
Arnold Mathematical Journal (2018) 4:213–250
https://doi.org/10.1007/s40598-018-0092-3

RESEARCH CONTRIBUT ION

Counting Borel Orbits in Symmetric Spaces of Types
BI and CII

Mahir Bilen Can1 ·Özlem Uğurlu1
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Abstract
This is a continuation of our combinatorial program on the enumeration of Borel orbits
in symmetric spaces of classical types. Here, we determine the generating series the
numbers of Borel orbits in SO2n+1/S(O2p ×O2q+1) (type B I ) and in Spn/Spp ×Spq
(type C I I ). In addition, we explore relations to lattice path enumeration.
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1 Introduction

The purpose of our paper is to continue the program that is initiated in our previous
paper (Can and Uğurlu 2018), which is about finding generating functions and their
combinatorial interpretations for certain families of involutions, called clans, in Weyl
groups. There is an important motivation for undertaking such a task and it comes
from a desire to better understand the cohomology rings of homogeneous spaces of
the form G/K, where K is the fixed subgroup of an involutory automorphism of a
complex reductive group G.

The study of symmetric spaces forms an integral part of geometry and many inter-
esting manifolds are (locally) diffeomorphic to symmetric spaces. For example, n − 1
dimensional sphere in R

n can be recognized as G(R)/K (R), where G is SOn , the
special orthogonal group of linear transformations with determinant 1, and K is its
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subgroup S(On−1 × O1) consisting of block matrices of the form

(
A 0
0 ±1

)
where A

is an orthogonal matrix of order n − 1.
Among the important properties of symmetric spaces are the following:

(i) K is reductive, hence G/K is affine as an algebraic variety.
(ii) G/K has finitely many orbits under the left translation action of a Borel subgroup

of G, see Brion (1986).

Note that the B-orbits in G/K are in 1–1 correspondence with the K -orbits in G/B
and the topology of the latter (flag) variety is completely determined by the inclusion
order on the set of Borel orbit closures.

By a classical symmetric space we simply mean a symmetric space G/K with G
a classical group. In this manuscript, somewhat loosely following our previous work,
where we studied the combinatorics of the generating functions regarding the number
of B-orbits in type AIII, we will give a count of the B-orbits for the cases of BI and
CII. These two types correspond to the decompositions of the vector spaces C2n+1

and C
2n , respectively, into two orthogonally complementary subspaces with respect

to a symmetric and a skew-symmetric bilinear form, see Howe (1995).
We know from (Wyser 2012) that, for a classical symmetric space G/K, the com-

binatorial objects parameterizing K -orbits in G/B have a rather concrete description;
they are called “clans”with suitable adjectives. This nomenclature has first appeared in
a paper of Matsuki and Oshima (1990). Yamamoto (1997) used these objects to deter-
mine the image of the moment map of the conormal bundle of K -orbits in G/B. (She
worked with types AIII and CII only.) As far as we are aware of, after Yamamoto’s
work on clans, there was a long pause on the study of these combinatorial objects until
McGovern’s work in McGovern (2009) andWyser’s 2012 thesis (Wyser 2012), where
Wyser clarified many obscurities around the definition of clans. In Wyser (2012), he
used them to study degeneracy loci and in Wyser (2016) he used them to study the
weak and strong Bruhat orders on K -orbit closures in G/B (in type AIII). More recent
work on the combinatorics of typeAIII clans can be found in Can et al. (2016). Finally,
let us mention that in Woo et al. (2018) by studying the pattern avoidance properties
of type AIII clans Woo et al. have characterized the singularities of the closures of
GLp × GLq -orbits in the flag variety.

We will refer to the clans corresponding to the Borel orbits in Spn/Spp × Spq
as ssymmetric (2p, 2q) clans and we will call the clans corresponding to the Borel
orbits of SO2n+1/S(O2p × O2q+1) the symmetric (2p, 2q + 1) clans. However, we
should mention that these names are local to our paper. The definitions of symmetric
and ssymmetric clans are rather lengthy, so, we postpone their precise definitions
to the preliminaries section and introduce the notation for their collections and the
corresponding cardinalities only.

B I (p, q) := {symmetric (2p, 2q + 1) clans}, bp,q := #B I (p, q);
C I I (p, q) := {ssymmetric (2p, 2q) clans}, cp,q := #C I I (p, q).

We know that the clans are in bijection with the ‘signed’ involutions; see the pre-
liminaries section for the detailed proof. A signed involution is an involution in Sn , for
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some n, such that each fixed point of the involution is labeled with a + sign or with a
− sign. Assuming the existence of a particular such bijection, which we will present in
the sequel, we proceed to denote by βk,p,q the number of symmetric (2p, 2q +1) clans
whose corresponding involution has exactly k 2-cycles as a permutation. In a similar
way, we denote by γk,p,q the number of ssymmetric (p, q) clans whose corresponding
involution has k 2-cycles. Clearly,

bp,q =
∑

k

βk,p,q and cp,q =
∑

k

γk,p,q .

Our goal in this manuscript is to present various formulas and combinatorial interpre-
tations for βk,p,q ’s, γk,p,q ’s, and foremost, for bp,q ’s and cp,q ’s.

Convention 1.1 If p and q are two nonnegative integers such that q ≥ p, then we
assume that βk,p,q = 0 for all 0 ≤ k ≤ 2q + 1.

Now, we are ready to describe our results in more detail. First of all, by analyzing
the structure of symmetric clans we prove the following result:

Theorem 1.2 Let p and q be two nonnegative integers such that p > q. Then for every
nonnegative integer k with k ≤ 2q + 1, we have

βk,p,q =
{(n−2l

p−l

)(n
2l

)
a2l if k = 2l;(n−(2l+1)

p−(l+1)

)( n
2l+1

)
a2l+1 if k = 2l + 1,

(1.1)

where

a2l :=
l∑

b=0

(
2l

2b

)
(2b)!

b! and a2l+1 :=
l∑

b=0

(
2l + 1

2b

)
(2b)!

b! . (1.2)

In particular, we have

bp,q =
q∑

l=0

((
n − 2l

p − l

)(
n

2l

)
a2l +

(
n − (2l + 1)

p − (l + 1)

)(
n

2l + 1

)
a2l+1

)
.

The following formulas for the number of Borel orbits in SO2n+1/S(O2p ×O2q+1)

for q = 0, 1, 2 is now a simple consequence of our Theorem 1.2;

bp,0 = p + 1,

bp,1 = (p + 1)a0 + p(p + 1)a1 + p(p + 1)

2
a2 + p(p + 1)(p − 1)

6
a3

= 7p3 + 15p2 + 14p + 6

6
,
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bp,2 =
(

p + 2

2

)(
81p3 + 22p2 + 137p + 60

60

)

= 81p5 + 265p4 + 365p3 + 515p2 + 454p + 120

120
.

Theorem 1.2 tells us that, for every fixed q, the integer bp,q can be viewed as a
specific value of a polynomial function of p. However, it is already apparent from the
case of q = 1 that this polynomial may have non-integer coefficients. We conjecture
that q = 0 is the only case where p �→ bp,q is a polynomial function with integral
coefficients. We conjecture also that for every nonnegative integer q, as a polynomial
in p, bp,q is unimodal.

Note that the numbers a2l and a2l+1 in Theorem 1.2 (l = 0, 1, . . . , q) are special
values of certain hypergeometric functions. More precisely,

a2l =
(−1

4

)−l

U

(
− l,

1

2
,−1

4

)
,

a2l+1 =
(−1

4

)−l

U

(
− l,

3

2
,−1

4

)
,

where U (a, b, z) is the confluent hypergeometric function of the second kind. Such
functions form one of the two distinct families of hypergeometric functions which
solves the Kummer’s differential equation

zy′′ + (c − z)y′ − ay = 0 (1.3)

for some constants a and c. Kummer’s ODE has a regular singular point at the origin
and it has an irregular singularity at infinity.

The expressions in (1.1) are too complicated for practical purposes, therefore we
seek for better expressions in the forms of recurrences and generating functions for
βk,p,q ’s. It turns out that between various βk,p,q ’s there are four “easy-to-derive”
recurrence relations as in (3.3), and there are four “somewhat easy-to-derive” recur-
rence relations as in (3.8), (3.9), (3.14), and (3.15). (We are avoiding showing these
recurrences on purpose since they, especially the latter four, are rather lengthy.) The
first four relations do not mix k’s and they are linear. The second four recurrences
are 3-term nonlinear recurrence relations and they do not mix p, q’s. Moreover, the
relations (3.8) and (3.9) are interwoven in the sense that both of them use consecutive
terms in k’s. The relations (3.14) and (3.15) maintain the parity of k, however, their
coefficients are more complicated than the previous two.

It is not futile to expect that the eight recurrence relations we talked about lead to
a manageable generating function, hence to a new formulation of the numbers βk,p,q .
We pursued this approach by studying the generating polynomial

h p,q(x) :=
∑
k≥0

βk,p,q xk (1.4)
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and we run into some surprising complications. After pushing our computations as
much as possible by using the easier, interrelated relations (3.8) and (3.9), we arrived
at a 4 × 4 system of linear ODE’s with an irregular singular point at the origin:

x3X ′ =

⎡
⎢⎢⎣

(2p + 2q − 1)x2 + 2 x −4pqx −(2q + 1)
x (2p + 2q − 1)x2 + 2 −2p −(4pq + 2p − 2q − 1)x
x3 0 0 0
0 x3 0 0

⎤
⎥⎥⎦ X ,

(1.5)

where

X =

⎡
⎢⎢⎣

u(x)

v(x)

Ae(x)

Ao(x)

⎤
⎥⎥⎦ with

u(x) :=A
′
e(x),

v(x) :=A
′
o(x),

Ae(x) :=
q∑

l=0

β2l,p,q x2l ,

Ao(x) :=
q∑

l=0

β2l+1,p,q x2l+1.

Without worrying about convergence, we are able to formally solve this system of
ODE’s however our method does not yield a satisfactorily clean formula. Instead, it
provides us with a sequence of computational steps which eventually can be used for
finding good approximations to βk,p,q ’s for any p, q. In order for not to break the
flow of our exposition we decided to postpone the explanation of the intricacies of
(1.5) to the appendix. Let us mention in passing that this type of ODE’s (that is linear
ODE’s with irregular singular points) gave impetus to the development of reduction
theory for connections where the structure group is an algebraic group, see Babbitt
and Varadarajan (1983). Now, in a sense we are working our way back to such ODE’s
by trying to find the refined numbers of Borel orbits in a symmetric space.

