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Abstract We consider tangent cones of Schubert varieties in the complete flag vari-
ety, and investigate the problem when the tangent cones of two different Schubert
varieties coincide. We give a sufficient condition for such coincidence, and formulate
a conjecture that provides a necessary condition. In particular, we show that all Schu-
bert varieties corresponding to the Coxeter elements of the Weyl group have the same
tangent cone. Our main tool is the notion of pillar entries in the rank matrix counting
the dimensions of the intersections of a given flag with the standard one. This notion
is a version of Fulton’s essential set. We calculate the dimension of a Schubert variety
in terms of the pillar entries of the rank matrix.
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1 Introduction

Let F be the algebraic variety of all complete flags in Cn . Recall that a complete flag
F ∈ F is an increasing sequence of subspaces

{0} = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = C
n, dim Vk = k.

Choosing the standard basis {ε1, . . . , εn} ofCn , one defines the standard flag, F0 ∈ F ,
for which Vk = C

k := 〈ε1, . . . εk〉, for all 1 ≤ k ≤ n. The group GL(n,C) of linear
transformations of Cn transitively acts on F . The Borel subgroup B ⊂ GL(n,C) of
upper-triangularmatrices is the stabilizer of the standard flag F0, soF = GL(n,C)/B.

Let us recall some well-known facts. The group B acts naturally on F (by left
multiplication). The variety F is a disjoint union of B-orbits called Schubert cells.
Schubert cells are indeed cells of the most classical CW decomposition ofF . Schubert
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cells are parametrized by elements of the symmetric group Sn . Namely, the group Sn
acts naturally in C

n , and hence in F , and for every w ∈ Sn , there exists a unique
Schubert cell, which contains the w-image of the standard flag F0. We denote this
cell by Cw. Its complex dimension is equal to the length of w, i.e., the minimal � in a
decomposition

w = si1si2 · · · si� ,

where si ∈ Sn are the elementary transpositions. The number of Schubert cells of
complex dimension m is the coefficient at tm in the polynomial

n∏

k=1

(1 + t + · · · + tk).

In particular, there is a unique 0-dimensional cell, which is F0, and a unique n(n−1)
2 -

dimensional cell, which is dense in F .
The closure Xw of a Schubert cell Cw is called a Schubert variety. The Schubert

varietyXw is the union of the Schubert cell Cw and all Schubert cells Cw′ corresponding
to permutations w′ which precede w with respect to the natural partial ordering of Sn
(the Bruhat order). In particular, every Schubert variety contains the point F0.

With a Schubert variety Xw, we associate two subsets of the tangent space TF0F :

• the tangent cone Tw, which is the set of vectors tangent to Xw at F0;
• the Zariski tangent space Zw which is spanned by Tw.

The tangent cones Tw are algebraic subvarieties of TF0F ; they have the same dimen-
sions as Xw (and Cw). The tangent cone Tw and tangent space Zw (as well as their
dimensions) coincide if and only if F0 is not a singular point of Xw.

Certainly, the Schubert varietiesXw andXw′ coincide only whenw = w′; however,
the equalitiesZw = Zw′ or Tw = Tw′ may occur forw �= w′ (since the second implies
the first, the first occurs “more often” than the second).

For the further discussion, let us introduce the most natural local coordinate system
in a (Zariski) neighborhood of F0 inF . For a flag {Vk} sufficiently “close” to F0, there
exists a unique “triangular” basis in C

n ,

v1 =

⎛

⎜⎜⎜⎜⎜⎝

1
x21
x31
...

xn1

⎞

⎟⎟⎟⎟⎟⎠
, v2 =

⎛

⎜⎜⎜⎜⎜⎝

0
1
x32
...

xn2

⎞

⎟⎟⎟⎟⎟⎠
, . . . , vn =

⎛

⎜⎜⎜⎜⎜⎝

0
0
...

0
1

⎞

⎟⎟⎟⎟⎟⎠

such that Vk is spanned by v1, . . . , vk . The numbers xi j , i > j , are coordinates of the
flag {Vk} (with F0 = (0, . . . , 0)); the same numbers may be regarded as coordinates
in TF0F . (This coordinate system provides a natural identification of TF0F with the
space n− of strictly lower triangular matrices.) When n is not too large, we will use
the more convenient notations xi = xi,i+1, yi = xi,i+2, etc.
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Zariski tangent spaces Zw were thoroughly studied, see (Polo 1994; Lakshmibai
1995; Billey and Lakshmibai 2000) and references therein. The following result of
Lakshmibai (1995) provides an explicit description of Zw. The space Zw, viewed as
a subspace of n−, is the linear span of the elements e−α of the Chevalley basis, such
that

α ∈ R+, sα ≤ w,

where R+ is the set of positive roots, and sα ∈ Sn is the reflection associatedwithα, and
≤ is the Bruhat order. The above result, of course, answers the question, under which
condition two different Schubert varieties Xw and Xw′ have the same Zariski tangent
space. On the contrary, the structure of tangent cones Tw, although it has been an active
area of research (see Billey and Lakshmibai 2000; Brion 2005; Carrell and Kuttler
2006; Eliseev and Panov 2013; Bochkarev et al. 2016; Ignatyev and Shevchenko 2015
and references therein), is not well understood, in particular, the problem of their
coincidence is mostly open.

Let us consider some examples. If n = 3, then dimF = 3 and the local coordinates
are x1, x2, y. There are 6 Schubert varieties of dimensions 0, 1, 1, 2, 2, 3, and the
middle four are:

X213 = {V1 = C
1}, X213 = {V2 = C

2}, X231 = {V1 ⊂ C
2}, X312 = {V2 ⊃ C

1}.

In our local coordinates these are x1 = y = 0, x2 = y = 0, y = 0, y = x1x2,
respectively. We see that, within the domain of our coordinate system, X231 is the
tangent plane (at the origin) to X312; thus T231 = T312 = Z231 = Z312.

The first examples of singular Schubert varieties appear when n = 4. There are two
of them, cf. (Lakshmibai and Sandhya 1990):

X3412 = {V1 ⊂ C
3, C1 ⊂ V3} and X4231 = {V2 ∩ C

2 �= 0}.

Our local coordinates in the 6-dimensional manifold F are x1, x2, x3, y1, y2, z, the
equations of the two Schubert varieties are

z = 0, y1x3 + x1y2 − x1x2x3 = 0 and y1y2 − zx2 = 0,

respectively, and the tangent cones are the cone y1x3 + x1y2 = 0 in the hyperplane
z = 0 and the cone y1y2 − zx2 = 0 in the whole space TF0F . It is not difficult to
observe that the 24 Schubert varieties have 16 different tangent cones and 14 different
tangent spaces.

For n = 5, we observe not only singular, but also reducible tangent cones (the
Schubert varieties themselves are always irreducible). Moreover, different tangent
cones can share components and even contain each other. The simplest example is
provided by the 8-dimensional Schubert varieties

X35421 = {V1 ⊂ C
3}, X43521 = {V2 ⊂ C

4} and X45231 = {V1 ⊂ C
4,C2 ∩ V3 �= 0}.
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With respect to the local coordinates x1, x2, x3, x4, y1, y2, y3, z1, z2, t , the first two
varieties (and hence their tangent cones) are linear subspaces z1 = t = 0 and z2 =

t = 0, while the third one is described by the equations t = 0, det

⎡

⎣
y1 x2 1
z1 y2 x3
0 z2 y3

⎤

⎦ = 0.

