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Abstract
We define an analytic setting for renormalization of unimodal maps with an arbitrary
critical exponent. We prove the global hyperbolicity of renormalization conjecture for
unimodal maps of bounded type with a critical exponent which is sufficiently close to
an even integer. Furthermore, we prove the global C1+β -rigidity conjecture for such
maps, giving the first example of a smooth rigidity theorem for unimodal maps whose
critical exponent is not an even integer.
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1 Preliminaries and Statements of Results

Renormalization theory of unimodal maps has been the cornerstone of the modern
development of one-dimensional real and complex dynamics. Seminal works of Sul-
livan (1987), de Melo and van Strien (1993) and Douady and Hubbard (1985) put
Feigenbaum–Coullet–Tresser (FCT) universality conjectures into the context of holo-
morphic dynamics. Renormalization theory of analytic unimodal maps of the interval
was completed by McMullen (1996) and Lyubich (1999).

However, it was known since the early days of the development of the renormal-
ization theory, that FCT-type universality was also observed in families of smooth
unimodal maps of the interval with a critical point of an arbitrary order α > 1, such
as, for instance, the unimodal family
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x �→ |x |α + c, c ∈ R.

Of course, if α is not an even integer, such unimodal maps do not have single-valued
analytic extensions to the complex plane, and therefore, the existing theory does not
cover these cases.

One of the historical directions in which the problem of non-even integer exponents
has been attacked are attempts to develop a purely “real” renormalization theory; that
is, one that does not rely on complex-analytic techniques. Let us mention in this
regard the beautiful paper of Martens (1998) in which periodic orbits of unimodal
renormalization are constructed for an arbitrary α; as well as the work of Cruz and
Smania (2010) which continuesMartens’ approach. Due to the essentially local nature
of this approach, neither of theseworks produces a global renormalization convergence
theorem.

We adopt a different approach in our paper. Below, we will construct a suitable
analytic setting for renormalization of unimodal maps with α /∈ 2N. In this setting,
the renormalization operators become a smoothly parametrized family Rα . Because
of this, we are able to continue the renormalization hyperbolicity results of Sullivan,
McMullen, and Lyubich to the values of exponents which are sufficiently close to even
integers. For such α’s, we obtain a global FCT renormalization horseshoe picture for
maps of bounded combinatorial type, completely settling the theory in these cases.

Although ourmain results are perturbative, the construction of the familyRα works
for all α > 1, thus giving us a general setting in which the theory may potentially be
completed.

Let us note that this work grew out of our previous work on renormalization of
non-analytic critical circle maps Gorbovickis and Yampolsky (2016). There is a rather
significant difference: in the setting of analytic critical circle maps, the definition of
renormalization and Banach spaces it acts upon is rather involved (see Yampolsky
2002) and includes highly non-trivial changes of coordinates. The unimodal setting is,
in comparison, very straightforward, making the proofs much shorter and technically
less involved.

Our main results are Theorem 1.8 in which we construct the global hyperbolic
renormalization horseshoe for even unimodal maps ( f (x) = f (−x)) of bounded
type, and Theorem 1.11 in which we extend the result to non-even maps. We state
these theorems in the following section, after giving the appropriate definitions. As
a direct application of our main results, in Corollary 1.12 we prove C1+β -rigidity of
Cantor attractors for infinitely renormalizable maps with bounded combinatorics. This
is the first smooth rigidity result for unimodal maps with critical exponents other than
even integers.

1.1 Unimodal Maps and Their Renormalization

Definition 1.1 Let α be a real number such that α > 1. A smooth map f : [− 1, 1] →
[− 1, 1] is unimodal with critical exponent α, if there exists a point c = c f ∈ (− 1, 1),
such that

(i) f ′(x) > 0, for all x ∈ [− 1, c);
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Renormalization for Unimodal Maps... 181

(ii) f ′(x) < 0, for all x ∈ (c, 1];
(iii) in a neighborhood of the point c, the function f can be represented as

f (x) = ψ(−|φ(x)|α), (1)

where φ(c) = 0, and φ and ψ are local orientation preserving diffeomorphisms
in some neighborhoods of c and 0 respectively.

