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Abstract
This note contains a proof of van der Waerden’s theorem, “one of the most elegant
pieces of mathematics ever produced,” in nine figures. The proof follows van der
Waerden’s original idea to establish the existence of what are now called van der
Waerden numbers by using double induction. It also contains ideas and terminology
introduced by I. Leader and T. Tao.
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1 Introduction

Considered as “one of the most elegant pieces of mathematics ever produced” (de
Bruijn 1978), together with Hilbert’s theorem, Schur’s theorem, and Ramsey’s theo-
rem, van derWaerden’s theorem is one of the cornerstones of Ramsey theory, a branch
of combinatorics.

Bartel Leendert van der Waerden was a Dutch mathematician and historian of
mathematics and science. He was born in 1903, the same year as Frank Ramsey, the
man after whom Ramsey theory was named, and died in 1996, the same year as Paul
Erdős, who is considered to be the father of Ramsey theory (Graham et al. 1980).

Van der Waerden’s theorem was proven in 1926 and published in 1927 (van der
Waerden 1927). Many years later, van der Waerden told a story about how the proof
was found. Here are a few quotes from the beginning of the English version of van
der Waerden’s essay (1971) that provide an insight into how the proof was created and
reflect on the process of mathematical discovery.
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Once in 1926, while lunching with Emil Artin and Otto Schreier, I told them
about the conjecture of the Dutch mathematician Baudet:
If a sequence of integers of 1, 2, 3, . . . is divided into two classes, at least one
of the classes contains an arithmetic progression of l terms: a, a + b, a +
2b, . . . , a + (l − 1)b, no matter how large the length l is.

After lunch we went into Artin’s office in the Mathematics Department of the
University of Hamburg, and tried to find a proof.

(. . .) One of the main difficulties in the psychology of invention is that most
mathematicians publish their results with condensed proofs, but do not tell us
how they found them. In many cases they do not even remember their original
ideas. Moreover, it is difficult to explain our vague ideas and tentative attempts
in such a way that others can understand them.

(. . .) In the case of our discussion of Baudet’s conjecture the situation was much
more favourable for a psychological analysis. All ideas we formed in our minds
were at once put into words and explained by little drawings on the blackboard.
We represented the integers 1, 2, 3, . . . in two classes bymeans of vertical strokes
on two parallel lines. Whatever one makes explicit and draws is much easier to
remember and to reproduce than mere thoughts1.

Regardless of the fact that combinatorics was “a field that he never seriously worked
in” van Lint (1982), van derWaerden’s contribution to combinatorics is indispensable.
Various generalizations of van derWaerden’s theoremhavemarked the development of
Ramsey theory over the last several decades.As an examplewemention the polynomial
van der Waerden theorem (Bergelson and Leibman 1996; Walters 2000). Another
example is the long-standing 2-Large Conjecture (Brown et al. 1999, Robertson (to
appear)).

2 van derWaerden’s Theorem

Theorem 1 (van der Waerden’s Theorem) Let l and k be positive integers. Any k-
colouringof positive integers contains amonochromatic l-termarithmetic progression.
Moreover, there is a positive integer N = N (l, k) such that any k-colouring of the
segment of positive integers [1, N ] contains a monochromatic l-term arithmetic pro-
gression.

Here a k-colouring of a set A means that the set A is split into k mutually disjunct
subsets. We think about the k subsets as “k colours.” Equivalently, a k-colouring of a
set A is any function c : A → B, where B is a set with exactly k elements (“colours.”)
A subset of the set A is monochromatic (with respect to the given colouring c) if all
of its elements are of the same colour.

1 For the whole essay “How the proof of Baudet’s conjecture was found” see also (Soifer 2009), pages
310–318.

123



Proof of van der Waerden’s Theorem in Nine Figures 163

An l-term arithmetic progression is a set of the form {a, a + d, . . . , a + (l − 1)d}.
In this note a and d will always be positive integers. For example, {2, 5, 8} is a 3-term
arithmetic progression where a = 2 and d = 3.

As an exercise, we suggest to the reader to find a 2-colouring of the segment of
positive integers [1, 8] = {1, 2, . . . , 8} with no monochromatic 3-term arithmetic
progression. In other words, the reader should find two mutually disjunct sets A and
B such that A ∪ B = [1, 8] and that neither A nor B contains a 3-term arithmetic
progression. This should be followed by showing that such a colouring for the set
[1, 9] does not exist.

The smallest N guaranteed by the theorem is often denoted by W (l, k) and called
a van der Waerden number. Those readers who completed the above exercise have
established that W (3, 2) = 9.

3 Proof

This “proof in nine figures” follows van der Waerden’s original idea to establish the
existence ofW (l, k) by using double induction. It also contains ideas and terminology
from Leader (2000) and Tao (2007). As N.G. de Bruijn put it de Bruijn (1978):

van derWaerden’s argument is so nice that onemight secretly hope that a simpler
proof does not exist!

