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Abstract We develop an integral geometry of stationary Euler equations defining
some function w on the Grassmannian of affine lines in R

3 depending on a putative
compactly supported solution (v; p) of the system and deduce some linear differential
equations for w. We conjecture that w = 0 everywhere and prove that this conjecture
implies that v = 0.
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1 Introduction

In the present paper we introduce and develop a version of integral geometry for the
steady Euler system.

More precisely, the system which we consider is as follows

3∑

j=1

∂(viv j )

∂x j
+ ∂p

∂xi
= 0 for i = 1, 2, 3, (1.1)
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398 N. Nadirashvili, S. Vlăduţ

for an unknown smooth vector field v = v(x) = (v1(x), v2(x), v3(x)) and an
unknown smooth scalar function p = p(x), x ∈ R

3; it expresses the conservation of
fluid’s momentum v ⊗ v + pδi j and reads in a coordinate free form as follows

div(v ⊗ v) + ∇ p = 0. (1.2)

Note that if we add to (1.1) the incompressibility condition

div v = 0, (1.3)

the system (1.2) and (1.3) describes a steady state flow of the ideal fluid.
A long-standing folklore conjecture states that a smooth compactly supported solu-

tion of (1.2) and (1.3) should be identically zero, and this is known for Beltrami flows;
see Nadirashvili (2014) and also Chae and Constantin (2015). Let us state it explicitly:

Conjecture 1.1 Let (v; p) ∈ C0(R
3) be a solution of (1.2)–(1.3). Then v = 0, p = 0.

Note, however, that there do exist nontrivial Beltrami flows slowly decaying at
infinity; see Enciso and Peralta-Salas (2012). Note also that nontrivial compactly
supported solutions of system (1.1) exist, e.g., any spherically symmetric vector field
v is a solution of (1.1) for a suitable pressure p, but we do not know whether the
system

3∑

j=1

v j ∂vi

∂x j
+ ∂p

∂xi
= 0, i = 1, 2, 3

which is equivalent to (1.1) and to (1.2) under the additional condition (1.3), admits a
non-trivial compactly supported solution not satisfying (1.3).

Our idea is to separate the study of system (1.1) from the study of Eq. (1.3) using an
integral geometry technique which permits to encode (almost) all information about
a compactly supported solution v of (1.1) in a single scalar function w defined on the
Grassmannian M of affine lines in space. We conjecture that this function w is in fact
identically zero, which can readily be verified for any spherically symmetric solution.
If it were the case, then adding the incompressibility condition (1.3) to the condition
w = 0 we were able to obtain that v = 0 everywhere. In order to proof that w = 0
we deduce a linear differential equation for w on M . Unfortunately, this equation is
not elliptic and admits non-trivial solutions, and therefore, the purported annulation
of w remains conjectural, despite some additional integral geometry arguments going
in the same direction.

More concretely, below we characterize the kernel of (1.1) in terms of integral
transforms of the quadratic forms viv j . Thus, given any smooth compactly supported
solution (v; p) of (1.1), we define a smooth function w on the Grassmannian M
classifying lines in space using the X -ray transforms of viv j and then derive a lin-
ear differential equation for w. Using a Radon plane transform of w we deduce one
more linear homogeneous differential equation which suggests that w = 0 every-
where. However, we are not able to justify this claim rigorously and we formulate
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Integral Geometry of Euler Equations 399

it as a conjecture; we show that assuming the conjecture and (1.3) one can deduce
Conjecture 1.1. Therefore, we put forth

Conjecture 1.2 Let w be the function on the Grassmannian G1,3 of affine lines in R
3,

defined below in Sect. 3, which depends on a compactly supported solution (v; p) of
(1.1). Then w = 0 everywhere.

Note, in particular, that this conjecture holds for any spherically symmetric com-
pactly supported vector field v.

Note also that it is possible to prove that the general solution of Eq. (4.5) depends on
two arbitrary (smooth compactly supported) functions (V.A. Sharafutdinov, personal
communication) and therefore to prove Conjecture 1.2 one needs to use some non-
linear argument, e.g. using the fact that the tensor v ⊗ v is of rank 1 as opposed
to the general symmetric tensor of rank 3 which also gives a solution of (4.5) by
constructing the corresponding function w; thus, we can say that we have (at least)
two more independent conditions on w. Unfortunately, we not know how to use this
rank conditions to restrict possible functionsw’s. However, there do exist some natural
linear conditions for a suitable tensor which are sufficient to prove Conjecture 1.2, for
instance, system (5.4) which is partially supported by Eq. (5.3).

The rest of the paper is organized as follows: in Sect. 2we recall somedefinitions and
results fromSharafutdinov (1994) concerning the X -ray transformof symmetric tensor
fields. In Sect. 3we define and study a smooth functionw ∈ C∞(M)which depends on
a smooth compactly supported solution (v, p) of (1.1). Section 4 contains a description
of two invariant order 2 differential operators on C∞(M) and a differential equation
for w in terms of those operators. In Sect. 5 we define a plane Radon transform for
quadratic tensor fields, prove that it vanishes for some quadratic tensor field connected
with w and explain why this annulation partially confirms Conjecture 1.2. Finally, in
Sect. 6 we deduce Conjecture 1.1 assuming Conjecture 1.2 together with (1.3).

2 Tensor X-ray Transform

We use throughout our paper the integral geometry of tensor fields developed in Shara-
futdinov (1994) and discussed in Nadirashvili et al. (2016) in its three-dimensional
form. Let us give some of its points in our simple situation. For details see Sharafut-
dinov (1994) and Nadirashvili et al. (2016).

In what follows we fix a positive scalar product 〈x, y〉, x, y ∈ R
n . Let

T S
n−1 = {(x, ξ) ∈ R

n × R
n : ‖ξ‖ = 1, 〈x, ξ 〉 = 0} ⊂ R

n × (Rn\{0})

be the tangent bundle of S
n−1 ⊂ R

n .
Given a continuous rank h symmetric tensor field f on R

n , the X-ray transform of
f is defined for (x, ξ) ∈ R

n × (Rn\{0}) by

(I f )(x, ξ) =
n∑

i1,...,ih=1

∞∫

−∞
fi1...ih (x + tξ) ξi1 . . . ξih dt (2.1)
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400 N. Nadirashvili, S. Vlăduţ

under the assumption that f decays at infinity so that the integral converges.
We denote by S(Sh; R

n) the space of symmetric degree h tensor fields with all
components lying in the Schwartz space, and denote by S(T S

n−1) the Schwartz
space on T S

n−1. Below we consider only tensors from S(Sh; R
n) and functions

from S(T S
n−1). For such f ∈ S(Sh; R

n) we get a C∞-smooth function ψ(x, ξ) =
(I f )(x, ξ) on R

n × (Rn\{0}) satisfying the following conditions:

ψ(x, tξ) = sgn(t)th−1ψ(x, ξ) (0 
= t ∈ R), ψ(x + tξ, ξ) = ψ(x, ξ), (2.2)

which mean that (I f )(x, ξ) actually depends only on the line passing through the
point x in direction ξ , and we parameterize the manifold of oriented lines in R

n

by T S
n−1. For χ(x, ξ) ∈ S(T S

n−1) we can extend χ by homogeneity, setting
χ(x, ξ) = χ(x, ξ/‖ξ‖), to the open subset Q ∩ {ξ 
= 0} of the quadric

Q = {(x, ξ) ∈ R
n × R

n : 〈x, ξ 〉 = 0} ⊃ T S
n−1.