To break free from the difficulties caused by complicated interactions between
βk,p,q ’s, we consider the following alternative to h p,q(x):

bp,q(x) :=
q∑

l=0

(β2l,p,q xq−l + β2l+1,p,q xq−l).

Clearly, bp,q(x) is a polynomial of degree q and similarly to h p,q(x) its evaluation
at x = 1 gives bp,q . Let Bp(x, y) denote the following generating function, which is
actually a polynomial due to our convention (1.1):

Bp(x, y) :=
∑
q≥0

bp,q(x)yq .
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Now, by using the previously mentioned recurrences, we observe that

bp,q(x)′ = (p + q)bp,q−1(x).

From here it is not difficult to write down the governing partial differential equation
for Bp(x, y);

∂

∂x
Bp(x, y) − y2

∂

∂ y
Bp(x, y) = y(1 + p)Bp(x, y). (1.6)

By solving (1.6) we record a generating polynomial identity.

Theorem 1.3 If f p(z) denotes the polynomial that is obtained from Bp(1, y) by the
transformation y ↔ z/(1 − z), then we have

f p(z) = (1 + z)p+1

⎛
⎝(p + 1) + 2

∑
q≥1

(β2q,p,q + β2q+1,p,q)zq

⎞
⎠ , (1.7)

where βk,p,q ’s are as in Theorem 1.2.

Next, we proceed to explain our results on the number of Borel orbits in Spn/Spp ×
Spq . Recall that the notation γk,p,q stands for the number of ssymmetric (2p, 2q) clans
whose corresponding involutions have exactly k 2-cycles. By counting the number of
possible choices for the 2-cycles and the fixed points in an involution corresponding
to a ssymmetric (2p, 2q) clan, we obtain the following symmetric expression:

γk,p,q = (q + p)!
(q − k)!(p − k)!k! . (1.8)

Note that the formula in (1.8) is defined independently of the inequality q < p, there-
fore, γk,p,q ’s are defined for all nonnegative integers p, q, and k with the convention
that γ0,0,0 = 1. As we show in the sequel (Lemma 4.3) γk,p,q ’s satisfy a 3-term
recurrence,

γk,p,q = γk,p−1,q + γk,p,q−1 + 2(q + p − 1)γk−1,p−1,q−1 and

γ0,p,q =
(

p + q

p

)
. (1.9)

Consequently, we obtain our first result on the number of ssymmetric (2p, 2q) clans.

Proposition 1.4 If p and q are positive integers, then the number of ssymmetric
(2p, 2q) clans satisfies the following recurrence:

cp,q = cp−1,q + cp,q−1 + 2(p + q − 1)cp−1,q−1. (1.10)
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At this point we start to notice some similarities between the combinatorics of
ssymmetric clans and our work in Can and Uğurlu (2018), where we studied the
generating functions and combinatorial interpretations of the numbers of Borel orbits
in symmetric spaces of type AIII. Following the notation from the cited reference, let
us denote byαp,q the number of Borel orbits inSLn/S(GLp×GLq), where p+q = n.
Then the identities

αp,q = αp−1,q + αp,q−1 + (p + q − 1)αp−1,q−1 (1.11)

hold true for all p, q ≥ 1. From these relations, we obtained many combinatorial
results on αp,q ’s in Can and Uğurlu (2018). Here, by exploiting similarities between
the two recurrences (1.10) and (1.11), we are able to follow the same route and obtain
analogues of all of the results of Can and Uğurlu (2018). To avoid too much repetition,
we will focus only on the selected analogues of our results from the previous paper.
First we have a result on the generating function for cp,q ’s.

Let v(x, y) denote the bivariate generating function

v(x, y) =
∑

p,q≥0

cp,q
(2x)q y p

p! . (1.12)

As we show that in the sequel, v(x, y) obeys a first order linear partial differential
equation of the form

(−2x2)
∂v(x, y)

∂x
+ (1 − 2x − 4xy)

∂v(x, y)

∂ y
= (1 + 2x) v(x, y) (1.13)

with initial conditions

v(0, y) = ey and v(x, 0) = 1

1 − 2x
.

The solution of (1.13) gives us a remarkable expression for the generating function
(1.12) in suitably transformed coordinates.

Theorem 1.5 Let r and s be two algebraically independent variables that are related
to x and y by the relations

x(r , s) = r

2rs + 1
and y(r , s) = 3s + 4r2s3 − 6r2s2 + 6rs2 − 6rs

3(2rs + 1)2
.

In this case, the generating function v(x, y) of cp,q ’s in r , s-coordinates is given by

v(r , s) = es(2rs + 1)

1 − 2r
.
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Next,we explain themost combinatorial results of our paper. The (p, q)th Delannoy
number, denoted by D(p, q), is defined via the recurrence relation

D(p, q) = D(p − 1, q) + D(p, q − 1) + D(p − 1, q − 1) (1.14)

with respect to the initial conditions D(p, 0) = D(0, q) = D(0, 0) = 1. It is due
to the linear nature of (1.14) that the generating function for D(p, q)’s is relatively
simple;

∑
p+q≥0
p, q ∈N

D(p, q)xi y j = 1

1 − x − y − xy
.

One of the most appealing properties of the Delannoy numbers is that they give the
count of lattice paths that move with unit steps E := (1, 0), N := (0, 1), and D :=
(1, 1) in the plane. More precisely, D(p, q) gives the number of lattice paths that starts
at the origin (0, 0) ∈ N

2 and ends at (p, q) ∈ N
2 moving with E, N , and D steps

only. We will refer to such paths as the Delannoy paths and denote the set of them by
D(p, q). For example, if (p, q) = (2, 2), then D(2, 2) = 13 (see Fig. 1).

Let L be a Delannoy path that ends at the lattice point (p, q) ∈ N. We agree to
represent L as a word L1L2 . . . Lr , where each Li (i = 1, . . . , r) is a pair of lattice
points, say Li = ((a, b), (c, d)), and (c − a, d − b) ∈ {N , E, D}. In this notation, we
define the weight of the i th step as

weight(Li ) =

⎧⎪⎨
⎪⎩
1 if Li = ((a, b), (a + 1, b));
1 if Li = ((a, b), (a, b + 1));
2(a + b + 1) if Li = ((a, b), (a + 1, b + 1)).

Finally, we define the weight of L , denoted by ω(L) as the product of the weights of
its steps:

ω(L) = weight(L1)weight(L2) · · · weight(Lr ). (1.15)

Proposition 1.6 Let p and q be two nonnegative integers and let D(p, q) denote the
corresponding set of Delannoy paths. In this case, we have

cp,q =
∑

L∈D(p,q)

ω(L).

Although Proposition 1.6 expresses cp,q as a combinatorial summation it does not
give a combinatorial set of objects whose cardinality is given by cp,q . The last result
our paper offers such an interpretation.

Definition 1.7 A k-diagonal step (in N
2) is a diagonal step L of the form L =

((a, b), (a + 1, b + 1)), where a, b ∈ N and k = a + b + 1.
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Next, we define the “weighted Delannoy paths.”

Definition 1.8 By a labelled step we mean a pair (K , m), where K ∈ {N , E, D} and
m is a positive integer such that m = 1 if K = N or K = E . A weighted (p, q)

Delannoy path is a word of the form W := K1 · · · Kr , where Ki ’s (i = 1, . . . , r) are
labeled steps Ki = (Li , mi ) such that

• L1 · · · Lr is a Delannoy path from D(p, q);
• if Li (1 ≤ i ≤ r ) is a k-diagonal step, then 2 ≤ mi ≤ 2k − 1.

The set of all weighted (p, q) Delannoy paths is denoted by Dw(p, q).

Theorem 1.9 There is a bijection between the set of weighted (p, q) Delannoy paths
and the set of ssymmetric (2p, 2q) clans. In particular, we have

cp,q =
∑

W∈Dw(p,q)

1.

There is much more to be said about the lattice path interpretation of the number
of Borel orbits in Spn/Spp × Spq but we postpone them to a future paper. We finish
our introduction by giving a brief outline of our paper. We divided our paper into two
parts. Before starting the first part, in Sect. 2 we introduce the background material
and notation that we use in the sequel. In particular, we review a bijection between
clans and involutions and we introduce the symmetric (2p, 2q + 1) clans as well as
ssymmetric (2p, 2q) clans.We start Part I by analyzing the numbersβk,p,q . InSect. 3.1,
we prove our Theorem 1.2 and in the following Sect. 3.2 we derive aforementioned
recurrences for βk,p,q ’s. We devoted Sect. 3.3 to the proof of Theorem 1.3. The Part
II of our paper starts with an analysis of the numbers γk,p,q . In Sect. 4.1, we prove
the formula of γk,p,q ’s as given in (1.8). In the following Sect. 4.2, by developing
the recurrences for these numbers we prove Proposition 1.4. Section 4.3 is devoted
to the proof of Theorem 1.5. In particular, we point out in Remark 4.7 that it is
possible to find a formula for the generating function of cp,q ’s at the expense of a very
complicated expression. In the remaining of Part II, we investigate the combinatorial
interpretations of cp,q ’s. In Sect. 5, we prove Proposition 1.6 and Theorem 1.9. Finally,
in the appendix, which is Sect. 1, we present our methods for solving ODE (1.5).

2 Notation and Preliminaries

The notation N stands for the set of natural numbers, which includes 0. Let us treat +
and − as two symbols rather than viewing them as arithmetic operations. Throughout
our paper the notation P stands for the set {+,−} ∪ N. The elements of P are called
symbols.Whenwewant tomake a distinction between the symbols± and the elements
of N, we call the latter by numbers, following their usual trait.

Let n be a positive integer. The symmetric group of permutations on [n] :=
{1, . . . , n} is denoted by Sn . If π ∈ Sn , then its one-line notation is the string
π1π2 · · · πn , where πi = π(i) (i = 1, . . . , n). We trust that our reader is familiar
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222 M. B. Can, Ö. Uğurlu

with the most basic terminology about permutations such as their cycle decomposi-
tion, cycle type, etc.. However, just in case, let usmention that the cycle decomposition
C1 · · · Cr of a permutation is called standard if the entries of Ci ’s are arranged in such
a way that c1 < c2 < · · · < cr , where ci is the smallest number that appears in Ci

(i = 1, . . . , r ). Here, we followed the common assumption that each cycle has at least
two entries. Since we need the data of fixed points of a permutation, we will append to
the cycle decomposition C1 · · · Cr the one-cycles in an increasing order without using
parentheses as indicated in the following example.