We denote the space of all unimodal maps by U. We will say that a unimodal map
f is Ck-smooth (C∞-smooth, or analytic), if f is of class Ck (C∞, or analytic) on the
intervals [− 1, c f ) and (c f , 1], and there exists a decomposition (1), such that φ andψ

are also of classCk (C∞, or analytic) in some neighborhoods of c f and 0 respectively.
The space of all analytic unimodal maps will be denoted by Uω.

Definition 1.2 A unimodal map f is renormalizable, if there exists an integer m ≥ 2
and a closed interval J = [a, b] ⊂ R, such that c f ∈ (a, b), f m(J ) ⊂ J and the
intervals J , f (J ), . . . , f m−1(J ) have pairwise disjoint interior. The smallest m with
this property is called the renormalization period of f .

For two points p, q ∈ C, p 	= q, let Ap,q : C → C denote the linear map

Ap,q(z) = (z − p) + (z − q)

q − p
,

so that Ap,q(q) = 1 and Ap,q(p) = − 1.

Definition 1.3 Assume that a unimodal map f : [− 1, 1] → [− 1, 1] is renormalizable
with period m, and let J = [a, b] be the maximal interval satisfying the conditions of
Definition 1.2. Let p = a, q = b, if ( f m)′(a) > 0 and p = b, q = a otherwise. Then
the map

R( f ) = Ap,q ◦ f m ◦ A−1
p,q

is called the renormalization of f .

It is easy to check that the map R( f ) is also unimodal with the same critical
exponent. IfR( f ) is also renormalizable, then we say that f is twice renormalizable.
This way we define n times renormalizable unimodal maps, for all n = 1, 2, 3, . . .,
including n = ∞.

If a unimodal map f is renormalizable with period m, then the relative order of
the intervals J , f (J ), f 2(J ), . . . , f m−1(J ) inside [− 1, 1] determines a permutation
θ( f ) of {0, 1, . . . ,m − 1}. A permutation θ is called unimodal, if there exists a renor-
malizable unimodal map f , such that θ = θ( f ). The set of all unimodal permutations
will be denoted by P.

Remark 1.4 Unimodal permutations can also be described in a combinatorial way:
enumerate the intervals J , f (J ), f 2(J ), . . . , f m−1(J ) inside [− 1, 1] by integers
0, . . . ,m − 1 from left to right. The induced unimodal permutation

θ( f ) : {0, . . . ,m − 1} → {0, . . . ,m − 1}
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182 I. Gorbovickis, M. Yampolsky

must be a cyclic permutation with exactly one local maximum, that is, there exists an
integer c ∈ {0, . . . ,m − 2}, such that θ( f ) is increasing on {0, . . . , c} and decreasing
on {c, . . . ,m − 1}. It is obvious that for any permutation π with the above properties,
there exists a unimodal map f such that π = θ( f ).

For n ∈ N∪{∞} and a subset	 ⊂ P, let Sn
	 be the set of all n times renormalizable

unimodalmaps f , such that θ(R j ( f )) ∈ 	, for all j = 0, 1, 2, . . . , n−1. For f ∈ S∞
P ,

let ρ( f ) be the infinite sequence of permutations (θ( f ), θ(R( f )), θ(R2( f )), . . .) ⊂
PN.

We say that two infinitely renormalizable unimodal maps f and g are of the same
combinatorial type, if ρ( f ) = ρ(g).

1.2 Hyperbolic Renormalization Attractor

In the remaining part of the paper we will work only with analytic unimodal maps
from Uω.

For a compact set K ⊂ C and a positive real number r > 0, let Nr (K ) denote the
r -neighborhood of K in C, namely,

Nr (K ) = {z ∈ C | min
w∈K |z − w| < r}.

For a Jordan domain� ⊂ C, letB(�) denote the space of all analyticmaps f : � → C

that continuously extend to the closure �. The set B(�) equipped with the sup-norm,
is a complex Banach space. If � is symmetric with respect to the real axis, we let
BR(�) ⊂ B(�) denote the real Banach space of all real-symmetric functions from
B(�).

Definition 1.5 For a positive real number r > 0, let B̃r ⊂ BR(Nr ([−1, 0])) be the
set of all maps ψ ∈ BR(Nr ([−1, 0])) that are univalent in some neighborhood of the
interval [− 1, 0], and such that ψ(−1) = −1, − 1 < ψ(0) ≤ 1. Let Br ⊂ B̃r be the
subset of all ψ ∈ B̃r , such that ψ(0) < 1.

