for any [X ] ∈ V3,3 there exists precisely one [S] ∈ V5,1 such that ([X ], [S]) is a
perfect matching. In particular, there exist precisely |V3,3| = 9 such matchings. Note
also that there is no skew matchings involving [X ] of type C0 (because dS ≤ 5, while
dX +2 = 7), and that in the case of typeC1

I (2) the only skewmatching is not admissible.

In the cases of typesC5 andC3
I there exist two skewmatchings: one is type-preserving

and another is admissible mixed. The remaining 5 deformation classes [X ] admit only
one skew matching, which is admissible mixed in the case of C1

I and type-preserving
in the other 4 cases. So, by Theorem 4.2 there exist totally 9 + 4 + 5 = 18 spectral
matchings and we obtain the following result.

Corollary 4.2 There exist precisely 18 real deformation classes of pairs (X , l), where
X is a real non-singular cubic threefold and l ⊂ X is a real line. Namely, they are
represented by:

(1) 9 perfect matchings

(C1
I (2), J � 1〈1〉), (C1

I , J � 1〈1〉), (C3
I , J � 4I ), and (Ck−1, J � k) with

1 ≤ k ≤ 6;

(2) 3 admissible mixed skew matchings

(C1
I , J ), (C3

I , J � 2), and (C5, J � 4);

(3) and 6 type-preserving skew matchings

(C3
I , J � 1〈1〉), (C5, J � 4I ), and (Ck+1, J � k) with 0 ≤ k ≤ 3.

��

4.9 Proof of Theorem 4.2(1)

Proposition 3.3 implies that [S] is an invariant of pairs (X , l) ∈ C∗
R
with respect

to deformations in the (larger) space CR, and so the pair ([X ], [S]) is also such an
invariant.
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4.10 Strategy of Proving (2)–(3) of Theorem 4.2

Claim (3) of Theorem 4.2, which describes the image of the spectral matching corre-
spondence that associates a pair ([X ], [S]) to a real deformation class [X , l] of (X , l),
is proved in Sect. 5.8.

Claim (2) is proved in Sect. 5.9 for cubics with dX ≥ 4, while the more involved
case dX ≤ 3 is derived in Sect. 9 fromTheorems 4.3 and 4.4. In fact, the latter theorems
enumerate the deformation classes [X , l] in terms of orbits of themonodromy action on
real Fano components and provide, thus, an upper bound on the number of deformation
classes. This bound happens to coincidewith the lower boundgiven by claim (3),which
ends the proof of claim (2).

4.11 Smith Discrepancy in Terms of Real Fano Components

The remaining part of this section is devoted to formulation of two Theorems which
develop our main Theorem 4.2.

As is known (see Sect. 4.5), the real locus of the Fano surface of any non-singular
real cubic threefold X has precisely one connected component with odd Euler char-
acteristic. Namely, this component is homeomorphic to RP2 in the case of an exotic
cubic and to a connected sum #5RP2 in the other cases. Let us denote this component
by N (X) and call it the odd Fano component.

Theorem 4.3 Assume that X is a non-singular real cubic threefold, and l ∈ FR(X) �

�res. Then:

(1) If l ∈ N (X), then S has the same Smith discrepancy and the same Klein type as
X. (cf., Table2) .

(2) If l /∈ N (X), then the Smith discrepancies dS of S and dX of X differ by 2:

dS = dX + 2.

In other words, the perfect spectral matchings (X , S) are realized by l ∈ N (X), while
the skew matchings by l ∈ FR(X) � N (X).

Table 2 XR, F(X) and SR in the case of l ∈ N (X), here H = S1 × S2

C1
I C1

I (2) C0 C1 C2 C3 or
C3

I

C4 C5

XR �(2, 4, 6) RP3 � S3 RP3 RP3#H RP3#2H RP3#3H RP3#4H RP3#5H

FR RP2 � N6 N5 N5 N5 � T 2 N5 �3 T 2 N5 �6 T 2 N5�10 T 2 N5 �15 T 2

SR J � 1〈1〉 J � 1〈1〉 J � 1 J � 2 J � 3 J � 4 J � 5 J � 6
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4.12 TheMonodromy

Having chosen a connected component of the variety parametrizing real non-singular
cubic threefolds and a particular cubic X as a base point in it, we get a well defined
monodromy action homomorphism, μX , from the fundamental group of the chosen
connected component into the mapping class group Map(XR). Besides, it yields a
homomorphism, μF , into the mapping class group Map(FR(X)), and, in particular,
defines an action of the fundamental group on the set of connected components of
FR(X). The image of the latter action is a subgroup Gmon of the full permutation
group of the components of FR(X), andwe call it theFano real component monodromy
group. We say that two components of FR(X) are monodromy equivalent if they can
be permuted by Gmon.

Let us denote by T (X) the set of toric components of FR(X). The next theorem
describes the orbits of the action of Gmon on the set of toric components, if their
number |T (X)| is ≥ 2, which is the case for X of deformation types Ck , k ≥ 2,
and C3

I . By Theorem 4.3, a choice of a line l in (FR(X) � N (X)) � �res provides a
mixed matching. So, for cubics X of Klein type I, namely for those of deformation
types C5 and C3

I (among the ones with |T (X)| ≥ 2), we may speak on two types of
toric components: a choice of l on a torus of type I provides a type-preserving skew
matching (that is a spectral quintic S of type I), while choice on a torus of type II yields
a mixed skew matching (S is of type II). These two types of tori form a partition of
the set T (X) into two subsets, TI (X) and TI I (X).

After completing proving Theorem 4.3 in Sect. 9, we finalize there our proof of the
following Theorem 4.4.

Theorem 4.4 Let X be a non-singular real cubic threefold. Then:

(1) Gmon acts transitively on T (X) unless X has deformation type C5 or C3
I ;

(2) Gmon has two orbits, TI (X) and TI I (X), in T (X) if X is of deformation type C5;
TI (X) is formed by 6 tori, and TI I (X) by 9 tori;

(3) Gmon has two orbits, TI (X) and TI I (X), if X is of deformation type C3
I ; each

orbit consists of 3 toric components.

Table3 indicates explicitly the correspondence between the monodromy orbits of
the tori in FR(X) and the real deformation type of the corresponding spectral quintics
(when the quintics are non-singular).

In this table the symbols hI and hI I indicate the type of the difference class h =
θ − θ0 ∈ H1(S; Z/2): type I if h is the characteristic class wc of involution c, and
type II otherwise.

Table 3 SR for l ∈ FR(X) � N (X)

X C1
I C1 C2 C3

I C3
I C3 C4 C5 C5

l N6 T T TI TI I T T TI TI I

SR JhI JhI I J � 1 J � 1〈1〉 J � 2hI J � 2hI I J � 3 J � 4I J � 4I I

123



Deformation Classification of Real Non-singular Cubic… 373

5 Comparison of XR and SR

5.1 Homological Correspondence

As before, we consider a real non-singular cubic threefold X ⊂ P4, a real line l ⊂ X ,
l /∈ �res, the associated spectral curve (a real non-singular plane quintic) S and the
theta-conic �. Recall that for the spectral double covering pS : S̃ → S (see Sect. 2.6)
the curve S̃ is formed by the lines intersecting with l, and that this covering is defined
by the spectral difference class h∗ that is the difference class associated with � (see
Sect. 3.2).

In what follows, we denote by h ∈ H1(S; Z/2) the Poincaré dual to h∗ and by
H h
1 (S; Z/2) the orthogonal complement of h. We equip the quotientZ/2-vector space

H h
1 (S; Z/2)/h with the induced by the intersection pairing non-degenerate bilinear

form.
The involution induced in H1(S̃) by the deck transformation of the theta-covering

is denoted by τ and its eigen-lattice Ker(1 + τ) by H−
1 (S̃). The involutions induced

by the complex conjugation in H3(X; Z/2), H h
1 (S; Z/2)/h, H1(S̃), and H−

1 (S̃) are
denoted by cX , ch

S , cS̃ , and c−
S̃
, respectively.

Theorem 5.1 There exists an isometry H3(X; Z/2) → H h
1 (S; Z/2)/h which com-

mutes with the involutions cX and ch
S.

We postpone the proof of this theorem to the end of this subsection.
Let us start from considering the following piece of the Gysin exact sequence

H2(S; Z/2)
∩h∗−−→ H1(S; Z/2)

p∗
S−−→ H1(S̃; Z/2)

pS∗−−→ H1(S; Z/2)
∩h∗−−→ H0(S; Z/2)

where the first and the last group are Z/2, the first map sends the generator of Z/2
to h, and the last map sends a ∈ H1(S̃; Z/2) to h∗(a) ∈ Z/2. In addition, consider
an anti-symmetrization homomorphism 1 − τ : H1(S̃) → H1(S̃), x �→ x − τ x . We
denote by τ2 the modulo 2 reduction of τ and put B = Im(1 + τ2) ⊂ H1(S̃; Z/2).

Lemma 5.1 (1) Im(p∗
S ◦ pS∗) = B;

(2) p∗
S induces an isomorphism H h

1 (S; Z/2)/h → B;
(3) H−

1 (S̃) = (1 − τ)H1(S̃);
(4) B is the image of H−

1 (S̃) under the modulo 2 reduction homomorphism H1(S̃) →
H1(S̃; Z/2);

(5) the latter reduction identifies H−
1 (S̃) ⊗ Z/2 with B;

(6) all the above isomorphisms are equivariant with respect to complex conjugation
involutions.

Proof Item (1) follows from the identity 1+ τ2 = p∗
S ◦ pS∗. The same identity and the

exactness of the Gysin sequence at its second and forth terms implies item (2). Items
(3)–(5) follow from (1 − τ)H1(S̃) = B mod 2 and rank B = rank H−

1 (S̃). Item (6)
becomes now evident. ��
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Due to item (3) in above Lemma, 12 (a ·b) is an integer for all a, b ∈ H−
1 (S̃). Namely,

it is equal to −x · y + x · τ y where x − τ x = a, y − τ y = b. Thus, taking the residue
modulo 2 of 1

2 (a·b)weobtain awell defined symmetric bilinear formon H−
1 (S̃)⊗Z/2.

We call it the Prym pairing. On the other hand, x · (y + τ2 y) = (x + τ2 x) · y for all
x, y ∈ B and gives a well defined symmetric bilinear form on B, which we call the
B-pairing.

Proposition 5.1 The inclusion homomorphism H−
1 (S̃) ⊗ Z/2 → H1(S̃; Z/2) trans-

forms the Prym pairing in H−
1 (S̃) ⊗ Z/2 into the B-pairing in B. The pull-back

homomorphism p∗
S transforms the intersection index pairing in H h

1 (S; Z/2)/h into
B-pairing in B.

Proof The first part is straightforward from definitions and Lemma 5.1(5). The second
part follows from Lemma 5.1(1-2) and the identities x · (y +τ2 y) = x · (p∗

S ◦ pS∗)y =
(pS∗x) · (pS∗y) for all x, y ∈ H1(S̃; Z/2). ��

Let us recall, finally, that given a 1-cycle in S̃ represented by a loop γ : [0, 1] → S̃,
one can associate with it a 3-cycle traced in X by the lines �(γ (t)), t ∈ [0, 1]. This
yields a so-called Abel-Jacobi homomorphism � : H1(S̃) → H3(X).

Proposition 5.2 Abel-Jacobi homomorphism � has the following properties:

(1) �(a) · �(b) = a · (τS̃(b) − b) = (τS̃(a) − a) · b;
(2) Ker � = H+

1 (S̃);
(3) Im � = 2H3(X);
(4) 1

2� yields an isometry between H−
1 (S̃) equipped with the pairing (x, y) �→ − 1

2 x ·y
and H3(X) equipped with the Poincaré pairing. This isometry is equivariant with
respect to c−

S̃
and cX .

Proof For items (1) and (2), see, for example, Tyurin (1972) Lecture 2, §2. Items (3)
and (4) follow from (1) and (2). Indeed, since each element in H−

1 (S̃) is of the form
x −τ x, x ∈ H1(S̃), (2) implies that�(H−

1 (S̃)) ⊂ 2H3(X); finally (1), due to the latter
inclusion, implies both (3) and the isometry property. Equivariance is tautological. ��
Proof of Theorem 5.1 It is left to combine the isometry from Proposition 5.2(4) with
the isometries from Proposition 5.1. ��

5.2 Vanishing Classes and Bridges

Given a continuous family St , t ∈ [0, 1], of real plane curves with non-singular St

for t ∈ (0, 1] and S0 having only one node as a singularity, we say that S1 is a real
perturbation of S0 and S0 is a one-nodal real degeneration of S1. In this case, the
so-called vanishing cycles can be represented by simple closed curves γt ⊂ St , t > 0,
invariant with respect to the real structure, and we call them real vanishing cycles. If
the node is a solitary point, then one kind of its perturbations leads to a birth of an
oval and this oval does represent a real vanishing cycle. Another kind of perturbations
leads to “disappearing” of the solitary point: in this case γt have no real points, and
the action of conj on them is modeled by an antipodal map on S1. The homology class
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vt ∈ H1(St ; Z/2), t > 0, represented by such a γt is called a vanishing oval class
for the first kind of perturbations and a vanishing invisible class for the second kind.
Clearly, in the both cases c = conj∗ acts identically on v.

A closed curve on γ ⊂ St is called a bridge if it is conj-invariant and has precisely
two real points, or in other words γ = β ∪ conj(β) where β is a path between points
of StR that passes in St � StR. Their homology classes v ∈ H1(St ; Z/2), which are
also c-invariant, are called bridge classes. A special kind of bridges appear after a
perturbation of a cross-node on S0. These classes are called vanishing bridge-classes.

5.3 Subgroups I, K and the Characteristic Elementwc

Let K and I denote the kernel and the image of the linear endomorphism φc = 1+ c :
V → V , V = H1(S; Z/2). Note that φ2

c = 0, or equivalently I ⊂ K .

Proposition 5.3 For any real non-singular algebraic curve S, the subgroup K ⊂
H1(S; Z/2) is spanned by the oval-classes and the bridge-classes, provided SR �= ∅.

Proof It is equivalent to proving that K is the image of the Smith homomorphism

H1(S/ conj, SR; Z/2) ⊕ H1(SR; Z/2) → H1(S; Z/2).

The latter is a straightforward well-known consequence of the Smith exact sequence.
��

We denote by wc ∈ V the characteristic class of the quadratic form x �→ x · cx ,
and, for any class h ∈ V , denote by h∗ ∈ V ∗ = H1(S; Z/2) its Poincaré dual (cf.,
Sects. 3.1 and 4.2). We put V0 = {x ∈ V | x · cx = 0}, I0 = φc(V0), I1 = I � I0, and
d = rank I . We call the latter the discrepancy of c (cf., Proposition 4.1).

Proposition 5.4 (1) K = {h ∈ V | h · x = 0 for every x ∈ I }, and so K and I are
mutual annihilators.

(2) wc = [SR] ∈ I and K ⊂ V0.
(3) If wc �= 0, then I0 is an index 2 subgroup of I .
(4) x · cx = y · cy if φc(x) = φc(y).
(5) wc belongs to I0 if the discrepancy d = rank I is even and to I1 if d is odd.

Proof Since (h +ch) · y = h · (y +cy), the validity of h · x = 0 for all x = y +cy ∈ V
is equivalent to x = cx , that is x ∈ K , which proves claim (1).

The first part of claim (2) is a particular case of Arnold lemma (cf., Sect. 4.2). Since
x = cx implies that x ·wc = x · cx = x2 = 0, we see that K ⊂ V0 and wc annihilates
K . Due to claim (1), the latter implies in its turn, that wc ∈ I .

Since K ⊂ V0 and thus I0 ∼= V0/K , we obtain claim (3).
Claim (4) follows from x · cx = x · (x + cx) = x · (y + cy) = (x + cx) · y =

(y + cy) · y = y · cy.
For proving claim (5), we introduce a residual pairing in I between a = x +cx and

b = y+cy by the formula 〈a, b〉I = x ·b. It is well defined by (1), symmetric due to the
identity x ·(y+cy) = (x+cx)·y, and clearly non-degenerate. Its characteristic element
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iswc becausewc ∈ I by (2) and 〈a, a〉I = x ·a = x ·cx = wc ·x = 〈wc, a〉I . It remains
to notice that the square of any characteristic element of a non-degenerate Z/2-valued
inner product equals to the rank of the underlying Z/2-vector space, to represent
wc ∈ I as wc = z + cz, and to conclude that rank(I ) = 〈wc, wc〉I = z · wc = z · cz
mod 2. ��

5.4 Comparison of Discrepancies d and d′

For h ∈ K , we consider V ′ = V h/h, equip it with the induced, nondegenerate, pairing
and induced involution c′ : V ′ → V ′, and put K ′ = Ker(1 + c′), I = Im(1 + c′),
d ′ = rank I ′.