Example 2.1 (2, 6, 8)(4, 5, 7, 9)13 is the standard cycle decomposition of the permu-
tation π from S9 whose one-line notation is given by π = 163578924.

Clearly, a permutation π is an involution, that is to say π2 = id, if and only if every
cycle of π is of length at most 2.

Definition 2.2 Let p and q be two positive integers and set

n := p + q.

Suppose that p > q. A (p, q) preclan, denoted by γ , is a string of symbols such that

1. there are p − q more +’s than −’s;
2. if a number appears in γ , then it appears exactly twice.

In this case, we call n the order of γ . For example, 1221 is a (2, 2) preclan of order
4 and +1 + + + −1 is a (5, 2) preclan of order 7. We call two (p, q) preclans γ and
γ ′ equivalent if the positions of the matching numbers are the same in both of them.
For example, γ := 1221 and γ ′ := 2112 are in the same equivalence class of (2, 2)
preclans since both of γ and γ ′ have matching numbers in the positions (1, 4) and
(2, 3). Finally, we call an equivalence class of (p, q) preclans a (p, q) clan.

Inmost places in our paper, wewill abuse the notation and represent the equivalence
class of a preclan γ by γ also, however, it is sometimes useful not to do that. When
we need to distinguish between the preclan and its equivalence class we will use γ

and [γ ], respectively, for the preclan and its equivalence class. The order of a clan is
defined in the obvious way as the order of any preclan that it contains.

Lemma 2.3 There exists a surjective map from the set of clans of order n to the set of
involutions in Sn, the symmetric group of permutations on {1, . . . , n}.
Proof Let γ = c1 · · · cn be a (pre)clan of order n. For each pair of identical numbers
(ci , c j ) with i < j we have a transposition in Sn which is defined by the indices, that
is (i, j) ∈ Sn . Clearly, if (ci , c j ) and (ci ′ , c j ′) are two pairs of identical numbers from
γ , then {i, j} 
= {i ′, j ′}. Now, we define the involution π = π(γ ) corresponding to
γ as the product of all transpositions that come from γ . Accordingly, the ±’s in γ

correspond to the fixed points of the involution π .
Conversely, if π is an involution from Sn , then we have a (p, q) preclan γ = γ (π)

that is defined as follows. We start with an empty string γ = c1 · · · cn of length n. If
π1 · · · πn is the one-line notation for π , then for each pair of numbers (i, j) such that
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1 ≤ i < j ≤ n and πi = j , π j = i , we put ci = c j = i . Also, if i1, . . . , im is the
increasing list of indices such that πi j = i j ( j = 1, . . . , m), then starting from i1, we
place +’s until the difference between the number of ci j ’s with a + and the number of
empty places is p − q. At this point, we place a − in each of the empty places. It is
easy to check that γ is a (p, q) preclan of order n, hence the proof follows. ��
Definition 2.4 Let p and q be two positive integers with p > q and let n := p + q.
A signed (p, q) involution is an involution π from Sn whose fixed points are labeled
either by + or by − in such a way that the number of +’s is p − q more than the
number of −’s.

Lemma 2.5 There is a bijection between the set of all (p, q) clans and the set of all
signed (p, q) involutions.

Proof Let ϕ denote the surjection that is constructed in the proof of Lemma 2.3. We
modify ϕ as follows. Let γ = c1 · · · cn be a (p, q) clan and let π = ϕ(γ ) denote
involution that is obtained from γ via ϕ. If an entry ci of γ is a ±, then we know that
i is a fixed point of π . We label i with ±. Repeating this procedure for each ± that
appear in γ we obtain a signed (p, q) involution π̃ . Clearly π̃ is uniquely determined
by γ . Therefore, the map defined by ϕ̃(γ ) = π̃ is a bijection. ��

Let γ be a preclan of the form γ = c1 · · · cn . The reverse of γ , denoted by rev(γ ),
is the preclan

rev(γ ) = cncn−1 · · · c1.

Now, we are ready to define the notion of a symmetric clan.

Definition 2.6 A (p, q) clan γ is called symmetric if [γ ] = [rev(γ )].
Example 2.7 The (4, 3) clan γ = (12 + − + 12) is symmetric since the clan (21 +
− + 21) which is obtained from γ by reversing its symbols is equal γ as a clan. More
explicitly, they are the same since both of them have the same matching numbers in
the positions 1, 6 and 2, 7.

In our next example, we list all symmetric (4, 3) clans.

Example 2.8 {1 2 3 + 3 2 1, 1 2 + − + 2 1, 1 2 3 + 3 1 2, 3 1 2 + 1 2 3, 1 2 + − + 1 2,
1+ 2− 2+ 1, 132+ 132, 311+ 2 2 3, 1+ 2− 1+ 2,+12− 2 1+, 1+−+−+ 1,
131+232, 1−+++−1, 1+1−2+2,+12−12+,+1−+−1+, 113+322,
− 1 + + + 1 −,+ 1 1 − 2 2 +, 1 1 + − + 2 2,+ − 1 + 1 − +,− + 1 +
1 + −,− + + − + + −, + − + − + − +,+ + − − − + +}.
Definition 2.9 An ssymmetric (2p, 2q) clan γ = c1 · · · c2n is a symmetric clan such
that ci 
= c2n+1−i whenever ci is a number (that is ci is not a sign). The cardinality of
the set of all ssymmetric (2p, 2q) clans is denoted by cp,q .

Example 2.10 The set of all ssymmetric (4, 2)-clans is given by
{1 2 + + 1 2, 1 + 2 1 + 2, 1 + 1 2 + 2,+ 1 2 1 2 +,+ 1 1 2 2 +, 1 1 + + 2 2,

− + + + + −,+ − + + − +,+ + − − + +}.

123



224 M. B. Can, Ö. Uğurlu

We finish our preliminaries section by a remark/definition.

Remark 2.11 Let π denote the signed (p, q) involution corresponding to a (p, q) clan
γ under the bijection ϕ̃ that is defined in the proof of Lemma 2.5. A matching pair of
numbers in any preclan that represents γ corresponds to a 2-cycle of π . We will call
γ a (p, q) clan with k pairs if π has exactly k 2-cycles.

3 Part I: Counting Symmetric Clans

3.1 Symmetric (2p, 2q+ 1)-Clans with k Pairs

Let p and q be two positive integers such that 0 ≤ q < p. Although we will be dealing
with (2p, 2q +1) clans, we denote p +q by n. Accordingly the number of symmetric
(2p, 2q + 1) clans is denoted by bp,q .

By the proof of Lemma 2.5 we know that there is a bijection, denoted by ϕ̃, between
the set of all (2p, 2q + 1) clans of order 2n + 1 and the set of all signed (2p, 2q + 1)
involutions in S2n+1.Wehave a number of simple observations regarding this bijection.

First of all, we observe that if π is a signed (2p, 2q + 1) involution such that
ϕ̃(γ ) = π , where γ is a symmetric (2p, 2q + 1) clan, then the following holds true:

• if (i, j) with 1 ≤ i < j ≤ 2n + 1 is a 2-cycle of π , then n + 1 /∈ {i, j} and
(2n + 2 − j, 2n + 2 − i) is a 2-cycle of π also.

Secondly, we see from its construction that ϕ̃ maps a (2p, 2q + 1) clan with k pairs
to a signed (2p, 2q + 1) involution with k 2-cycles. Let us denote the set of all such
involutions by I ortk,p,q and we define βk,p,q as the cardinality

βk,p,q := |I ortk,p,q |.

Remark 3.1 If π ∈ I ortk,p,q , then in the corresponding clan there are 2p − 2q − 1 more
+’s than −’s. Notice that the inequality 2p − 2q − 1 ≤ 2p + 2q + 1 − 2k implies
that 0 ≤ k ≤ 2q + 1.

It follows from the note in Remark 3.1 and the fact that ϕ̃ is a bijection, the number
of symmetric (2p, 2q + 1) clans is given by

bp,q =
q∑

l=0

(β2l,p,q + β2l+1,p,q).

Our goal in this section is to record a formula for bp,q that depends only on p and q.
To this end, first we determine the number of ±’s in a symmetric (2p, 2q + 1) clan.

Lemma 3.2 If γ = c1 · · · c2n+1 is a symmetric (2p, 2q+1) clan, then either cn+1 = +
or cn+1 = −.
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Proof First, assume that γ has even number of pairs. Let k denote this number, k = 2l.
Let α, β, respectively, denote the number of +’s and −’s in γ . Then we have

α + β = 2p + 2q + 1 − 4l and α − β = 2p − 2q − 1.

It follows that

α = 2p − 2l and β = 2q − 2l + 1,

so, in γ there are odd number of −’s and there are even number of +’s. As a conse-
quence we see that cn+1 is a −.

Next, assume that γ has an odd number of pairs, that is k = 2l + 1. Arguing as in
the previous case we see that there is an odd number of +’s, hence cn+1 is a +. This
finishes the proof. ��

We learn from the proof of Lemma 3.2 that it is important to analyze the parity of
pairs, so we record the following corollary of the proof for a future reference.

Corollary 3.3 Let k denote the number of pairs in a symmetric (2p, 2q + 1) clan γ . If
k = 2l(0 ≤ l ≤ q), then the number of +’s in γ is 2(p − l). If k = 2l +1(0 ≤ l ≤ q),

then the number of −’s in γ is 2(q − l).

Our next task is determining the number of possible ways of placing k pairs to build
from scratch a symmetric (2p, 2q + 1) clan

γ = c1 · · · cncn+1cn+2 · · · c2n+1 (with cn+1 = ±).

To this end we start with defining some interrelated sets.

I1,1 := {((i, j), (2n + 2 − j, 2n + 2 − i)) | 1 ≤ i < j ≤ n},
I1,2 := {((i, j), (2n + 2 − j, 2n + 2 − i)) | 1 ≤ i < n + 1 < j ≤ 2n + 1},

I1 := I1,1 ∪ I1,2,

I2 := {(i, j) | 1 ≤ i < n + 1 < j ≤ 2n + 1, i + j = 2n + 2}.