3.1 Main Tools: Colour-Focused Arithmetic Progressions and Spokes

Let c be a finite colouring of an interval of positive integers [α, β] and let l and r be
positive integers. We say that l-term arithmetic progressions A1, A2, . . . , Ar , where

Ai = {ai + jdi : j ∈ [0, l − 1]}, i ∈ [1, r ],

are colour-focused at a positive integer f if:

1. Ai is a subset of [α, β] for each i ∈ [1, r ].
2. Each Ai is monochromatic.
3. If i �= j then Ai and A j are not of the same colour.
4. a1 + ld1 = a2 + ld2 = · · · = ar + ldr = f .

The (l + 1)-term arithmetic progression Ai ∪ { f }, i ∈ [1, r ], is called a spoke. See
Fig. 1.

Fig. 1 2-term arithmetic progressions {1, 4} and {3, 5} are colour-focused at 7. Each of 3-term arithmetic
progressions {1, 4, 7} and {3, 5, 7} is a spoke (color figure online)
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3.2 The Base Case

Note that, for any positive integer k, W (1, k) = 1 and W (2, k) = k + 1.

3.3 The Inductive Step

Suppose that l ≥ 3 is such that W (l − 1, k) exists for any (finite) number of colours
k. We fix k ≥ 2.

We start the proof of the inductive step by using mathematical induction to prove
Claim below. Actually, most of the proof of van der Waerden’s theorem is the proof
of Claim.

Claim For all r ≤ k there is an M such that any k-colouring of [1, M] contains a
monochromatic l-term arithmetic progression or r colour-focused (l − 1)-term arith-
metic progressions together with their focus.

Proof of Claim For the base case when r = 1 set M = 2W (l − 1, k). See Fig. 2. �	

Fig. 2 Any k-colouring of the
set [1, M] contains a
monochromatic l-term
arithmetic progression or one
coloured-focused (l − 1)-term
arithmetic progression

Here is the summary of the proof of van der Waerden’s theorem so far:

Proof that W (l, k) exists - Induction by l
The base case: For any k, W (1, k) = 1, W (2, k) = k + 1

The inductive step: The inductive hypothesis is
that l is such that W (l − 1, k) exists for any k.

Claim: For all r…
The base case: r = 1
The inductive step
You are here!

For the inductive step see Fig. 3. This image is inspired by the term “a polychromatic
fan” used by T. Tao in (2007)
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Fig. 3 Suppose that r ∈ [2, k] is
such that there is an M such that
any k-colouring of [1, M]
contains or a monochromatic
l-term arithmetic progression or
at least r − 1 coloured-focused
(l − 1)-term arithmetic
progressions focused at some
f ∈ [1, M]. Notice that this
implies that any set that contains
M consecutive positive integers
has this property

Next we consider the interval of positive integers [1, M · W (l − 1, kM )].
See Fig. 4.

Fig. 4 The interval [1, M · W (l − 1, kM )] is divided into W (l − 1, kM ) consecutive blocks Bi , 1 ≤ i ≤
W (l − 1, kM ), of length M

Suppose that c is a k-colouring of [1, M · W (l − 1, kM )] that does not contain a
monochromatic l-term arithmetic progression. See Fig. 5.

Fig. 5 The colouring c colours each block Bi with k-colours in one of the possible kM ways and hence
induces a kM -colouring of [1,W (l − 1, kM )]

Any kM -colouring of [1,W (l − 1, kM )] contains a monochromatic (l − 1)-term
arithmetic progression. See Fig. 6.
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Fig. 6 The kM -colouring of [1,W (l − 1, kM )] induced by the colouring c contains a monochromatic
(l − 1)-term arithmetic progression. This implies that there are l − 1 blocks Bi j , 1 ≤ j ≤ l − 1, that are
identically coloured by c and that are equally spaced between each other

The set of r colour-focused (l−1)-term arithmetic progressions appears! See Figs. 7
and 8.

Fig. 7 All foci form a spoke. There is a new spoke in each of the previously used colours. Hence there are
r spokes!

Fig. 8 Closer look: l − 1 spokes in each of r − 1 colours produce another spoke in the same colour with a
new focus that coincides with the lth term of the arithmetic progression that contains all of the l−1 original
foci
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Where are we?

Proof that W (l, k) exists - Induction by l
The base case: For any k, W (1, k) = 1, W (2, k) = k + 1

The inductive step: The inductive hypothesis is
that l is such that W (l − 1, k) exists for any k.

Claim: For all r…
The base case: r = 1
The inductive step

�
Let r = k.

You are here!

If r = k see Fig. 9:

Fig. 9 Done!
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