Proposition 5.5 (1) If h ∈ I0 � {0}, then d = d ′ + 2;
(2) if h ∈ I1 � {0}, then d = d ′ + 1;
(3) if h ∈ K � I , then d = d ′.

Proof Consider the restriction φc|V h : V h → V h . If h ∈ I � {0}, then K ⊂ V h , and
φc(V h) ⊂ I = φc(V ) is a codimension one subspace since V h ⊂ V is. In the case
(1), we get h ∈ φc(V h), so that

dim I ′ = dim φc(V h)/h = dim φc(V h) − 1 = dim I − 2.

In the case (2), h /∈ φc(V h) and the projection V h → V h/h is injective on φc(V h),
so that

dim I ′ = dim φc′(V h/h) = dim φc(V h) = dim I − 1.

Next, in the case (3), Proposition 5.4(1) implies that K ∩ V h �= K , and thus, V h/(K ∩
V h) = V /K or, in other words, φc(V h) = φc(V ) = I . Furthermore, the quotient map
V h → V h/h is injective on I ∩ V h , since h /∈ I , and therefore

dim I ′ = dim φc(V h) = dim I .

��

5.5 The Case of Real Plane Quintics

Here, and for the rest of this section, S is a real non-singular quintic and q0 its Rokhlin
quadratic function. We let also Ki = {x ∈ K | q0(x) = i}, i = 0, 1.

Proposition 5.6 (1) A quadratic function q : H1(X; Z/2) → Z/2 is real if and only
if its difference class h∗ = q − q0 ∈ H1(S; Z/2) is real, that is Poincaré-dual to
some h ∈ K .

(2) All real quadratic functions q : H1(X; Z/2) → Z/2 have the same restriction to
I ; this restriction is linear and q(x) = i for any x ∈ Ii , i = 0, 1. In particular,
Ii = Ki ∩ I , i = 0, 1.
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(3) The Arf-invariant Arf(q0 + h∗) ∈ Z/2 is equal to q0(h) + 1. In particular,

Arf(q0 + h∗) =
{
1 if h ∈ K0,

0 if h ∈ K1.

Proof Proof of Item (1) is straightforward from definitions.
The identity q|I = (q0 + h∗)|I = q0|I holds for any h ∈ K because h∗(x) =

h · x = 0 for any x ∈ I , as it follows from Proposition 5.4(1). The other part of item
(2) follows from q(x + cx) = q(x) + q(cx) + x · cx = x · cx mod 2.

Item (3) follows from two well known facts: a general formula

Arf(q + h∗) = Arf(q) + q(h), q ∈ Quadr(S), h ∈ H1(S; Z/2)

that we apply to q = q0, and the fact that Arf(q0) = 1 in the case of plane quintics. ��
Corollary 5.1 If S is the spectral curve of a non-singular real cubic threefold X with
respect to a real line l ∈ FR(X) � �res, then, for the Smith discrepancies dX and dS

of X and S, respectively, we have two options, depending on the spectral difference
class h∗ ∈ H1(S; Z/2) dual to h ∈ H1(S; Z/2):

(1) dS = dX + 2, if h ∈ I , that is if h = x + cx for some x ∈ H1(S; Z/2) � K ;
(2) dS = dX otherwise, that is for any h ∈ K � I .

Proof Recall, that according to Proposition 4.1 the Smith discrepancies dX and dS

are equal to the rank of the homomorphism id+c∗ in H3(X; Z/2) and H1(S; Z/2),
respectively. Note also that h is always non zero. By Proposition 5.6(1), the quadratic
function q associated with the spectral theta-characteristics of (X , l) is of the form
q = q0 + h∗, where h ∈ K . It remains to apply Proposition 5.5 and to notice that
its second case, h ∈ I1, is impossible, since otherwise, by Proposition 5.6(3), we
get Arf(q) = 0, while the spectral theta-characteristics are odd, so the Arf-invariant
should be equal to 1. ��

5.6 Comparison of Klein Types

Lemma 5.2 In notation of Corollary 5.1,

(1) if dX = dS, then the Klein types of X and S are the same;
(2) if dX = dS − 2 and S is of Klein type I, then X is of Klein type I too.

Proof According to Corollary 4.2, being of Klein type I for a non-singular real quintic
S (respectively, non-singular real cubic threefold X ) is equivalent to vanishing of the
characteristic element wc(S) ∈ H1(S; Z/2) (respectively, wc(X) ∈ H3(X; Z/2)). On
the other hand,Theorem5.1 says that H3(X; Z/2) and H h

1 (S; Z/2)/h are equivariantly
isometric, which implies that wc(X) is the image of wc(S) under this isometry. So,
vanishing of wc(S) implies vanishing of wc(X). In the other direction, if wc(X) = 0
then wc(S) ∈ {0, h}, and since wc(S) ∈ I = Im(1 + cS) (see Proposition 5.4 (2)),
the Klein types of S and X must be the same if dX = dS (since it is equivalent to
h ∈ K � I , see Proposition 5.1). ��
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Proposition 5.7 Let l ⊂ X provide a spectral skew matching ([X ], [S]), and let
q = q0 + h∗ with h ∈ H1(S; Z/2) be the quadratic function representing the theta-
characteristic associated with the pair (X , l). Then this matching is admissible mixed
if h = wc and type-preserving if h �= wc.

Proof According to Proposition 4.2, S is of Klein type I if and only if wc = 0.
Similarly, using in addition Theorem 5.1, we conclude that X is of the Klein type I if
and only if the image of wc ∈ V = H1(S; Z/2) in the quotient V h/h ∼= H3(X; Z/2)
vanishes. The latter happens if either wc = 0 or wc = h. Recall also that h �= 0, see
Proposition 3.2. Thus, we have 3 cases:

(1) wc = 0, then both S and X have Klein type I and thus, the matching is type-
preserving;

(2) wc �= 0 and h �= wc, then both S and X have Klein type II and thus, the matching
is also type-preserving;

(3) wc �= 0 and h = wc, then S has type II but X has type I and the matching is
admissible mixed.

��
Corollary 5.2 The only spectral skew matchings ([X ], [S]) with [S] = J are with
[X ] = C1 and [X ] = C1

I . Namely,

(1) [X ] = C1
I if the spectral difference class h∗ is dual to h = wc,

(2) [X ] = C1 if h �= wc.

In particular, there is no spectral matching ([X ], [S]) with [S] = J and [X ] = C1
I (2).

Proof For [S] = J we have dS = 6, while by Lemma 5.2 dX must be either 6 or 4.
But real cubic threefolds X with dX = 6 do not exist, and X with dX = 4 must be of
type C1, C1

I , or C1
I (2) (see Fig. 4).

To exclude the latter, let us consider the conic bundle πl : Xl → P2, see Sect. 2.2.
For X of type C1

I (2) we have XR = S3 � RP3, and, thus, the real locus (Xl)R is also

disconnected. On the other hand, the restriction πl |(Xl )R projects (Xl)R to RP2 with
connected fibers, they are real conics, and a connected critical locus, that is the only
real component of S, which is impossible for a disconnected (Xl)R.

So, it remains to consider the skew matchings (C1, J ) and (C1
I , J ). By Proposition

5.4(5), wc ∈ I0, which together with Proposition 5.6 implies that Arf(qh) = 1 if
h = wc. Hence, choosing h = wc wemay apply Theorem 3.1 to (S, qh)with [S] = J ,
which provides us with X of type I and dX = 4, which must be of type C1

I , since we
have already excluded the typeC1

I (2). Similarly, any choice of h ∈ I0�{0, wc} gives X

of type II and dX = 4, which yields [X ] = C1, and it is left to notice that I0 �= {0, wc}.
In fact I0 is a subgroup of I of index ≤ 2 (as a kernel of q0 that is linear on I ) and
rank I = 6. ��

5.7 TheValues of h and q on the Ovals and Bridges of S

We say that a connected component C ⊂ SR has even contact with the theta-conic
� if the number of tangency points of � with C is even and odd contact otherwise.
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Tangency points are counted here with multiplicities: if the local intersection index is
2k, such a tangency point is counted with multiplicity k.

Proposition 5.8 Consider a real non-singular cubic threefold X and a real line
l ∈ FR(X) � �res. Let q = q0 + h∗ and h ∈ H1(S; Z/2) be the corresponding
quadratic function and spectral difference class, respectively. Then for each connected
component C ⊂ SR the following properties are equivalent:

(1) C has even contact with �;
(2) the spectral covering pS : S̃ → S is trivial over C;
(3) h · [C] = 0;
(4) q([C]) =

{
1 if C is an oval,

0 if C is the one-sided component.

Proof Equivalence of (1) and (2) follows from Proposition 2.8, and of (2) and (3)
from Proposition 3.2. As it follows immediately from original Rokhlin’s definition
of q0 (via the indices of normal vector fields over membranes), q0 takes value 1 on
oval components. If S is of type I, this implies that q0 is equal to 1 on the one-sided
component. It takes the same value on the one-sided component for any real non-
singular plane quintic, since (once more according to Rokhlin’s definition) the value
ofq0 on the one-sided component does not change under any variation of S through real
plane quintics without singular points on the one-sided component, Now, equivalence
of (3) and (4) follows from q = q0 + h∗. ��
Proposition 5.9 In notation of Proposition 5.8, for any v = [γ ] ∈ H1(S; Z/2), cv = v

represented by some bridge γ ⊂ S the following properties are equivalent:

(1) γ connects real points on the components not separated by �;
(2) the theta-covering pS : S̃ → S is trivial over γ ;
(3) h∗(v) = h · [γ ] = 0.

Proof Analogous to Proposition 5.8. ��
Corollary 5.3 Consider a real non-singular cubic threefold X and a real line l ∈
FR(X) � �res. Then the matching ([X ], [S]) is skew, that is dS = dX + 2, if and only
if the following two conditions are satisfied:

(1) every oval of SR has even contact with �;
(2) the interior of each oval of SR does not contain �R and all the ovals lie in the

same connected component of P2
R

� �R as J � �R.

Proof By Corollary 5.1(1), the matching is skew if and only if h ∈ I , which accord-
ing to Proposition 5.4 is equivalent to h∗(K ) = 0. By Proposition 5.3, the latter is
equivalent to the vanishing of h∗ on the oval-classes and bridge-classes.

By Propositions 5.8 and 5.9, h∗ vanishes on an oval-class [C] if and only if C
has even contact with �, and it vanishes on a bridge-class [γ ] if and only if the two
real points of the bridge are not separated by �. Since any oval can be connected
by a sequence of bridges with the J-component, these two equivalences imply the
statement. ��
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5.8 Proof of Theorem 4.2(3)

The “only if” part follows immediately from Corollary 5.1 and Lemma 5.2. The proof
of “if” part is split into Lemmas 5.7 and 5.8 below.

Lemma 5.3 Let S ⊂ P2 be a non-singular real plane quintic and h ∈ H1(S; Z/2) be
an element of K0 � {0}.
(1) There exist a non-singular real cubic threefold X and a real line l ∈ FR(X)��res

such that S and h are the spectral curve and the spectral difference class associated
to (X , l).

(2) If h ∈ K0 � I then for any such pair (X , l) representing (S, h) the matching
([X ], [S]) is perfect.

(3) If h ∈ I ∗
0 = (K0 ∩ I ) � {0} then for any such pair (X , l) representing (S, h) the

matching ([X ], [S]) is skew.

Proof (1) By Proposition 5.6(3), the theta-characteristic represented by the quadratic
function q = q0 + h∗ belongs to �∗

R1(S). Hence, according to Proposition 3.1, this
theta-characteristic can be represented by a contact conic, and it remains to apply
Theorem 3.1.

(2) is an immediate consequence of Corollary 5.1, while (3) is an immediate con-
sequence of Corollary 5.1 and Lemma 5.2(1). ��
Lemma 5.4 Let S be a non-singular real plane quintic.

(1) If SR has at least one oval, then the set K0 � I is non-empty.
(2) If SR has at most four ovals, then the set I ∗

0 is non-empty.

Proof (1) If S has k ≥ 1 ovals, then rank I = dS = 6− k by Proposition 4.1 and then
rank K = 12− rank I = 6+ k in accordance with 5.4(1). Thus, K � I is non-empty.

Assume now first that wc �= 0. Then, by Proposition 5.4(3) we have I1 �= ∅.
Choosing y ∈ I1 and x ∈ K � I we deduce from x + y ∈ K � I and q0(x + y) =
q0(x) + q0(y) = q0(x) + 1 that q0 is not constant on K � I and, hence, K0 � I �= ∅.

If wc = 0, then k ≥ 2, so that rank K/I ≥ 4. Due to Proposition 5.4(1), it implies
that there exist x, y ∈ K � I such that x + y ∈ K � I and x · y = 0. Then, for such
a pair x, y either q0(x), or q0(y), or q0(x + y) = q0(x) + q0(y) is 0 ∈ Z/2, and thus
{x, y, x + y} ∩ (K0 � I ) �= ∅.

(2) Since k ≤ 4 implies rank I = 6 − k ≥ 2, the kernel I0 of q0 (whose restriction
to I is linear) has rank ≥ 1, and so I ∗

0 = I0 � {0} �= ∅. ��
Lemma 5.5 Let S be a real non-singular plane quintic of type J � 1〈1〉, and let J , O1
and O2 denote its one-sided component, the external and the internal oval respectively.
Then:

(1) [J ] ∈ K0 � I and [O1], [O2] ∈ K1 � I ;
(2) there exists h1 ∈ K0 � I such that h∗

1(J ) = 1.

Proof Rokhlin’s function q0 takes value 1 on all oval-classes. Hence, we have
q0(O1) = q0(O2) = 1, and the identity [J ] + [O1] + [O2] = 0 ∈ H1(S; Z/2)
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(S is of Klein type I) implies q0(J ) = q0(O1)+q0(O2)+ O1 ◦ O2 = 0 so, [Oi ] ∈ K1,
i = 1, 2, and [J ] ∈ K0. To complete proving (1) note that for all bridges bi , i = 1, 2,
between J and Oi we have bi ◦ J = bi ◦ Oi = 1, which implies that [J ], [Oi ] /∈ I ,
i = 1, 2, since bridge classes belong to K , while I is orthogonal to K (see Proposition
5.4(1)).

Existence of a nodal degeneration of S merging components J and O1 implies
that as a bridge b1 we can take the vanishing class of such a degeneration. Then,
q0(b1) = 1. With such a choice, h1 = [b1] + [O2] satisfies the required properties of
(2): q0(h1) = q0(b1) + q0(O2) + b1 ◦ O2 = 0 and h1 ◦ J = 1, which implies both
h1 /∈ I and h∗

1(J ) = 1. ��
Lemma 5.6 There exist precisely 3 deformation classes of non-singular real cubic
threefolds X that match the class [S] of non-singular real quintics S of type J � 1〈1〉.
They are as follows:

(1) [X ] = C3
I , the matching is skew and type-preserving, the theta conic � has even

contact with the ovals, the interior of each oval of SR does not contain �R and
the both ovals are visible.

(2) [X ] = C1
I (2), the matching is perfect, the interior of each oval of SR does not

contain �R and the both ovals are invisible.
(3) [X ] = C1

I , the matching is perfect, the displacement of �R with respect to the
ovals is different from those described in (1) and (2).

Proof (1) By Proposition 4.1, rank I = dS = 4. Hence, rank I0 ≥ 3 which implies
I ∗
0 �= ∅. By Lemma 5.3, any h ∈ I ∗

0 leads to a pair (X , l) that realizes a skew
matching such that h is its spectral difference class. Then, [X ] = C3

I since C3
I is the

only deformation class that may give a skew spectral matching: it is type-preserving,
and admissible mixed ones do not exist at all. The rest of claim (1) follows from
Corollary 5.3.