We view I1 as the set of placeholders for two distinct pairs that determine each other
in γ . The set I2 corresponds to the list of stand alone pairs in γ . In other words, if
(i, j) ∈ I2, then ci = c j and j = 2n + 1 − i + 1.

Example 3.4 Let us show what I1 and I2 correspond to with a concrete example. If γ

is the symmetric (8, 7) clan

γ = (7 2 + 0 8 + 9 − 8 + 9 0 + 7 2),

then I1,1 = {((1, 2), (14, 15))}, I1,2 = {((5, 9), (7, 11))}, I2 = {(4, 12)}.
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If (ci , c j ) is a pair in the symmetric clan γ and if (i, j) is an element of
I2, then we call (ci , c j ) a pair of type I2. If x is a pair of pairs of the form
((ci , c j ), (c2n+2− j , c2n+2−i )) in a symmetric clan γ and if ((i, j), (2n + 2− j, 2n +
2− i)) ∈ I1,s (s ∈ {1, 2}), then we call x a pair of pairs of type I1,s . If there is no need
for precision, then we will call x a pair of pairs of type I1.

Clearly, if |I1| = b and |I2| = a, then 2b + a = k is the total number of pairs
in our symmetric clan γ . To see in how many different ways these pairs of indices
can be situated in γ , we start with choosing k spots from the first n positions in
γ = c1 · · · c2n+1. Obviously this can be done in

(n
k

)
many different ways. Next, we

count different ways of choosing b pairs within the k spots to place the b pairs of pairs
of type I1. This number of possibilities for this count is

( k
2b

)
. Observe that choosing a

pair from I1 is equivalent to choosing (i, j) for the pairs of pairs in I1,1 and choosing
(i, 2n + 2 − j) for the pairs of pairs in I1,2. More explicitly, we first choose b pairs
among the 2b elements and then place them on b spots; this can be done in

(2b
b

)
b!

different ways. Once this is done, finally, the remaining spots will be filled by the a
pairs of type I2. This can be done in only one way. Therefore, in summary, the number
of different ways of placing k pairs to build a symmetric (2p, 2q + 1) clan γ is given
by

(
n

k

)  k
2 �∑

b=0

(
k

2b

)(
2b

b

)
b!, or equivalently,

(
n

k

)  k
2 �∑

b=0

(
k

2b

)
(2b)!

b! .

In conclusion, we have the following preparatory result.

Theorem 3.5 (Theorem 1.2) The number symmetric (2p, 2q + 1) clans with k pairs
is given by

βk,p,q =
{(n−2l

p−l

)(n
2l

)
a2l if k = 2l;(n−(2l+1)

p−(l+1)

)( n
2l+1

)
a2l+1 if k = 2l + 1,

(3.1)

where

a2l :=
l∑

b=0

(
2l

2b

)
(2b)!

b! and a2l+1 :=
l∑

b=0

(
2l + 1

2b

)
(2b)!

b! . (3.2)

Consequently, the total number of symmetric (2p, 2q + 1) clans is given by

bp,q =
q∑

l=0

[(
n − 2l

p − l

)(
n

2l

)
a2l +

(
n − (2l + 1)

p − (l + 1)

)(
n

2l + 1

)
a2l+1

]
.

Proof As clear from the statement of our theorem, we will consider the two cases
where k is even and where k is odd separately. We already computed the numbers of
possibilities for placing k pairs, which are given by a2l and a2l+1, but we did not finish
counting the number of possibilities for placing the signs.
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1. k = 2l for 0 ≤ l ≤ q. In this case, by Lemma 3.2, we see that the number of +
signs is α := 2p − 2l = 2(p − l). Notice that because of symmetry condition
it is enough to focus on the first n spots to place ± signs. Thus, there are

(n−2l
p−l

)
possibilities to place ± signs.

2. k = 2l + 1 for 0 ≤ l ≤ q. In this case, it follows from Lemma 3.2 that the entry
in the (n + 1)th place is +. By using an argument as before, we see that there are(n−(2l+1)

p−(l+1)

)
possibilities to place ± signs.

This finishes the proof. ��
The formula for bp,q that is derived in Theorem 1.2 is not optimal in the sense that

it is hard to write down a closed form of its generating function this way. Of course,
the complication is due to the form of βk,p,q , where k is even or odd. Both of the
cruces are resolved by considering the recurrences; we will present our results in the
next subsection.

3.2 Recurrences forˇk,p,q’s

We start with some easy recurrences.

Lemma 3.6 Let p and q be two positive integers, and l be a nonnegative integer. In
this case, whenever both sides of the following equations are defined, they hold true:

β2l,p−1,q = p − l

p + q
β2l,p,q , (3.3)

β2l,p,q−1 = q − l

p + q
β2l,p,q , (3.4)

β2l+1,p−1,q = p − l − 1

p + q
β2l+1,p,q , (3.5)

β2l+1,p,q−1 = q − l

p + q
β2l+1,p,q . (3.6)

The proofs of the identities in Lemma 3.6 follow from obvious binomial identities
and our formulas in Theorem1.2. But note that l does not change in them. In the sequel,
wewill find other recurrences that run over l’s. Towards this end, the following lemma,
whose proof is simple, will be useful.

Lemma 3.7 Let ak denote the numbers as in (3.2). If k ≥ 2, then we have

ak = ak−1 + 2(k − 1)ak−2. (3.7)

By using (3.7) we find relations between βk,p,q ’s. Let k be an even number of the
form k = 2l. Then we find that
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β2l,p,q =
(

n − 2l

p − l

)(
n

2l

)
a2l

=
(

n − 2l

p − l

)(
n

2l

)
(a2l−1 + 2(2l − 1)a2l−2)

=
(

n − 2l

p − l

)(
n

2l

)
a2l−1 + 2(2l − 1)

(
n − 2l

p − l

)(
n

2l

)
a2l−2

= n − 2l + 1 − p + l

n − 2l + 1

(
n − (2l − 1)

p − l

)
n + 1 − 2l

2l

(
n

2l − 1

)
a2l−1

+2(2l − 1)
(p − l + 1)(n − l + 1 − p)

(n − 2l + 2)(n − 2l + 1)

(
n − (2l − 2)

p − l

)

× (n − 2l + 2)(n + 1 − 2l)

(2l)(2l − 1)

(
n

2l − 2

)
a2l−2

= n − l − p + 1

2l
β2l−1,p,q + 2

(p − l + 1)(n − l + 1 − p)

2l
β2l−2,p,q

= q − l + 1

2l
β2l−1,p,q + 2

(p − l + 1)(q − l + 1)

2l
β2l−2,p,q . (3.8)

In a similar manner, for an odd number of the form k = 2l + 1, we find that

β2l+1,p,q =
(

n − 2l − 1

p − l − 1

)(
n

2l + 1

)
a2l+1

=
(

n − 2l − 1

p − l − 1

)(
n

2l + 1

)
(a2l + 2(2l)a2l−1)

=
(

n − 2l − 1

p − l − 1

)(
n

2l + 1

)
a2l + 2(2l)

(
n − 2l − 1

p − l − 1

)(
n

2l + 1

)
a2l−1

= p − l

n − 2l

(
n − 2l

p − l

)
n + 1 − (2l + 1)

2l + 1

(
n

2l

)
a2l

+2(2l)
(p − l)(p − l + 1)

(n − 2l)(n − 2l + 1)

(
n − 2l + 1

p − l + 1

)

× (n − 2l)(n + 1 − 2l)

(2l)(2l + 1)

(
n

2l − 1

)
a2l−1

= p − l

2l + 1
β2l,p,q + 2

(p − l)(q − l + 1)

2l + 1
β2l−1,p,q . (3.9)

Now, we have two recurrences (3.8) and (3.9) mixing the terms βk,p,q for even and
odd k. To separate the parity, we rework on our initial recurrence (3.7).

Lemma 3.8 For all 1 ≤ l ≤ q − 1, the following recurrences:

a2l+2 = (8l + 3)a2l + 4(2l)(2l − 1)a2l−2 (3.10)

a2l+3 = (8l + 7)a2l+1 + 4(2l + 1)(2l)a2l−1 (3.11)

with a0 = 1, a1 = 1 are satisfied.
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Proof We will give a proof for the former equation here. The latter can be proved in
a similar way.

We start with splitting (3.7) into two recurrences:

a2l+1 = a2l + 2(2l)a2l−1 (3.12)

a2l = a2l−1 + 2(2l − 1)a2l−2. (3.13)

On one hand it follows from Eq. (3.13) that we have

a2l−1 = a2l − 2(2l − 1)a2l−2.

Plugging this into Eq. (3.12) yields

a2l+1 = a2l + 2(2l)(a2l − 2(2l − 1)a2l−2) or

a2l+1 = (1 + 2(2l))a2l − 4(2l)(2l − 1)a2l−2).

On the other hand, we know that

a2l+2 = a2l+1 + 2(2l + 1)a2l .

If we plug this into the previous equation, then we obtain

a2l+2 = (1 + 2(2l))a2l − 4(2l)(2l − 1)a2l−2 + 2(2l + 1)a2l

= (8l + 3)a2l − 4(2l)(2l − 1)a2l−2 (1 ≤ l ≤ q − 1),

which finishes the proof of our claim. ��
Next, by the help of Lemma 3.8, we obtain a recurrence relation for βk,p,q ’s where

all of k’s are even numbers.

β2l+2,p,q =
(

n − 2l − 2

p − l − 1

)(
n

2l + 2

)
a2l+2

=
(

n − 2l − 2

p − l − 1

)(
n

2l + 2

)
((8l + 3)a2l − 4(2l)(2l − 1)a2l−2)

= (8l + 3)

(
n − 2l − 2

p − l − 1

)(
n

2l + 2

)
a2l

+4(2l)(2l − 1)

(
n − 2l − 2

p − l − 1

)(
n

2l + 2

)
a2l−2

= (8l + 3)
(p − l)(q − l)

(n − 2l)(n − 2l − 1)

(
n − 2l

p − l

)
(n − 2l)(n − 2l − 1)

(2l + 2)(2l + 1)

(
n

2l

)
a2l

−4(2l)(2l − 1)
(p − l)(p − l + 1)(q − l)(q − l + 1)

(n − 2l + 2)(n − 2l + 1)(n − 2l)(n − 2l − 1)

×
(

n − 2l

p − l + 1

)
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× (n − 2l + 2)(n + 1 − 2l)(n − 2l)(n − 2l − 1)

(2l + 2)(2l + 1)(2l)(2l − 1)

(
n

2l − 2

)
a2l−2

= (8l + 3)
(p − l)(q − l)

(2l + 2)(2l + 1)
β2l,p,q

−4
(p − l)(p − l + 1)(q − l)(q − l + 1)

(2l + 2)(2l + 1)
β2l−2,p,q . (3.14)

The proof of the following recurrence follows from similar arguments.