This shows that the tangent cone T45231 is {t = z1z2 = 0}, and this is the union
T35421 ∪ T43521.

In this paper, we study the structure of the tangent cones Tw with the emphasis on
the problem of their coincidence. Let us mention two cases when the coincidence of
these tangent cones is known, or can be easily proved. The first one is the equality
Tw = Tw−1 which holds for every permutation w. This fact was conjectured (and
checked for n ≤ 5) in Eliseev and Panov (2013); however, a short direct proof can
be easily given, see Sect. 5.7. The second case is that of Coxeter elements of the
permutation group. Recall that an element w ∈ Sn is called a Coxeter element, if it is
of length n − 1 and can be written in the form

w = si1si2 · · · sin−1

in such a way that every transposition si , for i = 1, 2, . . . , n − 1 enters the above
product exactly once. The group Sn has 2n−2 different Coxeter elements. The Schubert
varieties which correspond to the Coxeter elements of Sn have the same tangent cone,
namely the one given by the equations

xi j = 0, for i − j > 1.

By the way, our example of coinciding tangent cones for n = 3 represents both
cases: the permutations 132 and 321 are Coxeter elements inverse to each other. For
n = 4, all pairs of permutations with equal tangent cones are either Coxeter, or
inverse to each other. However, for n = 5, there appear pairs of non-inverse and non-
Coxeter permutations with equal tangent cones; the first example of such a pair is
(13452, 13524).

We develope an efficient method to recognize when the tangent cones of two Schu-
bert varieties coincide. The main ingredient of this method is the notion of a pillar
entry. Every Schubert cell of the flag variety is determined by the (n + 1) × (n + 1)
matrix of dimensions ri j of the intersections Vi ∩ C

j called the rank matrix; the cor-
responding Schubert variety is determined by inequalities dim(Vi ∩ C

j ) ≥ ri j . For
example, if

[
ri j

]
is the rank matrix corresponding to a permutation w, then the rank

matrix corresponding to w−1 is obtained from
[
ri j

]
by a transposition. In Sect. 5.6,

we prove that the whole matrix
[
ri j

]
is determined by a relatively small set of entries,

which we call pillar entries (see Sect. 2.3 for a precise definition). Note that the notion
of pillar entry is very close (yet different from) Fulton’s notion of essential set (Fulton
1992), see also Eriksson and Linusson (1996), Woo (2009), Reiner et al. (2011) and
the Appendix for a comparison.

We conjecture that if Tw = Tw′ , then the pillar entries for w′ are obtained from
pillar entries for w by a partial transposition. This means tat there is a one-to-one
correspondence between pillar entries ri j and r ′

i j forw andw′ such that the pillar entry
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corresponding to ri j is either r ′
i j = ri j or r ′

j i = ri j ; see Sect. 2.5, Conjecture 2.10
for a precise statement. However, the converse of this conjecture is false: examples
show that a partial transposition of the set of pillar entries may lead to a set of entries
which is not the set of pillar entries for any transposition, or is a set of pillar entries of
a transposition of a different length. Some pillar entries are “linked,” that is, they can
be transposed or not transposed only simultaneously.

In Sect. 3, we give some definition of a linkage, and hence of “admissible partial
transposition”; our main result is Theorem 3.6, which states that an admissible partial
transposition of pillars entries of w provides a set of pillar entries of some w′, and that
in this case Tw = Tw′ . However, examples show that our definition of linkage is not
sufficient: there are partial transpositions of pillar entries, which are not admissible in
our sense, but which still preserve the tangent cone.

In Sect. 4, we study combinatorics of rank matrices and pillar entries. In particular,
we present a formula (see Theorem4.8) of (co)dimension of a Schubert variety in terms
of the pillar entries of the corresponding rank matrix. We also present an algorithm
that reconstructs a given permutation from the corresponding pillar entries.

We also provide a number of examples and several enumerative results in small
dimension and codimension. We were led by the numeric examples to the following
“2m-conjecture” which is also closely related with the earlier mentioned conjecture:
the number of Schubert varieties with an identical tangent cone is always a power of
2.

Let us mention that the problem of classification of tangent cones of Schubert
varieties is closely related to the problem of classification of coadjoint orbits of the
unitriangular group, see Kirillov (1995), André (1995) and the recent work (Panov
2015). As we already said, the tangent space to the flag variety is naturally identified
with the nilpotent Lie algebra of lower-triangular matrices, and with the dual space of
the Lie algebra of upper-triangular matrices:

TF0F  n−  n∗+.

The B-action on TF0F then coincides with the coadjoint action. Every tangent cone
Tw is B-invariant, as well as any irreducible component of Tw; thus, it is a set of
B-orbits. However, it is not true that B-orbits and irreducible components of tangent
cones are the same thing. The first example which demonstrates this appears in S6: the
10-dimensional tangent cone T354621 is a union of 9-dimensional B-orbits. We will
not discuss this phenomenon in this paper.

2 Basic Notions and Main Conjecture

We recall the classical notion (and some properties) of rankmatrix associated with two
flags. Rank matrices provide a combinatorial way to characterize Schubert varieties
and Schubert cells. Indeed, one of these flagswill be chosen as the standard flag, so that
the rank matrix coincides with the rank function of the corresponding permutation;
see Fulton (1992, 1997). We then define the notion of pillar entry of a rank matrix
which is crucial for us.
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We formulate our first conjecture that if two permutations,w andw′, have identical
tangent cones: Tw = Tw′ , then the pillar entries of the corresponding rank matrices
either coincide or transposed to each other.

2.1 Rank Matrix

For any flag, the rank matrix is the (n + 1)× (n + 1) matrix r = (ri j ) with the integer
entries

ri j = dim Vi ∩ C
j , 0 ≤ i, j ≤ n.

The rank matrix is independent of the choice of a flag in a B-orbit. Moreover, it
completely characterizes the corresponding B-orbit. More precisely, two different
flags, F ∈ Cw and F ′ ∈ Cw′ , have the same rank matrix if and only if w = w′;
see, e.g., Fulton (1997). We will denote by r(w) the rank matrix corresponding to the
Schubert cell Cw.

Obviously, one has:

r0k = rk0 = 0; rkn = rnk = k;
ri j + ri+1, j+1 ≥ ri+1, j + ri, j+1;
ri, j+1 − ri j = 0 or 1;
ri+1, j − ri j = 0 or 1.

Every integer matrix (ri j ) with the above properties is the rank matrix of some flag.
The following statement is due to Fulton (1992), see also Fulton (1997) p. 157. The

Schubert cell Cw consists in flags such that the corresponding rank matrix is:

ri j = #{k ≤ i | w(k) ≤ j}. (1)

Example 2.1 The rank matrices r(w) and r(w−1) are transposed to each other. In this
case, one has:

Tw = Tw−1 .

This statement was conjectured (and checked for n ≤ 5) in Eliseev and Panov (2013).
However a short direct proof can be easily given, see Sect. 5.7.

2.2 Permutation Diagram

The permutation w ∈ Sn can be easily recovered from the rank matrix.

Definition 2.2 Given a permutation w ∈ Sn , the diagram of w is defined with the
following convention. In an (n + 1) × (n + 1) grid, with row and columns numbered
form 0 to n, we place a dot in the upper left corner of the cell with coordinates (i, j)
whenever j = w(i).
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To make this visible, we usually put a • into the matrix, so that the permutation is
encoded by the dots.

