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Abstract
It is very well known that periodic orbits of autonomous Hamiltonian systems are
generically organized into smooth one-parameter families (the parameter being just
the energy value). We present a simple example of an integrable Hamiltonian system
(with an arbitrary number of degrees of freedom greater than one) with a unique
periodic orbit in the phase space (which is not compact). Similar examples are given
for Hamiltonian systems with a unique invariant torus (of any prescribed dimension)
carrying conditionally periodic motions. Parallel examples for Hamiltonian systems
with a compact phase space and with uniqueness replaced by isolatedness are also
constructed. Finally, reversible analogues of all the examples are described.

Keywords Periodic orbit · Kronecker torus · Uniqueness · Isolatedness ·
Hamiltonian systems · Reversible systems

Mathematics Subject Classification 37J45 · 70H12 · 70K42 · 70K43 · 70H33

1 Introduction

Equilibrium points of autonomous Hamiltonian systems are generically isolated in the
phase space, like equilibria of general dynamical systems. On the other hand, while
generic periodic orbits of systems with dissipation are also isolated (and are therefore
called limit cycles), periodic orbits of Hamiltonian systems are generically organized
into smooth one-parameter families (the parameter being just the energy value). The
proof is very simple (Abraham and Marsden 1978; Hofer and Zehnder 1994). Let γ

be a periodic orbit of an autonomous Hamiltonian system with N degrees of freedom
and G the energy hypersurface containing γ . Consider a (2N − 2)-dimensional local
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transversal section Σ ⊂ G to γ (Σ ∩ γ = {O}) and the corresponding Poincaré map
P : Σ → Σ . Generically none of the eigenvalues of the linearization of P at the
fixed point O is equal to one. If this is the case then, according to the implicit function
theorem, any energy hypersurface sufficiently close to G admits one and only one
periodic orbit close to γ . This periodic orbit depends smoothly on the energy value.

By the way, this proof shows that periodic orbits of Hamiltonian systems with one
degree of freedom are always included in smooth one-parameter families (each peri-
odic orbit being a connected component of an energy line). Recall that the linearization
ofP at O is called themonodromy operator of γ (withinG) and its eigenvalues (inde-
pendent of Σ) are called the (characteristic) multipliers of γ . They occur in pairs
(λ, λ−1) of the same Jordan structure (and, in particular, of the same multiplicity).

The natural higher-dimensional generalization of the concept of a periodic orbit is
an invariant torus carrying conditionally periodic motions. This is an invariant mani-
fold T diffeomorphic to the n-torus Tn = R

n/2πZn and such that the dynamics on
T in a suitable angular coordinate ϕ ∈ T

n has the form ϕ̇ = ω with a constant vector
ω ∈ R

n (called the frequency vector). Periodic orbits correspond to the case where
n = 1 and ω �= 0. If the frequencies ω1, . . . , ωn are incommensurable (rationally
independent), one speaks of quasi-periodic motions. According to the Kolmogorov–
Arnol’d–Moser (KAM) theory [see e.g. Arnol’d (1989), Arnol’d et al. (2006), Broer
et al. (1996), Kappeler and Pöschel (2003) and references therein], isotropic invariant
tori of dimensions 2, . . . , N carrying quasi-periodic motions are as typical for Hamil-
tonian systems with N degrees of freedom as periodic orbits (recall that a submanifold
of a symplecticmanifold is said to be isotropic if the restriction of the symplectic struc-
ture to this submanifold vanishes). Isotropic invariant n-tori (2 � n � N ) carrying
quasi-periodic motions are generically organized into n-parameter families but these
families are Cantor-like rather than smooth (however, they are foliated into smooth
one-parameter subfamilies). In fact, the frequencies of invariant tori in theKAM theory
are not merely incommensurable but strongly incommensurable (e.g., Diophantine),
i.e., badly approximable by sets of commensurable frequencies.