The remainingmatchings, as in (2) and (3), can be obtained by the following choices
of h: h = [J ] for (2), and h = h1 from Lemma 5.5 for (3).

Indeed, let us consider the real part πlR : XlR → P2
R
of the conic bundle πl defined

by l. Recall that a residual conic rs with s ∈ P2
R
has a non-empty real locus if and only

if s ∈ πlR(XlR). Since the real locus of any real conic is connected, connectedness
of XR is equivalent to connectedness of πlR(XR). By Proposition 2.9 the boundary
of πlR(XR) is formed by the invisible ovals of SR. Thus, in the case [S] = J � 1〈1〉
the only possibility for W to be disconnected is if the both ovals are invisible, which,
according to Proposition 5.9, happens for h = h0, and does not happen for h = h1.
The rest of claims (2) and (3) follows from Corollary 5.3. ��
Lemma 5.7 Any perfect matching is spectral.

Proof Given a perfect matching ([X ], [S]), the quintic S should have at least one oval,
because quintics without ovals have Smith discrepancy 6, but cubic threefolds X with
dX = 6 do not exist. Hence, according to Lemma 5.4(1) there exists h ∈ K0� I , which
leads to a spectral perfect matching ([X ′], [S]) by Proposition 5.3(2). The only case
in which several perfect matching with the same [S] exist is that of [S] = J � 1〈1〉.
These perfect matchings are spectral due to Proposition 5.6. ��
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Lemma 5.8 Any type-preserving or admissible mixed skew matching is spectral.

Proof For any skew matching ([X ], [S]) we have dS = dX + 2 ≥ 2, so S should
have 6 − dS ≤ 4 ovals. Then by Lemma 5.4(2) there exists h ∈ I ∗

0 , which in its turn
produces by Proposition 5.3(3) a spectral skew matching ([X ′], [S]). The only cases
of several skew matchings with the same [S] are those of [S] = J and [S] = J � 2,
see Fig. 4.

The case [S] = J is treated in Corollary 5.2. Assume that [S] = J � 2. Then, there
exist two skewmatchings: one is type-preserving and another is admissible mixed. By
Proposition 5.4(5), wc ∈ I0. In addition, wc �= 0 since S is of Klein type II. Thus, we
have two options for the choice of h: h = wc and h ∈ I0 � {0, wc}. The second option
does exist, since rank I0 ≥ rank I −1 = dS −1 = 3. Finally, according to Proposition
5.7 the first choice gives admissible mixed and the second one gives type-preserving
skew matching. So, both matchings are spectral. ��

5.9 Proof of Theorem 4.2 in the Case d(X) ≥ 4

Part (1) and part (3) are already proved in Sects. 4.9 and 5.8, respectively. Due to part
(3) the number of deformation classes of (X , l) with dX ≥ 4 is at least 6 (see Fig. 4).
On the other hand, due to part (1), this number is bounded from above by the sum
of the numbers obtained by counting the number of connected components in a real
locus FR of a Fano surface for each of deformation classes with Smith discrepancy
≥ 4. The latter is one for each of the deformation types C0 and C1

I (2), and it is equal

to two for types C1 and C1
I (see Table 1). Thus our upper and lower bounds fit, and

the result follows.

6 The Conormal Projection

6.1 Binary Codes of Lines in a Cubic Surface

Consider a non-singular cubic surface Y ⊂ P3 and a line l ⊂ Y . The pencil of planes
{Ps}s∈P1 in P3 passing through l defines a conic bundle over P1, πl : Y → P1, whose
fibers are the residual conics rs ⊂ Ps ∩ Y . The set of points s ∈ P1 for which the
residual conic is singular consists of 5 distinct points, {s1, . . . , s5} ⊂ P1, and for each
of them the residual conic splits into a pari of distinct lines, rsi = l0i ∪ l1i (see Fig. 6).
This set will be called the spectrum of (Y , l).

In other words, the spectrum specifies the five tritangent planes Ps that contain l.
Note that a line m ⊂ Y disjoint from l intersects one of the two lines, l0i or l1i , for
i = 1, . . . , 5, since l + l0i + l1i form a hyperplane section divisor. Moreover, m cannot
intersect both lines, since a triple line intersection point on a non-singular cubic surface
may appear only for a triple of coplanar lines. We denote by bi = bi (m) ∈ {0, 1} the
corresponding upper index, so that lbi

i ∩ m �= ∅ for i = 1, . . . , 5, and thus associate
to each line m ⊂ Y disjoint from l its binary code b1 . . . b5. These codes depend on
our choice of the lines l01 , . . . , l05 , or in other words, on the order of points s1, . . . , s5,
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Fig. 6 One of the five tritangent
planes passing through the line l

and the order of lines in each pair l0i , l1i , and we call such a choice an l-transversal
marking of (Y , l).

Proposition 6.1 Among the 27 lines on a non-singular cubic surface Y exactly 16 do
not intersect a chosen line l ⊂ Y . For any l-transversal marking of (Y , l), the binary
codes b1 . . . b5 of these 16 lines are all distinct, and the sum of their bits b1 + · · ·+ b5
taken modulo 2 is the same for all these 16 lines.

Proof The first statement is contained in the discussion that precedes the definition
of binary codes. The Gram determinant of the homology classes [l], [l01 ], . . . , [l05 ] ∈
H1(Y ) is equal to 4. Hence, a combination a[l] + ∑

ai [l0i ] of these 6 elements with
integer coefficients a, a0, . . . , a5 is divisible by 2 if and only if a +∑

ai = 0 mod 2.
This implies the second statement. ��

6.2 Real Spectrum and Truncated Codes

Assume now that the non-singular cubic surface Y and the line l ⊂ Y are real. Then its
spectrum {s1, . . . , s5} ⊂ P1 is invariant under complex conjugation, namely, contains
c ≤ 2 pairs of conjugate imaginary points and r = 5 − 2c real ones. A real spectral
point si is said to be of real crossing type if the two lines l j

i , j = 0, 1, are real, and of
imaginary crossing type if they are conjugate imaginary. Let us denote by rre and rim

the number of the real spectral points of corresponding type, rre + rim = r .
The binary codes that enumerate real lines m ⊂ Y , m ∩ l = ∅, will be called

real codes. For a pair of conjugate imaginary points of the spectrum, s j = s̄i , we
may choose an l-transversal marking so that l0j = l̄0i , then for any real line m ⊂ Y

m ∩ l0j �= ∅ if and only if m ∩ l0i �= ∅, and thus, b j (m) = bi (m). So, only one of
these two bits is informative and by dropping the other one from the real binary code
we do not loose any data. After dropping one bit for each pair of conjugate imaginary
spectral points, we may additionally drop one of the bits representing a real spectral
point, since four bits determine the fifth one due to parity check (see Proposition6.1).
So, for real codes there are only (r − 1) + c = 4 − c informative bits and we obtain
the following.
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Proposition 6.2 Given a non-singular real cubic Y and a real line l ⊂ Y , the set of real
lines m ⊂ Y disjoint from l is empty if rim > 0 and consists of 24−c lines distinguished
by their truncated codes if rim = 0. ��

6.3 Binary Codes Under Nodal Degeneration

Let Y be a one-nodal cubic surface. Then, Y contains precisely 21 lines: 6 of them,
called double lines, pass through the node, while 15 others, called simple lines, do not.
The term “double line” is motivated by the fact that under any perturbation {Yt }t∈[0,1]
of Y each of them splits into 2 lines on Yt , t > 0, whereas a simple line l ⊂ Y is varied
univalently (see Segre 1942).

A pencil of planes {Ps} passing through a fixed simple line l ⊂ Y contains precisely
4 tritangent planes: one of them, Ps0 , passes through the node, while 3 others, Psi , i =
1, 2, 3, do not. Under a perturbation, the plane Ps0 , which is called double tritangent
plane, splits into a pair of tritangent planes, Ps01(t) and Ps02(t),whereas Psi , i = 1, 2, 3,
which are called simple tritangent planes, are varied univalently (see Segre 1942).

Like in the non-singular case, we consider an l-transversal marking of such a pair
(Y , l) as a choice of residual lines l0i and l1i in the planes Psi , 0 ≤ i ≤ 3, and define
the corresponding 4-bit codes b0b1b2b3 for the 8 simple lines disjoint from l. For the
4 double lines disjoint from l (that is double lines different from l00 and l10) we use the
3-bit codes b1b2b3 (the bit b0 is not well-defined for these 4 lines, since they all meet
both l00 and l10 at the node).

Given a perturbation {Yt }t∈[0,1] ofY and an l-transversalmarking ofY , there exists a
unique perturbation l(t) of l and a unique l(t)- transversal marking of (Yt , l(t)), t > 0,
such that l0i (t) and l1i (t)with i = 1, 2 converge to l00 and l10 , respectively, while l j

i+1(t)

with i ≥ 2 converge to l j
i−1. We call such a family of markings coherent.

Proposition 6.3 Let {Yt }t∈[0,1] be a perturbation of a one-nodal cubic surface Y = Y0
and l(t) ⊂ Yt a perturbation of a simple line l ⊂ Y . Then among the 16 lines disjoint
from l(t) on Yt precisely 8 merge pairwise forming 4 double lines in Y , namely, with
respect to a coherent family of transversal l-markings, the lines encoded 01b1b2b3
and 10b1b2b3 merge together and form a double line encoded b1b2b3. The 8 other
lines encoded bbb1b2b3 converge to the simple lines encoded bb1b2b3.

Proof It follows from interpretation of the binary codes as intersection indices in
H2(Yt ; Z/2) and a simple observation that, for any pair m′(t), m′′(t) of lines on
Yt merging to a double line on Y , the difference between the classes realized by
m′(t), m′′(t) in H2(Yt ; Z/2) is equal (in accordance with the Picard–Lefschetz for-
mula) to the class realized by the vanishing sphere, and the intersection of the latter
class with each of the former ones is equal to 1. ��

6.4 Binary Codes Under Real Nodal Degenerations

Here, in the setting of the previous subsection, we assume in addition that Y , l, and
{Yt }t∈[0,1] are real. This implies that the lines l(t) ⊂ Yt , the spectrum {s0, s1, s2, s3}
of (Y , l), and the spectrum {s01(t), s02(t), s1(t), s2(t), s3(t)} of (Yt , l(t)) are also real.
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Since the only node of Y must be real, we have s0 ∈ P1
R
and for the lines l00 and l10

there are 2 options: they may be either both real or conjugate imaginary. The points
s01(t) and s02(t) can be also either both real or conjugate imaginary.

Proposition 6.4 Let (Yt , l(t)) be a real perturbation of a real one-nodal cubic surface
Y and let l ⊂ Y be a real simple line. The following criteria for merging of real
lines m(t) ⊂ Yt , l(t) ∩ m(t) �= ∅ in Yt as t → 0 hold for any family of coherent
l(t)-transversal markings.

(1) If the points s01(t), s02(t) and the lines l00 , l10 are real, then among 24−c real lines
m(t) a half is univalent (not merging), namely, the ones with equal bits b01 = b02.
The other half of real lines merge pairwise, namely, the one encoded 01b1b2b3
merges with the one encoded 10b1b2b3.

(2) If the points s01(t), s02(t) are imaginary but the lines l00 , l10 are real, then all the
24−c real lines m(t) have equal bits b01 = b02 in their encodings and in particular
cannot merge.

(3) If the points s01(t), s02(t), as well as the lines l00 , l10 , are imaginary, then all the
24−c real lines m(t) have distinct bits b01 �= b02 and all merge pairwise, namely,
the one encoded 01b1b2b3 merges with the one encoded 10b1b2b3.

Proof Part (1) is a direct consequence of Propositions 6.2 and 6.3. In the rest, it is
sufficient to notice in addition that l001(t) is conjugate to l002(t) in part (2) (so that their
limit l00 is real), and conjugate to l102(t) in part (3) (so that their limit is imaginary). ��

6.5 Hyperplane Sections of Cubic Threefolds

Assume that X ⊂ P4 is a non-singular cubic threefold and l /∈ �res ∪ �I I , so that the
associated spectral quintic S and theta-conic � are non-singular. There is an obvious
correspondence between the set of lines m ⊂ P2 on a plane P2 ⊂ P4

� l (that is used
to numerate the projective planes containing l) and the set of hyperplanes Hm ⊂ P4

containing l, namely, m = Hm ∩ P2. Consider the hyperplane section Ym = X ∩ Hm

and note that when it is non-singular, it can be identified with its proper inverse image
Ym,l under the blow-up Xl → X along l. In such a case, the spectrum of (Ym, l) is the
intersection m ∩ S.

Proposition 6.5 For a non-singular cubic X ⊂ P4 and a line l /∈ �res ∪ �I I , the
following holds:

(1) Ym,l is non-singular if and only if m is transverse to S.
(2) If m is simply tangent to S at a point s ∈ S � �, that is inds(S, m) = 2, then Ym,l

has no other singularities than a node at some point x ∈ π−1
l (s).

(3) Ym = X ∩ Hm is non-singular if and only if m is transverse both to S and �; in
particular, if Ym is non-singular, then so is Ym,l .

Proof Claims (1) and (2) follow from Proposition 2.1(3). Since Ym,l is the proper
image of Ym under blowing up X along l, the singularities on Ym which are absent on
Ym,l may appear only along l. On the other hand, a singularity of Ym at a point p ∈ l
happens if and only if Hm = Tp. Due to Lemma 2.6, Hm = Tp for p ∈ l if and only
if m is tangent to �. Wherefrom Claim (3). ��
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6.6 Conormal Projection

Consider a non-singular cubic threefold X and a line � ⊂ X such that � /∈ �I I . Let
Fl → F denote the blow-up of the Fano surface F of X performed at the point l ∈ F ,
and El ⊂ Fl its exceptional curve. Let S̃ = S̃l ⊂ F denote, like in Sect. 2, the spectral
covering curve formed by the lines incident to l. The hyperplanes in P4 that contain �

form a conormal projective plane dual to P2, and we denote it by P̂2. There is a map
λ : F� → P̂2 that we define first in the complement of S̃ ∪ E�. If m ∈ F � S̃, and
m �= l, then m ∩ l = ∅ and we let λ(m) be the 3-space spanned by � and m.

Proposition 6.6 (1) The above map λ can be extended to S̃ and E� and provide a well-
defined regular morphism λ : F� → P̂2 with finite fibers. It maps E� bijectively
onto the conic �̂ dual to �, and S̃ onto �̂ with degree 5.

(2) The map λ has degree 16.

Proof Let [x : y : z : u : v] be coordinates in P4 such that the line l is given by
equations x = y = z = 0. Each line l ′ close to l intersects hyperplanes v = 0 and
u = 0 at the points [p1 : p2 : p3 : 1 : 0] and [q1 : q2 : q3 : 0 : 1], respectively, and we
consider the 6-tuples (p, q), p = (p1, p2, p3), q = (q1, q2, q3) as local coordinates
in the Grassmannian of lines G(2, 5).

As is known (see Clemens and Griffiths 1972), the tangent plane Tl F to the Fano
surface F ⊂ G(2, 5) is defined in coordinates (p, q) by equations

L11(p) = 0, L22(q) = 0, L11(q) + 2L12(p) = 0, 2L12(q) + L22(p) = 0 (6.1)

where Li j are entries of the fundamental matrix (2.2). The linear forms L11, L12,
L22 are linearly independent, as it follows from our assumption that the line l is not
multiple, see Corollary 2.1. Therefore, the equations (6.1) mean that the line in P2

connecting [p1 : p2 : p3] and [q1 : q2 : q3], which is the projection of l ′ to P2 from
l, is tangent to the theta-conic � = {L11L22 − L2

12 = 0}. This proves the existence
of a continuous extension of λ to E� and implies that its sends bijectively E� onto the
conic dual to �.

To extend λ to S̃, we let λ(m) be equal to the 3-space tangent to X at the point m ∩ l,
for each m ∈ S̃. Continuity follows from analysis of the same first order variation
(6.1), applied this time to m ∈ S̃. The extension of λ to the whole Fl is a regular map,
as any continuous extension of a rational map. Our description of λ on S̃ implies that
λ(S̃) is the conic �̂ dual to �. The restriction S̃ → �̂ has degree 5 because there
exist 6 lines passing through a generic point of X from which number we subtract one
representing l.