Proposition 2.3 If the rank matrix r(w) is locally as follows:

a a
a

•
a + 1

where a + 1 is the value in position (i, j), then the permutation w sends i to j .

Proof This readily follows from (1).

Example 2.4 Consider the case of dimension 4.

(a) The matrices

0 0 0 0 0
0 0 0 0

•
1

0 0 0
•
1 2

0 0
•
1 2 3

0
•
1 2 3 4

0 0 0 0 0
0

•
1© 1 1 1

0 1
•

2© 2 2
0 1 2

•
3© 3

0 1 2 3
•
4

are the rank matrices corresponding to the longest element w0 = 4321 and the
identity element w = 1234, respectively.
The encircled entries will be later called “pillar”, these entries determine the
whole matrix, as explained in the next section.

(b) The following matrices:

0 0 0 0 0
0 0

•
1© 1 1

0 0 1
•

2© 2
0 0 1 2

•
3

0
•
1 2 3 4

0 0 0 0 0
0 0

•
1© 1 1

0 0 1 1
•
2

0
•
1 2© 2 3

0 1 2
•
3 4

0 0 0 0 0
0 0 0

•
1 1

0
•

1© 1 2© 2
0 1 1 2

•
3

0 1
•
2 3 4

0 0 0 0 0
0 0 0 0

•
1

0
•

1© 1 1 2
0 1

•
2© 2 3

0 1 2
•
3 4

are the rank matrices corresponding to the four Coxeter elements in S4:

s1s2s3 = 2341, s1s3s2 = 2413, s2s1s3 = 3142, s3s2s1 = 4123,

respectively.
(c) Consider the elementsw1 = 3412 andw2 = 4231 of S4. The corresponding rank

matrices are

0 0 0 0 0
0 0 0

•
1© 1

0 0 0 1
•
2

0
•

1© 1 2 3
0 1

•
2 3 4

and

0 0 0 0 0
0 0 0 0

•
1

0 0
•

1© 1 2
0 0 1

•
2 3

0
•
1 2 3 4
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The Schubert varieties Xw1 and Xw2 are the only singular Schubert varieties for
n = 4.

Example 2.5 For the maximal cell Cw0 , the rank matrix is given by:

ri j (w0) = max{0, i + j − n}.

The smaller is the Schubert cell Cw, the bigger are the numbers ri j (w).

2.3 The Pillar Entries

The rank matrix is completely determined by a few particular entries. This idea is due
to Fulton (1997) (see also Woo 2009; Reiner et al. 2011 and references therein). The
following notion is crucial for us.

Definition 2.6 An entry ri j of a rank matrix r(w) is called pillar if it satisfies the
conditions {

ri j = ri−1, j + 1 = ri, j−1 + 1,
ri j = ri+1, j = ri, j+1.

(2)

In other words, the fragment of the rank matrix around a pillar entry is as follows:

a − 1
a − 1 a© a

a

We always encircle the pillar entries, in order to distinguish them.
In combinatorial terms, pillar entries can be characterized as follows. An entry ri j

of a rank matrix r(w) is pillar if and only if

{
w(i) ≤ j, w(i + 1) > j,
w−1( j) ≤ i, w−1( j + 1) > i.

(3)

It is easy to see that these conditions are equivalent to (2).
It worth noticing that, the more a given permutation w is “close” to the identity,

the more pillar entries the matrix r(w) has. The matrix r(Id) has n − 1 pillar entries
rii = i , for 1 ≤ i ≤ n − 1. The more w is “close” to the longest element w0, the less
pillar entries the matrix r(w) has. In particular, r(w0) is the only rank matrix with no
pillar entries.

Proposition 2.7 Every Schubert cell is completely determined by the pillar entries of
the rank matrix.

This statement is classical. For the sake of completeness, a proof will be presented
in Sect. 5.6. An explicit algorithm that reconstructs the permutation w from the pillar
entries of the rank matrix r(w) will be presented in Sect. 4.2.

Let us describe the pillar entries of the rank matrices corresponding to the Coxeter
elements.

123



460 D. Fuchs et al.

Proposition 2.8 The rank matrix of any Coxeter element of Sn has n−2 pillar entries

ri,i+1 = i, or ri+1,i = i,

for each i ∈ {1, 2, . . . , n − 2}.

Proof Consider a Coxeter elementw = · · · si · · · si+1 · · · . It can be deduced directly
from (3), that the entry ri,i+1 of r(w) is, indeed, a pillar entry. Similarly, for a Coxeter
element of the form w = · · · si+1 · · · si · · · , one has that the entry ri+1,i is pillar.
Similar arguments show that the rank matrix of a Coxeter element cannot have other
pillar entries than the above n − 2 ones.

Finally, the fact that the value of the pillar entry ri,i+1 (or ri+1,i ) is equal to i follows
from (1). ��

Remark 2.9 In other words, the rank matrix of every Coxeter element of Sn is deter-
mined by a sequence of n − 2 inclusions:

Vi ⊂ C
i+1, or C

i ⊂ Vi+1,

for i ∈ {1, . . . , n − 2}. The 2n−2 Coxeter elements correspond to an arbitrary choice
of one of the above inclusions for every i .

We believe that the notion of pillar entry deserve a further study. In particular, the
number of pillar entries for a given permutation is an interesting characteristic. Some
of the basic properties of pillar entries will be presented in Sect. 4.

2.4 Fulton’s Essential Entries

Let us recall here Fulton’s notion of essential entry. An entry ri j of a rank matrix r(w)

is called essential, see Fulton (1992) and also Eriksson and Linusson (1996), if

{
w(i) > j, w(i + 1) ≤ j,
w−1( j) > i, w−1( j + 1) ≤ i.

(4)

Equivalently, the rank matrix around an essential entry is as follows:

a
a a a + 1
a + 1

It is proved in Fulton (1992) that every rank matrix (and therefore the corresponding
Schubert variety) is completely characterized by its essential set.

The notions of essential and pillar entries are somewhat “complementary”, as the
inequality signs in formulas (3) and (4) are reversed, cf. Appendix for a comparison.
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2.5 Transposed Pillars: The Main Conjecture

The following conjecture asserts that if two Schubert varieties have the same tangent
cones, then they have the same number of pillars, whose values are also the same, and
whose position in the respective rank matrices can only differ by transposition.

Conjecture 2.10 Given two permutations, w and w′ ∈ Sn, if Tw = Tw′ then the rank
matrices r(w) and r(w′) have the same number of pillar entries, and for every pillar
entry ri j of r(w), one has the following alternative:

(a) the entry r ′
i j of r(w

′) is pillar and r ′
i j = ri j , or

(b) the entry r ′
j i of r(w

′) is pillar and r ′
j i = ri j .

Example 2.1 and Proposition 2.8 are the first examples that confirm our conjecture.
We will give many other examples in the sequel.

2.6 Restrictions: Forbidden Transpositions

Note that the inverse of Conjecture 2.10 is false: two permutations with partially
transposed pillar entries do not necessarily correspond to the same tangent cones.

Example 2.11 The simplest counterexample to the converse statement that we know
is provided by the following permutations in S6: w = 456321 and w′ = 546132.
Indeed, the corresponding rank matrices are (Fig. 1): respectively. The pillar entries
are (partially) transposed, but the permutations have different length: �(w) = 12 and
�(w′) = 11, so that their tangent cones have different dimensions, and cannot coincide.