The flow on T
n afforded by the equation ϕ̇ = ω ∈ R

n is also said to be linear,
parallel, rotational, or Kronecker. Therefore, invariant tori carrying conditionally peri-
odic motions are sometimes called Kronecker tori (Kappeler and Pöschel 2003). A
linear flow gt on Tn with any frequency vector ω possesses the following recurrence
property: for any T > 0 and ε > 0 there is τ > T such that for any ϕ ∈ T

n the
distance between ϕ and gt (ϕ) = ϕ + tω is smaller than ε. The distance here is to be
understood with respect to, e.g., the flat Riemannian metric inherited from R

n . It is
often convenient to extend the concept of a Kronecker torus to equilibria (invariant
0-tori).

It is very well known that in various degenerate settings, periodic orbits as well as
higher-dimensional isotropic Kronecker tori of a Hamiltonian system can constitute
a family whose number of parameters is larger than that in the generic case. Such
situations are typical for superintegrable systems for which the number of independent
first integrals exceeds the number of degrees of freedom (of course, not all of those
integrals are pairwise in involution). For instance, consider the motion in the central
force field in R

N with a potential V (Arnol’d 1989; Arnol’d et al. 2006). This is a
Hamiltonian system with N degrees of freedom. If V (r) = −c/r (c > 0) then each
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trajectory with negative energy and non-zero angular momentum is an ellipse with a
focus at the center of attraction (a Kepler ellipse). If V (r) = cr2 (c > 0) then each
trajectory with non-zero angular momentum is an ellipse with the center at the center
of attraction (a Hooke ellipse). In both the cases, an open domain of the phase space
is foliated into periodic orbits.

Now the following question arises: can the number of parameters of a degenerate
family of periodic orbits or higher-dimensional isotropic Kronecker tori of a Hamil-
tonian system be smaller than that in the generic case? Can, for example, a periodic
orbit γ of a Hamiltonian system be isolated in the phase space? In other words, is it
possible that there is a neighborhood U of γ such that γ is the only periodic orbit
entirely contained in U? Can a periodic orbit of a Hamiltonian system be unique in
the whole phase space? There exists an extensive bibliography on periodic orbits of
Hamiltonian systems [see e.g. Hofer and Zehnder (1994) and references therein] but it
seems that Hamiltonian systems with a unique periodic orbit have not been studied yet
(on the contrary, Hamiltonian systems with no periodic orbits at all are a very popular
subject of research). If γ is the only periodic orbit of a Hamiltonian system then we
arrive at the following astonishing picture: the energy hypersurface on which γ lies
contains only one periodic orbit (this is quite an ordinary situation, of course) but all
the other energy hypersurfaces contain no periodic orbits!

In December 2017 and January 2018, the author and the user Khanickus of Math-
Overflow (Khanickus 2018) constructed independently two very similar explicit (and
exceedingly simple) examples of Hamiltonian systems in R

4 with a periodic orbit
unique in the whole phase space. The main purpose of this short note is to present a
generalization to the case where the dimension n � 1 of the invariant torus and the
number N � n + 1 of degrees of freedom are arbitrary.

2 Invariant Tori in Hamiltonian Systems

Let n � 1 and m � 0 be arbitrary integers and ω ∈ R
n an arbitrary

vector. Our aim is to construct a Hamiltonian system on M = R
n+2m+2 ×

T
n with a unique Kronecker n-torus, the frequency vector of this torus being

ω. Let (u1, . . . , un, x, y, p1, . . . , pm, q1, . . . , qm) be coordinates in R
n+2m+2 and

(ϕ1, . . . , ϕn) angular coordinates in Tn . Consider the symplectic structure

ω2 = ∑n
i=1 dui ∧ dϕi + dx ∧ dy + ∑m

j=1 dp j ∧ dq j (1)

onM. The Hamilton function

H = ∑n
i=1(ωi ui + xu2i ) + x3/3 + xy2 + ∑m

j=1(p
3
j/3 + p jq2j )

on the symplectic manifold (M,ω2) affords the equations of motion

ϕ̇i = ∂H/∂ui = ωi + 2xui (1 � i � n),

u̇i = −∂H/∂ϕi = 0 (1 � i � n),
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ẏ = ∂H/∂x = ∑n
i=1 u