Conversely, for a tensor field f ∈ S(Sh; R
n), the restriction χ = ψ |TSn−1 of the

functionψ = I f to themanifold T S
n−1 belongs toS(T S

n−1). Moreover, the function
ψ is uniquely recovered from χ by the formula

ψ(x, ξ) = ‖ξ‖h−1χ

(
x − 〈x, ξ 〉

‖ξ‖2 ξ,
ξ

‖ξ‖
)

, (2.3)

which follows from (2.2); note that
(

x − 〈x,ξ〉
‖ξ‖2 ξ,

ξ
‖ξ‖

)
∈ T S

n−1 ⊂ Q, and thus the

right-hand side of (2.3) is correctly defined. Therefore, the X-ray transform can be
considered as a linear continuous operator I : S(Sh; R

n)−→S(T S
n−1), and now we

are going to describe its image and kernel.
The image of the operator I is described byTheorem2.10.1 in Sharafutdinov (1994)

as follows.

John’s Conditions. A function χ ∈ S(T S
n−1) (n ≥ 3) belongs to the range of the

operator I if and only if the following two conditions hold:

1. χ(x,−ξ) = (−1)hχ(x, ξ);
2. The function ψ ∈ C∞(Rn × (Rn\{0})) defined by (2.3) satisfies the equations

(
∂2

∂xi1∂ξ j1
− ∂2

∂x j1∂ξi1

)
. . .

(
∂2

∂xih+1∂ξ jh+1

− ∂2

∂x jh+1∂ξih+1

)
ψ = 0 (2.4)

written for all indices 1 ≤ i1, j1, . . . , ih+1, jh+1 ≤ n.

Define the symmetric inner differentiation operator ds = σ∇ by symmetrization
of the covariant differentiation operator ∇ : C∞(Sh)−→C∞(T h+1),

(∇u)i1,...ih+1 = ui1...ih;ih+1 = ∂ui1...ih

∂xih+1

;
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Integral Geometry of Euler Equations 401

it does not depend on the choice of a coordinate system.
The kernel of the operator I is given by (Theorem 2.2.1, (1),(2) in Sharafutdinov

1994).

Kernel of the Ray Transform. Let n ≥ 2 and h ≥ 1 be integers. For a compactly-
supported field f ∈ C∞

0 (Sh; R
n) the following statements are equivalent:

1. I f = 0;
2. There exists a compactly-supported field v ∈ C∞

0 (Sh−1; R
n) such that its support

is contained in the convex hull of the support of f and

dsv = f. (2.5)

Note also that an inversion formula for the operator I given by Theorem 2.10.2 in
Sharafutdinov (1994) implies that it is injective on the subspace of divergence-free
(=solenoidal) tensor fields.

The 3-Dimensional Case For n = 3 one notes that the tangent bundle T S
2 over S

2

coincideswith the homogeneous space M = G/(R×SO(2)) = G ′/(R×O(2)), where
G = R

3
� SO(3) is the group of proper rigid motions of R

3, while G ′ = G · {±I3}
is the isometry group of R

3. Therefore the operator I for n = 3 can be written as
I : S(Sh; R

3)−→S(M).

Let us define coordinates on the open subset Mnh of M consisting of non-horizontal
affine lines. Namely, m = m (y1, y2, α1, α2) is given by a parametric equation for a
current point A on m,

A = (y1, y2, 0) + tα = (y1 + α1t, y2 + α2t, t),

where t grows in the positive direction ofm and thus the vector α = (α1, α2, 1) defines
the positive direction of m.

We can now rewrite the above general formulas using the coordinates
(y1, y2, α1, α2). First we fix the following notation:

k = k(α1, α2) =
√
1 + α2

1 + α2
2 =

√
1 + ‖α‖2; (2.6)

we will use this notation throughout the paper.
Define the diffeomorphism

	 : U → R
4, (x, y, z, ξ) = (x, y, z, ξ1, ξ2, ξ3) �→ (y, α) = (y1, y2, α1, α2),

on the open set U = T S
2 ∩ {ξ3 > 0} by

y1 = x − ξ1

ξ3
z, y2 = y − ξ2

ξ3
z, α1 = ξ1

ξ3
, α2 = ξ2

ξ3
. (2.7)

Then (U,	) is a coordinate patch on M ; this parametrization was used by F. John in
his seminal paper (John 1938).
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402 N. Nadirashvili, S. Vlăduţ

For a function χ ∈ C∞(U ), we define ϕ ∈ C∞(R4) by

ϕ = kh−1χ ◦ 	−1.

These two functions are expressed through each other by the formulas

χ(x, y, z, ξ) = ξ h−1
3 ϕ

(
x − ξ1z

ξ3
, y − ξ2z

ξ3
,
ξ1

ξ3
,
ξ2

ξ3

)
,

ϕ(y, α) = kh−1χ

(
y1 − 〈y, α〉α1

k2
, y2 − 〈y, α〉α2

k2
,−〈y, α〉

k
,
α1

k
,
α2

k
,
1

k

)
. (2.8)

If a function χ ∈ C∞(T S
2) satisfies χ(−x,−ξ) = (−1)hχ(x, ξ), then it is

uniquely determined by

ϕ = kh−1χ |U ◦ 	−1 ∈ C∞(R4).

For a tensor field f ∈ S(Sh; R
3), the function

ϕ = kh−1(I f )|U ◦ 	−1 ∈ C∞(R4) (2.9)

is expressed through f by the formula

ϕ(y, α) =
3∑

i1,...,ih=1

∞∫

−∞
fi1...ih (y1 + α1t, y2 + α2t, t) αi1 . . . αih dt, (2.10)

with α3 = 1, which easily follows from (2.1).
Let

L =def
∂2

∂α2∂y1
− ∂2

∂α1∂y2
(2.11)

be the John operator. The main result of Nadirashvili et al. (2016) says that for n = 3,
a function χ ∈ S(T S

2) belongs to the range of the operator I for a given h ≥ 0 if and
only if the following two conditions hold:

1. χ(−x,−ξ) = (−1)hχ(x, ξ);
2. The function ϕ ∈ C∞(R4) defined by (2.8) solves the equation

Lh+1ϕ = 0. (2.12)

Thus h2+5h+6
2 Eq. (2.4) for n = 3 are equivalent to Eq. (2.12).

3 Function w

In what follows we fix a compactly supported smooth solution (v, p) ∈ C∞
0 (R3) of

system and define a function w ∈ C∞
0 (M) using the following result.
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Integral Geometry of Euler Equations 403

Lemma 3.1 Let L be an affine plane in R
3 and let νL be its unit normal, then

∫

L
〈v, z〉〈v, νL 〉 dσL = 0 (3.1)

for any z ∈ L where dσL is the area element on L.