Proposition 1.6 For any real number r > 0, the sets Br and B̃r\Br are respectively
codimension 1 and codimension 2 affine submanifolds of BR(Nr ([−1, 0])).
Proof Let BR

r ,−1 denote the Banach subspace of BR(Nr ([−1, 0])) that consists of all
ψ ∈ BR(Nr ([−1, 0])), such that ψ(− 1) = 0. Then, Br is an open subset of the affine
Banach space − 1 + BR

r ,−1. Similarly, B̃r\Br is a codimension 1 affine submanifold

of − 1 + BR

r ,−1. �

For each positive α > 1 we define a map jα : B̃r → U that associates a unimodal
map to every element of B̃r according to the formula

[ jα(ψ)](x) = ψ(−|x |α).

Clearly, for every α > 1, the map jα is one-to-one.
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Renormalization for Unimodal Maps... 183

Definition 1.7 For real numbers r > 0, α > 1, let Ãα
r ,Aα

r ⊂ U be the spaces of
analytic unimodal maps with critical exponent α, defined by

Ãα
r = jα(B̃r ), and Aα

r = jα(Br ).

Let Aα and Ãα denote the spaces of all unimodal maps f , such that f ∈ Aα
r and

f ∈ Ãα
r respectively, for some r > 0.

For each α > 1, the space Aα
r has a structure of a real affine Banach manifold

inherited from Br . The Banach manifold structure induces a metric distr (·, ·) on Ãα
r ,

defined as follows: for any pair of maps f1, f2 ∈ Ãα
r , such that f1 = jα(ψ1) and

f2 = jα(ψ2),
distr ( f1, f2) = sup

z∈Nr ([− 1,0])
|ψ1(z) − ψ2(z)|. (2)

Our main result is the following theorem, which extends the Sullivan–McMullen–
Lyubich FCT hyperbolicity of renormalization to unimodal maps with critical
exponents α close to even integers:

Theorem 1.8 (Hyperbolic renormalization attractor)For every k ∈ N and a non-empty
finite set	 ⊂ P, there exist an open interval J = J (k,	) ⊂ R containing the number
2k, a positive real number r = r(k) > 0, and a positive integer N = N (k) ∈ N,
such that for every α ∈ J , there exist an open set Oα = Oα(	) ⊂ Aα

r ∩ SN
	 and an

R-invariant compact set Iα
	 ⊂ Oα ∩ S∞

	 with the following properties.

(i) (Horseshoe property): The action of R on Iα
	 is topologically conjugate to the

two-sided shift σ : 	Z → 	Z:

ια ◦ R ◦ ι−1
α = σ,

and if

f = ι−1
α (. . . , θ−k, . . . , θ−1, θ0, θ1, . . . , θk, . . .),

then

ρ( f ) = [θ0, θ1, . . . , θk, . . .].

(ii) (Global stable sets): For every f ∈ Aα ∩ S∞
	 , there exists M ∈ N, such that for

all m ≥ M the renormalizationsRm( f ) belong toAα
r and for every g ∈ Iα

	 with
ρ( f ) = ρ(g), we have

distr (Rm( f ),Rm(g)) ≤ Cλm, (3)

for some constants C > 0, λ ∈ (0, 1) that depend only on 	 and α.
(iii) (Hyperbolicity): RN (Oα) ⊂ Aα

r , the operator RN : Oα → Aα
r is analytic, and

Iα
	 is a locally maximal uniformly hyperbolic set forRN with a one-dimensional

unstable direction.
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184 I. Gorbovickis, M. Yampolsky

We note that for an even renormalizable unimodal map f ∈ Uω, we have R( f ) ∈
Aα , hence Theorem 1.8 settles the renormalization hyperbolicity conjecture for the
space of all even unimodal maps from Uω with bounded combinatorial type and
critical exponents sufficiently close to 2N. In the following general theoremwe extend
the results of Theorem 1.8 to the case of general (i.e. not necessarily even) analytic
unimodal maps. In order to state the theorem, we start with some definitions.

Definition 1.9 For a positive real number r > 0, let �r ⊂ BR(Nr ([−1, 1])) be the
set of all maps φ ∈ BR(Nr ([−1, 1])) that are univalent in some neighborhood of the
interval [− 1, 1], and such that φ(−1) = −1, and φ(1) = 1.