To show finiteness of fibers of λ, assume that, conversely, some cubic surface
Y = X ∩ H traced by a hyperplane H ⊂ P4, l ⊂ H contains infinitely many lines.
It is well-known that such cubic Y should be either a cone over irreducible cubic
curve, or contain a curve, C , formed by singular points of Y (it can be a conic if Y is
reducible, or otherwise a line), see, for example, Abhyankar (1960). In the first case,
l ⊂ Y should be one of the generators of the cone, which contradicts to that l is a
simple line in X (which means that plane sections of X cannot contain l as a double
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line). In the second case, one can easily show that X must contain some singular
point. Namely, we can choose coordinates [x0 : · · · : x4] in P4 so that H = {x4 = 0},
X = { f (x0, . . . , x4) = 0}. Then ∂ f

∂xi
= 0 along C for 0 ≤ i ≤ 3, and singular points

appear on X at the intersection of C with the quadric { ∂ f
∂x4

= 0}, if the latter derivative
is not identically zero. If it is zero, then X is a cone and the singular point appears at
the vertex.

The degree of λ is 16, since for any non-singular cubic surface Y , in particular, for
Y = X ∩ H with a generic H , this is the number of lines in Y disjoint from a given
one. ��
Proposition 6.7 The set of critical values of λ is the curve Ŝ ⊂ P̂2 dual to the spectral
curve S ⊂ P2. Over each non-singular point of Ŝ the projection λ has 8 unramified
sheets and 4 copies of folds (double coverings branched along Ŝ).

Proof The first statement is a straightforward consequence of Propositions 6.6 and 6.5
implying that the degree of λ is 16 over P̂2

� Ŝ.
As it holds for any surjective proper finite holomorphic map λ : X → M with non-

singular covering space X and non-singular target M , the part R = λ−1(Ŝ � Sing Ŝ)

of the ramification locus is a non-singular curve and the ramification index of λ is
constant along each connected component of R. Hence, it is sufficient to check the
second statement on a dense subset of Ŝ.

Thus, pick a line m ⊂ P2 simply tangent to S at a point s /∈ � and assume m
intersects S at 3 more distinct points.

In some pencil of lines containing m take a small circle around m and represent
this circle as a path mτ , τ ∈ [0, 1], m0 = m1. Denote the points of mτ ∩ S by si

τ ,
τ ∈ [0, 1], i = 1, . . . , 5, where i = 1, 2 are chosen for the two points near s. Since
the tangency is simple, the points s1τ , s2τ alternate after a full twist, that is s11 = s20 and
s21 = s10 .

Each of the surfaces π−1
l (mτ ) is a non-singular cubic surface, and, considering the

radial path from τ to the center of the circle, we get, for each τ , a perturbation Y τ
t

of the cubic surface Y0 = π−1
l (m) which is one-nodal by Proposition 6.5. Each of

these surfaces contains the line l. Start from τ = 0 and choose a coherent family of
l-transversal markings compatible with an ordering l00 , l10 of the 2 lines lying on Y0

over s, so that the lines l0i (t), i = 1, 2 that lie over si
0 for t = 1 converge to l00 as

t tends to 0, while l1i (t), i = 1, 2 that lie over si
0 converge to l10 . This compatibility

property implies, due to the unicity of coherent markings (see Proposition 6.3), that
under varying τ from 0 to 1 and making a continuous choice of l-transversal markings
the line l01(t) (respectively, l02(t)) sends to l12(t) (respectively, l11(t)). Therefore, the
monodromy action transforms a line with initial binary code b1b2b3b4b5 into the line
which has the code b2b1b3b4b5 with respect to the same, initial, marking. Thus, there
are 8 invariant lines, they have binary codes bbb3b4b5, and 4 transpositions of lines,
01b3b4b5 �→ 10b3b4b5. ��

Let λR : F�R → P̂2
R
be the restriction of λ. We say that a real generic line m ⊂ P2

has real intersection type (a, b) if it has a real intersection points with S outside �

and b real intersection points inside (genericity means that m is not tangent to S and
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� and has no common points with S ∩ �). Clearly, a ≥ 1 is odd, b ≥ 0 is even, and
a + b ≤ 5. In fact, a = rre, b = rim are the characteristics introduced in Sect. 6.2
applied to (Ym, l).

Proposition 6.8 Assume that an oval C ⊂ SR is convex, and m is a real line obtained
by a small shift of a tangent to C in the outward direction, so that the dual point
m̂ ∈ P̂2

R
lies in the interior of the dual oval Ĉ. Let (a, b) be the real intersection type

of m with S.

(1) If b > 0, then λ(FlR) have no point in a neighbourhood of Ĉ.
(2) If b = 0 and C is a visible oval, then the number of unramified sheets over Ĉ is

2
a+3
2 , the number of folds is 2

a+1
2 , and the folds are directed towards the exterior

of Ĉ.
(3) If b = 0 and C is invisible, then there are no unramified sheets, the number of

folds is 2
a+1
2 , and the folds are directed towards the interior of Ĉ.

Proof Proposition 6.2 gives |λ−1
R

(m)| = 2
3+a
2 if b = 0 and |λ−1

R
(m)| = 0 if b > 0. If a

point is chosen from the other side of Ĉ , then the dual line has the real intersection type
(a, b) + (2, 0) if oval C is visible and (a, b) + (0, 2) otherwise. Since by Proposition
6.7, the critical locus over Ĉ is formed only by folds, the local degrees of λR prescribe
the number of such folds and their normal direction. ��

6.7 Special Example: Spectral Quintic with a Nest

In what follows we investigate a pair (S,�) such that:

(1) S is a real non-singular plane quintic that has a nest of two ovals: an oval O2 in
the interior of an oval O1;

(2) � is a real non-singular conic tangent to S at 5 distinct points;
(3) O2 lies in the interior of �R, which in its turn lies in the interior of O1;
(4) at every point s on O1 or O2, the tangent line to S has a simple tangency at this

point (in particular, both ovals are convex) and intersects the J -component of S at
only one point.

As it follows from Proposition 5.6, if the spectral pair (S,�) corresponds to a pair
(X , l) and satisfies properties (1)–(3), then X is of type C1

I (exotic cubic).
An example of a pair (S,�) that satisfies properties (1)–(4) is given by a nonsingular

real conic�with an oval�R �= ∅ and a quintic S obtained by a small real perturbation

�L Q ± εL1 . . . L5 = 0, 0 < ε � 1

of the product �L Q, where Q is a nonsingular real conic whose oval QR contains
�R in the interior, L is a real line whose real locus LR is disjoint from QR and �R,
and L1 . . . L5 are five real tangents to �.

Proposition 6.9 For the conormal projection λR : FlR → P̂2
R

associated to a pair
(X , l) whose spectral quintic and theta-conic satisfy conditions (1)–(4) the following
properties hold:
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(1) λR(FlR) is the disc bounded by Ô2; over the interior of the annulus bounded by
Ô1 and Ô2 the map λR is a 8-sheeted non-ramified covering;

(2) over every point of Ô2 the number of folds is equal to 4 and all the folds are
directed inward;

(3) over every point of Ô1 the number of unramified sheets is 4 and the number of
folds is 2; the both folds are directed outward.

Proof Straightforward consequence of Proposition 6.8. ��
Our aim now is to show that in the example given in Proposition 6.9 the blown up

Fano surface FR(X) contains a component nicely projected to the annulus R̂ bounded
by Ô1 and Ô2.

Proposition 6.10 The inverse image λ−1
R

(R̂) ⊂ FlR contains a connected component
of FlR whose Euler characteristic is 0.

To prove this proposition we find a component of FlR which is fibered over a circle.
Namely, we consider the compositionψ : λ−1

R
(R̂) → S1,ψ = μ◦λR, of λR restricted

over R̂ with the fibration μ : R → S1 whose fibers are line segments on the annulus
R̂ that are cut by the lines passing through a points inside Ô1. Let us pick such a line
segment [m̂1, m̂2], connecting points m̂i ∈ Ôi .

Lemma 6.1 The inverse image λ−1
R

([m̂1, m̂2]) is homeomorphic to a disjoint union of
a circle with two closed intervals.

Proof By Propositions 6.6 and 6.7, λ−1
R

([m̂1, m̂2]) consists of several copies of the line
segment [m̂1, m̂2] some of which are identified at the boundary points. We will enu-
merate them using Proposition 6.2 and apply Proposition 6.4 to precise the boundary
identification.

By definition, the line segment [m̂1, m̂2] ⊂ P2
R
corresponds to a segment of a pencil

{mt }t∈[1,2] of lines between m1 tangent to O1 and m2 tangent to O2 (see Fig. 7). An
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Fig. 7 Conormal projection for an exotic cubic threefold
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internal point m̂ ∈ [m̂1, m̂2] represents a line m = mt0 , 1 < t0 < 2, crossing O1
at a pair of points, s1, s2, and not crossing O2. In addition, m intersects once the J -
component of SR at some point sJ and contains a pair of conjugate imaginary points
sc, s̄c ∈ S. These five points form the spectrum of the cubic Ym,l = π−1

l (m).
Consider an l-transversal marking l01 , l02 , l0J , l0c , l0c̄ corresponding to the spectral

points s1, s2, sJ , sc, s̄c respectively. The points of λ−1
R

(m̂) can be interpreted as real
lines in Ym,l disjoint from l. Like in Sect. 6.2, we enumerate them via truncated codes
containing only the three informative bits b1, b2, bc that correspond to s1, s2 and sc.
Varying m̂ along the interval [m̂1, m̂2], we obtain 8 copies of [m̂1, m̂2] that we denote
[1, 2]b1b2bc , with 8 combinations of the bits b1, b2, bc ∈ {0, 1}.

To apply Proposition 6.4, we choose an l-transverse family of markings coherently
with respect to the degeneration of Ymt ,l = π−1

l (mt ) as t → m1. Then by part (1) of
that proposition, for each bc ∈ {0, 1}, the intervals [1, 2]10bc and [1, 2]01bc are glued
over the point 1, while the other 4 intervals denoted [1, 2]00bc and [1, 2]11bc remain
unglued over 1.

Part (3) of the same proposition implies pairwise gluing of all 8 copies [1, 2]b1b2bc

over the point 2, namely, the interval indexed with b1b20 is glued over this point to
the interval indexed with b1b21. Here, it is the spectral points sc and s̄c that play the
role of s01 and s02, but the bit corresponding to s̄c is not informative, and is dropped.

Such a gluing of the 8 intervals [1, 2]b1b2bc produces a circle from intervals indexed
with 010, 011, 100, and 101, and two line segments from the remaining 4 intervals
(see Fig. 7). ��
Proof of Proposition 6.10 The monodromy of the fibration ψ : λ−1

R
(R̂) → S1 sends

the circle component (see Lemma 6.1) to itself, which yields a connected component
of FlR with zero Euler characteristic. ��

6.8 Proof of Theorem 4.3 for Exotic Cubics X

As was already seen in the previous subsection the cubic threefold X treated there
is of type C1

I . Hence, its Fano surface FR(X) is a disjoint union of two components,
N (X) = RP2 and N6, and FlR is obtained by blowing up FR at its point l. So, exis-
tence of a component with zero Euler characteristic in FlR established in Proposition
6.10 implies that l ∈ N (X). Together with Theorem 4.2 (proved for all cubics with
Smith deficiency ≥ 4 in Sect. 5.9), this completes the proof of Theorem 4.3 for exotic
cubics. ��

7 Quadrocubics and Spectral Curves as Their Central Projections

7.1 Quadrocubic Associated to a Singular Point

Given a cubic threefold X ⊂ P4 with a node s ∈ X , the lines l passing through the
node represent points [l] of the associated quadrocubic A ⊂ P3

s (see Sect. 4.7). As
usual, we choose coordinates x, y, z, u, v in P4 so that s acquires the coordinates
(0, 0, 0, 0, 1), present the equation of X in the form f3 + v f2 = 0, and denote by
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Qs ⊂ P3
s the quadric defined by equation f2 = 0. Recall that A is the intersection of

Qs with the cubic surface defined by f3 = 0.
Real nodes of real n-dimensional hypersurfaces are classified by the signature

(p, q), p +q = n +1, of the Hessian matrix, or equally by the signature of the degree
two part of the real polynomial representing the hypersurface in a real local system
of coordinates centered at the node. For example, a real node x ∈ AR of a real plane
curve A may have signature (1, 1), and then called a cross-node, or signature (2, 0)
or (0, 2), and then called a solitary node.

In the case of a real nodal cubic threefold X = { f2 + f3 = 0} the real quadric
Qs = { f2 = 0} is a hyperboloid for signature (2, 2), an ellipsoid for (3, 1), and a
quadric without real points for (4, 0). In the case of signature (4, 0), the real locus of
A is also empty.

Proposition 7.1 Assume that s is a node of a cubic threefold X. Then, a point s′ ∈ X,
s′ �= s, is singular on X if and only if the line ss′ represents a singular point [ss′] of
A ⊂ P3

s , and s′ is a node of X if and only if [ss′] is a node of A. In particular, A is
non-singular if and only if X has no other singular point than s.

If X, s, s′ are real and s′ has signature (p, q), then the corresponding to it node of A
has signature (p−1, q−1). Furthermore, if X undergoes a perturbation Xa, a ∈ [0, 1]
which keeps Xa nodal at s and has a local model x20 + . . . x2p − (y20 + · · · + y2q ) = a
in Morse coordinates at s′, then the associated with s quadrocubic A undergoes a
transformation which has, in appropriate Morse coordinates on Qs at [ss′], a local
model u2

1 + · · · + u2
p − (v21 + · · · + v2q) = g(a), g(0) = 0, g(a) > 0 for a > 0. ��

Proof (cf.,Wall 1999) Choose a real system of affine coordinates x, y, z, t in away that
s = (0, 0, 0, 0) and s′ = (0, 0, 0, 1), and write an equation of X in a form f2+ f3 = 0.
Then, d f2 + d f3 = 0 and f2 + f3 = 0 at s′, and using the Euler relations we get
f2 = 0, f3 = 0, which shows that [ss′] ∈ P3

s is a singular point of A. Reciprocally, if
d f2 and d f3 are linear dependent at a point (0, 0, 0, 1) and f2 = f3 = 0 at this point,
while d f2 does not, then X is singular at the point (0, 0, 0, λ) with d f2 + λd f3 = 0.

Assume that s′ is a node of X . Then s′ is a Morse point of f2 + f3, since s′ is a
node. In addition, f2 = 0 is non-singular at s′, since s is a node. Hence the restriction
of f3 on f2 = 0 is also Morse at s′, which means that [ss′] is a node on A.

To prove the converse statement and to compare the signatures, we choose
f2(

x
t ,

y
t , z

t , 1) as a first coordinate h1 in a local system centered at s′ and add 1 − t
and two generic linear forms h2, h3 in x, y, z as supplementary coordinates. Then the
quadratic part in Taylor expansion of the equation f2(x, y, z, 1) + t f3(x, y, z, 1) = 0
writes in these coordinates as h1(1 − t + L(h1, h2, h3)) + Q(h2, h3) where L is a
linear form and Q is a quadratic form. This combined quadratic form is a direct sum
of Q and a non-degenerate form of rank 2. Thus, s′ is a node on X if ss′ is a node on
A. In the real case, the signature of h1(1 − t + L(h1, h2, h3)) + Q(h2, h3), which is
the signature of the node of X , is the sum of the signature of Q, which is the signature
of the node on A, while the signature of the complementary rank 2 summand is (1, 1).

To conclude, note that according to the already proved part of the proposition
making a cubic non-singular in a neighborhood of s′ is equivalent to making the
quadrocubic non-singular in a neighborhood of [ss′]. Hence, it remains only to com-
pare the directions of the perturbations, that is to identify the signs in appropriate local
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models, and it is sufficient to do it just for one arbitrary chosen perturbation of X . We
choose the one defined by f2 + f3 = at3 and repeat literally the above formulas with
Taylor expansion, which gives us h1(1 − t + L(h1, h2, h3)) + Q(h2, h3) = a as a
local model for the quadrocubics, and the result follows. ��
Proposition 7.2 Let S and � be the spectral curve and theta-conic of a nodal cubic
threefold X, and let l ⊂ X be a line passing through a node s ∈ X and not containing
other nodes of X. Then:

(1) the central projection from [l] induces a regular birational map A → S, this map
is biregular over all points of S except two singular points of S which are nodes
or cusps;

(2) � = 2L, where L is the line passing through these two singular points of S; this
line is traced on P2

l by the plane H ⊂ P3
s tangent to Qs at [l] ∈ Qs.