Proof We can assume without loss of generality that L = {(x1, x2, 0)} and νL =
(0, 0, 1) = e3, z = z1e1 + z2e2 for e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).
Then we have

∫

L
〈v, z〉〈v, ν〉 dσL =

∫
(z1v

1 + z2v
2)v3 dx1dx2

= z1

∫
v1v3 dx1dx2 + z2

∫
v2v3 dx1dx2.

Note that by Eq. (1.1) with i = 1 and i = 2 there holds

∂(v1v3)

∂x3
= −∂(v1v2)

∂x2
− ∂(v1v1)

∂x1
− ∂p

∂x1
,

∂(v2v3)

∂x3
= −∂(v2v1)

∂x1
− ∂(v2v2)

∂x2
− ∂p

∂x2
,

and thus we get

∂

∂x3

(∫
v1v3 dx1dx2

)
=

∫
∂(v1v3)

∂x3
dx1dx2 = 0,

∂

∂x3

(∫
v2v3 dx1dx2

)
=

∫
∂(v2v3)

∂x3
dx1dx2 = 0.

Therefore, the compactly supported functions

∫
v1v3 dx1dx2 and

∫
v2v3 dx1dx2

of x3 on R are constant and thus vanish everywhere which finishes the proof.

For any fixed value of x3, we define the vector field v⊥v3 = (−v2v3, v1v3) on the
plane (x1, x2, x3) with coordinates {x1, x2} depending on x3 as on a parameter, where
u⊥ = (−u2, u1) for a vector field u = (u1, u2) on R

2; note that below we use this
notation for vector fields on various planes in R

3. Then let us set

F =
∫ ∞

−∞
(−v2v3, v1v3) dx3; (3.2)

note that F is a compactly supported vector field on the plane�12 = {(x1, x2, 0)}with
coordinates {x1, x2} and (3.1) implies that I F = 0. Indeed, choose x0 = (x01 , x02 ) ∈
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404 N. Nadirashvili, S. Vlăduţ

R
2, 0 
= ξ = (ξ1, ξ2) ∈ R

2, and let L be the 2-plane through the point x0 parallel to
the vectors ξ and (0, 0, 1). Then the vector ν = (−ξ1, ξ2, 0) is orthogonal to L and
the vector ξ̃a = (−ξ1, ξ2, a) is parallel to L for every a. By (3.1) we have

∫

L
〈v, ξ̃a〉〈v, ν〉 dσL = 0

and thus we get

∫

L
(ξ1v

1 + ξ2v
2 + av3)(−ξ2v

1 + ξ1v
2) dσL = 0.

Substituting the values a = 0, a = 1 and taking the difference we get the equation
I F = 0.

Therefore, by (2.5) we have

dsw0 = ∇w0 = −F (3.3)

for a unique compactly supported smooth scalar function w0 = w0(x).
Let us fix for a moment a point P0 = (x01 , x02 ) ∈ R

2, let r ⊂ �12 = R
2 be a ray

emanating from P0 and let er be a unit directional vector of r , then in virtue of (3.3)
we have

∫

r
〈er , F〉 dsr = w0(x01 , x02 ) (3.4)

for the line element dsr of r . Let H ⊂ R
3 be a half-plane perpendicular to �12 with

∂ H = m(x01 , x02 , 0, 0), where m(x01 , x02 , 0, 0) is the vertical line passing through the
point (x01 , x02 , 0) ∈ �12; therefore, H orthogonally projects onto some ray r emanating
from P0. Let us consider the integral

∫

H
v3〈νH , v〉 dσH = −

∫

r
〈er , F〉 dsr

for the area element dσH of H and a suitable unit normal νH to H , then by (3.4) it does
not dependon H for a fixed point P0 = (x01 , x02 ) and afixed line ∂ H = m(x01 , x02 , 0, 0).
Since the choice of a vertical line inR

3 is arbitrary we see that the following definition
is correct:

Definition 3.2 Define

w = −
∫

H(m)

〈em, v〉〈νH(m), v〉 dσH(m) (3.5)

where H(m) is a half-plane with ∂ H(m) = m and νH(m) is the unit normal to H(m)

such that the basis (em, νm, νH(m)) is positively oriented for the interior unit normal
νm to m lying in H(m).
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Integral Geometry of Euler Equations 405

Therefore, w is a compactly supported smooth function on M and it can be written
as w = w(y1, y2, α1, α2) on Mnh ; moreover, we get

Lemma 3.3 We have

w(y1, y2, 0, 0) = w0(y1, y2).

Proof Indeed, it is sufficient to verify that

∂w

∂y1
(0) =

∫ ∞

−∞
v2v3 dx3,

∂w

∂y2
(0) = −

∫ ∞

−∞
v1v3 dx3, (3.6)

which is clear, since

w(δ, 0, 0, 0) = −
∫

H1,δ

v2v3 dx1dx3 = −
∫ ∞

δ

dx1

∫ ∞

−∞
v2v3 dx3,

w(0, μ, 0, 0) =
∫

H2,μ

v1v3 dx2dx3 =
∫ ∞

μ

dx2

∫ ∞

−∞
v1v3 dx3

for the half-planes

H1,δ = {(x1 > δ, 0, x3)}, H2,μ = {(0, x2 > μ, x3)}.

Now we give two explicit formulas for w which use two specific choices of H(m).
We begin by putting

k1 =
√
1 + α2

1, k2 =
√
1 + α2

2; (3.7)

recall also that k =
√
1 + α2

1 + α2
2 .

Given a linem ∈ Mnh, let H(m)1 and H(m)2 be the half-planeswith the border-line
m which are determined by the following conditions:

(i) H(m)1 is parallel to x1-axis, H(m)2 is parallel to x2-axis;
(ii) 〈νi , ei 〉 > 0, i = 1, 2,

for e1 = (1, 0, 0), e2 = (0, 1, 0) and the internal normals νi ∈ H(m)i , i = 1, 2.
We have then

νH(m)1 =
(
0,

1

k2
,−α2

k2

)
, νH(m)2 =

(
− 1

k1
, 0,

α1

k1

)
,

and the plane H(m)1 forms angle β1 with the coordinate plane�13 = {x2 = 0}where
cosβ1 = 1/k2, while the plane H(m)2 forms angle β2 with the coordinate plane
�23 = {x1 = 0}, cosβ2 = 1/k1. Note also that we have

em = 1

k
(α1, α2, 1) =

(
α1

k
,
α2

k
,
1

k

)
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406 N. Nadirashvili, S. Vlăduţ

for the positive unit directional vector em of m.

Proposition 3.4 Let dσi be the surface area element on H(m)i and let li = yi + x3αi

for i = 1, 2. Then in the introduced notation we have

(i) w = −
∫

H(m)2

〈em, v〉〈νH(m)2 , v〉 dσ2

= −
∫ ∞

−∞

∫ ∞

l2
(〈em, v〉〈νH(m)2 , v〉)|(l1,x2,x3)k1dx2dx3

=
∫ ∞

−∞

∫ ∞

l2

1

k
((α1v

1 + α2v
2 + v3)(v1 − α1v

3))|(l1,x2,x3)dx2dx3 (3.8)

(ii) w = −
∫

H(m)1

〈em, v〉〈νH(m)1 , v〉 dσ1

= −
∫ ∞

−∞

∫ ∞

l1
(〈em, v〉〈νH(m)1 , v〉)|(x1,l2,x3)k2 dx1dx3

= −
∫ ∞

−∞

∫ ∞

l1

1

k
((α1v

1 + α2v
2 + v3)(v2 − α2v

3))|(x1,l2,x3) dx1dx3.