Proposition 1.10 For any real number r > 0, the set �r is a codimension 2 affine
submanifolds of BR(Nr ([−1, 1])).
Proof The proof is analogous to the proof of Proposition 1.6. �

For φ ∈ �r , let Aα(φ) ⊂ Uω be the set of all g ∈ Uω, such that

g = φ−1 ◦ f ◦ φ, (4)

for some f ∈ Aα . Let Aα(�r ) ⊂ Uω be the union

Aα(�r ) =
⋃

φ∈�r

Aα(φ).

It is easy to check that if f ∈ Aα is renormalizable with the affine rescaling Ap,q as
in Definition 1.3, then the map g from (4) is also renormalizable and

R(g) = [F f (φ)]−1 ◦ R( f ) ◦ F f (φ),

where

F f (φ) = Ap,q ◦ φ ◦ A−1
φ−1(p),φ−1(q)

∈ �r .

This allows us to define the operator R̃ : (S1
P ∩ Aα) × �r → Ãα × �r as a skew

product

R̃( f , φ) = (R( f ),F f (φ)).

For f ∈ S∞
P ∩ Aα and n ∈ N, let Fn

f (φ) denote the map φn ∈ �r , such that

R̃n( f , φ) = (Rn( f ), φn). Let ‖ · ‖r denote the Banach norm in B(Nr ([− 1, 1])).
The following theorem reduces the general case of analytic unimodal maps to the

case of even ones. The proof follows from real a priori bounds (c.f. de Melo and van
Strien 1993) and will be given in Sect. 3.
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Renormalization for Unimodal Maps... 185

Theorem 1.11 (i) For every g ∈ Uω ∩ S∞
P with critical exponent α and for a positive

real number r > 0, there exists K1 = K1(g, r) ∈ N, such that for every k ≥ K1, we
have Rk(g) ∈ Aα(�r ).

(ii) For every pair of real numbers r > 0, α ∈ (1,+∞) and for every f ∈ Aα ∩S∞
P

and φ ∈ �r , there exists K2 = K2( f , φ) ∈ N, such that for all k ≥ K2, we have

‖Fk
f (φ) − id‖r ≤ Cλk,

for some constants C > 0, λ ∈ (0, 1) that depend only on α.

As an immediate corollary of Theorems 1.8 and 1.11, we state the following rigidity
result:

Corollary 1.12 (C1+β -rigidity) Let 	 ⊂ P be a non-empty finite set. Then for every
pair of maps f , g ∈ Uω ∩S∞

	 with ρ( f ) = ρ(g) and with the same critical exponent
α ∈ ∪k∈N J (k,	), there exists a C1+β diffeomorphism h : R → R, that conjugates
f and g on their corresponding attracting Cantor sets. The constant β > 0 depends
only on α and 	.

Proof The corollary follows directly from Theorems 1.8 and 1.11 together with The-
orem 9.4 from Chapter VI of de Melo and van Strien (1993). �

For ease of reference, let us quote a theorem from Edson et al. (2006) who state
the Sullivan–McMullen–Lyubich renormalization hyperbolicity theorem for the case
when the critical exponent is an even integer in a convenient for us form:

Theorem 1.13 For every k ∈ N and a non-empty finite set 	 ⊂ P, there exist a
positive real number r = r(k) > 0, a positive integer N = N (k) ∈ N, an open set
O2k = O2k(	) ⊂ A2k

r ∩ SN
	 and anR-invariant compact set I2k

	 ⊂ O2k ∩ S∞
	 , such

that all properties from Theorem 1.8 hold for α = 2k. Furthermore, all maps from the
image RN (O2k) belong to A2k

2r .

Remark 1.14 It follows from the proof of Theorem 1.13, provided in Edson et al.
(2006), that the positive real number r > 0 can be chosen arbitrarily small. In this
case the positive integer N and the set O2k depend on r .