Note however the following interesting inclusion: Tw′ ⊂ Tw.

Another restriction for partial transposition of pillars occurs more often than the
above discussed one. Given a permutation w and the corresponding rank matrix r(w),
then a partial transposition of the pillar entries may not correspond to any rank matrix
of any permutation.

Fig. 1 Permutations of different
length with transposed pillars 1

3

0 0 0 0 0 0
10 0 0 0 1
20 0 0 0 1 2

0 0 0 0 1 2 3
0 0 0 1 2 3 4
0 0 1 2 3 4 5
0 1 2 3 4 5 6

0 0 0 0 0 0 0
1
2

4
5
60 1 2 3 4 5

0
0
0
0
0

0
0 0 0 0 1
0 0 0 1 2
0 0 0 1 2
1 1 1 2 3
1 1 2 3 4
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Example 2.12 Consider the permutation w = 34521 in S5. The corresponding rank
matrix is as follows:

0 0 0 0 0 0
0 0 0

•
1© 1 1

0 0 0 1
•

2© 2
0 0 0 1 2

•
3

0 0
•
1 2 3 4

0
•
1 2 3 4 5

It turns out that there are no rank matrices with the following pillar entries:

(a)

0 0 0 0 0 0
0 1© 1
0 2
0 3
0 2© 4
0 1 2 3 4 5

(b)

0 0 0 0 0 0
0 1
0 2© 2
0 1© 3
0 4
0 1 2 3 4 5

Indeed, the above positions of pillar entries are impossible, since they contradict for-
mula (3), see also Sect. 4.1 for more details.

2.7 More on Partial Transpositions

Let us briefly discuss the partial transpositions of linked pillar entries. If one transpose
some pillar entries of a rank matrix r(w), but not all of them, then the following three
possibilities may occur:

(1) there exists a rank matrix of a permutationw′ that does have the given set of pillar
entries, but of different length (cf. Example 2.11);

(2) there is no rank matrix of a permutation that has this set of pillar entries (cf.
Example 2.12);

(3) the “good case” where the resulting matrix is a rank matrix of a permutation that
has the given set of pillar entries and the same tangent cone as w.

In view of Conjecture 2.10 and the above discussion, the main goal of this paper is to
investigate which (partial) transpositions of pillar entries of a rank matrix r(w) lead
to a new permutation w′ and do not change the tangent cone.

3 Admissible Partial Transpositions: the Main Theorem

In this section we describe classes of permutations in Sn with identical tangent cones.
Given a permutation w, we define a series of operations called “admissible partial
transpositions” and an equivalence class in Sn that consist of permutations related by
such transpositions. We formulate our main result that all permutations from such a
class correspond to the same tangent cone.
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Fig. 2 Configurations for two related pillars

Fig. 3 Configurations for two
dissociated pillars

However, the described classes are not maximal. Examples in the end of the section
show that there are more permutations with identical tangent cones.

3.1 Linked and Dissociated Pillar Entries

We define an equivalence relation on the set of pillar entries of a rank matrix. Roughly
speaking, two pillar entries are in the same class if they are “close enough” to each
other.

Definition 3.1 (i) Given a permutation w ∈ Sn , and let ri j and ri ′ j ′ be two pillar
entries in the rank matrix ri j (w). These pillar entries are called related if the
intervals:

[min (i, j), max (i, j)] and
[
min (i ′, j ′), max (i ′, j ′)

]

have a common (real) interior point (Fig. 2).
(ii) Pillar entries are called linked if they can be connected by chain of related entries.
(iii) Otherwise the pillar entries are called dissociated (Fig. 3).

Example 3.2 The following rank matrix (in which we omit the extremal rows and
columns) corresponding to the permutation w = 12, 2, 9, 7, 6, 4, 10, 5, 3, 11, 1, 8 ∈
S12 (Fig. 4):
have three classes of linked pillar entries (Fig. ExinS12):

{r22 = 1}, {r64 = 2}, {r67 = 4, r69 = 5, r97 = 6, r9,10 = 8, r11,7 = 7}.
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Fig. 4 Permutation with three
classes of linked pillars
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Fig. 5 Graph of related pillars

3.2 The Linking Graph of Pillar Entries

It is convenient to display the linking relations between the pillar entries using a graph.

Definition 3.3 The linking graph is defined as follows.

(1) The set of vertices of the linking graph is the set of pillar entries of the rank
matrix;

(2) two vertices are connected by an edge whenever the corresponding pillar entries
are related, cf. item (i) of Definition 3.1.

For instance, Example 3.2 corresponds to the following graph (Fig. 5)
where we have labeled the vertices by the values of the pillar entries (omitting the
positions as the values are all different).

The connected components of the linking graph correspond to the classes of linked
pillar entries.

3.3 Admissible Partial Transpositions

An admissible partial transposition is an operation defined on rankmatrices and on the
group Sn . Roughly speaking, it consists in transposition of a part of the pillar entries,
such that linked pillar entries transpose (or not) simultaneously. More precisely, we
have the following:
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Fig. 6 An example of
admissible partial transposition

Definition 3.4 Two rank matrices, r(w) and r(w′), are admissibly partially transpose
to each other if there exists a set L which is a union of classes of linked pillar entries
for r(w), such that the set of pillar entries of r(w′) is as follows

{
r ′
i j = ri j , whenever ri j /∈ L,

r ′
j i = ri j , whenever ri j ∈ L.

(5)

Example 3.5 The permutation w = 11, 2, 9, 8, 6, 4, 5, 12, 3, 7, 10, 1 in S12 corre-
sponding to the rankmatrix (Fig. 6) is admissibly partially transpose to the permutation
given in Example 3.2. Indeed, the set of pillar entries is the same except for the last
connected component of the graph, for which the positions of the pillar entries are
transposed.

3.4 Statement of the Main Theorem

In this sectionwe formulate a sufficient condition for the tangent cones of two Schubert
varieties to coincide. Furthermore, it turns out that every partial transposition of the
pillar entries in the associated rank matrices defines an operation on the group Sn .

Our main result is the following

Theorem 3.6 (i) Given a permutation w ∈ Sn and the corresponding rank matrix
r(w), for every admissible partial transposition, r(w)′, of r(w) there exists a
permutation w′ ∈ Sn such that r(w)′ = r(w′).

(ii) If w and w′ are admissibly partially transpose to each other, then corresponding
Shubert varieties have same tangent cones: Tw = Tw′ .

We will prove this theorem in Sects. 4.5 and 5.7.

Example 3.7 The Coxeter elements of S4, see Example 2.4, have the same two dis-
sociated pillar entries, 1 and 2, and their positions in the rank matrices differ by
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Fig. 7 An example of
admissible transposition of
linked pillars

1
0 0 0 0 0 0

10 0 0 0

1
20 0 0 0 1

0 0 0

0

1 2 3
0 0 0 1 2 3 4
0 0 1 2 3 4 5
0 1 2 3 4 5 6

0 0 0 0 0 0 0
1

4
0 1 3 4 5

0
0
0
0
0

0
0 0 0 0

1

0 0 0 1
20 0 0 1

2
11 2 3

2
3

0
0
0
0
0
0
0
0 1 2 3 4 5 6 7

0

0
1
2
3
4
5
6
76543210

0
00

0
00

0
0

0

transpositions. Therefore, the Schubert varieties corresponding to these elements have
the same tangent cone. This statement can be generalized, see below

Corollary 3.8 Schubert varieties corresponding to the Coxeter elements have the
same tangent cone.