Proof If t ∈ P2
l is represented by a line l ′ ∈ A, l ′ �= l, then the residual conic qt

is reducible, since it contains l ′. This shows that the image of A under the central
projection from [l] is contained in S. Conversely, for any given t ∈ S, at least one of
the lines l ′ ⊂ qt passes through the singular point s, and therefore [l ′] ∈ A.

The central projection induces a birational map Qs → P2
l which blows up the

point [l] ∈ Qs and contracts the two generators of Qs that pass through [l] into two
points on P2

l . Since, according to Proposition 7.1, [l] is non-singular point of A, this
implies the claim (1). This shows also that the line L is traced by the plane tangent to
Qs at [l] ∈ Qs.

To check that Q = 2L , we choose the coordinates so that l has equation x = y =
z = 0 and s = [0 : 0 : 0 : 0 : 1]. Then, using notation from Sect. 2.2, we get
L22 = 0 and f2(x, y, z, u) = 2(Q2(x, y, z) + uL12(x, y, z)). Thus shows that the
tangent plane at [l] = [0 : 0 : 0 : 1] to the quadric f2 = 0 is defined by L12 = 0. On
the other hand, according to (2.4), � is defined by L2

12. ��
Corollary 7.1 Let X be a one-nodal real cubic threefold, l ⊂ X a real line passing
through the node, and Q, A, S the associated quadric, quadrocubic, and spectral
curve.

(1) If the node has signature (3, 1), then S has a conjugate pair of imaginary nodes.
(2) If the node has signature (2, 2), then S has two real nodal or cuspidal points.

Such a point is a solitary node, if the corresponding line-generator of Q passing
through [l] intersects A at imaginary points, a cross-like node if the line generator
intersects A at 3 distinct real points, and a cusp if at least two of the three points
coincide.

��
Proposition 7.3 For a nodal cubic threefold X and a line l = s1s2 passing through a
pair of nodes s1, s2 ∈ X the associated spectral quintic splits as S = S′ ∪ m where
S′ is a quartic and m is a line. The theta-conic is the double line � = 2m.

Proof Pick the coordinates in P4 so that s1 = [0 :0 :0 :1 :0] and s2 = [0 :0 :0 :0 :1],
then in the fundamental matrix As (see (2.2) ) of (X , l) we have L11 = L22 = 0, and
thus, det As = 2L12Q1Q2 − L2

12C . So, S splits into a line, m = {L12 = 0} and a
quartic S′ = {2Q1Q2 − L12C = 0}, while � = {L2

12 = 0}. ��
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Proposition 7.4 Each real two-nodal plane quintic is a spectral quintic of a real one-
nodal cubic hypersurface. Any Morse-type perturbation of the nodes of such a quintic
is realized by some real smoothing of the corresponding cubic hypersurface.

Proof Given a real two-nodal plane quintic, we get a non-singular real quadro-cubic
and a real point on it by blowing up the nodes and contracting after that the proper
image of the line joining the nodes. The quadrocubicwith amarked point thus obtained
defines a real one-nodal cubic hypersurface and a real line on it, and the initial quintic
is the spectral quintic of this pair.

Let (X , l) be a pair such that X is a real one-nodal cubic hypersurface, l is a real line
on X going through the node, and S is the spectral, real two-nodal, quintic of this pair.
Then, under an appropriate choice of projective coordinates, l is given by equations
x = y = z = 0, X by equation xu2 + 2yu + 2Q13u + 2Q23v + C = 0, and S by

det

⎛

⎝
x y Q13
y 0 Q23

Q13 Q23 C

⎞

⎠ = 0.

The twodouble points of S are the intersection points of the conic Q23 = 0with the line
y = 0 (cf., the proof of Proposition 7.2 above). They are nodal under (binary form dis-
criminant) conditions pC(p, 0, 1)− Q2

13(p, 0, 1) �= 0, qC(q, 0, 1)− Q2
13(q, 0, 1) �=

0, where (p, 0, 1) and (q, 0, 1) are coordinates of the nodes. Finally, one can get all
the Morse types of modifications by perturbations of the form

det

⎛

⎝
x y Q13
y t(ax + by + cz) Q23

Q13 Q23 C

⎞

⎠ = 0

where a, b, c are real constants and t a small real parameter. Indeed, with such a
choice the perturbation term is t(ax +by +cz)(xC − Q2

13), and, since the last factor is
non vanishing at the points (p, 0, 1) and (q, 0, 1), one can achieve, by an appropriate
choice of a and c, any given signs of the perturbation term at these points, if they are
real, and achieve non-vanishing of the perturbation term at them, if they are imaginary
(complex conjugate). ��

7.2 Isomorphisms Between the Quadratic Cones of Nodes

Assume that X is a nodal cubic threefold with nodes s0, . . . , sk , k ≥ 1. With each
node si in its local projective space P3

i (formed by the lines through si ) we associate
as usual the local quadric Qi ⊂ P3

i and the quadrocubic Ai ⊂ Qi . These quadrics
can be related naturally by means of birational isomorphisms φi j : Q j ��� P2, where
P2 is any plane not passing through the nodes of X and φi j is induced by the central
projection P4 ��� P2 with center l = si s j .

Proposition 7.5 For each pair 0 ≤ i, j ≤ k, the following holds:
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(1) The spectral quintic S associated with the line sis j splits as S = S′ ∪ m where S′
is a quartic and m is a line.

(2) φi j (A j ) = φ j i (Ai ) = S′.
(3) φ−1

i j : P2 → Qi is the blow up of two points of S′ ∪ m followed by the blow down

of the proper image of m, while φ−1
j i : P2 → Q j is the blow up of two other points

of S′ ∪ m followed by the blow down of the proper image of m.

Proof Item (1) recalls the first part of Lemma 7.3. To get item (2) it is sufficient to
follow the definitions and to notice that for each line-direction s j x ∈ A j the section of
X by the plane generated by si and this direction splits into 3 lines: s j x , si s j , and a third
line, which goes through si , since such a section should be singular at si . Item (3) is a
straightforward consequence of the classical decomposition of the central projections
Qi ��� P2 into one blow up and two blow downs. ��

7.3 6-Nodal Segre Cubics

We say that k points in Pn are in linearly general position if no m +1 ≤ n +1 of them
generate a subspace of dimension < m. If k ≥ n + 1, it is clearly enough to require
that no hyperplane contains more than n points.

In what follows the nodes of a multinodal cubic threefolds X ⊂ P4 will be always
assumed to be in linearly general position. Such 6-nodal cubics, studied by C. Segre,
are of a particular interest for us (for a modern overview see Dolgachev 2015). These
cubics X , which we call 6-nodal Segre cubics, can be equivalently characterized as
follows.

Proposition 7.6 If a cubic X ⊂ P4 has 6 nodes, s0, . . . , s5 and no other singular
points, the following conditions are equivalent:

(1) X is a Segre cubic.
(2) For each 0 ≤ i ≤ 5, the quadrocubic Ai associated with si is 5-nodal, no two of

its nodes lie on the same generator of the local quadric Q ⊂ P3
s0

and no four are
coplanar in P3

si
.

(3) Each Ai splits into a pair of irreducible transversely intersecting components of
bidegrees (2, 1) and (1, 2).

(4) The spectral curve associated to any line li j = sis j ⊂ X splits into a pair of
non-singular transverse conics and a line transverse to the conics and not passing
through their 4 common points.

Proof (1) ⇔ (2) is immediate, since due to Proposition 7.1, for each i , the set of
nodes of X distinct from si is in bijection with the set of nodes of Ai , and this
bijection consists in representing the nodes of Ai as line-directions si s j , j �= i .
(2) ⇒ (3) Since the quadrocubics are 5-nodal, they are reducible. They have no
neither line or conic components: indeed, in the case of line-component the 3
points of intersection with the complementary components give 3 of the nodes on
a line, and in the case of conic-component the 4 points of intersection with the
complementary components give 4 in a plane. Therefore, our quadrocubics split
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in two irreducible components of bidegrees (2, 1) and (1, 2). The intersection is
transversal, since the quadrocubics are nodal.
(3) ⇒ (2) Straightforward.
(3) ⇔ (4) The spectral curve Si j splits into S′ ∪ m, where S′ can be seen as the
image of Ai under central projection Qi ��� P2 with center [li j ] ∈ Qi and m
as the trace of the tangent plane to Qi at [li j ]; conversely, Ai can be seen as the
proper image of Si j under blow up at 2 points of intersection of S with m followed
by the blow down of the proper image of m (see Proposition 7.5). Therefore,
Ai splits into irreducible components of bidegrees (2, 1) and (1, 2) if and only
if S′ splits into conics. Transversality properties of S are equivalent to nodality
of Ai . ��

Corollary 7.2 Let f2 and f3 be homogeneous polynomials of degrees 2 and 3 in four
unknowns. If the quadric f2 = 0 is non-singular and the quadro-cubic f2 = 0, f3 = 0
splits into two transversal irreducible components of bidegrees (2, 1) and (1, 2), then
f2 + f3 = 0 is an affine equation of a 6-nodal Segre cubic X ⊂ P4. ��

7.4 5-Point Configurations on an Ellipsoid

As iswell known, the result of blowingup a real non-singular quadric at a real collection
of 5 points in a linearly general position is a real del Pezzo surface of degree 3, which
embeds via the anti-canonical linear system as a real non-singular cubic surface in
P3. It is Segre (1942) who distributed real lines on a real cubic surface in elliptic and
hyperbolics ones, and determined which of the five exceptional curves E ⊂ Y are
elliptic and which ones are hyperbolic. We summarize these observations of Segre as
follows.

Given a set of 5 linearly generic points P = {p1, . . . , p5} on an ellipsoid Q ⊂ P3,
the following bipartitions of P into a pair and a triple of points appear naturally.

(1) Bipartition by the valency of pi on the convex hull of P: 3 vertices have valency
4 and 2 vertices have valency 3.

(2) For 3 points of 5 (respectively, 2 points of 5) the central projection of P � {pi }
from a point pi to any affine plane that is complementary to the tangent plane to Q
at pi sends the set P � {[pi ]} into a convex quadrilateral (respectively, a triangle
with one point inside it).

(3) Among 5 exceptional real lines Ei ⊂ Y of the blow up Y → Q at P , there are 3
elliptic (respectively, 2 hyperbolic) ones.

Proposition 7.7 All the four above partitions coincide.

Proof The equivalence between (1) and (2) is more or less explicit in Segre (1942,
§40), and it is straightforward. The equivalence between (1) and (3) is implicit in
Segre (1942), but it follows directly from the definition of ellipticity through the Segre
involution. ��

We call such a bipartition of a 5-point configuration on an ellipsoid the Segre
3+2 bipartition. Applying the central projection to reduce 5-point configurations on
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an ellipsoid to 4-point configurations on an affine plane, one can easily obtain the
following consequence (also contained in Segre 1942, §40).

Proposition 7.8 The space of pairs (Q,P) formed by real ellipsoids Q and collections
of 5 real linearly generic points P ⊂ QR is connected. Given such a pair (Q,P),
each even permutation P → P that preserves Segre 3+2 bipartition can be realized
by monodromy along a continuous loop in the space of pairs (Q,P). ��

The similar question for less than 5 points is much simpler.

Proposition 7.9 The space of pairs (Q,P) formed by real ellipsoids Q and linearly
generic k-point configurations P ⊂ QR, k ≤ 4, is connected. Given such a pair
(Q,P), each even permutation P → P if k = 4, and each permutation P → P if
k < 4, can be realized by monodromy along a continuous loop in the space of pairs
(Q,P).

Proof It follows from connectedness of SO(3). ��

7.5 Another Classification of Quadrocubics

The object of this subsection is a coarse deformation classification of pairs (Q, A)

where Q is a real non-singular quadric and A ⊂ Q is a real non-singular curve of bi-
degree (3, 3), that is, the classification of such pairs up to deformation and projective
equivalence.

Here, by an oval of A we mean a component of AR which is null-homologous in
QR; clearly, non-oval componentsmay appear only if QR is a hyperboloid.We say that
a pair of ovals of AR is separated if they bound disjoint discs on QR, and that a set of 3
ovals O1, O2 and O3 forms a 3-nest on QR if a disc D1 bounded by O1 contains a disc
D2 boundedby O2, and D2 contains O3.Anon-oval component of AR onahyperboloid
is said to be of type (p, q), 0 ≤ q ≤ p, if, under an appropriate orientation of this
component and line-generators of QR, it realizes the class (p, q) ∈ Z

2 ∼= H1(QR)

with respect to the basis in H1(QR) given by the line-generators.
The following theorem is a straightforward consequence of deformation classifica-

tion of real bi-degree (3, 3) curves on real quadrics, as established in Degtyarev and
Zvonilov (1999), Zvonilov (1992).

Theorem 7.1 (1) Pairs (Q, A) with QR = ∅ are all coarse deformation equivalent
to each other.

(2) Pairs (Q, A) where QR is an ellipsoid form 8 coarse deformation classes: one of
type 11, six of type k, 0 ≤ k ≤ 5, with AR consisting of k disjoint ovals, and one
of type 3I with AR consisting of 3 ovals forming a nest.

(3) Pairs (Q, A) where QR is a hyperboloid form 8 coarse deformation classes: five
of type k, 1 ≤ k ≤ 5 with AR consisting of k − 1 disjoint ovals and component of
type (1, 1), one of type 1I with AR consisting of a sole (3, 1)-component, and two
of type 3I with AR consisting either of three homologous to each other type (1, 1)
components, or of two separated ovals and a type (1, 1) component.

��
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7.6 Ascending and Descending Perturbations of a Node on XR

Each real one-nodal cubic threefold X0 admits two types of real perturbations Xt ,
t ∈ [0, 1]: as it is shown on Fig. 4, for one type of perturbations the Smith discrepancy
of Xt , t > 0, is equal to the Smith discrepancy of the quadrocubic associated with X0,
for the other type it is less by 1 (see, for example, Krasnov 2007). We call ascending
the perturbations of the first kind, and descending for the other. In terms of Fig. 4,
an ascending perturbation represents an ascending oriented edge of �3,3 (direction of
growing d) and a descending perturbation represent a descending oriented edge.

Perturbations of real one-nodal plane quintics have similar properties, and we apply
to them a similar terminology: an ascending perturbation represents an ascending
oriented edge of �5,1, and a descending perturbation a descending edge.

These definitions are consistent with the spectral correspondence: if we pick a
real line l ⊂ X0 not through the node and a family lt ⊂ Xt , t ≥ 0, of real
lines accompanying a perturbation as above, then the spectral curve S0 experiences
an ascending (respectively, descending) perturbation, if the perturbation of X0 is
ascending (respectively, descending). Such a relation follows, for example, from the
congruence d(St ) = d(Xt ) mod 2.

Proposition 7.10 If X0 is a real one-nodal cubic threefold whose node has signature
(3, 1) and l0 ⊂ X0 is a real line passing through the node, then each real perturbation
(Xt , lt ), t ∈ [0, 1], of (X0, l0) and the associated with it perturbation of S0 are
ascending, and the matchings ([Xt ], [St ]), t > 0, are skew.

Proof According to Corollary 7.1(1), the nodes of S0 are imaginary, and so the real
locus AR of the quadrocubic A associated with X0 is projected homeomorphically
on S0R. Hence, S0R has the same number r of connected components as AR, that is
r = 5 − dA. Since the nodes of S0 are imaginary, StR are homeomorphic to S0R, and
hence have the discrepancy 7 − r = dA + 2.

On the other hand, by Theorem 4.1 and Corollary 4.1, ascending perturbations of
X0 have the discrepancy dX = dA, while the discrepancy for descending perturbations
is dA + 1 (existence of a real line l0 guarantees that AR �= ∅ and so, Corollary 4.1 is
applicable). So, since d(St ) and d(Xt ) must have the same parity (see Corollary 5.1),
the considered perturbation is ascending, and the matching ([Xt ], [St ]) is skew due to
dSt = dXt + 2. ��

7.7 Monodromy Permutation of Ovals of Quadrocubics

As is well known (see, for example, Zvonilov 1992), any real quadrocubic with 5 ovals
is of Klein type I, and if it lies on an ellipsoid Q then, with respect to the complex
semiorientation, 3 ovals have the same sign, while 2 other ovals have the opposite
sign. We call this decomposition the complex orientation bipartition.