β2l+3,p,q = (8l + 7)
(q − l)(p − l − 1)

(2l + 3)(2l + 2)
β2l+1,p,q

−4
(p − l)(p − l − 1)(q − l)(q − l + 1)

(2l + 3)(2l + 2)
β2l−1,p,q . (3.15)

3.3 The Proof of Theorem 1.3

As we mentioned in the introduction, we are looking for the closed form of the gen-
erating function

B(y, z) =
∑
p≥0

Bp(1, y)z p,

where

bp,q(x) =
q∑

l=0

(β2l,p,q xq−l + β2l+1,p,q xq−l) and Bp(x, y) =
∑

q

bp,q(x)yq .

In particular, we are looking for an expression of bp,q(1) which is simpler than the
one that is given in Theorem 1.2.

Obviously,

bp,q−1(x) =
q−1∑
l=0

(β2l,p,q−1xq−l−1 + β2l+1,p,q−1xq−l−1).

It follows from Lemma 3.6 that

bp,q(x) = (β2q,p,q + β2q+1,p,q)x0 +
q−1∑
l=0

(β2l,p,q xq−l + β2l+1,p,q xq−l)

= (β2q,p,q+1 + β2q+1,p,q+1)

+
q−1∑
l=0

(p + q)

(
β2l,p,q−1

q − l
xq−l + β2l+1,p,q−1

q − l
xq−l

)
.
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Taking the derivative of both sides of the above equation gives us that

b
′
p,q(x) =

q−1∑
l=0

(p + q)

(
β2l,p,q−1xq−l−1 + β2l+1,p,q−1xq−l−1

)
,

or, equivalently, gives that

b
′
p,q(x) = (p + q)bp,q−1(x). (3.16)

The differential equation (3.16) leads to a PDE for our initial generating function
Bp(x, y):

∂

∂x
(Bp(x, y)) = ∂

∂x

[∑
q≥0

bp,q(x)yq
]

= b
′
p,0y0 +

∑
q≥1

b
′
p,q(x)yq (b

′
p,0 = 0)

=
∑
q≥1

(p + q)bp,q−1(x)yq = py
∑
q≥1

bp,q−1(x)yq−1

+y
∑
q≥1

qbp,q−1(x)yq−1

= py Bp(x, y) + y

(
∂

∂ y
(y · Bp(x, y))

)

= y2
∂

∂ y
Bp(x, y) + y Bp(x, y) + py Bp(x, y).

By the last equation we obtain the PDE that we mentioned in the introduction:

∂

∂x
Bp(x, y) − y2

∂

∂ y
Bp(x, y) = y(1 + p)Bp(x, y). (3.17)

The general solution S(x, y) of (3.17) is given by

S(x, y) = 1

y p+1 G

(
1 − xy

y

)
, (3.18)

where G(z) is some function in one-variable. We want to choose G(z) in such a way
that S(x, y) = Bp(x, y) holds true. To do so, first, we look at some special values of
Bp(x, y).

If let x = 0, then Bp(0, y) = ∑
q≥0 bp,q(0)y p and bp,q(0) = 2(β2q,q,p +

β2q+1,q,p) for all q > 0. Also, recall from the introduction that if q = 0, then
bp,q = p + 1. Thus, we ask from G(z) that it satisfies the following equation

1

y p+1 G

(
1

y

)
= (p + 1) + 2

∑
q≥1

(β2q,q,p + β2q+1,q,p)yq ,
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or that

G

(
1

y

)
= y p+1

⎛
⎝(p + 1) + 2

∑
q≥1

(β2q,q,p + β2q+1,q,p)yq

⎞
⎠ . (3.19)

Therefore, we see that our generating function is given by

Bp(x, y) = 1

y p+1 G

(
1

y/(1 − xy)

)

= 1

y p+1

(
y

1 − xy

)p+1
⎛
⎝(p + 1) + 2

∑
q≥1

(β2q,q,p + β2q+1,q,p)

(
y

1 − xy

)q
⎞
⎠

=
(

1

1 − xy

)p+1
⎛
⎝(p + 1) + 2

∑
q≥1

(β2q,q,p + β2q+1,q,p)

(
y

1 − xy

)q
⎞
⎠ .

(3.20)

To get a more precise information about bp,q ’s we substitute x = 1 in (3.20):

Bp(1, y) = 1

(1 − y)p+1

⎛
⎝(p + 1) + 2

∑
q≥1

(β2q,q,p + β2q+1,q,p)

(
y

1 − y

)q
⎞
⎠ ,

or

(1 − y)p+1Bp(1, y) = (p + 1) + 2
∑
q≥1

(β2q,q,p + β2q+1,q,p)

(
y

1 − y

)q

. (3.21)

Now, we apply the transformation y �→ z = y/(1 − y) in (3.21):

1

(1 + z)p+1 Bp

(
1,

z

1 + z

)
= (p + 1) + 2

∑
q≥1

(β2q,q,p + β2q+1,q,p)z
q . (3.22)

This finishes the proof of Theorem 1.3 since Bp

(
1, z

1+z

)
= f p(z).

4 Part II: Counting Ssymmetric Clans

Convention 4.1 For this part of our paper, without loss of generality, we assume that
p and q are nonnegative integers such that p ≥ q.
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4.1 Ssymmetric Clans with k-Pairs

Recall that a ssymmetric (2p, 2q) clan γ = c1 · · · c2n is a symmetric clan such that
ci 
= c2n+1−i whenever ci is a number. In this second part of our paper, we are going
to find various generating functions and combinatorial interpretations for the number
cp,q of ssymmetric (2p, 2q) clans. We start by stating a simple lemma that tells about
the involutions corresponding to ssymmetric clans.

Lemma 4.2 Let γ = c1c2 · · · c2n be a ssymmetric (2p, 2q) clan. If π ∈ S2n is the
associated involution with γ , then there are even number of 2-cycles in π .

Proof First, notice that if for some 1 ≤ i < j ≤ 2n the numbers ci and c j form
a pair, that is to say a 2-cycle in π , then by symmetry c2n+1−i and c2n+1− j form a
pair in π as well. In addition, by the condition that is requiring for all natural ci ’s
that ci 
= c2n+1−i , ci and c2n+1− j cannot form a pair in π . Therefore, if we have a
pair (ci , c j ) in π , then we must also have another pair (c2n+1− j , c2n+1−i ) which is
different from (ci , c j ). Said differently, the number of 2-cycles in π must be even. ��

In the light of Lemma 4.2, we will focus on the subset I sp
k,p,q ⊂ S2n consisting of

involutions π whose standard cycle decomposition is of the form

π = (i1 j1) · · · (i2k j2k)d1 · · · d2n−4k .

Furthermore, we assume that the fixed points of π are labeled by the elements of
{+,−} in such a way that there are 2p − 2q more +’s than −’s and we want the
following conditions be satisfied:

1. k ≤ q (this is because there are 2p −2q more+’s than−’s, hence 2q +2p −4k ≥
2p − 2q);

2. if (i, j) is a 2-cycle such that 1 ≤ i < j ≤ n, then (2n + 1 − j, 2n + 1 − i) is a
2-cycle also;

3. if (i, j) is a 2-cycle such that 1 ≤ i < n+1 ≤ j ≤ 2n, then (2n+1− j, 2n+1−i)
is a 2-cycle as well.

The (signed) involutions in I sp
k,p,q are precisely the involutions that correspond to

the ssymmetric (2p, 2q) clans under the bijection of Lemma 2.5, so, γk,p,q stands for
the cardinality of I sp

k,p,q . To find a formula for γk,p,q ’s we argue similarly to the case
of βk,p,q , by counting the number of possible ways of placing pairs and by counting
the number of possible ways of placing ±’s on the fixed points. Also, we make use of
the bijection ϕ̃ of Lemma 2.5 to switch between the involution notation and the clan
notation.

First of all, an involution π from I sp
k,p,q has 2k 2-cycles and 2n − 4k fixed points.

The 2k 2-cycles, by using numbers from {1, . . . , 2n} can be chosen in ( n
2k

)
; the number

of rearrangements of these 2k pairs and their entries, to obtain the standard form of an
involution, requires (2k)!

k! steps. In other words, the 2-cycles of π are found and placed

in the standard ordering in
( n
2k

)
(2k)!

k! possible ways. Once we have the 2-cycles of the
involution, we easily see that the numbers and their positions in the corresponding
ssymmetric clan are uniquely determined.
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Next, we determine the number of ways to place ±’s. This amounts to finding the
number of ways of placing 2α +’s and 2β -’s on the string d1 · · · d2n−4k so that there
are exactly 2p − 2q = 2α − 2β +’s more than −’s. By applying the inverse of the
bijection ϕ̃ of Lemma 2.5, we will use the symmetry condition on the corresponding
clan. Thus, we observe that it is enough to focus on the first n places of the clan
only. Now, the number of +’s in the first n places can be chosen in

(n−2k
α

)
different

ways. Once we place the +’s, the remaining entries will be filled with −’s. Clearly
there is now only one way of doing this since we placed the numbers and the +
signs already. Therefore, to finish our counting, we need to find what that α is. Since
α + β = n − 2k = q + p − 2k and since α − β = p − q, we see that α = p − k.