2
i + x2 + y2,

ẋ = −∂H/∂ y = −2xy,

q̇ j = ∂H/∂ p j = p2j + q2j (1 � j � m),

ṗ j = −∂H/∂q j = −2p jq j (1 � j � m). (2)

The recurrence property of linear flows on tori and the equations ẏ = ∑n
i=1 u

2
i +

x2 + y2 and q̇ j = p2j +q2j for 1 � j � m imply that if a point (u, x, y, p, q, ϕ) ∈ M
belongs to a Kronecker torus of (2) then u = 0, x = y = 0, and p = q = 0. The
n-torus

T = {u = 0, x = y = 0, p = q = 0} (3)

is indeed invariant under the flow of the Hamiltonian system (2) with N = n +m + 1
degrees of freedom and carries conditionally periodic motions with the frequency
vector ω. It is therefore the only Kronecker n-torus of this system. Moreover, the
torus (3) is isotropic and lies in the energy hypersurface H−1(0). If the frequencies
ω1, . . . , ωn are incommensurable then the system (2) admits no other Kronecker tori
whatsoever. If the rank of the set ω1, . . . , ωn over Q is equal to r < n then the
system (2) has also Kronecker tori of dimensions r , r + 1, . . . , n − 1 but they are
contained in T .

For n = 1 and ω �= 0 we obtain a Hamiltonian system with m + 2 degrees of
freedom and with a periodic orbit unique in the whole phase space. It is easy to see
that the monodromy operator of T within H−1(0) in this case is the identity operator
in R2m+2.

As was pointed out in the Introduction, there is no Hamiltonian system with one
degree of freedom and with a unique periodic orbit in the phase space. The author
does not know whether there exist Hamiltonian systems with n degrees of freedom
and with a unique (or just isolated) isotropic Kronecker n-torus in the phase space for
n � 2.

The Hamiltonian system (2) is integrable: it admits n + m + 1 first integrals

H , ui (1 � i � n), p3j/3 + p jq
2
j (1 � j � m) (4)

which are pairwise in involution and are functionally independent almost everywhere.
However, on the torus (3) all these integrals vanish, and one has the degeneracy rela-
tions

dH = ∑n
i=1 ωi dui , d(p3j/3 + p jq2j ) = 0 (1 � j � m).

The common level surfaces of the integrals (4) are not compact (each common level
surface contains points with any value of y ∈ R), and this seems to be essential for
the uniqueness of the torus. However, if one is interested just in the isolatedness, it
is not hard to construct similar examples with compact common level surfaces of the
integrals and evenwith a compact phase space. In fact, it suffices to take all the variables
(u1, . . . , un, x, y, p1, . . . , pm, q1, . . . , qm) modulo 2π in the example above. To be
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more precise, consider the symplectic manifold
(
M̂,ω2

)
where M̂ = T

2n+2m+2

with angular coordinates

(u1, . . . , un, ϕ1, . . . , ϕn, x, y, p1, . . . , pm, q1, . . . , qm)

and the symplectic structure ω2 is still given by the formula (1). For any angular
variable z introduce the notation z̃ = sin z. The Hamilton function

Ĥ = ∑n
i=1(ωi ũi + x̃ ũ2i ) + x̃3/3 + x̃ ỹ2 + ∑m

j=1( p̃
3
j/3 + p̃ j q̃2j )

affords the equations of motion

ϕ̇i = ∂ Ĥ/∂ui = ωi cos ui + x̃ sin 2ui (1 � i � n),

u̇i = −∂ Ĥ/∂ϕi = 0 (1 � i � n),

ẏ = ∂ Ĥ/∂x = (∑n
i=1 ũ

2
i + x̃2 + ỹ2

)
cos x,

ẋ = −∂ Ĥ/∂ y = −x̃ sin 2y,

q̇ j = ∂ Ĥ/∂ p j = ( p̃2j + q̃2j ) cos p j (1 � j � m),

ṗ j = −∂ Ĥ/∂q j = − p̃ j sin 2q j (1 � j � m).