Proof The pillar entries of Coxeter elements are dissociated and differ by partial
transpositions; see Proposition 2.8. ��

We will give an explicit description of the corresponding tangent cone in Sect. 5.3.
Note also that the Schubert varieties corresponding to theCoxeter elements are smooth.
Therefore, Corollary 3.8 can also be deduced from the theorem of Lakshmibai, see
Lakshmibai (1995) that describes the Zariski tangent space.

3.5 Other Admissible Transpositions

Theorem 3.6 provides large classes of Schubert varieties with identical tangent cones.
However, these classes can be yet larger. In fact, there are other cases of partial trans-
position of pillar entries than those considered above.

Example 3.9 The permutations w = 6745321 and w′ = 6753421 in S7 have the
following rank matrices (Fig. 7): The rank matrix r(w) has two pillar entries: r16 and
r34, the interval [3, 4] is entirely contained in the interval [1, 6]. Therefore, these pillar
entries of w are related in view of Definition 3.1. However, it is easy to check that
Tw = Tw′ , in other words, the partial transposition relating w and w′ should also be
considered as admissible.

This example is not covered by Theorem 3.6 and shows its limits. For instance,
it shows that the converse statement to Part (ii) of the theorem is false. Existence of
such partial transpositions of pillar entries constitutes the main difficulty in solving
the initial classification problem.

4 Combinatorial Aspects of Rank Matrices and Pillar Entries

In this section we describe the main properties of pillar entries of rank matrices and
develop the technique necessary from the proof of our main result.

Recall that the set of pillar entries of a rank matrix r(w) determines the permuta-
tion w (see Proposition 2.7). We present two algorithms: that of reconstruction of w
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from the pillar entries of r(w), and that of calculating the permutation of w′ obtained
by some partial transpositions of pillar entries of r(w). This allows us to prove Part
(i) of Theorem 3.6.

We also give an explicit formula for the (co)dimension of the Schubert cell Cw in
terms of the pillar entries of the rank matrix r(w). This result can be useful for the
further study of combinatorics of rank matrices.

4.1 Rank Matrix and Its Pillar Entries from the Permutation Diagram

The rank matrix r(w) is determined by the diagram of the corresponding permutation
w.

Proposition 4.1 One has the following formula:

ri j (w) = #{dots in the upper left quadrant from the cell (i, j)}. (6)

Proof This readily follows from (1). ��
The positions of the pillar entries in r(w) can be determined by local structure of

the diagram ofw. Consider horizontal strips of height 1 and a vertical strips of width 1
in the diagram, such that the upper left and the lower right corners are marked dots of
the permutation:

horizontal strip

vertical strip

Proposition 4.2 Every pillar is located at the intersection of a horizontal strip of
height 1 and a vertical strip of width 1.

Proof This is a direct consequence of (3). ��
Example 4.3 Rank matrix and its pillar entries of w = 853471692 in S9 is as follows
(Fig. 8).

It will be useful in the sequel to have the following observation.

Proposition 4.4 Every horizontal strip of height 1 necessarily intersects with a ver-
tical strip of width 1, and vice-versa.

123



468 D. Fuchs et al.

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 1 1 1

1

2

0

0

0
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0 0

0

1 1 2 2 2

2

3

1 2 3 3 3

3
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0 1 2 3 3 4

4

5

1 1 2 3 4 4 5

5

6

1 1 2 3 4 5 6

6

7

1 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

7

Fig. 8 Localizing the pillars

Proof Let (i, j), (i+1, j+k), k > 0, be themarked dots of a horizontal strip of height
one. If k = 1, then our horizontal strip is also a vertical strip, and these two (identical)
strips intersect each other. Let k > 1, and let (i1, j + 1), . . . , (ik−1, j + k − 1) be the
marked dots of the diagram of w, lying on the vertical lines crossing our strip; neither
of i1, . . . , ik−1 is i or i + 1. If i1 > i + 1, then the vertical strip with marked dots
(i, j), (i1, j+1) intersects our horizontal strip. Similarly, if ik−1 < i , then the vertical
strip with marked dots (ik−1, j + k −1), (i +1, j + k) intersects our horizontal strip.
If i1 < i and ik−1 > i + 1, then for some s, is < i and is+1 > i + 1. In this case,
the vertical strip with marked dots (is, j + s), . . . , (is+1, j + s + 1) intersects our
horizontal strip.
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ik−1

i

i+ 1
j

j + 1
j + s
j + s+ 1

j + k − 1

j + k

The proof of the vice-versa statement is the same, with the coordinates of every
marked dot switched. ��

4.2 Reconstructing w from the Pillar Entries of r(w)

In this section we present an algorithm of constructing the diagram of w from the set
of pillar entries.
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Fig. 9 Placement of the dots
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Let us introduce some useful notation. First we numerate the pillar entries in the
lexicographical order, that is, from left to right in each row and then counting the rows
from top to bottom. Then we set:

(pi , qi ) = the position of the i-th pillar;
Ki = rpi qi (w) = the value of the i-th pillar entry;
NWi = The North-west region of the i-th pillar entry.
We draw the (n + 1) × (n + 1) square grid; columns and rows of this grid are

separated by n horizontal lines and n vertical lines. We mark the given pillar entries
in N cells of the grid (thus, N is the number of pillar entries). Our permutation w will
appear as a set of n dots in the intersections of horizontal and vertical lines, one on
each horizontal line and one on each vertical line.

The diagram of w is constructed in N + 1 steps. At every step, we place some dots
into the interior of the region NWi . If the action requested at any step is impossible
by any reason, then our set of “pillar entries” is not the set of pillar entries of r(w) for
any w.

For i = 1, . . . , N , at the i-th step, we fist count the number of dots placed in the
interior of NWi at the previous steps. If this number is L , we need to add ki = Ki − L
dots into

NWi − (NW1 ∪ · · · ∪ NWi−1).

For this, we numerate the horizontal and vertical lines within NWi which do not bear
any of the L dots placed at the previous steps, respectively from bottom to tor and
from right to left. Then, for j = 1, . . . , ki we place a dot at the intersections of the
vertical line number j and the horizontal line number ki + 1 − j (Fig. 9).

Our algorithm requests that neither of these dots falls into any of the regions
NW1, . . . , NWi−1.

The final, (N + 1)-st step works according the same rules with the whole matrix
playing the role of NWN+1.

The above algorithm is the only way to mark dots without creating an extra pillar
or changing the values of the pillar entries. Note that, for the Fulton essential set, a
reconstruction algorithm is given in Eriksson and Linusson (1996).

Example 4.5 Figure 10 below illustrates our algorithm for w = 853471692 ∈ S9. At
each step we color the North-West region at the pillar. The dark grey part of the region
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Fig. 10 Recovering the permutation w from the pillar entries

intersects with North-West regions at previous pillar entries; the light grey part is the
area where the new dots are placed.