2 Proof of Theorem 1.8

In this section we give a proof of Theorem 1.8. The proof is split into two lemmas.
Roughly speaking, the first lemma proves property (iii), and the second lemma proves
properties (ii) and (i) of Theorem 1.8. The properties are proved precisely in the reverse
order: (iii) �⇒ (ii) �⇒ (i). Let us start with a definition:

Definition 2.1 For a positive real number r > 0 and a set I ⊂ (1,+∞), let ÃI
r and

AI
r be the disjoint unions Ã

I
r ≡ ∐

α∈I Ãα
r and AI

r ≡ ∐
α∈I Aα

r . Let Ã
I and AI denote

the spaces of all unimodal maps f , such that f ∈ ÃI
r and f ∈ AI

r respectively, for
some r > 0.
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186 I. Gorbovickis, M. Yampolsky

If I is an open set, then AI
r is a Banach manifold, diffeomorphic to Br × I . We

extend the metric distr to ÃI
r in the following way: if f1, f2 ∈ ÃI

r are two unimodal
maps with critical exponents α1 and α2 respectively, such that f1 = jα1(ψ1) and
f2 = jα2(ψ2), then

distr ( f1, f2) = |α1 − α2| + sup
z∈Nr ([− 1,0])

|ψ1(z) − ψ2(z)|.

Lemma 2.2 (Property (iii) of Theorem 1.8) For every k ∈ N and a non-empty finite
set 	 ⊂ P, there exist an open interval J1 = J1(k,	) ⊂ R containing the number
2k, a positive real number r = r(k) > 0 and a positive integer N = N (k) ∈ N,
such that for every α ∈ J1, there exist an open set Oα = Oα(	) ⊂ Aα

r ∩ SN
	 and an

RN -invariant compact set Iα
	 ⊂ Oα ∩S∞

	 that satisfies property (i i i) of Theorem 1.8.
The action of RN on Iα

	 is topologically conjugate to the action of RN on I2k
	 by a

homeomorphism hα : I2k
	 → Iα

	 ⊂ AJ1
r that continuously depends on α ∈ J1, and

h2k = id.

Lemma 2.3 (Properties (i) and (ii) of Theorem 1.8) For every k ∈ N and a non-empty
finite set	 ⊂ P, let J1, r and the sets Iα

	, where α ∈ J1, be the same as in Lemma 2.2.
Then there exists an open interval J ⊂ J1 containing the number 2k, such that for
every α ∈ J , properties (i) and (i i) of Theorem 1.8 hold.

2.1 Extending Hyperbolicity

First, we prove property (iii) of Theorem 1.8.

Proof of Lemma 2.2 Fix k ∈ N and a finite non-empty set 	 ⊂ P. Let the constants
r > 0 and N ∈ N as well as the sets O2k and I2k

	 be the same as in Theorem 1.13.

Define the set Î2k
	 = j−1

2k (I2k
	 ). Let I ⊂ R be an open interval, such that 2k ∈ I .

Then from boundedness of combinatorics (finiteness of 	) and continuity arguments
it follows that there exists an open set O ⊂ AI

r ∩ SN
	 , such that O2k ⊂ O and

RN (O) ⊂ AI
3r/2 ⊂ AI

r . The operator RN : O → AI
r is real-analytic, since it is a

rescaling of a finite composition, and the rescaling depends analytically on the map.
Let Ĩ ⊂ I be an open interval, such that for any α ∈ Ĩ , the set Oα ≡ O ∩ Aα

r
is non-empty, and there exists an open set U ⊂ Br , such that for all α ∈ Ĩ , the
operatorsRα ≡ j−1

α ◦RN ◦ jα are defined in U , the imageRα(U) is contained in Br

and Î2k
	 ⊂ U . Clearly, the operators Rα : U → Br are real-analytic and analytically

depend on α ∈ Ĩ .
It follows from Theorem 1.13 that the set Î2k

	 ⊂ Br is invariant and uniformly
hyperbolic for the operator R2k with a one-dimensional unstable direction. Further-
more, the action of R2k on Î2k

	 is topologically conjugate to the two-sided shift σ N

on 	Z. Now it follows from the theorem on structural stability of hyperbolic sets that
there exists an open interval J1 ⊂ Ĩ , such that 2k ∈ J1, and for every α ∈ J1, the
operatorRα has an invariant uniformly hyperbolic set Îα

	 ⊂ U with a one-dimensional

unstable direction. Furthermore, the action of Rα on Îα
	 is topologically conjugate
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to the two-sided shift σ N on 	Z. Finally, for each α ∈ J1 we define Iα
	 ≡ jα(Îα

	),
which completes the proof. �

2.2 Complex Bounds

For a set S ⊂ C, by −S ⊂ C we denote the reflection of S about the origin. In other
words,

−S = {z ∈ C | −z ∈ S}.