(3.9)

Proof This is an elementary calculation which we give only for H(m)1, since the
case of H(m)2 is completely similar; note only that the choice of normals νH(m)1 and
νH(m)2 comes from the orientation condition. Let us fix the values of y1, y2, α1, and
α2, and let Hi ⊃ H(m)i be an affine plane containing H(m)i for i = 1, 2. Then an
equation of H1 is of the form ax2 + bx3 + c = 0, and therefore c = −ay2. Since
em ∈ H̄1 for the vector plane H̄1 parallel to H1, we get aα2 + b = 0, and we can
choose a = 1, b = −α2, so the equation takes the form

x2 − x3α2 − y2 = 0,

and therefore x2 = x3α2+y2 on the half-plane H(m)1. Since cosβ1 = cos arctan α2 =
1
k2
, we see that dσ1 = k2 dx1dx3. Then one notes that the orthogonal projectionπ13(m)

of m on the coordinate plane �13 = {x2 = 0} is given by

π13(m) = �13 ∩ H2 = {x1 = y1 + α1x3},

and thus H(m)1 projects onto

{x1 > y1 + x3α1} ⊂ �13,

since 〈ν2, e2〉 > 0, which completes the proof.

The formulas (3.8) and (3.9) are somewhat cumbersome and use below only the
following simple consequence.
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Integral Geometry of Euler Equations 407

Corollary 3.5 In the first order of (α1, α2), ignoring terms with total degα ≥ 2, we
have the following expressions:

w =
∫ ∞

−∞

∫ ∞

l2
(α2v

1v2 + v1v3 + α1(v
1)2 − α1(v

3)2)|(l1,x2,x3) dx2dx3, (3.10)

w =
∫ ∞

−∞

∫ ∞

l1
(α2(v

3)2 − α1v
1v2 − v2v3 − α2(v

2)2)|(x1,l2,x3)dx1dx3. (3.11)

This corollary permits to calculate the quantities

∂mw

∂yi
1∂y j

2 ∂αk
1∂αl

2

(0), i + j + k + l = m,

for k + l ≤ 1, and in particular, implies the following.

Corollary 3.6 We have

∂2w

∂y2∂α1
(0) =

∫ ∞

−∞

(
(v3)2 − (v1)2 − x3

∂(v3v1)

∂x1

) ∣∣∣∣
(0,0,x3)

dx3, (3.12)

∂2w

∂y1∂α2
(0) =

∫ ∞

−∞

(
(v2)2 − (v3)2 + x3

∂(v3v2)

∂x2

) ∣∣∣∣
(0,0,x3)

dx3, (3.13)

∂2w

∂y21
(0) + ∂2w

∂y22
(0) =

∫ ∞

−∞

(
∂(v2v3)

∂x1
− ∂

(
v1v3

)

∂x2

) ∣∣∣∣
(0,0,x3)

dx3. (3.14)

Proof of (3.12) From (3.10) we have

w(0, y2, α1, 0) =
∫ ∞

−∞

∫ ∞

y2
(v1v3 + (v1)2α1 − (v3)2α1)|(x3α1,x2,x3) dx2dx3,

whence we get

∂w(0, 0, α1, 0)

∂y2
= −

∫ ∞

−∞
(v1v3 + (v1)2α1 − (v3)2α1)|(α1x3,0,x3) dx3

and, finally,

∂2w

∂y2∂α1
(0) =

∫ ∞

−∞

(
(v3)2 − (v1)2 − x3

∂(v3v1)

∂x1

)
|(0,0,x3) dx3.

The proof of (3.13) is completely similar and that of (3.14) is even simpler.

Taking then the difference of (3.12) and (3.13) we get the following formula:

∂2w

∂y1∂α2
(0) − ∂2w

∂y2∂α1
(0) =

∫ ∞

−∞
(p + (v1)2 + (v2)2 − (v3)2)|(0,0,x3) dx3.

(3.15)
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Indeed, we have ∂(v3v1)
∂x1

+ ∂(v3v2)
∂x2

= − ∂(p+(v3)2)
∂x3

by (1.1) and integrating

∫ ∞

−∞
x3

(
∂(v3v1)

∂x1
+ ∂(v3v2)

∂x2

) ∣∣∣∣
(0,0,x3)

dx3 = −
∫ ∞

−∞
x3∂(p + (v3)2)

∂x3

∣∣∣∣
(0,0,x3)

dx3

by parts we get (3.15).

4 Operators P and �M

Let us define first an order 2 differential operator P on the space C2(M).

Recall that M = G/(R × SO(2)) = G ′/(R × O(2)) for G = R
3

� SO(3) and
G ′ = G · {±I3}.

Definition 4.1 Let f ∈ C2(M), m0 ∈ M , and let g(m0) = 0 = (0, 0, 0, 0) for
g ∈ G. Then

P f (m0) =def L fg(0),

where fg(m) = f (g−1(m)) for any m ∈ M and L is defined by (2.11).

Lemma 4.2 This definition is correct.

Proof We must verify that L fg(0) = L fh(0) for any g, h ∈ G such that g(m0) =
h(m0) = (0).

We put u = g−1h, F = fu , and thus we have to verify that L F(0) = L Fu(0) for
u ∈ R ×SO(2) = St0, St0 < G being the stabilizer of the vertical line. It is sufficient
to verify the equality separately for u ∈ R and u ∈ SO(2). It is clear for a vertical
shift u ∈ R since L has constant coefficients; for a rotation u ∈ SO(2) by angle θ in
the horizontal plane one easily calculates

Fu(y1, y2, α1, α2) = F(y1 cos θ − y2 sin θ, y2 cos θ + y1 sin θ, α1 cos θ

−α2 sin θ, α2 cos θ + α1 sin θ),

and a simple calculation shows the necessary equation, since we get

∂2Fu(0)

∂α2∂y1
= cos2 θ

∂2F(0)

∂α2∂y1
− sin2 θ

∂2F(0)

∂α1∂y2
+ cos θ sin θ

(
∂2F(0)

∂α1∂y1
− ∂2F(0)

∂α2∂y2

)
,

∂2Fu(0)

∂α1∂y2
= cos2 θ

∂2F(0)

∂α1∂y2
− sin2 θ

∂2F(0)

∂α2∂y1
+ cos θ sin θ

(
∂2F(0)

∂α1∂y1
− ∂2F(0)

∂α2∂y2

)
.

The proof is finished.
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We can now rewrite (3.15) as follows

P0w =
∫ ∞

−∞
(p + (v1)2 + (v2)2 − (v3)2) dx3

=
∫ ∞

−∞
(p + |v|2 − 2(v3)2) dx3 (4.1)

for the operator P0 being P evaluated at 0, which implies that

Pw =
∫

m
(p + |v|2 − 2〈v, em〉2) ds

=
∫

m
(p + |v|2 − 2v ⊗ v) ds = I Q0(m) (4.2)

for the quadratic tensor field Q0 = (p + |v|2)δi j − 2v ⊗ v and any m ∈ M , since P
is G-invariant; therefore Pw = I Q0 as functions on M .