In summary, the number of possible ways of constructing a signed involution cor-
responding to a ssymmetric (2p, 2q) clan is given by

γk,p,q =
(

q + p

2k

)
(2k)!

k!
(

q + p − 2k

p − k

)
. (4.1)

Note here that we are using n = p + q. The right-hand side of (4.1) can be expressed
more symmetrically as follows:

γk,p,q = (q + p)!
(q − k)!(p − k)!k! . (4.2)

4.2 Recurrences for �k,p,q’s

Observe that the formula (4.7) is defined independently of the inequality q ≤ p. From
now on, for our combinatorial purposes, we skip mentioning this comparison between
p and q and use the equality γk,p,q = γk,q,p whenever it is needed. Also, we record
the following obvious recurrences for a future reference:

γk,p,q = (p − k + 1)(q − k + 1)

k
γk−1,p,q , (4.3)

γk,p−1,q = p − k

p + q
γk,p,q , (4.4)

γk,p,q−1 = q − k

p + q
γk,p,q . (4.5)

These recurrences hold true whenever both sides of the equations are defined. Notice
that in (4.3)–(4.5) the parity, namely k does not change.Next, wewill show that γk,p,q ’s
obey a 3-term recurrence once we allow change in all three numbers p, q, and k.

Lemma 4.3 Let p and q be two positive integers. If k ≥ 1, then we have

γk,p,q = γk,p−1,q + γk,p,q−1 + 2(q + p − 1)γk−1,p−1,q−1 and

γ0,p,q =
(

p + q

p

)
. (4.6)
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Proof Instead of proving our result directly, we will make use of a similar result that
we proved before. Let γ̃k,p,q denote the number

γ̃k,p,q = (q + p)!
2k(q − k)!(p − k)!k! . (4.7)

In Can and Uğurlu (2018), it is proven that

γ̃k,p,q = γ̃k,p−1,q + γ̃k,p,q−1 + (p + q − 1)γ̃k−1,p−1,q−1 (4.8)

holds true for all p, q, k ≥ 1. Note that γ̃0,p,q = (p+q
p

)
, which is our initial condition

for γk,p,q ’s. Therefore, combining (4.8) with the fact that γk,p,q = 2k γ̃k,p,q finishes
our proof. ��
Convention 4.4 From now on we will assume that cp,q = 1 whenever one or both of
p and q are zero.

Proposition 4.5 (Proposition 1.4) For all positive integers p and q, the following
recurrence relation holds true:

cp,q = cp−1,q + cp,q−1 + 2(p + q − 1)cp−1,q−1. (4.9)

Proof Recall that cp,q = ∑
k γk,p,q . Thus, summing both sides of Eq. (4.6) over k

with 1 ≤ k ≤ p − 1 gives

cp,q − cp−1,q − cp,q−1 − 2(p + q − 1)cp−1,q−1

= γ0,p,q − γ0,p−1,q − γ0,p,q−1

+ γp,p,q − γp,p,q−1 − 2(p + q − 1)γp−1,p−1,q−1

= 0.

��

4.3 Proof of Theorem 1.5

One of the many options for a bivariate generating function for cp,q ’s is the following

v(x, y) :=
∑

p,q≥0

cp,q
(2x)q y p

p! . (4.10)

Let us tabulate first few terms of v(x, y):

∑
p,q≥0

cp,q
(2x)q y p

p! = c0,0 + c0,12x + · · · + c0,q(2x)q + · · ·

+c1,0
1! y + · · · + cp,0

p! y p + · · ·
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+c1,1
1! (2x)y + · · · + cp,1

p! (2x)y p + · · ·

+c1,2
1! (2x)2y + · · · + cp,2

p! (2x)2y p + · · · (4.11)

It follows from our Convention 4.4 and Eq. (4.11) that

v(x, y) = 1

1 − 2x
+ ey − 1 +

∑
p,q≥1

cp,q
(2x)q y p

p! . (4.12)

We feed this observation into our recurrence (4.9) and use similar arguments for the
right hand side of it:

v(x, y) − 1

1 − 2x
− ey + 1 =

∫ ∑
p≥1,q≥0

cp−1,q

(p − 1)! (2x)q y p−1dy − ey

+2x

( ∑
p,q≥0

cp,q

p! (2x)q y p − 1

1 − 2x

)

+2
∑

p,q≥1

p
cp−1,q−1

p! (2x)q y p

+2
∑

p,q≥1

q
cp−1,q−1

p! (2x)q y p

−2
∑

p,q≥1

cp−1,q−1

p! (2x)q y p

=
∫ ∑

p≥1,q≥0

cp−1,q

(p − 1)! (2x)q y p−1dy − ey

+2x

( ∑
p,q≥0

cp,q

p! (2x)q y p − 1

1 − 2x

)

+4xy
∑

p,q≥0

cp−1,q−1

(p − 1)! (2x)q−1yq−1

+4x
∫ ∑

p,q≥1

qcp−1,q−1

(p − 1)! (2x)q−1y p−1dy

−4x
∫ ∑

p,q≥1

cp−1,q−1

(p − 1)! (2x)q−1y p−1dy.

Thus, we have

v(x, y) − 1

1 − 2x
− ey + 1

=
∫

v(x, y)dy − ey + 2x v(x, y) − 2x

1 − 2x
+ 4xy v(x, y)
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+ x
∫ (

∂

∂x
(2x v(x, y))

)
dy − 4x

∫
v(x, y)dy,

or equivalently,

(1 − 2x − 4xy)v(x, y) = (1 − 4x)

∫
v(x, y)dy + x

∫ (
∂

∂x
(2xv(x, y))

)
dy.

Now, differentiating with respect to y gives us a PDE:

− 4x v(x, y) + (1 − 2x − 4xy)
∂v(x, y)

∂ y

= (1 − 4x) v(x, y) + x

(
2v(x, y) + 2x

∂v(x, y)

∂x

)
,

which we re-organize as in

(−2x2)
∂v(x, y)

∂x
+ (1 − 2x − 4xy)

∂v(x, y)

∂ y
= (1 + 2x) v(x, y). (4.13)

Here, we have the obvious initial conditions

v(0, y) = ey and v(x, 0) = 1

1 − 2x
.

Solutions of such PDE’s are easily obtained by applying the method of “character-
istic curves.” Our characteristic curves are x(r , s), y(r , s), and v(r , s). Their tangents
are equal to

∂x

∂s
= −2x2,

∂ y

∂s
= 1 − 2x − 4xy,

∂v

∂s
= (1 + 2x)v, (4.14)

with the initial conditions

x(r , 0) = r , y(r , 0) = 0, and v(r , 0) = 1

1 − 2r
.

From the first equation given in (4.14) and its initial condition underneath, we have

x(r , s) = r

2rs + 1
. (4.15)

Plugging this into the second equation gives us ∂ y
∂r = 1 − 2

2rs+1 (1 + 2y), which is a
first order linear ODE. The general solution for this ODE is

y(r , s) = 3s + 4r2s3 − 6r2s2 + 6rs2 − 6rs

3(2rs + 1)2
. (4.16)
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Finally, from the last equation in (4.14) together with its initial condition we conclude
that

v(r , s) = es(2rs + 1)

1 − 2r
.

In summary, we outlined the proof of our next result.

Theorem 4.6 Let v(x, y) denote the power series
∑

p,q≥0 cp,q(2x)q y p

p! . If r and s are
the variables related to x and y as in Eqs. (4.16) and (4.15), then we

v(r , s) = es(2rs + 1)

1 − 2r
. (4.17)

We finish this section with a remark.

Remark 4.7 Although we solved our PDE by using the useful method of characteristic
curves, the answer is given as a function of transformed coordinates r and s. Actually,
we can find the solution in x and y. Indeed, it is clear from the outset that the general
solution S̃(x, y) of (4.13) is given by

S̃(x, y) = e1/(2x)F(
6xy+3x−1

6x3
)

x
, (4.18)

where F(z) is some function in one-variable. (This can easily beverifiedby substituting
S̃(x, y) into the PDE.) Let us find a concrete expression for F(z) here so that the initial
condition S̃(x, y) = v(x, y) holds true. To this end, we set y = 0. In this case, we
know that v(x, 0) = 1

1−2x . Therefore, F(z) satisfies the following equation:

e1/(2x)F( 3x−1
6x3

)

x
= 1

1 − 2x
or F

(
3x − 1

6x3

)
= xe−1/(2x)

1 − 2x
. (4.19)

The inverse of the transformation z = 3x−1
6x3

which appears in (4.19) is given by

x = 1

61/3(−3z2 + √
3
√−2z3 + 3z4)1/3

+ (−3z2 + √
3
√−2z3 + 3z4)1/3

62/3z
. (4.20)

By back substitution of (4.20) into (4.19), we find an expression for F(z), which in
turn will be evaluated at 6xy+3x−1

6x3
[as in (4.18)]. Obviously, the resulting expression

is very complicated, however, this way we can write the solution of our PDE in x and
y only.
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Fig. 1 Delannoy paths

L =

1
1

6
1 12

16
1

Fig. 2 A weighted Delannoy path

L =

Fig. 3 All of the 4-diagonal steps in N2

5 A Combinatorial Interpretation

In this section, we will use Delannoy paths for our combinatorial interpretation of the
number of ssymmetric clans. In Fig. 1 we listed the Delannoy paths that are contained
in the 2 × 2-grid.

Recall our claim (Proposition 1.6) from Introduction that one can compute the
numbers cp,q as a sum

∑
L∈D(p,q) ω(L),whereD(p, q)denotes the set of allDelannoy

paths that ends at (p, q). Here ω(L) is the weight of the Delannoy path L , which is
defined in (1.15).

Example 5.1 Let L denote the Delannoy path that is depicted in Fig. 2. In this case,
the weight of L is ω(L) = 6 · 12 · 16 = 1152.

Recall also that a weighted (p, q) Delannoy path is a word of the form W :=
K1 · · · Kr , where Ki ’s (i = 1, . . . , r) are labeled steps Ki = (Li , mi ) such that

• L1 · · · Lr is a Delannoy path from D(p, q);
• if Li (1 ≤ i ≤ r ) is a k-diagonal step, then 2 ≤ mi ≤ 2k − 1. (We depicted all of
the 4-diagonal steps in N

2 in Fig. 3.)