For α ∈ (1,+∞), let pα : C\(0,+∞) → C be the branch of the map z �→ −(−z)α ,
such that pα((−∞, 0]) = (−∞, 0].
Definition 2.4 For a simply connected domain U ⊂ C and a set X � U , let
mod (X ,U ) denote the supremum of the moduli of all annuli A ⊂ U\X that separate
∂U from X .

Definition 2.5 For a set I ⊂ (1,+∞) and a real number μ ∈ (0, 1), let HI (μ) ⊂ ÃI

be the set of all unimodal maps f ∈ ÃI of the form f (x) = ψ(−|x |α), where α ∈ I ,
and ψ is a univalent analytic map of some simply connected neighborhood U f ⊂ C

of the interval [− 1, 0], such that

(i) diam(ψ(U f )) < 1/μ;
(ii) the neighborhood V f = p−1

α (U f )∪−p−1
α (U f ) is compactly contained inψ(U f ),

and mod (V f , ψ(U f )) > μ.

Lemma 2.6 For a real number μ ∈ (0, 1), there exists a positive real number s =
s(μ) > 0, such that for every I ⊂ (1,+∞) and every f ∈ HI (μ) with critical
exponent α, the map ψ = j−1

α ( f ) belongs to B̃s and is defined and univalent in
N2s([− 1, 0]). Furthermore, the inclusion

Ns([− 1, 1]) ⊂ ψ(U f ) (5)

holds.

Proof Since pα([− 1, 0]) = [− 1, 0], the neighborhood p−1
α (U f ) contains the interval

[− 1, 0], which implies that [− 1, 1] ⊂ V f . According to the definition of the space
B̃s , we have ψ([− 1, 0]) ⊂ [− 1, 1], so [− 1, 0] ⊂ ψ−1(V f ). From this we conclude
that

mod ([− 1, 1], ψ(U f )) ≥ mod (V f , ψ(U f )) > μ,

and

mod ([− 1, 0],U f ) ≥ mod (ψ−1(V f ),U f ) = mod (V f , ψ(U f )) > μ.

Finally, it follows from Proposition 4.8 of McMullen (1996) that the domainsU f and
ψ(U f ) contain neighborhoods N2s([− 1, 0]) and Ns([− 1, 1]) respectively, for some
s that depends only on μ. �
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188 I. Gorbovickis, M. Yampolsky

Assume that a set A ⊂ Ã(1,+∞) is contained and is relatively compact in Ã(1,+∞)
r ,

for some r > 0. Then we let A
r ⊂ Ã(1,+∞)

r denote the closure of A with respect to
the distr -metric.

Lemma 2.7 For a bounded set I ⊂ (1,+∞) and a real number μ ∈ (0, 1), let s ∈ R

be such that 0 < s ≤ s(μ), where s(μ) is the same as in Lemma 2.6. Then the set
HI (μ) is relatively compact in ÃI

s , and if a map f ∈ HI (μ)
s
has critical exponent α,

then α ∈ I , and f ∈ H{α}(μ/2).

Proof LetF I (μ) be the family of all pairs (U f , ψ), such thatψ is a univalent analytic
map of the domainU f , and bothψ andU f satisfy Definition 2.5 for some f ∈ HI (μ).
Let E I (μ) be the family of all marked domains (U f , 0), such that (U f , ψ) ∈ F I (μ),
for some map ψ . According to Lemma 2.6 and Theorem 5.2 from McMullen (1994),
the family E I (μ) is relatively compact in the space of all marked topological disks
with respect to the Carathéodory topology. Furthermore, it follows fromDefinition 2.5
that the sets ψ(U f ) are uniformly bounded for all (U f , ψ) ∈ F I (μ). Similarly, since
the set I is bounded, it follows from property (ii) of Definition 2.5 that the setsU f are
uniformly bounded for all (U f , ψ) ∈ F I (μ).

Now, since all maps ψ that appear in F I (μ), belong to B̃s and are uniformly
bounded, then by Montel’s theorem, every sequence in F I (μ) has a subsequence
(Un, ψn), such thatψn converge to a map ψ̃ which is analytic in Ns([− 1, 0]). Relative
compactness of E I (μ) implies that after passing to a subsequence again, we ensure that
the sequences ofmarked domains (Un, 0) and (ψn(Un), ψn(0)) converge to (U , 0) and
(V , ψ̃(0)) respectively in Carathéodory topology. Finally, it follows fromTheorem 5.6
ofMcMullen (1994) that the limitmap ψ̃ is defined and univalent inU � Ns([− 1, 0]).
The latter immediately implies the lemma. �

The following theorem is a direct consequence of real a priori bounds (see e.g. de
Melo and van Strien 1993).