We will also use the fiber-wise Laplacian �M = �y1,y2 acting in tangent planes to
S
2; it is defined by the usual formula

�M f (m) = ∂2 f (m)

∂ y12
+ ∂2 f (m)

∂ y22

for f ∈ C2(M) and a vertical line m = m(y1, y2, 0, 0). For any m ∈ M the value
�M f (m) is determined by the G-invariance condition as for the operator P above,
and the rotational symmetry of �y1,y2 guarantees the correctness of that definition.
Note that the operators P , �M commute and note also that (2.10) implies that for
Q ∈ C∞

0 (Sh, R
3) there holds a commutation rule

I (�Q) = �M (I Q). (4.3)

Remark 4.1 The algebra DG ′(M) of the G ′-invariant differential operators on M is
freely generated by�M and P2 as a commutative algebra, see Gonzalez and Helgason
(1986).

One can also give explicit formulas for P and �M in our coordinates, namely,

P = k2L + α1
∂

∂y2
− α2

∂

∂y1
, �M = k21

∂2

∂y21
+ k22

∂2

∂y22
+ 2α1α2

∂2

∂y1∂y2
. (4.4)

Now we deduce the principal linear differential equation for w.

Proposition 4.3 We have

P2w = −4�Mw. (4.5)

Proof We begin with the following simple result.
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Lemma 4.4 If f ∈ C∞
0 (R3) is a scalar function then P(I f ) = 0.

Indeed, since P is G-invariant, it is sufficient to verify the equation at a single point
0 ∈ M which follows from (2.12) with h = 0.

Lemma 4.4 implies by (4.2) that

P2w = P I Q0 = P I ((p + |v|2)δi j − 2v ⊗ v) = −2P I (v ⊗ v) (4.6)

for a compactly supported vector field v solving (1.1). Moreover, we have

I (v ⊗ v)(y1, y2, α1, α2) =
∫ ∞

−∞
((v3)2 + 2v1v3α1 + 2v2v3α2) dx3 + O(|α|2)

and thus by (3.14) we get

P I (v ⊗ v)(0) = P0 I (v ⊗ v) = 2
∫ ∞

−∞

(
∂

(
v2v3

)

∂x1
− ∂

(
v1v3

)

∂x2

)
dx3 = 2�Mw(0),

hence P I (v ⊗ v) = 2�Mw everywhere and P2w = −4�Mw by (4.6).

Corollary 4.5 The equation

I Q0(m) = 0, ∀m ∈ M (4.7)

implies Conjecture 1.2.

Indeed, if I Q0(m) = 0 then �Mw(m) = − 1
4 P2w(m) = − 1

4 P I Q0(m) = 0 and
thus w = 0, since w is compactly supported.

Invariant definitions and the second proof of (4.5) Now let us give a description of P
and �M in terms of the Lie algebra g of G. We have g = so(3) ⊕ r(3) = R

3 ⊕ R
3 as

vector spaces, where r(3) is 3-dimensional and abelian. Thus, we can write any g ∈ g
as g = (r; s) ∈ so(3) ⊕ r(3), and the commutators in g are given by

[(r1; 0), (r2; 0)]=(r1 × r2; 0), [(0; s1), (0; s2)] = 0, [(r; 0), (0; s)]=(0; r × s).

Let (R1, R2, R3) be the standard basis of so(3), and (S1, S2, S3) be that of r(3).
Consider the following operators on M :

�̃M = S2
1 + S2

2 + S2
3 , P̃ = S1R1 + S2R2 + S3R3, (4.8)

where we denote simply by g the action on M of an element g ∈ U (g) of the universal
enveloping algebraU (g); therefore, Si acts as the infinitesimal shift in the xi -direction,
and Ri as the infinitesimal rotation about xi -axis.

Proposition 4.6 We have �̃M = �M and P̃ = P.
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Proof First, the operators �̃M and P̃ are G-invariant. Indeed, it follows from the
rotational invariance of the quadratic form x21 + x22 + x23 that �̃M is rotationally
invariant; for translations, the same follows from the commutation rule Si S j = S j Si

for i, j = 1, 2, 3.
To prove the invariance of P̃ under the x3-axis rotation we verify that P̃ and R3

commute which can be shown as follows:

[S1R1, R3] = −S2R1 − S1R2, [S2R2, R3] = S1R2 + S2R1, [S3R3, R3] = 0.

Similarly we get its invariance under the x1- and x2-axis rotations and thus its
SO(3)-invariance, while its x3-translations invariance follows from

[S1R1, S3] = −S1S2, [S2R2, S3] = S1S2, [S3R3, S3] = 0.

Since any line is SO(3)-conjugate to a vertical one, P̃ is G-invariant. Finally, we
have �̃M (m0) = �M (m0), P̃(m0) = P(m0) for m0 = m(0, 0, 0, 0), which finishes
the proof, since �M and P are both G-invariant. Indeed, e.g., in P̃(m0) the terms
S1R1 + S2R2 give L(0), while S3R3 vanishes since m0 is invariant under both S3 and
R3.

Second Proof of Proposition 4.3 Let t ∈ R, and let lt = m(t, 0, 0, 0) be a vertical line
in the plane �13; note that �13 = ⋃

t∈R lt .

Lemma 4.7 For f ∈ C∞
0 (M) we have

∫

R

P2 f (lt ) dt =
∫

R

S2
2 R2

2 f (lt ) dt. (4.9)

Proof Define the operators A and B by A = S1R1P, B = S3R3P; then

P2 = A + B + S2R2P = A + B + S2R2 (S1R1 + S2R2 + S3R3) .

Since A f (lt ) is a derivative of a function of t , while B vanishes identically on �13,
we get that

∫

R

(A f (lt ) + B f (lt ))dt = 0.

We have also

S2R2S1R1( f (lt )) = S1S2R2R1( f (lt )) − S3S2R1( f (lt )),

thus the integral of the left-hand side is zero and the same is true for

S2R2S3R3( f (lt )) = S3S2R2R3( f (lt )) + S1S2R3( f (lt ));

since S2R2S2R2 = S2
2 R2

2 we get the conclusion.

123



412 N. Nadirashvili, S. Vlăduţ

Lemma 4.8 We have
∫

R

R2
2w(lt ) dt = −4

∫

R

w(lt ) dt. (4.10)

Proof Let us fix a positive constant c < π
2 , and let lθt = ( t

cos(θ)
, 0, tan(θ), 0) for any θ

with |θ | < c; therefore, lθt is just the line lt rotated (in the clockwise direction) through
the angle θ about the origin in the plane �13, and for any t we have

R2
2w(lθt )|θ=0 = ∂2

∂θ2
w(lθt )|θ=0.