(5)

The n-torus (3) is again an isotropic Kronecker torus of the system (5) with the
frequency vector ω. The torus T lies in the energy hypersurface Ĥ−1(0). It is by no
means unique; for instance, all the 2n+2m+2 tori given by the equations

ui = δi (1 � i � n),

x = δn+1, y = δn+2,

p j = δn+2+ j , q j = δn+m+2+ j (1 � j � m)

(6)

where eachof thenumbers δ1, . . . , δn+2m+2 is equal to 0 or toπ are isotropicKronecker
n-tori with the frequency vector ω. Nevertheless, the torus T is isolated in the phase
space. Indeed, suppose that a point (u, ϕ, x, y, p, q) ∈ M̂ belongs to a Kronecker
torus of (5) entirely contained in the domain

−π < ui < π (1 � i � n),

−π/2 < x < π/2, −π < y < π,

−π/2 < p j < π/2, −π < q j < π (1 � j � m).

(7)

Then the recurrence property of linear flows on tori and the equations for ẏ and q̇ j

(1 � j � m) in (5) imply that the point in question belongs to the torus (3). Of course,
all the inequalities in (7) are to be understood modulo 2π : whenever z is an angular
variable, a < z < b means that z ∈ (a, b) mod 2π .

Note that any neighborhood of the torus (3) has non-empty intersections with
isotropic Kronecker tori of the system (5) not contained in the domain (7), for instance,
with the (n + 1)-tori {u = u0, x = 0, p = q = 0} where u0 �= 0 is an arbitrary
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point sufficiently close to 0. It is easy to verify that the frequency vector of such an
(n + 1)-torus is equal to

(
ω1 cos u

0
1, . . . , ωn cos u

0
n, [ζ(ζ + 1)]1/2), ζ = ∑n

i=1 sin
2 u0i > 0.

The Hamiltonian system (5) is also integrable: it admits n + m + 1 first integrals

Ĥ , ũi (1 � i � n), p̃3j/3 + p̃ j q̃
2
j (1 � j � m)

which are pairwise in involution and are functionally independent almost everywhere.
On the torus T all these integrals vanish, and one has the degeneracy relations

d Ĥ = ∑n
i=1 ωi dũi , d( p̃3j/3 + p̃ j q̃2j ) = 0 (1 � j � m).

3 Invariant Tori in Reversible Systems

Many properties of Hamiltonian systems are also inherent (mutatis mutandis) in
reversible systems. In particular, one can develop the reversible KAM theory which is
in many respects parallel to the Hamiltonian KAM theory. The reader is referred to the
books (Broer et al. 1996; Sevryuk 1986) (and references therein) for the definition and
main features of reversible dynamical systems. An invariant set of a reversible flow
is usually said to be symmetric if it is also invariant under the reversing involution.
Consider an autonomous system reversible with respect to an involution G such that
the fixed point manifold FixG of G is not empty and all its connected components
are of dimension 
 and codimension N (so that the phase space dimension is equal
to 
 + N ). Then symmetric equilibria of such a system are generically organized into
smooth (
 − N )-parameter families provided that N � 
 (each family being just a
smooth (
 − N )-dimensional submanifold of FixG consisting of equilibria), sym-
metric periodic orbits are generically organized into smooth (
 − N + 1)-parameter
families provided that N � 
 + 1, and symmetric invariant n-tori (2 � n � N ) carry-
ing quasi-periodicmotionswith strongly incommensurable frequencies are generically
organized into Cantor-like (
−N+n)-parameter families provided that N � 
+n−1.
Symmetric Kronecker n-tori with incommensurable frequencies and n > N in such a
system are impossible.

The Hamiltonian systems (2) and (5) are reversible, the reversing involution in both
the cases is given by the formula

G : (u, ϕ, x, y, p, q) �→ (u,−ϕ, x,−y, p,−q),

so that dim FixG = codim FixG = n +m + 1. The Kronecker n-torus (3) in both the
cases is symmetric.