Example 4.6 Given positive integers, i, j, a satisfying the conditions:

a ≤ i, j ≤ n, i + j − a < n,

there exists an element, wi, j,a,n ∈ Sn , whose rank matrix has the unique pillar entry
ri j = a. The above algorithm immediately gives:

wi, j,a,n = (n, n − 1, . . . , n + 1 − i + a, j, j − 1, . . . , j − a + 1, n − i

+ a, n − i + a − 1, . . . , j + 1, j − a, j − a − 1, . . . , 1).

This element appeared in [Reiner et al. (2011), Corollary 4.5].

Remark 4.7 If one defines the following partial ordering on the set of ordered pillar
entries

j ≺ i ⇐⇒ the j-th pillar lies in the region at the North-West of the i-th pillar

i.e. j < i , p j ≤ pi and q j ≤ qi

one can write the following relation between the Ki ’s and ki ’s

Ki = ki +
∑

j≺i

k j .

��
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Fig. 11 �(ww0) from the
diagram of w

× × ×
× × × ×

× × ×
×
×××
×

×

4.3 (Co)dimension from the Set of Pillar Entries

The dimension and codimension of a Schubert cell Cw (or a Schubert variety Xw) can
be computed directly form the set of pillar entries of the corresponding rank matrix
r(w).

The number

codim(Cw) = �(ww0) = #{i < j : w(i) < w( j)}

can be obtained in the diagram of w counting the intersections of the horizontal
segments and the vertical segments of the grid that are at the right and above each
dots, respectively:

codim(Cw) = #{crosses in the diagram of w}, (7)

see Fig. 11.
The following formula gives the codimension of a Schubert cell from the data of

its pillar entries.

Theorem 4.8 Using the notation of Sect. 4.2 one computes

codim(Cw) =
N∑

i=1

ki (Ki + n − pi − qi ).

Proof This formula is obtained using the reconstruction algorithm of w from the set
of pillar entries (see Sect. 4.2) and (7). For each dot in the diagram of w, we count
the crosses on the horizontal segment at its right. At step i of the construction, the ki
new dots will contribute with the same number of crosses in (7). The reconstruction
algorithm of w implies that these crosses can be produced only by the dots that are
located at the South-East of the i-th pillar (otherwise it would contradict the fact that
one uses the closest available vertical lines at the left of the i-th pillar). The number
of dots in the South-East area is easy to compute from our data:
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#{dots at SE} = #{dots} − #{dots at NW} − #{dots at NE} − #{dots at SW}
= n − Ki − (pi − Ki ) − (qi − Ki )

= Ki + n − pi − qi .

Hence the result. ��

4.4 Truncated Permutation

Given a permutation of w ∈ Sn , we will show the existence of permutations whose
pillar entries form the subsets in the set of pillar entries of r(w) obtained by removing
of some classes of linked pillar entries.

The pillar entries of r(w) are decomposed in the disjoint union of classes of linked
pillar entries: {ri j (w)} = L1 � L2 � . . . � Ls . These classes correspond to subin-
tervals I1, I2, . . . , Is of the interval [0, n]; these subintervals have integer endpoints
and pairwise have no interior points. The class Lt corresponds to the interval It , if,
for every ri j (w) ∈ Lt both i and j belong to It . We order the intervals It , from the
left to the right, and order the classes Lt accordingly. Consequently, if u < v and
ri j (w) ∈ Lu, ri ′ j ′(w) ∈ Lv , then i ≤ i ′, i ≤ j ′, j ≤ i ′, j ≤ j ′. In particular, for
u < v, all pillar entries from Lu lexicographically precede the pillar entries from Lv .

The following statement is our first application of the reconstruction algorithm
presented in Sect. 4.2.

Proposition 4.9 For every t ∈ {1, . . . , s} there exists a unique permutation, denoted
trct (w), having L1 � L2 � . . . � Lt as set of pillar entries.

Proof This permutation is obtained by stopping the algorithm of reconstruction of w

given in Sect. 4.2 after the step corresponding to the last pillar of the class Lt and
jumping to the final step. ��
Example 4.10 For w = (12, 2, 9, 7, 6, 4, 10, 5, 3, 11, 1, 8) as in Example 3.2, the
classes are numbered as follows

L1 = {r22 = 1}, L2 = {r64 = 2}, L3 = {r67 = 4, r69 = 5, r97 = 6, r9,10 = 8, r11,7 = 7}.

One then obtains the truncated permutations

trc1(w) = (12, 2, 3, 11, 10, 9, 8, 7, 6, 5, 4, 1), trc2(w) = (12, 2, 11, 10, 9, 4, 8, 7, 6, 5, 3, 1).

4.5 Elementary Partial Transpositions

The lexicographic order suggests a natural series of admissible partial transpositions,
such that all the classes of linked pillar entries Li transpose for i less or equal to
some value. In this section we present en explicit algorithm of calculating the result-
ing permutations. This algorithm is the main ingredient of the proof of Part (i) of
Theorem 3.6.
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For t ∈ {1, . . . , s}, we define the elementary partial transposition w′ = trpt (w),
as the permutation having the following set of pillar entries:

{
r ji (w′) = ri j (w), if ri j (w) ∈ L1 � . . . � Lt ;
ri j (w′) = ri j (w), if ri j (w) ∈ Lt+1 � . . . � Ls .

Note that every partial transposition can be obtained as a sequence of elementary
partial transpositions.

Given a permutationw = w1w2 . . . wn ∈ Sn , the entrieswk ofw are separated into
two disjoint groups, I1 � I2:

{
wk ∈ I1, if k ≤ max( j), for pillars ri j (w) ∈ L1 � . . . � Lt ;
wk ∈ I2, if k > min(i), for pillars ri j (w) ∈ Lt+1 � . . . � Ls .

The algorithm of calculation the permutation w′ = w′
1w

′
2 . . . w′

n , obtained via the
above elementary partial transposition, consists in three steps:

(1) keep w′
k = wk ∈ I1 if wk ≤ k, and w′

k = wk ∈ I2 if wk ≥ k;
(2) inverse the entries wk ∈ I1, i.e., write k at position wk ;
(3) fill the remaining positions in w′ in the decreasing order.

The proof of the above algorithm is straightforward.

Example 4.11 For the Coxeter elementw = 2341 ∈ S4, the elementary transposition

0 0 0 0 0
0 0

•
1© 1 1

0 0 1
•

2© 2
0 0 1 2

•
3

0
•
1 2 3 4

−→

0 0 0 0 0
0 0 0

•
1 1

0
•

1© 1 2© 2
0 1 1 2

•
3

0 1
•
2 3 4

is obtained into three steps:

2 3 | 4 1 → 2 . | 4 . → . 1 | 4 . → 3 1 | 4 2,

so that w′ = 3142 is another Coxeter element, already considered in Example 2.4, b).

For every w ∈ Sn , the above algorithm implies the existence of a permutation w′
such that the pillar entries of r(w′) are obtained by an admissible partial transposition
of pillar entries of r(w).

Part (i) of Theorem 3.6 is proved.

5 Proof of the Main Theorem

In this section, we prove Proposition 2.7 and Part (ii) of Theorem 3.6.
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5.1 A Coordinate System

In the neighborhood of the standard flag F0, the flag variety F is identified with the
subgroup of unitriangular matrices

X =

⎛

⎜⎜⎜⎝

1
x21 1
...

. . .
. . .

xn1 · · · xn n−11

⎞

⎟⎟⎟⎠ (8)

This defines a local coordinate system (x21, . . . , xn n−1) on F , already mentioned in
the introduction (see also Ryan 1987). Given a flag F ∈ F , every space Vi of F is
defined as linear span of the first i columns of the matrix X .