Denote by V 3,1
k , 0 ≤ k ≤ 5, the space of real one nodal cubic threefolds with a node

of signature (3, 1) whose quadrocubic, AR, consists of k real components bounding
disjoint discs on the ellipsoid QR (the latter assumption excludes only quadrocubics
of Klein’s type I with 3 ovals on this ellipsoid).
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Proposition 7.11 (1) The space V 3,1
5 is connected. The complex orientation bipartition

of the ovals of the quadrocubics AR is preserved along any continuous paths
in V 3,1

5 , and any permutation preserving this bipartition can be realized by a
continuous loop.

(2) For k ≤ 4, the monodromy in V 3,1
k acts transitively on the set of ovals of AR, and

on the set of unordered pairs of ovals.

Proof Part (1):According toTheorem7.1, the pairs (QR, AR)where QR is an ellipsoid
and AR is a real quadrocubic with 5 ovals are all deformation equivalent. Combining
this result with Proposition 4.3 (and connectedness of the group of real projective
transformations of P4

R
) we obtain the connectedness claim. The invariance of this

bipartition is trivial.
To prove the claim on permutations, let us consider 5 points on QR in linearly

general position. Then, there exists a unique curve B1 of bidegree (2, 1) and a unique
curve B2 of bidegree (1, 2) passing through these points. These curves are complex
conjugate to each other and intersect each other transversally. Their union is a curve
of bidegree (3, 3), and we denote by fC = 0 an equation of C = B1∪ B2 on Q, and an
equation of Q by f2 = 0. Consider then a small perturbationC ′ of B1∪ B2 producing a
real curvewith 5 ovals, say a perturbation given by an equation f ′

C = 0, f ′
C = fC +εg3

where g3 is any homogeneous polynomial of degree 3 without any zero on QR.
The bipartition of the 5 ovals according to complex semiorientations coincides

with the bipartition transported to the ovals from the Segre bipartition of the points
p1, . . . , p5. To justify it, it is sufficient: to consider another real quadrocubic with 5
ovals, namely, a 5-ovals quadrocubic obtained by a perturbation of the union of 3 circles
cut by 3 sides of a regular tetrahedron on a sphere concentric to the circumscribed
sphere, but of a bit bigger radius; to notice that the limit of a complex orientation of
this quadrocubic should give an orientation of the circles; to observe that thus each
plane intersecting the 3 ovals of the same sign separate the 2 other ovals; and apply
finally the first definition of Segre bipartition, see Sect. 7.4.

Now, given any even permutation of 5 ovals of C ′ preserving their bipartition,
we apply Proposition 7.8 and realize this permutation by a family of quadrocubics
given, as above, by equations f ′

Ct
= 0, f ′

Ct
= fCt + εg3. The passage from a loop

of quadrocubics to a loop of cubic threefolds is ensured, for example, by Lemma 4.2.
To get the odd permutations preserving the bipartition it is sufficient to combine the
above loops with a loop in the space of real one-nodal cubic threefolds that moves the
node in a way reversing the local orientations of P4

R
.

Part (2) of the Proposition is proved similarly, modulo replacement of the reference
to Proposition 7.8 by the reference to Proposition 7.9. ��

7.8 Atoric Nodal Cubics andMonodromy Permutations of Their Nodes

We say that a real nodal cubic threefold X ⊂ P4 is atoric if:

(1) its nodes are real and in linearly general position;
(2) all the nodes have signature (3, 1);
(3) the real loci of quadrocubics associated with the nodes consist only of solitary

points.
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The name is motivated by Proposition 8.11, where we show that the real Fano surface
FR(X) of such a cubic X has no torus components.

It turns out that if the conditions (2)–(3) hold for one node of X , then they are
satisfied for the others.

Lemma 7.1 Assume that X is a real k-nodal cubic satisfying the above condition (1).
Then if one of the nodes, s ∈ X has signature (3, 1) and its quadrocubic AR consists
of k − 1 solitary nodes, then X is atoric (that is, the conditions (2) and (3) hold for
all the other nodes as well).

Proof According to Proposition 7.5, the quadric Qs′ associated with the node s′ �= s is
obtained from the ellipsoidal quadric Qs associated with s by the following sequence
of birational transformations: the blowing up of Qs at the point p′ represented by
the line ss′, the blowing down of the pair of conjugate imaginary exceptional curves
arisen from linear generators, the blowing up of the pair of conjugate imaginary points
on the image T of the section of Qs by the plane tangent to Qs at p′, and, finally,
the blow down of the real exceptional curve arised from T . The result is an ellipsoid
with a quadrocubic consisting of k − 1 solitary nodes on it, since the real locus (Qs)R
experienced only one blowup and one blowdown. ��
Proposition 7.12 Assume that X ⊂ P4 is an atoric real k-nodal cubic, 3 ≤ k ≤ 5,
and s ∈ X is a fixed node. Then the real equisingular deformations of X preserving
the node s fixed act transitively on the other nodes.

Proof Straightforward consequence of Proposition 7.11 and Lemma 4.2. ��
An immediate consequence of Proposition 7.12 is the following.

Corollary 7.3 For an atoric real k-nodal cubic X ⊂ P4 with 3 ≤ k ≤ 5, the mon-
odromy action of real equisingular deformations is transitive on the set of nodes and
the set of unordered pairs of nodes. ��

7.9 Perturbation of Atoric Nodal Cubics

The main strata of the real locus of the discriminant hypersurface �3,3 ⊂ C3,3 that
correspond to real one-nodal cubic threefolds with signature (p, q) different from
(2, 2) are coorientable. In the case of signature (3, 1), real perturbations modeled in
local Morse coordinates by x21 + x22 + x23 − x24 = a with a > 0, which we call
one-sheeted perturbations, lead to one side, and those with a < 0, which we call
two-sheeted, to the opposite one.

Now, consider a real k-nodal cubic threefold X0 whose nodes s1, . . . , sk have all
signature (3, 1). If its real perturbation {Xt }t∈[0,1] is one-sheeted at i nodes and two-
sheeted at the other k − i nodes, we call it a perturbation of real type (i, k − i). Two
perturbations of X0 that are of the same type at each of the k nodes are called coherent.

To extend the notion of ascending perturbation from k = 1 to any k, we define
a real perturbation of X0 ascending, if it produces the minimal possible value of
Smith deficiency. We say that two real perturbations Xt and X ′

t of X0 are deformation
equivalent, if they can be connected by a continuous family of perturbations.
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Proposition 7.13 Let X0 be an atoric real nodal cubic threefold with k ≤ 6 nodes.
Then:

(1) Any two coherent real perturbations of X0 are locally deformation equivalent.
(2) Each ascending perturbation of X0 is one-sheeted at every node. In particular, the

ascending perturbations of X0 are all coherent and, thus, deformation equivalent.

Proof For any k ≤ 6, each of the strata of nodal cubic threefolds with k nodes is an
intersection of k transversal branches of the discriminant. This implies immediately
the first claim.

For k = 1, the second claim follows from the first claim and Proposition 7.10. If
k > 1, we perform the perturbation in two steps. First, we keep one node and perturb
the other nodes. As it follows from Proposition 7.1, to provide a quadrocubic with the
maximal possible number of ovals, at the latter nodes such a perturbation should be
one-sheeted. Note also that such a perturbation always exists. Thus, the case k > 1 is
reduced to the case k = 1. ��

8 Fano Surfaces of Nodal Cubics

8.1 Fano Surface of a Nodal Cubic Threefold

Assume that X is a nodal cubic threefold containing no planes, s ∈ X is one of the
nodes, and A is the quadrocubic associated with this node. Then there appear a natural
birational map σ : Sym2(A) ��� F(X) from the symmetric square of A to the Fano
surface. This map sends a generic pair {[l1], [l2]} ∈ Sym2(A) to the line l ∈ F(X)

such that l1 + l2 + l is a plane section of X .
There are also two natural embeddings φi : A → Sym2(A), i = 1, 2, defined as

follows. For every a ∈ A, each of the two generators gi (a), i = 1, 2, of the quadric
f2 = 0 passing through a intersects A at two more points in addition to a, and the
embeddings φi send a ∈ A to the pair of such additional intersection points of A with
gi (a).

Proposition 8.1 If X is a one-nodal cubic threefold, then F(X) is a singular surface,
its singular locus Sing F(X) is a double curve with a simple double crossing, σ :
Sym2(A) → F(X) is the normalisation map, and, for each i = 1, 2, the composition
σ ◦ φi maps A on Sing F(X) isomorphically. ��

Now, consider a multi-nodal cubic threefold X with nodes si , i = 0, . . . , k. Then,
according to Proposition 7.1, the quadrocubic A associated to s0 is nodal and its
nodes pi , i = 1, . . . , k are represented by the lines s0si . Note that the embeddings
φi : A → Sym2(A), i = 1, 2, lift to embeddings φ̂i : Â → Sym2( Â), where Â is the
normalization of A. Note also that each nodal point pi of A lifts to a pair of points
p′

i , p′′
i in Â.

Proposition 8.2 For any multi-nodal cubic threefold X, the normalization map
F̂(X) → F(X) of the Fano surface F(X) decomposes into the composition of the
map F̂(X) → Sym2( Â) obtained by blowing up the points (p′

i , p′′
i ), i = 1, . . . k, the
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projection Sym2( Â) → Sym2(A) induced by the normalization of A, and the mapping
σ : Sym2(A) → F(X). ��

8.2 Fano Surface of a 6-Nodal Segre Cubic Threefold (Hasset and Tschinkel 2010)

We need to analyze in more details the normalization map from Proposition 8.2 when
X is a 6-nodal Segre cubic threefold X , in which case the quadrocubic A associated
to a node s0 splits into two non-singular rational irreducible components B1, B2 (see
Proposition 7.6) that intersect each other at 5 points pi , i = 1, . . . , 5 , given by the
lines s0si . Thus,

Sym2( Â) = Sym2(B1) � Sym2(B2) � (B1 × B2),

and Proposition 8.2 implies that

F̂(X) = P2
1 � P2

2 � R,

where P2
i = Sym2(Bi ), i = 1, 2, are projective planes and R is a del Pezzo surface of

degree 3 obtained from B1 × B2 by blowing up the 5 points (p1i , p2i ) representing the
intersection points pi ∈ B1 ∩ B2, i = 1, . . . , 5. Using an anticanonical embedding,
R can be viewed as a non-singular cubic surface in P3 (well-defined up to projective
equivalence). Inwhat followswe call R (respectively, its image R′ in F(X)) the central
component of F(X) (respectively, F̂(X)).

Each of the planes P2
j = Sym2(B j ), j = 1, 2, contains 5 lines that are the images

of B j × p j
i ⊂ B2

j under the projection B2
j → P2

j . According to Proposition 8.2, to
obtain F(X) these lines should be identified with the corresponding five disjoint lines
L j,i ⊂ R that are proper inverse images of B1 × p2i (respectively, p1i × B2) if j = 1
(respectively, j = 2).

One can easily check also that the curve φ1(B2) (respectively, φ2(B1)) is also a line
in P2

1 (respectively, P2
2 ) and that in F(X) the six described lines in P2

1 (respectively,
P2
2 ) are identified with the six lines L1,i (respectively, L2,i ), i = 0, . . . , 5, in R, where

L1,0 (respectively, L2,0) is the proper inverse image in R of φ2(B2) (respectively,
φ1(B1)).

Note that the two sextuples of lines L1,i and L2,i form a Schläfli double six on R.
Note also that identification of the six disjoint lines L1,i ⊂ R with pairwise intersecting
six lines on P2

1 and that of lines L2,i ⊂ R with lines on P2
2 results on R in gluing

of 15 pairs of points L1,i ∩ L2, j and L1, j ∩ L2,i , 0 ≤ i < j ≤ 5, which gives 15
singular (not normal) points qi j on the result R′ of this factorization. The points qi j

are quadruple in the sense that they have four local branches: two on R′ and one on
each of the planes P2

1 , P2
2 (where qi j are identified with the 15 pairwise intersection

points of the 6 lines on each of P2
j ).

The above observations belong to Segre (1887) (cf., Dolgachev 2015) and can be
summarized as follows.

Proposition 8.3 The Fano surface F(X) of a 6-nodal Segre cubic threefold X splits
into 3 irreducible components, F(X) = P2

1 ∪ P2
2 ∪ R′, two of which are projective
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planes P2
i = Sym2(Bi ). The third component R′ is the quotient of the cubic surface R

obtained from B1×B2 by blowing it up at 5 points, (p1i , p2i ), i = 1, . . . , 5, representing
5 intersection points pi ∈ B1 ∩ B2. The factorization R → R′ consists in gluing
pairwise 15 pairs of intersection points L1,i ∩ L2, j and L1, j ∩ L2,i , 0 ≤ i < j ≤ 5
and is induced by identification of L1,0, L1,1, L1,2, L1,3, L1,4, L1,5 with 6 generic
lines in P2

1 and L2,0, L2,1, L2,2, L2,3, L2,4, L2,5 with 6 generic lines in P2
2 . ��

In the above construction it is often useful to identify the product B1 × B2 with the
local quadric Q0 associated to the chosen node s0.

Proposition 8.4 Let Q0 and A = B1 ∪ B2 be the quadric and the quadrocubic asso-
ciated to one of the nodes s0 of a 6-nodal Segre cubic threefold X. Then, B1 × B2 can
be canonically identified with Q0, which yields a canonical isomorphism between the
central component R of F̂(X) and Q0 blown up at the 5 nodes of A.

Proof By Proposition 7.6, one of the components of A, say B1, has bidegree (2, 1),
while the other component, B2, has bidegree (1, 2). Projections of B1 to the first and
B2 to the second factor (line-generator) of Q0 are isomorphisms, which identifies Q0
with B1 × B2 and induces the required isomorphism. ��

Note that although the Fano surface F(X) is independent of the choice of a node
s0, the above construction makes use of such a choice, and this choice yields a distin-
guished pair of lines,

(L1,0
L2.0

)
(represented by the curves B1 and B2), in the double six

(L1,0 L1,1 L1,2 L1,3 L1,4 L1,5
L2,0 L2,1 L2,2 L2,3 L2,4 L2,5

)
. It follows from Proposition 7.5 that, for any i = 1, . . . , 5,

the pair
(L1,i

L2.i

)
represents the irreducible components of the quadrocubic Ai ⊂ Qi

associated with si . Thus, the next statement is a consequence of the two previous
propositions.

Corollary 8.1 In notation and under assumptions of Proposition 8.3:

(1) The six nodes si of X are in a canonical one-to-one correspondence with the six
pairs of lines,

(L1,i
L2,i

)
, of the Schläfli double six

(L1,0 L1,1 L1,2 L1,3 L1,4 L1,5
L2,0 L2,1 L2,2 L2,3 L2,4 L2,5

)
.

(2) Each of the local quadrics Qi can be canonically identified with the result of
contraction of the 5 lines Li, j , 0 ≤ j ≤ 5, j �= i , on the cubic R that are incident
with the lines L1,i , L1, j , L2,i , L2, j and not incident with the other lines of the
above double six.

(3) Each of the points [sis j ] ∈ F(X) represented by the line sis j ⊂ X connect-
ing the nodes si , s j is a quadruple point of F(X) and belongs to the image of
L1,i , L2,i , L1, j , L2, j ⊂ R in R′. ��

8.3 Real Fano Surfaces of One-Nodal Cubics (Krasnov 2007)

Assume that X is a real one-nodal cubic threefold, and that each of A, F(X), and
F̂(X) is equipped with the induced real structure. Then, the real locus of Sym2(A) =
F̂(X) consists of

(r
2

) + 1 connected components. One component, which we denote
N (X), is non-orientable; it is obtained from the quotient A/ conj of A by the complex
conjugation by filling its holes with the r Möbius bands Sym2(Ci ), i = 1, . . . , r ,
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where C1, . . . Cr denotes the connected components of AR. The other
(r
2

)
components

are tori Ti j = Ci × C j , 1 ≤ i < j ≤ r .