Let eθ
1 = (cos θ, 0,− sin θ), eθ

3 = (sin θ, 0, cos θ) then we have

w(lθt ) = 1

cos θ

∫ ∞

0

∫

lt
〈v, eθ

1〉〈v, eθ
3〉|( t

cos θ
+x3 tan θ,x2,x3) dx3dx2

by (3.8), and if we put t = x1 cos θ − x3 sin θ we get that

∫

R

w(lθt ) dt = 1

cos θ

∫ ∞

0

∫

R2
〈v, eθ

1〉〈v, eθ
3〉 dx3dx2dt

=
∫

x2>0
〈v, eθ

1〉〈v, eθ
3〉 dx1dx2dx3.

Therefore, since 〈v, eθ
1〉〈v, eθ

3〉 = v1v3 cos 2θ + ((v1)2 − (v3)2) sin 2θ2 we have

∂2

∂θ2

∫

R

w(lθt ) dt =
∫

x2>0

∂2

∂θ2
(〈v, eθ

1〉〈v, eθ
3〉) dx1dx2dx3

= −4
∫

x2>0
(〈v, eθ

1〉〈v, eθ
3〉) dx1dx2dx3

and evaluating at θ = 0 we get a proof of Lemma 4.8.
We can finish now our second proof of (4.5). Indeed, (4.9) and (4.10) imply that

∫

R

P2w(lt ) dt =
∫

R

S2
2 R2

2w(lt ) dt = −4
∫

R

S2
2w(lt ) dt = −4

∫

R

�Mw(lt ) dt.

(4.11)

If we define a function F(x1, x2) on R
2 by

F(x1, x2) = P2w(x1, x2, 0, 0) + 4�Mw(x1, x2, 0, 0),

then the integral of F over the x1-axis vanishes by (4.11). Changing the coordinate
system x1, x2 in R

2, we get the same for the integral of F over any line in the plane
{x1, x2}. Thus F = 0 by Radon’s theorem, and we get the conclusion.
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Remark 4.2 One can compare (4.5) with results that can be deduced from (2.12) for
h = 2. A simple direct calculation using (4.4) gives for h = 2

P3ψ + 4P�Mψ = 0 (4.12)

if ψ = I Q for Q ∈ C∞
0 (S2, R

3). Applying then (4.12) to ψ = �Mw (which can
be written as �Mw = I Q′ for a certain Q′ not given here) we obtain P3�Mw +
4P�2

Mw = �M P(P2w + 4�Mw) = 0 and thus P(P2w + 4�Mw) = 0 which is
much weaker than (4.5) since the kernel of P is enormous.

However, it is possible to construct a function u ∈ C∞
0 (M) verifying

P�M u = −2�Mw, �M u = I Q1

for some Q1 ∈ C∞
0 (S2, R

3) and applying (4.12) to ψ = �M u = I Q1 we get

0 = P3�M u + 4�2
M Pu = −2�M (P2w + 4�Mw),

and thus we reprove (4.5). We can define u similarly to (3.5) as follows

u =
∫

H(m)

dist(P, m)(p + 〈νH(m), v〉2)dσH(m),

where dist(P, m) is the distance from a point P ∈ H(m) to m.

5 A Radon Plane Transform

Let us define a Radon tensor plane transform J as follows:

J Q(L) =
∫

L
tr(Q|L) dσL (5.1)

for an affine plane L ⊂ R
3 and Q ∈ C∞(S2; R

3) satisfying

|Q(x)| ≤ C(1 + |x |)−2−ε, (5.2)

for some ε > 0, where Q|L is the restriction onto L; then we get a bounded linear
operator

J : S(S2; R
3)−→S(RP3)

for the manifold RP3 parametrizing affine planes L ⊂ R
3.

Proposition 5.1 We have J Q0(L) = 0.
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Proof We have for any affine plane L ⊂ R
3 that

J Q0(L) = 2
∫

L
(p + 〈v, νL 〉2) dσL = 0.

Indeed, setting without loss of generality L = �12, νL = e3 we get that

∂ J Q0

∂x3
(�12) = ∂

∂x3

(∫

L
(p + 〈v, νL 〉2) dσL

)

=
∫

�12

∂(p + (v3)2)

∂x3
dx1dx2

= −
∫

�12

(
∂(v1v3)

∂x1
+ ∂(v2v3)

∂x2

)
dx1dx2 = 0.

Therefore, J Q0(�12) does not depend on x3 and hence equals 0.

Let us explain in what Proposition 5.1 partially confirms (4.7) and thus Conjec-
ture 1.2. One can verify that the condition J Q0(L) = 0,∀L ∈ RP3 is equivalent to
the following equation for the components {qi j } of Q0:

3∑

i, j=1

∂2qi j

∂xi∂x j
= �tr Q0, (5.3)

while I Q0(m) = 0, ∀m ∈ M is equivalent to the following system

2 ∂qi j

∂xi∂x j
= ∂2qii

∂x2j
+ ∂2q j j

∂x2i
, 1 ≤ i < j ≤ 3 (5.4)

of three equations and their sum gives (5.3).

6 A Uniqueness Theorem

Now we can deduce Conjecture 1.1 from Conjecture 1.2.

Theorem 6.1 Let (v, p) ∈ C
∞
0 (R3) be a solution of (1.1)–(1.3) and let the corre-

sponding function w vanish everywhere on M then (v; p) = 0 everywhere.

Proof For m ∈ M denote by t a vector parallel to m and by n a vector perpendicular
to m, then the equality w = 0 implies that

∫

m
〈v, t〉〈v, n〉 ds = 0. (6.1)

Let L ⊂ R
3 be an affine plane; let vn = 〈νL , v〉 and vt = v−vnνL be its components

normal to L and tangent to L , respectively. Then by (6.1) we have I V = 0 for the
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vector field V = vnvt on L , and hence curlL V = 0 for the curl operator curlL on L
which gives

vn curlL vt − 〈v⊥
t ,∇Lvn〉 = −vnωn − 〈v⊥

t ,∇Lvn〉 = 0 (6.2)

for the normal component ωn of ω = curl v and the gradient operator ∇L on L . We
will apply (6.2) to various planes L ⊂ R

3.

First take L = �12, then vt = (v1, v2, 0), vn = v3, V = v3vt and we get

v3 curlL vt − 〈v⊥
t ,∇v3〉 = v3

(
∂v1

∂x2
− ∂v2

∂x1

)
− v1

∂v3

∂x2
+ v2

∂v3

∂x1
= 0. (6.3)

Let now

� =def {u ∈ R
3|v(u) 
= 0, ω(u) 
= 0}

and let D =def R
3\�̄. We can suppose that � is not empty, since otherwise

in a neighborhood of a point x0 where the maximum of |v| is attained we have
�v = − curl curl v + ∇div v = 0 and thus v is harmonic which contradicts the max-
imum principle for harmonic fields. It follows then that v = 0 in this neighborhood
and thus everywhere.