Theorem 2.8 (Real bounds)For every finite non-empty set	 ⊂ P, there exists a family
of unimodal maps Ŝ∞

	 ⊂ S∞
	 , such that the following holds:

(i) for every bounded set I ⊂ (1,+∞) and for every μ ∈ (0, 1), s ∈ R, such that

0 < s ≤ s(μ), where s(μ) is the same as in Lemma 2.6, the set HI (μ)
s ∩ Ŝ∞

	 is
compact in dists -metric;

(ii) for every positive real number r > 0 and every relatively compact family S ⊂ ÃI
r

of unimodal maps, there exists K2 = K2(r , S) ∈ N such that for every n ≥ K2,
we have Rn(S ∩ S∞

	 ) ⊂ Ŝ∞
	 .

The next statement is a form of complex a priori bounds:

Theorem 2.9 (Complex bounds) For every compact set I ⊂ (1,+∞), there exists
a constant μ = μ(I ) > 0 such that the following holds. For every positive real
number r > 0 and every pre-compact family S ⊂ ÃI

r of unimodal maps, there exists
K1 = K1(r , S) ∈ N such that if f ∈ S is an n + 1 times renormalizable unimodal
map, where n ≥ K1, then for every g ∈ ÃI

r , sufficiently close to f in distr -metric, we
have Rn(g) ∈ HI (μ).
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We note that the standard proofs of complex a priori bounds (see Lyubich and
Yampolsky 1997 and references therein) are given for analytic unimodal maps with
even critical exponents α ∈ 2N. However, in the above-stated form, the standard
proofs apply to the case of a general exponent α mutatis mutandis.

2.3 Global Stable Sets

In this subsection we prove properties (ii) and (i) of Theorem 1.8.
For each k ∈ N, define μk = μ([2k − 1, 2k + 1]), where μ([2k − 1, 2k + 1]) is

the same as in Theorem 2.9. According to Remark 1.14, without loss of generality we
may assume that

r(k) ≤ s(μk/2), (6)

where s(μk/2) is the same as in Lemma 2.6.

Proposition 2.10 Fix a positive integer k ∈ N and a finite non-empty set 	 ⊂ P. Let
r = r(k) be the same as in Theorem 1.13. For any open set O ⊂ A(1,+∞)

r , such that
I2k

	 ⊂ O, there exist an open interval I = I (O) ⊂ [2k − 1, 2k + 1] and a positive

integer L ∈ N, with the property that 2k ∈ I , and for every f ∈ HI (μk) ∩ Ŝ∞
	 , we

have RL( f ) ∈ O.

Proof Since 	 is a finite set, it follows from (6) and Theorem 2.8 that the set
H{2k}(μk/2)

r ∩ Ŝ∞
	 is compact in Ã[2k−1,2k+1]

r . Together with global convergence
to the attractor I2k

	 , guaranteed by Theorem 1.13, this implies existence of a positive
constant L ∈ N, such that

RL
(
H{2k}(μk/2)

r ∩ Ŝ∞
	

)
� O,

and

L > K1(r ,H[2k−1,2k+1](μk)),

where K1(r ,H[2k−1,2k+1](μk)) is the same as in Theorem 2.9. (The last inequality

ensures that the operator RL maps a neighborhood of H[2k−1,2k+1](μk)
r ∩ Ŝ∞

	 to

A[2k−1,2k+1]
r .)
Now, Lemma 2.7 and continuity of the operator RL on the sequentially compact

family H[2k−1,2k+1](μk)
r ∩ Ŝ∞

	 imply existence of the interval I that satisfies the
lemma. �
Proof of Lemma 2.3 First, we prove property (ii).