Proposition 8.5 Let X be a real one-nodal cubic threefold. If the node if X is of
signature (p, q) with p, q ≥ 1, then the signature of the node of the normal real
slice of F(X) at a point of AR (such a slice is nodal according to Proposition 8.1) is
(p − 1, q − 1). If the node of X has signature (4, 0) then AR = ∅. ��

Recall that for real surfaces with a simple double crossing a normal real slice of
signature (2, 0) (respectively, (1, 1)) can be characterized by a localmodel x2+y2 = 0
(respectively, x2 − y2 = 0) in the 3-space with local coordinates (x, y, z). Let us call
a component C of AR solitary circle if the normal real slices along this component
have signature (2, 0) and cross-like intersection circle in the case of signature (1, 1).

It is well known also that a perturbation of X leads to a smoothing of the singular
locus A of F(X) modeled by a usual smoothing of normal slices (cf., Krasnov 2007
where itwas crucial for the proof of the resultswe reproduced inSect. 4.5). In particular,
if the node of X has signature (3, 1), then the real singular locus AR ⊂ F(X) consists
of 0 ≤ r ≤ 5 solitary circles, and after ascending real perturbation Xt , t ∈ [0, 1], of
X0 = X such circles Ci ⊂ AR, 1 ≤ i ≤ r , are perturbed simultaneously into r toric
components T0i of FR(Xt ), t > 0, while in the case of descending perturbation, these
circles simultaneously vanish.

Those r toric component T0i in the case of ascending perturbation Xt will be called
collapsing tori of FR(Xt ), t > 0, relative to this perturbation (that can be viewed also
as a nodal degeneration as t → 0).

Proposition 8.6 Assume that a real non-singular cubic threefold X1 is obtained by
an ascending perturbation Xt , t ∈ [0, 1], of a one-nodal cubic X0 whose node has
signature (3, 1). Then if X1 has Klein type II, then the monodromy action is transitive
on the set of collapsing tori of FR(X1) as well as on the set of the non collapsing ones.
In particular, there are at most two orbits in the set of toric components of FR(X1).

Proof The collapsible tori arise as result of perturbation of solitary circles represented
by the components C1, . . . , Cr of AR treated as the double curve of FR(X) and non
collapsing ones by the products Ci × C j , 1 ≤ i < j ≤ r . Since the Klein type of
X1 is the same as that of A (see Theorem 4.1), we can apply Proposition 7.11 and
conclude, using Lemma 4.2 together with Proposition 7.13 and continuity argument,
that the monodromy permutes the components Ci as well as their pairs, which implies
the required claim. ��

A somewhat different perturbation scheme appears if X has a node of signature
(2, 2). Then Propositions 8.2 and 8.5 imply that the real components of the associ-
ated quadrocubic A look as simple normal self-intersection curves of FR(X). More
precisely, each singular connected component � of FR(X) contains one component
of quadrocubic, C ⊂ AR, as such self-intersection curve. In particular, some singular
components � may be homeomorphic to the direct product of a figure-eight (wedge
of two circles) with a circle. The same arguments (due to Krasnov 2007) as in the pre-
vious case imply that an ascending perturbation of X leads to a perturbation of such
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component � into a pair of tori in FR(Xt ), t > 0, (the figure-eight factor is smoothes
into a pair of circles). The tori that appear in FR(Xt ), t > 0, in such a way will be call
T-mergeable with respect to the nodal degeneration Xt , t → 0. If perturbation Xt is
descending, then the figure-eight factor of � is smoothed into one circle, so that � is
perturbed into one torus component on FR(Xt ).

Proposition 8.7 Consider an ascending perturbation Xt , t ∈ [0, 1], of a one-nodal
real cubic X0 that yields a non-singular real cubic threefold X = X1. Assume that
l ⊂ X is a real line representing a point [l] ∈ FR(X) on a torus which is collapsible,
if the node of X0 has signature (3, 1), and T-mergeable in the case of signature (2, 2).
Then l realises a skew spectral matching, or in other words, for the spectral curve S
of (X , l) we have

d(S) = d(X) + 2.

Proof If AR has r ≥ 1 connected components, then dA = dX = 5 − r , and we need
to show that dS = 7 − r . Consider a line l1 ⊂ X1 representing point [l1] of a torus
component T1 ⊂ FR(X1) and their continuous variations, lt ⊂ Xt , Tt ⊂ FR(Xt ),
[lt ] ∈ Tt along with the spectral curves St ⊂ P2 associated to (Xt , lt ).

If the torus T1 is contracting, then it degenerates as t → 0 to one of the circle com-
ponents of AR ⊂ FR(X0), which implies, in particular, that the limit line l0 contains
the node s ∈ X0. By our assumption, s has signature (3, 1), which means that the local
quadric Qs is an ellipsoid and, thus, the line generators of Qs are imaginary. This
implies that the two nodes of S are imaginary and, hence, the components C1, . . . , Cr

of AR are projected into r smooth real components of S0R. Their smoothness implies
that StR with t > 0 has also r components and so, dS = dS1 = 7 − r .

If the torus T1 is T-mergeable, then its limit T0 is merging along some component
Ci of AR ⊂ FR(X0)with another torus, and the path lt can be chosen so that [l0] ∈ Ci .
Since the node s in this case is of signature (2, 2), the quadric Qs is a hyperboloid.
Therefore, the two nodes of S are real.

None of these nodes is solitary or a self-intersection of the image of one of the real
components of AR. Indeed, otherwise, the torus T0 is merging not with a torus but
with the non-orientable component of F̂R(X0), that is

N (X0) = A/ conj∪r
j=1 Sym

2(C j ) ⊂ Sym2(A) = F̂(X0).

This is because a solitary point of S0 can appear only as the projection of an imaginary
pair, {z, z̄}, and then [l0] ∈ A/ conj, while if a node is formed by projection of some
component C j ⊂ AR, then [l0] ∈ Sym2(C j ).

Thus, the two nodes of SR are intersection points of the projectionsC ′
j andC ′

k of two
different components C j and Ck of AR. Therefore, the quintics StR, t > 0, which are
obtained by smoothing the nodes of SR, have either r − 1 or r connected components.
The first option is excluded by Corollary 5.1, and we conclude that dSt = 7 − r , for
t > 0. ��

123



Deformation Classification of Real Non-singular Cubic… 405

8.4 Cubic Threefolds of Type C3I

Here, we consider a real one-nodal cubic threefold X0 with a node of signature (2, 2)
such that the associated quadrocubic is of type 3I (see Sects. 4.7 and 7.5). Such a cubic
exists; indeed, one may start from constructing A as an intersection of a hyperboloid
f2 = 0 with three planes L1 = 0, L2 = 0, L3 = 0 from a pencil of planes whose real
base-line L1 = L2 = L3 = 0 does not intersect QR (such a curve A is of type I, see,
for example, Zvonilov 1992), and define X0 by affine equation f2 + L1L2L3 = 0.

Proposition 8.8 (1) FR(X0) consists of 4 connected components, one of which is a
non-orientable smooth surface and each of the other components is the product of
a figure-eight with S1.

(2) There exists an equisingular deformation {Xt }t∈[0,1] of X0 preserving the node of
X0 at a fixed point of P3, such that X1 = X0 and whose monodromy gives a cyclic
permutation of the three non-smooth components of X0.

Proof (1) Let us denote by Ci , i = 1, 2, 3, the connected components of AR. By
Proposition 8.1, the normalization F̂(X0) of F(X0) is Sym2(A). It implies that
F̂R(X) consists of one non-orientable component and 3 torus components Tk ,
k = 1, 2, 3, Tk = Ci × C j , 1 ≤ i < j ≤ 3, k �= i, j . Each torus Tk contains a
pair of disjoint curves, Dki = φi (Ck), i = 1, 2, which are identified to form the
double curve of F̂(X0) (see Proposition 8.1). Such an identification turns Tk in a
component of FR(X0) homeomorphic to the product of a figure-eight with S1.

(2) By construction, A0R splits into three disjoint ellipses Ei = P2
iR ∩ QR traced by

the planes Li = 0, i = 1, 2, 3. Rotation of these planes around the base-line gives
us a family of triples of planes L1t = 0, L2t = 0, L3t = 0 ending by a cyclic
permutation L1 = L10 = L31, L2 = L20 = L11, L3 = L30 = L21, andwe get the
required family of cubic threefolds by defining it by equations f2+L1t L2t L3t = 0.

��
Proposition 8.9 For a real cubic threefold X of type C3

I , all the tori of FR(X) are T-
mergeable. More precisely, there exists a nodal degeneration of X that yields merging
of the six toric components of FR(X) pairwise, along the three connected components
of the quadrocubic AR associated to the node.

Proof Due to Proposition 8.8, the degeneration ensured by Theorem 4.1 is as required.
��

8.5 Atoric Real 6-Nodal Segre Cubics

Proposition 8.10 If X is an atoric real 6-nodal Segre cubic threefold, then the central
component R of F̂(X) = P2

1 ∪ P2
2 ∪ R is a real non-singular cubic (M − 1)-surface,

whereas P2
1 , P2

2 are imaginary complex conjugate projective planes.

Proof Choose one of the nodes s ∈ X . Since it is of signature (3, 1), the quadric
Qs is an ellipsoid. By Proposition 7.6 the quadrocubic A splits into two nonsingular
irreducible curves B1 and B2 of bidegree (2, 1) and (1, 2), respectively, intersecting
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each other transversally at 5 points. In our case these curves are imaginary complex
conjugate, since the complex conjugation transforms each curve of bidegree (a, b)

into a curve of bidegree (b, a). Since all the nodes of X are real, all the 5 points of
B1 ∩ B2 are real (see Proposition 7.1). Due to Proposition 8.4, this implies that R is an
(M −1) real cubic surface. The components P2

1 , P2
2 are imaginary complex conjugate,

since P2
i = Sym2(Bi ) for each i = 1, 2 (see Proposition 8.3). ��

Note that R is an M-surface and both P2
1 , P2

2 are real, if the nodes are of signature
(2, 2).

8.6 Monodromy of Collapsing Tori

Proposition 8.11 For each non-singular real cubic threefold X of type Ck, 1 ≤ k ≤ 5,
there exists a real degeneration Xt , t ∈ [0, 1], of X = X1 to a (k+1)-nodal atoric cubic
X0. The corresponding degeneration of the Fano surfaces F(Xt ), t > 0, contracts
the

(k+1
2

)
tori of its real locus to the points [li j ] ∈ F(X0), where li j are the lines

connecting the nodes si and s j , 0 ≤ i < j ≤ k.

Proof Consider a non-singular real quadric Q whose real locus QR is an ellipsoid and
a real quadrocubic A whose real locus AR is formed by k solitary nodes on QR in
linearly general position (one can construct such a quadrocubic as, for example, the
image of a real plane quartic with k − 1 solitary nodes under a standard birational
transformation from real projective plane to a real ellipsoid, choosing the two base
points of this transformation to be imaginary complex conjugate points in general
position). Next as usual we pass from such a k-nodal quadrocubic A to a (k +1)-nodal
cubic X0 ⊂ P4 (see Proposition 4.3) so that A is associated to one node, s0, of X0 and
the other nodes si , i = 1, . . . , k of X0 represent the nodes of A (viewed as lines s0si ).
Lemma 7.1 guarantees that all the nodes of X0 are real and have signature (3, 1).

Instead of a direct perturbation of all the nodes at once, it will be convenient to
perform a perturbation at two steps: first, we keep the distinguished node s0 of X0
and perturb the others, which gives one nodal cubic X ′

0, and, second, we perturb the
remaining node s0 and obtain non-singular cubic X . More precisely, at the first step,
we perturb the quadrocubic so that each solitary node s0si of A gives birth to an oval
Ci ⊂ QR of the quadrocubic A′ associated to X ′

0, and then choose and ascending
perturbation of X ′

0, which implies that the resulting perturbation of X0 is ascending
too and thus, according to Theorem 4.1, really yields X of type Ck as required. The
required perturbation scheme really exists because in the space of cubic threefolds
C3,3 each stratum of k-nodal ones is an intersection of k transversal branches of the
discriminant �3,3, for each k ≤ 6.

As it was remarked in Sect. 8.3, the Fano surface FR(X ′
0) has torus components

Ti j = Ci × C j , 1 ≤ i < j ≤ k, as a part of its non-singular locus, and solitary circle
components Ci ⊂ A′

R
, i = 1, . . . , k, forming its real singular locus. An ascending

perturbation of X ′
0 leads to smoothing of circles Ci into toric components T0i ⊂

FR(X), i = 1, . . . , k. This means that the tori T0i are collapsing and contract to the
points l0i as X contracts to X0. Since degeneration of X ′

0 to X0 contracts the oval Ci

to points s0si , the other toric components of FR(X) corresponding to Ti j = Ci × C j ,
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1 ≤ i < j ≤ k, will contract as the corresponding ovals, namely, to the points
li j ∈ FR(X0) representing lines sis j . ��
Proposition 8.12 Let X τ

0 , τ ∈ [0, 1], be a continuous loop in the space of atoric k-
nodal cubic threefolds with k ≤ 6, and let σ be the resulting permutation of the nodes
s1, . . . , sk of X0

0 . Then, there exists a continuous map [0, 1]2 → C3,3, (t, τ ) �→ X τ
t ,

such that :

(1) X0
t = X1

t for any t and X τ
t is non-singular for any τ ≥ 0 and any t > 0;

(2) X0
t , t ∈ [0, 1], is an ascending perturbation of X0

0;
(3) the torus component Ti j ⊂ FR(X0

1), 1 ≤ i < j ≤ k, that contracts to the point
[sis j ] ∈ F(X0

0) is mapped by the monodromy along the loop X τ
1 , τ ∈ [0, 1], to

the torus component Tσ(i)σ ( j).

Proof Straightforward consequence of Proposition 7.13, since for any k ≤ 6, each of
the strata of nodal cubic threefolds with k nodes is an intersection of k transversal
branches of the discriminant. ��
Corollary 8.2 If X is a real non-singular cubic threefold of type Ck, 1 ≤ k ≤ 5, then
all the torus components of FR(X) are collapsible. If, in addition, k < 5 then the Fano
monodromy group of X acts transitively on the torus components of F(X).

Proof Proposition 8.11 implies the first statement. The second statement follows from
Proposition 8.12(3) and Corollary 7.3. ��

9 Proof of Main Theorems

9.1 Proof of Theorem 4.3

If X belongs to the type C0 or C1
I (2), then its Fano surface has only one connected

component, FR(X) = N5 (Sect. 4.5, Table 1). Hence, there exists only one spectral
matching ([X ], [S]) involving such a type of cubic threefolds. Thismatching is perfect,
since due to Lemma 5.7 the perfect matching is spectral.

For X of type C1
I , Theorem 4.3 is proved in Sect. 6.8.

If X is of type Ck , 1 ≤ k ≤ 5, then, by Proposition 8.11 and Corollary 8.2, all
the tori of FR(X) are collapsible. Thus, by Proposition 8.7, the spectral matching
([X ], [S]) is skew if l is chosen on any of the tori. Therefore, for the perfect matching,
which is always spectral due to Lemma 5.7, there remain only the option l ∈ N (X).

In the remaining case C3
I , Proposition 8.9 shows that the tori are mergeable. Thus,

by Proposition 8.7, they all provide skewmatchings. The remaining component N (X)

provides a perfect matching, as it follows again from Lemma 5.7. ��

9.2 Proof of Theorem 4.4(1)

For real cubic threefolds of type Ck , 2 ≤ k ≤ 4, this claim of the theorem follows
from Corollary 8.2, while for other types it is empty: the types C5 and C3

I do not make
part of the statement, and in the remaining cases the Fano surface has at most one toric
component. ��
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9.3 Segre 3-3 Bipartition

Claims (1) and (2) of the following proposition go back to L. Schläfli, claim (3) is due
to Segre (1942, §41–42).

Proposition 9.1 Assume that Y is a non-singular real cubic (M-1)-surface. Then:

(1) Y has precisely 15 real and 12 imaginary lines, where the latter ones form a double
six,

(L1...L6
L̄1...L̄6

)
, so that each line L̄i is complex-conjugate to Li .