In orthonormal coordinates with v1(u0) = v2(u0) = 0 we get for u0 ∈ � that

v3
(

∂v1

∂x2
− ∂v2

∂x1

)
(u0) = 0 and therefore 〈v, ω〉(u0) = 0. (6.4)

Therefore 〈v, ω〉 = 0 holds everywhere on �, thus on R
3 and differentiating this

relation in the v-direction we obtain

〈v∇v, ω〉 + 〈v∇ω, v〉 = 0; (6.5)

using the commutation law

v∇ω = ω∇v (6.6)

we get then from (6.5) that

〈v∇v, ω〉 + 〈ω∇v, v〉 = 0. (6.7)

In orthonormal coordinates x1, x2, x3 with x1 directed along v and x2 directed along
ω at u0 we can rewrite (6.7) as follows

∂v1

∂x2
(u0) + ∂v2

∂x1
(u0) = 0, (6.8)
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since v(u0) 
= 0 and ω(u0) 
= 0. Below we always use that coordinate system.
Moreover, since the vector ω is directed along x2, we get

∂v1

∂x2
(u0) = ∂v2

∂x1
(u0) and therefore

∂v1

∂x2
(u0) = ∂v2

∂x1
(u0) = 0. (6.9)

Let then L = �13, and thus vt = (v1, 0, v3), vn = v2, V = v2vt . Since
vn(u0) = 0, we get from (6.2) and (6.6) that

∂v2

∂x3
(u0) = 0 and hence

∂v3

∂x2
(u0) = 0 and

∂ω3

∂x1
(u0) = 0. (6.10)

Then, differentiating (6.4) with respect to x1 and x3 at u0, we get

∂ω1

∂x1
(u0) = 0 and

∂ω1

∂x3
(u0) = 0. (6.11)

Now we take L = {x2 + x3 = 0}, therefore vn = v2+v3√
2

, νL =
(
0, 1√

2
, 1√

2

)
,

vt =
(
v1, v2−v3

2 , v3−v2

2

)
and V = v2+v3√

2

(
v1, v2−v3√

2

)

B in the orthonormal basis

B =
{

e′
1 = (1, 0, 0), e′

2 =
(
0, 1√

2
,− 1√

2

)}
. Since vn(u0) = 0 and the vector v⊥

t (u0)

is directed along e′
1, we get from (6.2) that

v1(u0)

(
∂v2

∂x2
(u0) + ∂v2

∂x3
(u0) − ∂v3

∂x3
(u0) − ∂v3

∂x2
(u0)

)
= 0

and thus

∂v2

∂x2
(u0) + ∂v2

∂x3
(u0) − ∂v3

∂x3
(0) − ∂v3

∂x2
(u0) = 0.

Therefore by (6.10) we get also

∂v2

∂x2
(u0) = ∂v3

∂x3
(u0). (6.12)

For L = {x1 + x2 = 0} we then have vn = v1+v2√
2

, νL =
(

1√
2
, 1√

2
, 0

)
,

vt =
(

v1−v2

2 , v2−v1

2 , v3
)
and thus V = v1+v2√

2

(
v1−v2√

2
, v3

)

B′ in the plane basis

B′ =
{(

1√
2
,− 1√

2
, 0

)
, (0, 0, 1)

}
. Since the vector v⊥

t (u0) is directed along (0, 0, 1)

we get from (6.2) and (6.9) that

v1(u0)

(
ω2(u0) + ∂v1

∂x3
(u0) + ∂v2

∂x3
(u0)

)
= 0;
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therefore, we get by (6.10) that

ω2(u0) = −∂v1

∂x3
(u0). (6.13)

If a trajectory γ = γ (t) of the flow v is parametrized by t, i.e. dγ
dt = v, we have in

virtue of (6.6) a differential inequality

|q ′(t)| ≤ C |q(t)|,

for the function q(t) =def ω2(γ (t)) and a positive constant C . Therefore, if q(0) 
= 0
then q(t) 
= 0 for any t ∈ R, thus any trajectory of v does not cross ∂� = ∂ D and
hence stays either in �̄ or in D̄.

Using (6.9), we see that |v| is constant on any trajectory � of the vector field ω and,
conversely, (6.10) and (6.11) imply that ω has a constant direction on any trajectory
γ of the flow v and therefore γ ⊂ �γ is a plane curve for an affine plane �γ . Set
ξ = ω/|ω|, then we can define the vector ξ(γ ) for any γ ⊂ � and ξ(γ ) ⊥ �γ . For
z ∈ � we get

∂ξ

∂x1
(z) = 0 (6.14)

since v(z) is parallel to x1, ω(z) is parallel to x2 and ξ(z) = (0, 1, 0); thus (6.11)
implies that

∂ξ1

∂x3
(z) = 0. (6.15)

Therefore ξ satisfies the Frobenius integrability condition 〈ξ, curl ξ 〉 = 0 and hence
in a neighborhood of z there exists a smooth function U (x) with ∇U 
= 0 parallel to
ξ . Moreover, U is a first integral of the flow v since ∂U/∂v = 0. Let then S be a level
surface ofU containing z, then S is foliated by the trajectories of v and the vector field
ξ defines the Gauss map ξ : S → S

2. Since ξ is constant on the trajectories of v the
image β = ξ(S) ⊂ S

2 is a curve or a point. Moreover, β is orthogonal to the axis x1
at ξ(γ ) by (6.14), (6.15) and (6.13) implies that γ is not a straight line. Thus we can
choose z′ ∈ γ, z′ 
= z and get that γ is orthogonal at ξ(γ ) to some line not parallel to
x1. Therefore rank ξ(γ ) = 0, hence rank ξ = 0 on S, ξ is constant on S and thus S
is a plane. We see that a neighborhood of z in R

3 is foliated by planes invariant under
the flow v.

Denote by γ (s, t) ⊂ � the trajectory of v passing through z + (0, s, 0), and let
Lz

s be the plane containing γ (s, t). Then Lz
s ⊥ ω(z + (0, s, 0)) and the planes Lz

s
are invariant under the flow v and foliate a neighborhood of z in R

3. Let λ(s, y) for
y ∈ �13 be an affine function on �13 with the graph Lz

s and let lz(y) = ∂λ
∂s (0, y) then

lz is an affine linear function. Denote by G a connected component of�13∩�, z ∈ G
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then G is invariant under the flow v. We fix some z′ ∈ G and set

l = lz′ ,

then l(z′) = 1.
Let z1, z2 ∈ G, then some neighborhoods of z1 and z2 in R

3 are foliated by the
same set of planes invariant under the flow v and thus the sets of planes Lz1

s and Lz2
s

are the same after a reparametrization. Therefore l does not vanish in G and we have
lz1 = lz2/ lz2(z1). Set now

h(t) = ∂γ (s, t)

∂s
|s=0

then h(0) = (0, 1, 0) and thus by (6.6) the vector field h is proportional to ω on
γ = γ (0, t). Since ω is orthogonal to �13 on γ we get that h(y) = (0, l(y), 0),

∂v2

∂x2
(y) = ∂ ln l

∂v
(y) (6.16)

for any y ∈ γ and l does not vanish on γ .
It follows by (6.16) and (6.12) that

∂v3

∂x3
(y) = ∂ ln l

∂v
(y) (6.17)

and since div v = 0 there holds (recall that x1 is directed along v(y))

∂|v|
∂x1

(y) = −2
∂ ln l

∂v
(y) = ∂ ln |v|

∂v
(y); (6.18)

hence we get that

|v(y)| = Cγ

l2(y)
(6.19)

along the trajectory γ for a positive constant Cγ depending on γ . Note also that
equations (6.16)–(6.19) hold for any trajectory of v in G and hence by continuity in
Ḡ outside the zero locus of l; in particular, we see that

v(y) 
= 0 for any y ∈ Ḡ with l(y) 
= 0. (6.20)

