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Abstract We explain a proof of the Broué–Malle–Rouquier conjecture on Hecke
algebras of complex reflection groups, stating that theHecke algebra of afinite complex
reflection group W is free of rank |W | over the algebra of parameters, over a field of
characteristic zero. This is based on previous work of Losev, Marin– Pfeiffer, and
Rains and the author.
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The goal of this note is to explain a proof of the Broué–Malle–Rouquier conjecture
(Broué et al. 1998, p. 178), stating that the Hecke algebra of a finite complex reflection
groupW is free of rank |W | over the algebra of parameters, over a field of characteristic
zero. This result is not original—it follows immediately from the results of Losev
(2015), Marin and Pfeiffer (2017), and Etingof and Rains (2006), but it does not seem
to have been stated explicitly in the literature, so we state and prove it for future
reference.We note that there have been a lot of results on this conjecture for particular
complex reflection groups, reviewed in Marin (2015), e.g. Ariki (1995), Ariki and
Koike (1994), Marin (2012, 2014); we are not giving the full list of references here.

1 The Main Result

Let V be a finite dimensional complex vector space, andW ⊂ GL(V ) a finite complex
reflection group, i.e., W is generated by complex reflections (elements s such that
rank(1−s) = 1). Let S ⊂ W be the set of reflections, and Vreg := V \∪s∈S V s . Then by
Steinberg’s theorem,W acts freely on Vreg. Let x ∈ Vreg/W be a base point. The braid
group ofW is the group BW := π1(Vreg/W, x). We have a surjective homomorphism
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π : BW → W (corresponding to gluing back the reflection hyperplanes V s), and
Kerπ is called the pure braid group of W , denoted by PBW . For each s ∈ S, let
Ts ∈ BW be a path homotopic to a small circle around V s (it is defined uniquely up to
conjugation). Also let ns be the order of s. Then T ns

s ∈ PBW , and by the Seifert–van
Kampen theorem, PBW is the normal closure of the subgroup of BW generated by
T ns
s , s ∈ S. In other words, W is the quotient of BW by the relations T ns

s = 1, s ∈ S.
Let us,i , i = 1, . . . , ns , be variables such that us,i = ut,i if s is conjugate to t in

W . Let R := Z[u±1
s,i , s ∈ S, i ∈ [1, ns]].

Definition 1.1 (Broué et al. 1998) The Hecke algebra H(W ) is the quotient of the
group algebra RBW by the relations

ns∏

i=1

(Ts − us,i ) = 0, s ∈ S.

Conjecture 1.2 (Broué et al. 1998, p. 178) H(W ) is a free R-module of rank |W |.
This conjecture is currently known for all irreducible complex reflection groups

except G17, . . . ,G21 (according to the Shephard–Todd classification), and there is a
hope that these cases can be proved as well using a sufficiently powerful computer
(see Chavli 2016a, b; Marin 2015 for more details). Also, it is shown in Broué et al.
(1998) that to prove the conjecture, it suffices to show that H(W ) is spanned by |W |
elements.

Our main result is

Theorem 1.3 If K is a field of characteristic zero then K ⊗Z H(W ) is a free module
over K ⊗Z R of rank |W |. In particular, if q : R → K is a homomorphism, then the
specialization Hq(W ) := K ⊗R H(W ) is a |W |-dimensional K -algebra.

Remark 1.4 Theorem1.3 is useful inmany situations, for instance in the representation
theory of rational Cherednik algebras, where a number of results were conditional on
its validity forW ; see e.g. Ginzburg et al. (2003), 5.4, or Shan (2011), Section 2. Also,
Theorem 1.3 implies a positive answer to a question by Deligne and Mostow (1993,
(17.20), Question 3), which served as one of the motivations in Broué et al. (1998)
(see Broué et al. 1998, p. 127).

2 Proof of Theorem 1.3

First assume that K = C. It also suffices to assume that W is irreducible. In this case,
possible groups W are classified by Shephard and Todd (1954). Namely, W belongs
to an infinite series, or W is one of the exceptional groups Gn , 4 ≤ n ≤ 37. Among
these, Gn with 4 ≤ n ≤ 22 are rank 2 groups, while Gn for n ≥ 23 are of rank ≥ 3.

The case of the infinite series of groups is well known, see Ariki (1995), Ariki and
Koike (1994), Broué et al. (1998). So it suffices to focus on the exceptional groups.
Among these, the result is well known for Coxeter groups, which are G23 = H3,
G28 = F4, G30 = H4, G35 = E6, G36 = E7, G37 = E8.
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For the groups Gn for n = 24, 25, 26, 27, 29, 31, 32, 33, 34, the result was
established in Marin and Pfeiffer (2017) and references therein, see Marin (2015),
Subsection 4.1. Thus, Theorem 1.3 is known (in fact, over any coefficient ring) for all
W except those of rank 2.