(2) Each of the real lines intersects precisely two pairs of conjugate imaginary lines,
(Li , L̄i ) and (L j , L̄ j ), so that this gives a one-to-one correspondence between the
15 real lines and the

(6
2

)
choices of 1 ≤ i < j ≤ 6.

(3) The set of the six pairs (Li , L̄i ) is partitioned into two triples, so that, with respect to
the above correspondence, the 9 combinations of choices of (Li , L̄i ) and (Li , L̄i )

from different triples represent hyperbolic lines, while the 6 other combinations
represent elliptic lines. ��
If we consider an atoric real 6-nodal Segre cubic threefold X and the lines on the

cubic surface Y = R ⊂ F̂(X), then Proposition 8.3 and Corollary 8.1 transform the
partition of the set of 6 pairs (Li , L̄i ) given by Proposition 9.1(3) into a bipartition of
the set of the nodes of X . We name the latter bipartition the Segre 3+3 bipartition of
nodes. A pair of nodes (si , s j ) of nodes of X is called hyperbolic or elliptic, in accord
with the type of the corresponding line of Y = R.

Proposition 9.2 Let s0, . . . , s5 be the nodes of an atoric real Segre 6-nodal cubic
threefold X and A the quadrocubic associated with s0. Then the Segre 3+3 bipartition
of {s0, . . . , s5} induces a 3+2 partition of {s1, . . . , s5} that matches with the Segre
3+2 partition of the nodes of A via the correspondence si �→ [s0si ], where [s0si ]
denotes the node of A represented by the line s0si .

Proof By Propositions 8.3 and 8.4, the normalized central component R ⊂ F̂(X)

can be identified with the local quadric Q p blown up at the points qi = [s0si ],
i = 1, . . . , 5. According to Proposition 7.7, the Segre 2+3 bipartition of {q0, . . . , q5}
is formed by a pair {q1, q2} such that the corresponding exceptional divisors E1 and
E2 are elliptic lines in R, while for the remaining triple {q3, q4, q5}, the corresponding
Ei , i = 3, 4, 5 are hyperbolic lines. Each line Ei is incident to the proper image of
the imaginary generators of Q p passing through qi and to the components B1 and B2
of the quadrocubic A = B1 ∪ B2. Ellipticity of Ei means, by definition of the Segre
3+3 bipartition, that the pair si and s0 is elliptic, and so such a pair is contained in
the same triple. This implies that {s0, s1, s2} form one triple, and {s3, s4, s5} form the
other one. ��

9.4 Monodromy of Nodes of Atoric Real Segre 6-Nodal Cubics

Throughout this subsection X is assumed to be an atoric real Segre 6-nodal cubic
threefold. The nodes of X are denoted by s0, . . . , s5.
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Proposition 9.3 The Segre 3+3 bipartition of the set of nodes of X is preserved under
real equisingular deformations, so that any monodromy permutation induced on the
set of nodes of X either preserves each triple of the bipartition or interchanges them.

Proof Since R remains a non-singular (M − 1)-cubic surface under real equisingular
deformations of X , the result follows from Proposition 9.1(3) and invariance of elliptic
and hyperbolic lines under real deformations of a real cubic surface. ��

The converse is also true.

Proposition 9.4 Any permutation of the nodes of X that preserves or interchanges the
triples of the Segre 3+3 bipartition of the set of nodes can be realized as a monodromy
under a real equisingular deformation of X.

First, we observe transitivity of the monodromy action.

Lemma 9.1 Real equisingular deformations induce a transitive monodromy action on
the set of nodes of X.

Proof We start with a real projective transformation g : P4 → P4 that sends s0
to any other given node si , and induces an isomorphism between the local quadric
Q0 ⊂ P3

s0
and the local quadric Qi ⊂ P3

s0
. The latter can be done since any pair of

ellipsoids can be connected by a real projective equivalence. The 5-point configuration
of the nodes of the quadrocubic Ai ⊂ Qi associated to si ∈ X and that of the nodes
of g(A0) ⊂ g(Q0) = Qi associated to si ∈ X ′ = g(X) can be connected by a
deformation in the class of 5-point subsets of Qi in linearly general position, see
Corollary 7.8. Next note that 5 points on Qi in linearly general position determine a
unique curve of degree (2, 1) and a unique curve of degree (1, 2) that pass through the
given points. These two curves form together a quadrocubic with the 5 given nodes
and depend continuously on them. Now, it remains to apply Lemma 4.2 to obtain an
equisingular real deformation connecting the cubic X with itself and moving s0 to si .

��
Proof of Proposition 9.4 Lemma 9.1 reduces the task to the case of permutations of the
nodes si , i = 0, . . . , 5, that preserve a given node, say s0. Let pi ∈ A0 ⊂ Qs0 denote
the nodes of the quadrocubic A0 that correspond to the directions s0si . By Proposition
7.7 andCorollary 7.8 anypermutationof the set {p1, . . . , p5} that preserves the induced
Segre 3+2 bipartition can be realized by deformations in the class of linearly generic
5-point configurations. Using Proposition 9.2, we can lift such a deformation to a
deformation of 6-nodal Segre cubics (like in the proof of Lemma 9.1). ��

9.5 Proof of Theorem 4.4(2)

ByProposition 8.11, it is sufficient to consider a cubic X1 ⊂ P4 of typeC5 obtained by
a perturbation Xt , t ∈ [0, 1], of an atoric real 6-nodal Segre cubic X0. A monodromy
permutation of the nodes si , i = 0, . . . , 5, of X0 realized by a real equisingular
deformation of X0 induces a permutation of the lines li j connecting the nodes si and s j ,
0 ≤ i < j ≤ 5, which in its turn provides the same permutation of the corresponding
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tori Ti j , as it follows fromProposition 8.12. On the other hand, Propositions 9.3 and 9.4
show that monodromy permutations of the nodes si are precisely the ones preserving
the Segre 3+3 partition. The action induced by such permutations on the pairs (si , s j )

produces 2 orbits: for one orbit si and s j belong to the same triple of the partition, and
for the other orbit they belong to different triples.

Now it remains to characterise the corresponding two orbits of Ti j ∈ T (X) as
TI (X) and TI I (X), according to their definition in Sect. 4.12. To do it, note that the
spectral curve S0 corresponding to the line l0 = sis j on X0 splits, due to Proposition
7.6(4), into a pair of conjugate imaginary conics, Ci j , C ′

i j , intersecting at 4 real points
and a real line L (reality of the 4 intersection points is due to their correspondence to
the four real planes, sis jsk , k ∈ {0, . . . , 5}�{i, j}). By Proposition 7.7, these 4 points
are in a non-convex position in RP2 � L for the first orbit of {si , s j }, and convex for
the second orbit. On the other hand, according to Theorem 4.3, the spectral curve S1
of a pair (X1, l1) obtained by a perturbation of (X0, l0), is itself a perturbation of S0
which gives an (M − 2)-quintic. Hence, each of the 4 real nodes of S0 gives birth to
an oval, whereas the line L is perturbed into the J-component of S1. Now it is left to
apply Lemma 4.1 to distinguish quintics of types J � 4I and J � 4I I . ��

9.6 Proof of Theorems 4.4(3)

By Theorems 4.1 and 7.1(3), a cubic X ⊂ P4 of type C3
I can be obtained by an

ascending perturbation from a real one-nodal cubic X0 whose associated quadrocubic
A has real locus formed by three non-contractible components. Recall that FR(X0)

contains 6 tori that split into 3 pairs: in each pair the tori are merged together along
the corresponding component of AR, see Proposition 8.9. The induced monodromy
action cyclically permutes these 3 merged pairs and after an ascending perturbation
we obtain an induced action of Z/3 on the set of the six tori of FR(X). This implies
that there are at most 2 monodromy orbits on the set of tori, each orbit formed by 3
cyclically permuted tori. On the other hand, since the (M-4)-quintic S can be of Klein’s
type I or II, and by Lemma 5.8 there are spectral matchings ([X ], [S]) with the both
types, and they are realised by lines l on the toric components of F(X) according to
Theorem 4.3, we conclude that there exist two monodromy orbits on the set of tori:
one orbit of type I, and another of type II. ��

9.7 Summary of the Proof of Theorem 4.2

Part (1) of Theorem 4.2 is derived in Sect. 4.9 and part (3) in Sect. 5.8. Theorem 4.3
together with uniqueness of the odd component N (X) ⊂ FR(X) implies (2) in the
case of perfect matchings. By Theorem 4.4(1), pairs (X , l) that represent a given skew
matching ([X ], [S]), are deformation equivalent unless [X ] is C5 or C3

I . In the case of
X having type C5 (respectively, C3

I ) we apply Theorem 4.4(2) (respectively, 4.4(3))
showing that the deformation classes of pairs (X , l) (within the given class [X ]) are
distinguished by [S].

123



Deformation Classification of Real Non-singular Cubic… 411

10 Concluding Remarks

10.1 Expanded Spectral Correspondence

In this paper itwas sufficient for us to staywithin themost classical setting not involving
discussion of theta-characteristics on singular curves and to use only the most basic
properties of the spectral correspondence understood as a regular bijective morphism:
C∗/PGL(5; C) → S/PGL(3; C) when working over C and C∗

R
/PGL(5; R) →

SR/PGL(3; R) over R (see Sect. 3.4). Both morphisms are indeed isomorphisms.
Furthermore, one can extend S to a larger space Ŝ by adding nodal quintics and
define a theta-characteristic on a nodal quintic not as a line bundle but as a rank-1
torsion free sheaf that is not locally free at each of the nodes (cf., Cornalba 1989).
Then, these isomorphisms extend to isomorphisms C/PGL(5; C) ∼= Ŝ/PGL(3; C)

and CR/PGL(5; R) = (C/PGL(5; C))R ∼= (Ŝ/PGL(3; C))R = ŜR/PGL(3; R),
respectively.

10.2 Monodromy Groups

Using the approach and the results of this paper it is possible to evaluate the Fano
real component monodromy group Gmon (see Sect. 4.12) for each of the deformation
classes.

For example, in the case of maximal real cubic threefolds this group is isomorphic
to the semi-direct product of S3 × S3 and Z/2, namely, to the subgroup S123,456
of the symmetric group S6 on 6 elements 1, 2, . . . , 6 formed by permutations leaving
invariant the partition {1, . . . , 6} = {1, 2, 3}∪{4, 5, 6} (with possibility to interchange
3-element subsets). Indeed, as we have seen in Sect. 9.4 via degenerating maximal
cubic threefolds to a 6-nodal Segre cubic, one can enumerate the real tori, Ti j = Tji ,
1 ≤ i �= j ≤ 6, of the Fano surface so that each element of Gmon preserves the 6+9
partition of the set of tori in {Ti j with i, j ≤ 3 or i, j ≥ 4} and {Ti j with i ≤ 3 and j ≥
4}, and, in addition, Gmon contains as a subgroup the group S123,456 naturally acting on
the set of tori. Furthermore, one can check that H1(F; Z/2) contains 6 independent
elements, c1, . . . , c6, such that the intersection of the images of H1(Ti j ; Z/2) and
H1(Tkl; Z/2) in H1(F; Z/2) is zero, if i, j and k, l have no common element, and
generated by ci , if k or l is equal to i . Clearly, the action of Gmon preserves these
relations. Hence, each element of Gmon sends tori having a common index to tori
having a common index, and the result follows.

Passing through one-nodal degeneration from cubics in class C5 (M-cubics) to
cubics of class C4, from C4 to C3, etc., and noticing that the real structure of the
Fano surfaces is modified only along a loci not containing the surviving real tori, one
concludes that the above exchange property in H1 is preserved for the remaining tori
and, applying Proposition 7.9, obtains that for cubics of class C5−k with k ≥ 1 the
group Gmon is isomorphic to S6−k .
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(a) (b) (c) (d)

Fig. 8 a Quartic A with 3 fundamental points of the quadratic transformation; b Quintic S0; c M- quintic
S with a hexagonal configuration of ovals; d Six bitangents at imaginary points

10.3 Conormal Projection

The conormal projection used in Sect. 6 for studying Fano surfaces can be also used
for studying real plane quintic curves. Here is one example that concerns M-quintics.

First, we recall a simple convexity property of the 6 ovals of an M-quintic: if we
pick one point inside each oval, they will form in some affine plane R

2 ⊂ P2
R
a

convex hexagon disjoint from the one-sided component of the quintics (see Fig. 8c).
Our observation is that for each generic M-quintic S there exist 6 and only 6 real
bitangents whose tangency points are either imaginary, or both real and belonging to
the same connected component of SR; these bitangents are in a natural correspondence
with the six ovals of S: each bitangent separates the corresponding oval from the other
five by cutting an angle from the hexagon described (see Fig. 8d).

For the proof, we treat, first, some special example. We start from considering the
real quartic A0 defined (for better visibility) in polar coordinates as r2 − 2r3 cos 3φ +
r4 = 0. Its real locus consists of 4 solitary nodes: at the origin (r = 0) and at three
points sk , k = 0, 1, 2, with r = 1 lying on the rays Rk = {φ = 2k

3 π, r ≥ 0}. A small
real perturbation r2 − 2r3 cos 3φ + r4 = ε2 is a quartic A (shown on Fig. 8a) that has
4 small ovals around the nodes of A0. Next, we consider the intersection points of the
rays Rk , k = 0, 1, 2, with the central oval of A and perform the standard quadratic
Cremona transformation with these three points as fundamental points. The image of
the quartic A will be a quintic S0 with 3 ovals that are the images of the 3 non-central
ovals of A, a one-sided component J that is the image of the central oval, and 3 solitary
points that are the images of the pairs of imaginary points of A that lie on the sides of
the fundamental triangle (see Fig. 8b). Each of the conics �0 that pass through these
3 solitary points and intersect two of these 3 ovals contains the remaining oval inside.
Finally, we consider an M-quintic S obtained by a small perturbation of S0 and the
theta-conic � obtained by a small perturbation of �0 whose real locus contains inside
all the 6 ovals of S and is tangent to 5 of them. The curve dual to S is shown on Fig. 9.

Let X and l be a real cubic threefold and a real line on it defined by (S,�) as
above, and let F be the Fano surface of X . By Proposition 6.8 the image λR(FlR) of
the conormal projection λR : FlR → P̂

2
R
is the complement of the six bands on P̂

2
R

formed by the points dual to the lines in P
2
R
crossing the six ovals of S.

This complement consists of 16 curvilinear polygons: 6 triangles, 9 quadrilaterals
and a hexagon, as it is shown on Fig. 9. So, the 16 connected components of FlR are
mapped into the above 16 polygons, each in its own. The projection to the triangles
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Fig. 9 The dual curve, Ŝ, and the
6 triangle components of
λR(FlR)

and quadrilaterals have 4 sheets folded at the boundary and the Euler characteristic
argument shows that the corresponding components of FlR must be tori, while the
non-orientable component of FlR is mapped to the hexagon. Moreover, the projection
of a torus to a triangle must have a branch point. It can be easily seen that such a point
is dual to a real bitangent to S with imaginary tangency points, and the projective
duality implies that this bitangent is located in P

2
R
as is stated.

To deduce the general claim, it is sufficient to notice that allM-quintics are deforma-
tion equivalent and that a bitangent tangent to two distinct components of the quintic
can not disappear during a deformation.

10.4 Mutual Position of SR and2R

The methods developed allows to obtain some restrictions on the position of the ovals
of a real quintic S with respect to a contact conic �. The fact that the associated
theta-characteristic differs from Rokhlin’s one implies for instance that the ovals of
an M-quintic S cannot lie all outside the interior of �R and have each even contact
with � (for instance, it can not happen that each of the 5 tangency points S ∩ � is
imaginary or lies on the J -component of SR).

Indeed, Corollary 5.3 together with the fact that every contact pair (S,�) is spectral
(Theorem 3.1) shows that such a mutual position of SR and �R implies that for the
corresponding cubic threefold X we have dX = dS − 2 (the matching (X , S) is skew)
which is impossible in the case dS = 0. The latter argument shows also impossibility
of a similar mutual position for (M − 1)-quintics too.

Using that the spectral theta-characteristic must be odd, one can obtain some addi-
tional restrictions. For example, if all the ovals of an M-quintic S lie outside �R and
only one of them is tangent to �R, then the latter cannot be one of the three ovals
joined by a vanishing bridge-cycle with the one-sided component of SR.
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