Let J1 be the same as in Lemma 2.2. It follows from hyperbolicity of the sets Iα
	

(c.f. Lemma 2.2), that there exist an open interval J2 ⊂ J1, such that 2k ∈ J2, and
an open set O ⊂ ∐

α∈J Oα ⊂ AJ1
r , such that for any α ∈ J2, we have Iα

	 ⊂ O, and
for any unimodal map f ∈ O with critical exponent α ∈ J2, the sequence of iterates
RN ( f ),R2N ( f ),R3N ( f ), . . . either eventually leaves the setO, or stays in it forever
and converges to the invariant set Iα

	.
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Fix J = I (O) ⊂ J2, where I (O) is the same as in Proposition 2.10. Now it follows
from Theorems 2.8 and 2.9 that for every f ∈ AJ ∩S∞

	 , there exists a positive integer

K = K ( f ) ∈ N, such that for every n ≥ K , we haveRn( f ) ∈ HJ (μk)∩Ŝ∞
	 . Together

with Proposition 2.10 this implies that for every f ∈ AJ ∩S∞
	 , there exists a positive

integer M = M( f ) ∈ N, such that for every n ≥ M , we have Rn( f ) ∈ O. In other
words, for every f ∈ AJ ∩ S∞

	 , the sequence R( f ),R2( f ),R3( f ), . . . eventually
enters the set O and since then never leaves it. According to our choice of the set O,
this implies that the considered sequence of renormalizations converges to Iα

	, where
α ∈ J is the critical exponent of f . Together with hyperbolicity of Iα

	, established in
Lemma 2.2 for all α ∈ J , this implies that sufficiently high renormalizations Rn( f )
belong to the stable lamination of the set Iα

	. This means that there exists g ∈ Iα
	,

such that condition (3) holds for all sufficiently large m ∈ N of the form m = Nn.
We observe that if ρ( f ) and ρ(g) are asymptotically different, then for every

n ∈ N, the renormalizationsRNn( f ) andRNn(g) cannot get arbitrarily close to each
other. Thus, ρ( f ) is asymptotically equal to ρ(g). Since, according to Lemma 2.2, the
restrictions of RN to Iα

	 and I2k
	 are topologically conjugate, Theorem 1.13 implies

that the convergence (3) holds for all sufficiently large m ∈ N of the form m = Nn
and for all g ∈ Iα

	, such that ρ( f ) and ρ(g) are asymptotically equal.
Now we complete the proof of property (ii) of Theorem 1.8 by showing that

R(Iα
	) = Iα

	. Indeed, according to the above argument and compactness of Iα
	,

convergence of the sequence {RNn( f ) | n ∈ N} to Iα
	 is uniform in f ∈ R(Iα

	).
Since RNn+1(Iα

	) = R(Iα
	), this implies that R(Iα

	) = Iα
	.

Finally, we give a proof of property (i) of Theorem 1.8. For every α ∈ J ,
let hα : I2k

	 → Iα
	 be the homeomorphism from Lemma 2.2 that conjugates the

restrictions of RN on I2k
	 and Iα

	. Define the homeomorphism ια : Iα
	 → 	Z as

ια = ι2k ◦h−1
α . Since for all α ∈ J , we haveR(Iα

	) = Iα
	, the composition ια ◦R◦ ι−1

α

is defined for all α ∈ J and depends continuously on α. Then, since 	Z is a totally
disconnected space, this composition must be independent from α. Now property (i)
of Theorem 1.8 follows from the fact that for α = 2k, this composition is a shift σ ,
which is established in Theorem 1.13. �

3 Proof of Theorem 1.11

According to the real a priori bounds (e.g., see de Melo and van Strien 1993), there
exists a real constant μ > 1 that depends only on α, such that for every g ∈ Uω ∩S∞

P
with critical exponent α, there exists a constant K = K (g) ∈ N, such that for every
k ≥ K , we have

Rk+1(g) = Ap,q ◦ gmk ◦ A−1
p,q , where gk = Rk(g),

and Ap,q is an affinemapwith A′
p,q(z) ≥ μ. Togetherwith the local representation (1),

this immediately implies statement (i) of Theorem 1.11.
Statement (ii) of Theorem 1.11 follows from the Koebe Distortion Theorem and the

real a priori bounds stated above. Indeed, for k > K (φ−1 ◦ f ◦ φ), it follows from the
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real a priori bounds that the map Fk
f (φ) is defined and univalent in Nrμk−K ([− 1, 1]),

hence according to the Koebe Distortion Theorem, the maps Fk
f (φ) converge to an

affine map exponentially fast in ‖ · ‖r -norm. Since all maps from �r fix the points − 1
and 1, the only affine map, contained in the closure of �r , is the identity map. Thus,
Fk

f (φ) → id exponentially fast in ‖ · ‖r -norm.
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