Theorem 1.9 states that there is a bijection between the set of weighted (p, q)

Delannoy paths and the set of ssymmetric (2p, 2q) clans. Our goal in this section is
to prove these statements.
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Proof of Proposition 1.6 Let c′
p,q denote the sum

∑
L∈D(p,q) ω(L). As a convention

we define c′
0,0 = 1. Recall that n stands for p + q. We prove our claim c′

p,q = cp,q

by induction on n. Obviously, if n = 1, then (p, q) is either (0, 1) or (1, 0), and in
both of these cases, there is only one step which either N or E . Therefore, c′

p,q = 1
in this case. Now, let n be a positive integer and we assume that our claim is true for
all (p, q) with (p, q) = n. We will prove that cp,q = c′

p,q , whenever p + q = n + 1.
To this end, we look at the possibilities for the ending step of a Delannoy path L =
L1 · · · Lr ∈ D(p, q). If Lr is a diagonal step, then

ω(L) = (2(p + q) − 1)ω(L1 · · · Lr−1).

In particular, L1 · · · Lr−1 ∈ D(p − 1, q − 1). If Lr is from {N , E}, then

ω(L) = ω(L1 · · · Lr−1).

In particular, L1 · · · Lr−1 ∈ D(p − 1, q) or L1 · · · Lr−1 ∈ D(p, q − 1), depending on
Lr = E or Lr = N . We conclude from these observations that

c′
p,q = c′

p−1,q + c′
p,q−1 + 2(p + q − 1)c′

p−1,q−1

= cp−1,q + cp,q−1 + 2(p + q − 1)cp−1,q−1 (by induction hypothesis)

= cp,q .

This finishes the proof of our claim. ��
The proof of Theorem 1.9 is based on the same idea however it requires more

attention in some of the constructions that are involved.

Proof of Theorem 1.9 Let dp,q denote the cardinality of Dw(p, q). We will prove that
dp,q obeys the same recurrence as cp,q ’s and it satisfies the same initial conditions.

Let γ = c1 · · · c2n be a ssymmetric (2p, 2q) clan and let π = πγ denote the signed
involution

π = (i1, j1) · · · (i2k, j2k)l
s1
1 · · · ls2n−4k

2n−4k, where s1, . . . , s2n−4k ∈ {+,−},

which is given by π = ϕ̃(γ ). Here, ϕ̃ is the map that is constructed in the proof of
Lemma 2.5. We will construct a weighted (p, q) Delannoy path W = Wγ which is
uniquely determined by π .

First, we look at the position of 2n in π . If it appears as a fixed point with a + sign,
then we draw an E step between (p, q) and (p − 1, q). If it appears as a fixed point
with a − sign, then we draw a an N -step between (p, q) and (p, q −1). We label both
of these steps by 1 to turn them into labeled steps. Next, we remove the fixed points
1 and 2n from π and then subtract 1 from each remaining entry. The result is a either
signed (2(p − 1), 2q) involution or a signed (2p, 2(q − 1)) involution. Now, by our
induction hypothesis, in the first case, there are dp−1,q possible ways of extending this
path to a weighted (p, q) Delannoy path. In a similar manner, in the latter case there
are dp,q−1 possible ways of extending it to a weighted (p, q) Delannoy path.
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π

π(1) = (4, 5)(8, 9)1+2−3+6+7+10+11−12+

3

π(1) = (4, 5)(8, 9)1+2−3+6+7+10+11−12+

π(2) = (3, 4)(7, 8)1−2+5+6+9+10−

31

π(2) = (3, 4)(7, 8)1−2+5+6+9+10−

π(3) = (2, 3)(6, 7)1+4+5+8+

311

π(3) = (2, 3)(6, 7)1+4+5+8+

π(4) = (1, 2)(5, 6)3+4+

3111

π(4) = (1, 2)(5, 6)3+4+

π(5) = 1+2+

31115

π(5) = 1+2+

π(6) = ·

311151

Fig. 4 Algorithmic construction of the bijection onto weighted Delannoy paths

Now, we assume that 2n appears in a 2-cycle in π , say (is, js), where 1 ≤ s ≤ k.
Then (ir , jr ) = (i, 2n), for some i ∈ {2, . . . , 2n−1}. Then by the symmetry condition,
there is a partnering 2-cycle, which is necessarily of the form (1, i ′) for some i ′. In
this case, we draw a D-step between (p, q) and (p − 1, q − 1) and we label this step
by i . Then we remove the two cycle (i, 2n) as well as its partner (1, i ′) from π . Let
us denote the resulting object by π

(1)
0 . To get rid of the gaps created by the removal
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of two 2-cycles, we renormalize the remaining entries by appropriately subtracting
numbers so that the resulting object, which we denote by π(1) has every number
from {1, . . . , 2n − 4} appears in it exactly once. It is easy to see that we have a signed
(2(p−1), 2(q−1)) involutionwhich corresponds to a ssymmetric (2(p−1), 2(q−1))
clanunder ϕ̃−1.Now, the label of this diagonal step canbe chosen as one the 2(p+q−1)
numbers from {2, . . . , 2n − 1}. Finally, let us note that there are dp−1,q−1 possible
ways to extend this labeled diagonal step to a weighted (p, q) Delannoy path.

Combining our observations we see that, starting with a random ssymmetric
(2p, 2q) clan, there are exactly

dp−1,q + dp,q−1 + 2(p + q − 1)dp−1,q−1 (5.1)

possible weight Delannoy paths that we can construct. By induction hypothesis the
number (5.1) is equal to cp,q . This finishes our proof. ��

Let us illustrate our construction by an example.

Example 5.2 Let γ denote the ssymmetric (10, 6) clan

γ = 4 + 6 − + 1 1 + + 2 2 + − 4 + 6,

and let π denote the corresponding signed involution

π = (1, 14)(3, 16)(6, 7)(10, 11)2+4−5+8+9+12+13−15+.

The steps of our construction are shown in Fig. 4.
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Appendix

In this appendix, as we promised in the introduction, we outline a method for approx-
imating the number of symmetric (2p, 2q + 1) clans with k pairs, βk,p,q . Recall our
notation that Ae(x) = ∑q

l=0 β2l,p,q x2l and Ao(x) = ∑q
l=0 β2l+1,p,q x2l+1.

First of all, by multiplying both sides of the recurrence relation (3.8) by x2l and
summing over l lead us to the following integral/differential equation

Ae(x) − β0,p,q = (q + 1)
∫

(Ao(x) − β2q+1,p,q x2q+1)dx

− x

2
(Ao(x) − β2q+1,p,q x2q+1)

+2(pq + p + q + 1)
∫

x(Ae(x) − β2q,p,q x2q)dx
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−(p + q + 1)x2(Ae(x) − β2q,p,q x2q)

+ x3

2
A

′
e(x) − qβ2q,p,q x2q+2.

We get rid of the integrals by taking the derivative with respect to x and then we
reorganize our equation which is now a second order ODE as in

x3A
′′
e(x)−

(
(2p + 2q − 1)x2 + 2

)
A

′
e(x) + 4pqx Ae(x)

− x A
′
o(x) + (2q + 1)A0(x) = 0.

By applying a similar procedure to the recurrence relation (3.9) and also by using the
fact that β1,p,q = pβ0,p,q , we obtain our second second order ODE:

x3A
′′
o(x)−

(
(2p + 2q − 1)x2 + 2

)
A

′
o(x) + (4pq + 2p − 2q − 1)x Ao(x)

− x A
′
e(x) + 2p Ae(x) = 0.

Note that we the following initial conditions that follow from the definitions of Ae(x)

and Ao(x):

Ae(0) = β0,p,q and Ao(0) = 0,

A
′
e(0) = 0 and A

′
o(0) = pβ0,p,q = β1,p,q .

Wewill reduce our second order system to a first order ODE by setting u(x) := A
′
e(x)

and v(x) := A
′
o(x). Then

x3u′(x) = ((2p + 2q − 1)x2 + 2)u(x) − 4pqx Ae(x) − (2q + 1)A0(x) + xv(x)

x3v′(x) = ((2p + 2q − 1)x2 + 2)v(x) − (4pq + 2p − 2q − 1)x Ao(x)

−2p Ae(x) + xu(x)

x3A
′
e(x) = x3u(x)

x3A
′
o(x) = x3v(x).

We write this system in matrix form

x3X ′ = A(x)X ,

where A(x) the 4 × 4 matrix as in (1.5). Note that our initial conditions become

X(0) =

⎡
⎢⎢⎣

u(0)
v(0)
A(0)
A(0)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
pβ0,p,q

β0,p,q

0

⎤
⎥⎥⎦ . (6.1)
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Once a system of first order ordinary differential equations of this type is given, formal
series solutions can always be obtained by carrying out the computational procedure,
which is outlined in Turrittin (1955). We will use those techniques to solve the above
system of first order ordinary differential equations.

Before proceeding any further let us define thematrices A0, A1, . . . bydecomposing
the coefficient matrix A(x):

A(x) =
∞∑

k=0

Ak xk =

⎡
⎢⎢⎣
2 0 0 −(2q + 1)
0 2 −2p 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ x0

+

⎡
⎢⎢⎣
0 1 −4pq 0
1 0 0 −(4pq + 2q − 2q − 1)
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ x1

+

⎡
⎢⎢⎣

(2q + 2q − 1) 0 0 0
0 (2p + 2q − 1) 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ x2

+

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ x3 + 0x4 + · · ·

Since the eigenvalues of the leadingmatrix A0 fall into two groups, namely λ1 = λ2 =
0 and λ3 = λ4 = 2, there exists a normalizing transformation matrix P obtained from
the Jordan canonical form of A0. More precisely, since

B0 =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 2

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 −p 0
1 0 0 − 2q+1

2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
2 0 0 −(2q + 1)
0 2 −2p 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2q+1
2 0 0 1
0 p 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦

= P−1A0P.

the normalizing transformation X = PY turns our system into

x3Y
′ = B(x)Y ; with Y (0) =

⎡
⎢⎢⎣

0
β0,p,q

0
0

⎤
⎥⎥⎦ (6.2)
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where

B(x) = P−1 A(x)P

=

⎡
⎢⎢⎢⎢⎣

0 px3 x3 0
2q+1
2 x3 0 0 x3

− 2q+1
2 (px3 + 4px − 3x) p(2p + 2q − 1)x2 (2p + 2q − 1)x2 + 2 x − px3

(2q+1)(2p+2q−1)
2 x2 (p − 4pq)x − p(2q+1)

2 x2 x − 2q+1
2 x3 (2p + 2q − 1)x2 + 2

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 2

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

− (2q+1)(4p−3)
2 0 0 1
0 p(1 − 4q) 1 0

⎤
⎥⎥⎦ x

+

⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 p(2p + 2q − 1) 2p + 2q − 1 0
(2q+1)(2p+2q−1)

2 0 0 2p + 2q − 1

⎤
⎥⎥⎥⎥⎦ x2

+

⎡
⎢⎢⎢⎢⎣

0 p 1 0
2q+1
2 0 0 1

− p(2q+1)
2 0 0 −p
0 − p(2q+1)

2 − 2q+1
2 0

⎤
⎥⎥⎥⎥⎦ x3 + 0x4 + 0x5 + · · ·

We denote the coefficient matrix of xi (i = 0, 1, 2, . . .) in B(x) by Bi . Thus,

B(x) = B0 + B1x + B2x2 + B3x3.