These examples canbe easily generalized toG-reversible systemswith dim FixG �=
codim FixG [the fact that such systems are natural to study was first emphasized in
(Arnol’d 1984)]. Let n � 0, 
 � 0, and m � 0 be arbitrary integers and ω ∈ R

n an
arbitrary vector. Our aim is to construct a G-reversible system with dim FixG = 
,
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codim FixG = N = n + m + 1 and with a unique Kronecker n-torus, this torus
being symmetric and the frequency vector of this torus being ω. Note that if n � 1
then a G-reversible system with dim FixG > 0, codim FixG = n and with a unique
symmetric Kronecker n-torus does definitely not exist. Indeed, if codim FixG = 0
and FixG coincides with the phase space (i.e., if the involution G is the identity trans-
formation) then there is only one G-reversible vector field, namely, the zero field, and
each point of the phase space is a symmetric equilibrium. On the other hand, it is easy
to verify that if dim FixG = 
 and codim FixG = 1 then symmetric periodic orbits of
any G-reversible system are always organized into smooth 
-parameter families. The
author does not know whether there are G-reversible systems with dim FixG > 0,
codim FixG = n and with a unique (or just isolated) symmetric Kronecker n-torus
for n � 2.

Let (v1, . . . , v
, y, q1, . . . , qm) be coordinates inR
+m+1 and (ϕ1, . . . , ϕn) angular
coordinates in T

n . The dynamical system

ϕ̇i = ωi (1 � i � n),

v̇k = 0 (1 � k � 
),

ẏ = ∑

k=1 v2k + y2 + ∑m

j=1 q
2
j ,

q̇ j = 0 (1 � j � m)

(8)

on K = T
n × R


+m+1 is reversible with respect to the phase space involution

G : (ϕ, v, y, q) �→ (−ϕ, v,−y,−q), (9)

here dim FixG = 
 and codim FixG = n + m + 1.
The recurrence property of linear flows on tori and the equation for ẏ in (8) imply

that if a point (ϕ, v, y, q) ∈ K belongs to a Kronecker torus of (8) (symmetric or not)
then v = 0, y = 0, and q = 0. The n-torus

{v = 0, y = 0, q = 0} (10)

is indeed Kronecker. It is therefore the only Kronecker n-torus of the system (8).
Moreover, the torus (10) is symmetric, and its frequency vector is equal to ω.

As in the Hamiltonian case, this example can be compactified. Let

(ϕ1, . . . , ϕn, v1, . . . , v
, y, q1, . . . , qm)

be angular coordinates in K̂ = T
n+
+m+1. The dynamical system

ϕ̇i = ωi (1 � i � n),

v̇k = 0 (1 � k � 
),

ẏ = ∑

k=1 ṽ2k + ỹ2 + ∑m

j=1 q̃
2
j ,

q̇ j = 0 (1 � j � m)

(11)
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on K̂ (as before, here z̃ = sin z for any angular variable z) is reversible with respect
to the phase space involution G given by the formula (9), and dim FixG = 
,
codim FixG = n + m + 1.

The n-torus (10) is again a symmetric Kronecker torus of the system (11) with the
frequency vector ω. It is not unique, of course; for instance, all the 2
+m+1 tori given
by the equations

vk = δk (1 � k � 
), y = δ
+1, q j = δ
+1+ j (1 � j � m)

where each of the numbers δ1, . . . , δ
+m+1 is equal to 0 or to π (cf. (6)) are symmetric
Kronecker n-tori with the frequency vector ω. However, the torus (10) is isolated in
the phase space. Indeed, suppose that a point (ϕ, v, y, q) ∈ K̂ belongs to a Kronecker
torus of (11) (symmetric or not) entirely contained in the domain

− π < vk < π (1 � k � 
), −π < y < π, −π < q j < π (1 � j � m) (12)

(cf. (7)). Then the recurrence property of linear flows on tori and the equation for ẏ
in (11) imply that the point in question belongs to the torus (10).

Note that any neighborhood of the torus (10) has non-empty intersections with
symmetric Kronecker tori of the system (11) not contained in the domain (12), for
instance, with the (n + 1)-tori {v = v0, q = 0} where v0 �= 0 is an arbitrary point
sufficiently close to 0. It is easy to see that the frequency vector of such an (n+1)-torus
is equal to

(
ω1, . . . , ωn, [ξ(ξ + 1)]1/2), ξ = ∑


k=1 sin
2 v0k > 0.
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