Our next goal is to describe the Schubert cells and Schubert varieties in terms of
this coordinate system.

5.2 Submatrices

Let Mi j be the (n − j) × i submatrix of X consisting of the last n − j rows and the
first i columns.

(a) If i ≤ j , then this submatrix is of the form

Mi j =
⎛

⎜⎝
x j+1 1 · · · x j+1 i

...
...

xn1 · · · xni

⎞

⎟⎠ .

(b) If i > j , then the submatrix is as follows

Mi j =

⎛

⎜⎜⎜⎜⎜⎜⎝

x j+1 1 · · · x j+1 j 1
...

. . .

xi1 · · · xi i−1 1
...

...

xn1 · · · · · · xni

⎞

⎟⎟⎟⎟⎟⎟⎠
.

5.3 Relation to the Rank Matrices

The following lemma translates the description of Schubert cells in terms of rank
matrices into an algebraic descripition in the above coordinate system.

Lemma 5.1 The matrix X represents a flag in the Schubert cell Cw if and only if

rank(Mi j ) = i − ri j (w), (9)
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for all 1 < i ≤ n, 1 ≤ j < n. Consequently, the Schubert variety Xw is described by
the conditions:

rank(Mi j ) ≤ i − ri j (w).

Proof The spaceC j consists of vectors with zeros at positions ≥ j +1. One then has

j + rank(Mi j ) = dim(Vi + C
j ) = i + j − ri j (w).

Hence (9). ��

5.4 Systems of Equations for Xw and Tw

The Schubert variety Xw is determined, in a neighborhood of the standard flag F0, by
a system of polynomial equations in the variables xi j . The equations are obtained as
follows. For each couple of indices i, j , formula (9) leads to a set of equations that
expresses the annihilation of the minors of the matrix Mi j of size larger than its rank.
From Proposition 2.7, it suffices to consider only the equations for the indices i, j
corresponding to a pillar entry ri j (w) in the rank matrix of Xw.

The systemof equations of the tangent coneTw ofXw is obtained, roughly speaking,
as the homogeneous lower degree parts of the equations of Xw. More precisely, the
equations of Xw can be written in such a way that the homogeneous terms of lower
degree are linearly independent. Then the system of Tw is obtained by removing all
of the monomials of higher degree in the equations of Xw.

Example 5.2 As we mentioned in Introduction, the first example of a Schubert vari-
ety with singularity at the origin correspond to the permutation w = 4231 ∈ S4
(see Billey and Lakshmibai 2000; Lakshmibai and Sandhya 1990). Written in our
local coordinates:

⎛

⎜⎜⎝

1
x21 1
x31 x32 1
x41 x42 x43 1

⎞

⎟⎟⎠

the equation of the corresponding tangent cone Tw (the same as the equation of Xw)
is: x31x42 − x32x41 = 0. Indeed, the rank matrix of w is as follows:

0 0 0 0 0
0 0 0 0

•
1

0 0
•

1© 1 2
0 0 1

•
2 3

0
•
1 2 3 4
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so that the Schubert cell Cw is determined by the condition dim(V2 ∩ C
2) = 1, that

translates in coordinates as the condition that a certain linear combination of two first
column vectors belong to the subspace C2, i.e., the matrix M22 degenerates.

The tangent cone Tw is 5-dimensional, whereas the Zariski tangent space is the
whole 6-dimensional tangent space TF0F .

5.5 The Duality

In the case i ≤ j , the minors of Mi j are homogeneous polynomial expressions. The
following observation explains the reason for which two pillar entries transposed to
each other, in many situation give the same contribution to the system of equation of
the tangent cones.

If i > j , then Mji is the complement of the upper right square submatrix in Mi j

(of size i − j) with 1’s on the diagonal:

Mi j =

⎛

⎜⎜⎜⎝

1
...

. . .

· · · 1
Mji

⎞

⎟⎟⎟⎠ .

The lower degree homogeneous part in the expression of any minors of Mi j of size
r ≥ i − j involving the last i − j columns corresponds precisely to a minor of Mji of
size r − i + j , and vice versa.

5.6 Proof of Proposition 2.7

Let us show that the pillar entries determine the rank matrix. We use the fact that the
rank matrix r(w) completely determines the Schubert variety Xw.

For a permutationw, let ri1 j1 , . . . , riN jN be the pillar entries of the matrix r(w) and
let Ci j be the condition

rank(Mi j ) ≤ i − ri j (w)

from the system of conditions determining the Schubert variety Xw (see Sect. 5.3).
There are obvious implications:

If ri+1, j = ri j , then Ci j implies Ci+1, j ;
If ri+1, j = ri j + 1, then Ci+1, j implies Ci j ;
If ri, j+1 = ri j , then Ci, j implies Ci, j+1;
If ri, j+1 = ri j + 1, then Ci, j+1 implies Ci j .
Let us visualize the matrix [Ci j ] as an (n + 1) × (n + 1) grid and show the above

implications by arrows between the neighboring cells; the resulting diagram for the
matrix from Example 2.12 is shown below (Fig. 12).
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The cells of these grid with only outgoing arrows correspond to the pillars (marked
by heavy dots in the picture) and two corner cells: upper left and lower right (marked
by light dots).

Take any cell of the grid and trace a path from it in the following way: we move in
the direction opposite to the arrow. If there arises a choice of several such direction,
choose any of them. If there is no such directions, then stop. It is important that our
path never passes through a cell more that once: when we move right or upward, the
entry stays unchanged, when we move left or downward, the entry grows (by one at a
step). Tomove from a cell back to the same cell, we have to make at least one move left
of downward, and the entry cannot remain unchanged. Thus our path leads from our
(arbitrarily chosen) cell to either a pillar or to a corner cell. Moving along this path in
the opposite direction, we show that every conditionCi j follows either from one of the
pillar conditionsCi1 j1 , . . . ,CiN jN or one of the conditionsC00,Cnn , which are empty.
Thus, the Schubert variety Xw is determined by the conditions Ci1 j1 , . . . ,CiN jN , that
is, determined by the pillars.

To illustrate the above technique, let us calculate the tangent cone of the Schubert
varieties corresponding to the Coxeter elements explicitly.

Proposition 5.3 The tangent cone of the Schubert varieties corresponding to the Cox-
eter elements of Sn is given by the equations

xi j = 0, for i − j > 1. (10)

Proof It was already proved that Schubert varieties corresponding to the Coxeter
elements have the same tangent cone, see Corollary 3.8. Let us consider the particular
Coxeter element

w = s1s2 · · · sn−1 = 234 . . . n1.

Its rank matrix has the following pillar entries (cf. Proposition 2.8):

r12 = 1, r23 = 2, . . . , rn−2,n−1 = n − 2.
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By Lemma 5.1 and Proposition 2.7, the Schubert variety Xw is locally determined by
the conditions rank(Mi j ) = 0, for i > j . Therefore, in the local coordinate system
(xi j ), the Schubert varietyXw, and thus its tangent cone Tw, is a linear subspace given
by Eq. (10). ��

5.7 Proof of Theorem 3.6

We will need the following lemma1.

Lemma 5.4 For everyw ∈ Sn, the Schubert varietiesXw andXw−1 have same tangent
cone.