Let z0 ∈ Ḡ be a point where the function |v| attains its maximum on Ḡ, then
z0 ∈ ∂G. Indeed, if it is not the case, we have

∂v1

∂x3
(z0) = 0,
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and hence ω(z0) = 0 by (6.13) which implies z0 ∈ ∂G.
Let γ1 be the trajectory of v starting from z1 ∈ ∂G with v(z1) 
= 0, then ω = 0

on the whole trajectory γ1 and γ1 ⊂ ∂�. Therefore ∇b = v × ω = 0 on γ1, where
b = p + 1

2 |v|2 is the Bernoulli function (see, e.g., Arnold and Khesin 1998) and we
get

∇ p = −1

2
∇|v|2 on γ1. (6.21)

Let y ∈ γ1 and let e be a unit vector in�13 orthogonal to v(y), then 〈ve(y), v(y)〉 = 0
for ve = (∇ev

1,∇ev
3) by (6.13) since ω(y) = 0. Therefore 〈∇|v|2(y), e〉 = 0 and

(6.21) implies that γ1 is a straight line interval I which is finite since v has a compact
support, v vanishes at its end points and thus l|I = 0 by (6.20).

Let now z0 = 0 and continue to assume that x1 is directed along v(0) 
= 0 and x2
is directed along ω(x) 
= 0 for some x ∈ G (the direction of ω(x) does not depend
on x), then l is a linear function on �13 vanishing on the x1-axis: l = Cx3 for C 
= 0.
Denote now D+

ε = Bε ∩ {0 < x3} and D−
ε = Bε ∩ {0 > x3}, then we have D+

ε ⊂ G.
Indeed, first note that (D+

ε ∩ ∂G) ∪ (D−
ε ∩ ∂G) = ∅ since otherwise the trajectory γ1

starting from z1 ∈ (D+
ε ∩ ∂G) ∪ (D−

ε ∩ ∂G) leads to a contradiction since l|γ1 = 0.
Moreover, for the trajectory α0(t) of v⊥ = (−v3, v1) starting at 0 we have α0(t) ∈ D+

ε

for a small t > 0 and α0(t) ∈ D−
ε for a small t < 0. Since ω 
= 0 on G we get that

|v| strictly decreases along α0 by (6.13) (v(0) being parallel to x1) while α0(t) stays
in G and since |v| attains at 0 its maximum in Ḡ we get that D−

ε

⋂
G = ∅; therefore,

D+
ε ⊂ G.
Furthermore, any trajectory γs of v starting from the point (0, 0, s) ∈ D+

ε with
0 < s < ε and a sufficiently small ε > 0 is closed. Indeed, by (6.19) we may assume
that Cγs strictly increases as a function of s ∈ (0, ε) and thus γs with s ∈ (0, ε)
intersects the interval (0, (0, ε)) only once. By the Poincaré–Bendixson theorem we
get that γs either

(i) tends to a limit, or
(ii) tends to a limit cycle ρ ⊂ G, or
(iii) is closed.

Since (i) contradicts (6.19) and (ii) implies that any trajectory γa with s < a < ε tends
to ρ which contradicts (6.19) as well, we get that (iii) holds. Moreover, any trajectory
starting inside D+

ε enters the domain{x3 > δ}∩ G for some fixed δ > 0 and the union
A = ⋃

0<s<ε γs ⊂ G is a topological annulus.
Note now that Cγs tends to zero for s → 0 by (6.19). Any trajectory α of v⊥ in A is

orthogonal to the trajectories γs and thus intersects all γs while |v| strictly decreases
along α by (6.13) since ω2 > 0 on G. If λ ∈ (0, ε) then

inf
γλ

|v| > |v(z)|

for a sufficiently small s ∈ (0, λ) and some z ∈ γs , while the trajectoryαz of v⊥ starting
from z intersects γλ and |v| strictly decreases along αz which gives a contradiction
and thus finishes the proof.

123



420 N. Nadirashvili, S. Vlăduţ

7 Vector Analysis’ Framework

Let us briefly discuss Conjectures 1.1 and 1.2 in terms of the vector analysis for com-
pactly supported tensor fields in R

3. In this section we suppose that v ∈ C∞
0 (S1, R

3).
We can rewrite (1.2) as follows

curl(div(v ⊗ v)) = 0. (7.1)

Proposition 7.1 If (7.1) holds and the corresponding function w ∈ C∞
0 (M) is every-

where zero on M then

� = �(v) =def σ(curl(v ⊗ v)) = 0 (7.2)

for the symmetrization � of the tensor field curl(v ⊗ v), i.e.

2� i j = εilm
∂(v jvl)

∂xm
+ ε jlm

∂(vivl)

∂xm
,

where εi jk is the standard permutation (pseudo-)tensor, giving the sign of the permu-
tation (i jk) of (123) and the summation convention applies.

Proof For any fixed value of x1, we define the vector field

Z = v1(v2, v3) = (v1v2, v1v3)

on the vertical plane �23(x1) = {x1, x2, x3} with coordinates {x2, x3} depending on
x1 as on a parameter.

We have then I Z(m′) = wνm (m) = 〈∇w, νm〉 for a linem ⊂ �23(x1), a normal νm

to m and a line m′ ⊥ m ⊂ �23(x1), thus I Z = 0 and hence the solenoidal component
s Z equals zero, where Z =s Z + p Z is the Helmholtz decomposition of the vector
field Z . Therefore we have

�11 = curl Z = curl s Z = 0,

thus � i i = 0 for i = 1, 2, 3 and rotating the coordinate system in each plane {xi , x j }
through the angle π

4 we get � i j = 0 for all 1 ≤ i ≤ j ≤ 3.

Moreover, the proof of Theorem 6.1 shows that the conditions �(v) = 0 and
div v = 0 imply v = 0.

Therefore Conjectures 1.1 and 1.2 follow from

Conjecture 7.2 If curl(div(v ⊗ v)) = 0 then σ(curl(v ⊗ v)) = 0.

Another equivalent statement can be formulated as follows

Conjecture 7.3 If I (div(v ⊗ v)) = 0 then P I (v ⊗ v) = 0.

One can also ask whether the condition curl(div(v ⊗ v)) = 0 implies that v is
spherically symmetric, which would grant Conjectures 1.1, 1.2, 7.2 and 7.3.
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Nadirashvili, N., Sharafutdinov, V.A., Vlăduţ, S.: The John equation for tensor tomography in three-

dimensions. Inverse Probl. 32, 105013 (2016). doi:10.1088/0266-5611/32/10/105013
Sharafutdinov, V.A.: Integral Geometry of Tensor Fields. VSP, Utrecht (1994)

123

http://dx.doi.org/10.1088/0266-5611/32/10/105013

	Integral Geometry of Euler Equations
	Abstract
	1 Introduction
	2 Tensor X-ray Transform
	3 Function w
	4 Operators P and ΔM
	5 A Radon Plane Transform
	6 A Uniqueness Theorem
	7 Vector Analysis' Framework
	Acknowledgements
	References