We will work with a system that is obtained from B(x) by a “shearing” transfor-
mation. Let Q be a formal power series of the form Q = ∑

Qr xr with Qr ’s are
some constant matrices of order 4. We assume that our desired solution Y = Y (x)

for x3Y ′ = BY is of the form Y = Q Z for some 4 × 1 column matrix Z = Z(x).
Formally, substituting Q Z into x3Y ′ = B(x)Y will give us a new ODE:

x3(Q Z)′ = B Q Z ⇒ x3(Q′Z + Q Z ′)= B Q Z or x3Z ′ = (Q−1B Q+x3Q−1Q′)Z .

Let C denote the formal power series
∑

Cr xr that is defined by

Q−1B Q + x3Q−1Q′ = C =
∑

Cr xr , (6.3)

hence our ODE is equivalent to

x3Z ′ = C Z . (6.4)

By multiplying both sides of (6.3) with Q and rearranging we obtain a new ODE
whose solution will lead to a solution of (6.5):

x3Q′ = QC − B Q. (6.5)
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To solve (6.5) we simply substitute B = ∑
Br xr , Q = ∑

Qr xr and C = ∑
Cr xr

and equate the coefficients. Then we get the following relations which we call as our
fundamental recurrences:

(i) 0 = Q0C0 − B0Q0;
(ii) 0 = (Q0C1 − B1Q0) + (Q1C0 − B0Q1);
(iii) (r − 2)Qr−2 = ∑r

i=0(Qi Cr−i − Br−i Qi ) for r ≥ 2.

Wewill recursively assign specific values to thematrices Qi , i = 0, 1, 2, . . .whichwill
allow us to solve (6.5). Along the way we will determine the series C(x) = ∑

xi Ci ,
which is what we want to solve in the first place. Indeed, our goal is to choose Qi ’s
in such a way that Ci ’s become block diagonal. To this end, we assume that Qi

(i = 0, 1, 2, . . .) is a block anti-diagonal matrix:

Qi =
[

0 Q12
i

Q21
i 0

]

for some 2 × 2 matrices Q12
i , Q21

i (i = 0, 1, 2, . . .).

Step 1. We choose Q0 = I4, the 4 × 4 identity matrix. It follows from (i) that

C0 = B0 =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 2

⎤
⎥⎥⎦ .

We have a remark in order.

Remark 6.1 Let us point out that, since

Qi B0 − C0Ci =
[

0 2Q12
i−2Q21

i 0

]
for i = 1, 2, . . . (6.6)

by using the fundamental recurrences (ii) and (iii) we will always be able to choose
Q12

i and Q21
i so that Ci is of the form

Ci =
[

C11
i 0
0 C22

i

]
,

where C11
i and C22

i are 2 × 2 matrices.

Step 2. By (ii) and Step 1, C1 = B1 − Q1C0 + B0Q1, so we set

Q1 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0

− (2q+1)(4p−1)
4 0 0 0
0 p(4q−1)

2 0 0

⎤
⎥⎥⎦ �⇒ C1 =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ .
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Step 3. By (iii) and Steps 1,2, C2 = B2 − Q1C1 + B1Q1 − Q2C0 + B0Q2, so we
set

Q2 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 − p(4p+8q−3)

4 0 0
− (2q+1)(4q−1)

8 0 0 0

⎤
⎥⎥⎦

�⇒ C2 =

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 2p + 2q − 1 0
0 0 0 2p + 2q − 1

⎤
⎥⎥⎦ .

In a similar manner, we put

Q3 =

⎡
⎢⎢⎢⎣

0 0 1
2 0

0 0 0 1
2

(2q+1)(16p2+16pq−1)
16 0 0 0

0 −p(16pq+16q2−8p−16q+1)
8 0 0

⎤
⎥⎥⎥⎦

�⇒ C3 =

⎡
⎢⎢⎣

0 p 0 0
2q+1
2 0 0 0
0 0 0 −p
0 0 − 2q+1

2 0

⎤
⎥⎥⎦ .

The above computations are in some sense are our initial conditions. To get a better
understanding of the general case we make a few more preliminary observations and
formal computations.

C j j
i = B j j

i for i = 0, 1, 2, 3 and j = 1, 2 (6.7)

Qi C1 =
[
0 Q12

i C22
1

0 0

]
and B1Qi =

[
0 0

B22
1 Q21

i B21
1 Q12

i

]
(6.8)

Qi C2 =
[
0 Q12

i C22
2

0 0

]
and B2Qi =

[
0 0

B22
2 Q21

i B21
2 Q12

i

]
(6.9)

Qi C3 =
[

0 Q12
i C22

3
Q21

i C11
3 0

]
and B3Qi =

[
B12
3 Q21

i B11
3 Q12

i
B22
3 Q21

i B21
3 Q12

i

]
(6.10)

Qi C j =
[

0 Q12
i C22

j
Q21

i C11
j 0

]
. (6.11)

Finally, since Br = 0, the fundamental recurrence (iii) simplifies to

Cr = (r − 2)Qr−2 −
(

3∑
i=0

(Qr−i Ci − Bi Qr−i )

)
−
(

r−1∑
i=4

Qr−i Ci

)
. (6.12)
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Recall that we started with the system x3X ′ = A(x)X which is transformed into
x3Y ′ = B(x)Y by conjugating with a constant matrix, and the latter system is trans-
formed into x3Z ′ = C(x)Z by the shearing transformation Y = Q(x)Z .

Proposition 6.2 Let C(x) = ∑
r Cr xr and Q(x) = ∑

r Qr xr be as in the previous
paragraph. If r ≥ 4, then we have

Cr =
[

Q21
r−3 0
0 B21

1 Q12
r−1 + B21

2 Q12
r−2 + B21

3 Q12
r−3

]
.

In particular, the system x3Z ′ = C(x)Z decomposes into two 2×2 systems of ODE’s

x3K ′ = R(x)K , (6.13)

x3L ′ = T (x)L, (6.14)

where

R(x) = C11
3 x3 +

∑
r≥4

Q21
r−3xr ;

T (x) =
3∑

i=0

C22
i x3 +

∑
r≥4

(B21
1 Q12

r−1 + B21
2 Q12

r−2 + B21
3 Q12

r−3)xr .

Proof Since Cr is a block diagonal matrix, recurrence (6.12) combined with equations
(6.7)–(6.11) gives us the desired result. ��

What remains is to solving the systems (6.13) and (6.14). The former ODE is
relatively easy since it does not have a singularity anymore. However, the second
ODE (6.14) does have a singularity. Moreover, we still do not know the exact forms of
neither Q12(x) nor Q21(x). On the positive side, by taking advantage of the particular
structure of B(x)’s we are able to find recurrences for R(x) and T (x).

To find a recurrence for the blocks of Qr ’s, we use Proposition 6.2 as well as the
simplified fundamental recurrence (6.12) as follows:

Cr =
[

Q21
r−3 0

0 B21
1 Q12

r−1 + B21
2 Q12

r−2 + B21
3 Q12

r−3

]

=
[

0 (r − 2)Q12
r−2

(r − 2)Q21
r−2 0

]
−
[

0 2Q12
r

−2Q21
r 0

]
−
[

0 Q12
r−1B22

1

−B22
1 Q21

r−1 −B21
1 Q12

r−1

]

−
[

0 Q12
r−2B22

2

−B22
2 Q21

r−2 −B21
2 Q12

r−2

]
−
[ −B12

3 Q21
r−3 Q12

r−3B22
3 − B11

3 Q12
r−3

Q21
r−3B11

3 − B22
3 Q21

r−3 −B21
3 Q12

r−3

]

−
∑
i=4

[
0 Q12

r−i

Q21
r−i 0

][
Q21

i−3 0

0 B21
1 Q12

i−1 + B21
2 Q12

i−2 + B21
3 Q12

i−3

]
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q21
i−3

(r − 2)Q12
r−2 − 2Q12

r − Q12
r−1B22

1

− Q12
r−2B22

2 − Q12
r−3B22

3 + B11
3 Q12

r−3

−∑
i=4 Q12

r−i (B21
1 Q12

i−1 + B21
2 Q12

i−2 + B21
3 Q12

i−3)

(r − 2)Q21
r−2 + 2Q21

r + B22
1 Q21

r−1 + B22
2 Q21

r−2

− Q21
r−3B11

3 + B22
3 Q21

r−3 −∑
i=4 Q21

r−i Q21
i−3

B21
1 Q12

i−3 + B21
2 Q12

i−2 + B21
3 Q12

i−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Observe that the diagonal blocks do not give us any new information, however, the
anti-diagonal blocks do. By the equality of the bottom left blocks, we have

2Q21
r = −(r − 2)Q21

r−2 − B22
1 Q21

r−1 − B22
2 Q21

r−2 + Q21
r−3B11

3 − B22
3 Q21

r−3

+
r−1∑
i=4

Q21
r−i Q21

i−3. (6.15)

Similarly, the equality of the top right blocks give

2Q12
r =(r − 2)Q12

r−2 − Q12
r−1B22

1 − Q12
r−2B22

2 − Q12
r−3B22

3 + B11
3 Q12

r−3

−
r−1∑
i=4

Q12
r−i (B21

1 Q12
i−1 + B21

2 Q12
i−2 + B21

3 Q12
i−3).

(6.16)

Obviously, these recurrences enable us to write the precise forms of the ODE’s
(6.13) and (6.14). Both of these ODE’s can now be solved by applying suitable shear-
ing transformations leading to a solution of our original equation x3X ′ = A(x)X .
However, due to its high computational cost the result is still not better than the
expressions for βk,p,q ’s that we recorded in Theorem 1.2.
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