Proof The homeomorphism x �→ x−1 from BwB to Bw−1B induces the isomor-
phism f �→ − f from Tw to Tw−1 . Since − f ∈ Tw for every f ∈ Tw, this shows that
Tw−1 = Tw.

We are ready to prove Theorem 3.6, Part (ii). Assume that two permutations,w and
w′, are admissibly partially transpose to each other. We want to show that the tangent
cones of Xw and Xw′ coincide.

We can assume that w′ = trpt (w) is an elementary partial transposition of w, see
Sect. 4.5 for the definition and the notation. The systems of equations for Xw and Xw′
split in two parts: the equations coming from the pillar entries in the classesL1�. . .�Lt

(these equations are a priori different forw andw′ since the pillar entries are not in the
same positions) and the equations coming from the pillar entries in the other classes,
namely in Lt+1 � . . . �Ls . The latter equations are identically the same for w and w′.

Consider finally the two subsystems of equations for Xw and Xw′ coming from
the pillar entries in the set L1 � . . . � Lt . These two subsystems are precisely those
describing the Schubert varieties associated to trct (w) and trct (w′), respectively. These
two varieties have same tangent cones since trct (w) = trct (w′)−1. After intersecting
with the tangent cone of the variety described by the rest of the system, one therefore
obtains the same tangent cone for Xw and Xw′ .

Theorem 3.6 is proved.

6 Enumerative Results

Theorems 3.6 gives an efficient method for calculating the number of different tangent
cones of Schubert varieties. In this section, we give the result in small dimensions and
codimensions. The general result is still out of reach.

Recall that the total number of Schubert varieties is n!, the total number of their
tangent cones is smaller. It would be interesting to find asymptotic of the number of
tangent cones.

1 We are grateful to M. Kashiwara for a simple proof.
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6.1 Low-Dimensional Cases

In the case n = 4, the comparative number of Schubert varieties and their tangent
cones, as a function of their dimension, is given by the following table.

dim 0 1 2 3 4 5 6
Schub 1 3 5 6 5 3 1

TangCones 1 3 3 3 3 2 1

The total number of tangent cones in this case is 16.
For n = 5, the table is:

dim 0 1 2 3 4 5 6 7 8 9 10
Schub 1 4 9 15 20 22 20 15 9 4 1

TangCones 1 4 6 7 9 9 10 8 6 2 1

The total number of tangent cones is 63.
For n = 6, the distribution of the tangent cones is as follows:

dim 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TangCones 1 5 10 14 20 25 31 36 40 40 34 24 15 8 3 1

The total number of tangent cones for n = 6 is 343.
For n = 7 and 8, the total numbers of tangent cones are: 1821 and 13041,

respectively2. Note that the sequence 16, 63, 343, 1821, 13041, . . . does not appear in
Sloane’s online Encyclopedia of Integer Sequences.

6.2 Tangent Cones of Codimension 2

Let us also consider the case of small codimension.
The tangent cone of the Schubert variety Xw0 corresponding to longest element

w0 ∈ Sn , is the only one tangent cone of dimension n(n−1)
2 .

Next, in the case of dimension n(n−1)
2 − 1 (i.e., of codimension 1), there are n − 1

Schubert varieties that have
[ n
2

]
tangent cones. Indeed, the elements Xw and Xw−1

have the same tangent cone.
There are (n+2)(n−1)

2 Schubert varieties of codimension 2. The number of their
tangent cones depend on the parity of n, as given by the following statement.

Proposition 6.1 The number of tangent cones of codimension 2 is:

2 + (n − 3)(n + 11)

8
, and 3 + (n − 4)(n + 14)

8
,

for odd n, and for even n, respectively.

2 These numbers are obtained using computer programs.
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Proof A straightforward calculation. ��
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Appendix

A1 Comparison of Pillar Entries to Essential Entries

Below are a series of examples and comments about the relationship between pillar
entries and Fulton’s essential entries, see alsoWoo (2009). Recall that essential entries
are boxed (while pillar entries are encircled as above).

Let us consider examples that emphasize the difference between the notions of
essential and pillar entries. The most interesting case is that of the Coxeter elements.

Example 6.2 (a) The rank matrix of the elementw0 = 4 3 2 1 in S4 has three essential
entries

0 0 0 0 0
0 0 0 0

•
1

0 0 0
•
1 2

0 0
•
1 2 3

0
•
1 2 3 4

and no pillar entries. It can be deduced from formula (1), that, for an arbitrary
n, the only rank matrix without pillar entries is the matrix r(w0) of the longest
element w0 ∈ Sn . This matrix has n − 2 essential entries along the antidiagonal.

(b) For each of the elementsw1 = 2 1 4 3 andw2 = 4 2 3 1 of S4, we have two essential
entries and one pillar:

0 0 0 0 0
0 0

•
1 1 1

0
•
1 2© 2 2

0 1 2 2
•
3

0 1 2
•
3 4

and

0 0 0 0 0
0 0 0 0

•
1

0 0
•

1© 1 2
0 0 1

•
2 3

0
•
1 2 3 4

Note that the position of the pillar entry in the above matrices is the same, while
those of the essential entries are different.
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Table 1 The Rothe diagram (left) and the opposite Rothe diagram (right) of the Coxeter permutation 2 3 4 1

The Rothe diagram gives the unique essential entry in the rank matrix: r31 = 0, whereas the opposite
diagram gives two pillar entries: r12 = 1 and r23 = 2

(c) For the Coxeter elements of S4, we have:

0 0 0 0 0
0 0

•
1© 1 1

0 0 1
•

2© 2
0 0 1 2

•
3

0
•
1 2 3 4

0 0 0 0 0
0 0

•
1© 1 1

0 0 1 1
•
2

0
•
1 2© 2 3

0 1 2
•
3 4

0 0 0 0 0
0 0 0

•
1 1

0
•

1© 1 2© 2
0 1 1 2

•
3

0 1
•
2 3 4

0 0 0 0 0
0 0 0 0

•
1

0
•

1© 1 1 2
0 1

•
2© 2 3

0 1 2
•
3 4

A2 Rothe Diagrams and Opposite Rothe Diagrams

The Rothe diagram (Rothe 1800) of a permutation w ∈ Sn is an n × n square table
obtained according to the following rule. Dot the cell (i, j)wheneverw(i) = j , shade
all the cells of the row at the right of the dotted cell and all the cells of the column
below the dotted cell (including the dotted cell). Note that the length �(w) is equal to
the number of white cells in the Rothe diagram.

It was noticed in Fulton (1992), that the white cells having a South and East frontier
with the shaded region give the positions of the essential entries in the corresponding
rank matrix. The value of an essential entry is equal to the number of dots in the upper
left quadrant of the Rothe diagram with the origin at the corresponding cell. Let us
explain a similar rule to obtain positions of pillar entries.

Consider the opposite Rothe diagram obtained with the following rule. Shade all
the cells of the row strictlty at the left of the dotted cell and all the cells of the column
strictly above the dotted cell (the dotted cell is not shaded). Note that the number of
white undotted cells in the opposite Rothe diagram is equal to �(w) (Table 1).

It follows directly from Definition 2.6, that the white cells having a South and East
frontier with the shaded region in the opposite Rothe diagram give the positions of the
pillar entries in the corresponding rank matrix. The value of a pillar entry is equal to
the number of dots in the upper left quadrant of the diagram.
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