In the rank 2 case, the following weak version of Theorem 1.3 was established.

Theorem 2.1 (Etingof and Rains 2006, Theorem 6.1) If W = Gn, 4 ≤ n ≤ 22, then
C⊗Z H(W ) is a finitely generatedC⊗Z R-module. In particular, every specialization
Hq(W ) is finite dimensional.

Theorem 1.3 now follows from Theorem 2.1 and the following theorem due to I.
Losev.

Theorem 2.2 (Losev 2015, Theorem 1.1) For any W and any q : R → C, there
is a minimal two-sided ideal I ⊂ Hq(W ) such that Hq(W )/I is finite dimensional.
Moreover, we have dimHq(W )/I = |W |.
Namely, Theorems 2.1 and 2.2 imply that for any character q : R → C, the specializa-
tion Hq(W ) has dimension |W |. This implies that for K = C the algebra K ⊗Z H(W )

is a projective K ⊗Z R-module of rank |W | (Hartshorne 1977, Exercise 2.5.8(c)).
Hence the same is true for any field K of characteristic zero. But by Swan’s theorem
(Lam 2006, Corollary 4.10), any finitely generated projective module over the alge-
bra of Laurent polynomials over a field is free. Hence, the algebra K ⊗Z H(W ) is a
free K ⊗Z R-module of rank |W | (cf. also Marin 2014, Proposition 2.5). This proves
Theorem 1.3.

Corollary 1 Let K = Z[1/N ] for N 	 0. Then K ⊗Z H(W ) is a free K ⊗Z R-
module of rank |W |. Hence the same holds when K is a field of sufficiently large
positive characteristic.

Proof Theorem 2.1 is valid (with the same proof) over any coefficient ring (see e.g.
Marin 2014, Theorem 2.14), i.e., for anyW , the algebra H(W ) ismodule-finite over R.
Hence by Grothendieck’s Generic Freeness Lemma (Eisenbud 1994, Theorem 14.4),
there exists an integer L > 0 such that H(W )[1/L] is a free Z[1/L]-module.

Now let v1, . . . , vr be generators of H(W ) over R, and ei , . . . , e|W | ∈ H(R) be
elements defining a basis of Q ⊗Z H(W ) over Q ⊗Z R (they exist by Theorem 1.3).
Then vi = ∑

j ai j e j for some ai j ∈ Q ⊗Z R. So for some integer D > 0 we have
Dvi = ∑

j bi j e j , with bi j ∈ R. Since H(W )[1/L] is a free Z[1/L]-module, the same
relation holds in H(W )[1/L]. Thus, for N = LD, H(W )[1/N ] is a free R[1/N ]-
module with basis e1, . . . , e|W |. 
�
Remark 2.3 1. The proof of Theorem 1.3 does not extend to positive characteris-

tic, since the proof of Theorem 2.2 uses complex analysis (the Riemann–Hilbert
correspondence).

2. The last step of the proof of Theorem 1.3 (Swan’s theorem) is really needed for
purely aesthetic purposes, to establish the original formulation of the conjecture
on the nose. As usual, for practical purposes it is normally sufficient to know
only that the algebra K ⊗Z H(W ) is a projective K ⊗Z R-module. In fact, for
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most applications, including the ones mentioned in Remark 1.4, already Losev’s
Theorem 2.2 is sufficient.

3. One would like to have a stronger version of Theorem 1.3, giving a set-theoretical
splitting W → BW of the homomorphism π whose image is a basis of the Hecke
algebra. For instance, when W is a Coxeter group, then such a splitting is well
known and is obtained by taking reduced expressions in the braid group. Such
a version is currently available (over any base ring) for all irreducible complex
reflection groups except G17, . . . ,G21, see Marin (2015), Chavli (2016a, b).

4. Here is an outline of the proof of Theorem2.2 given inLosev (2015). Letq = e2π ic,
and let Hc(W ) be the rational Cherednik algebra ofW with parameter c, Ginzburg
et al. (2003). Let M ∈ Oc(W ) be a module from the category O for this algebra.
It is shown in Ginzburg et al. (2003) that the localization of M to the set hreg of
regular points of the reflection representation h of W is a vector bundle on hreg

with a flat connection. So for every x ∈ hreg we get a monodromy representation
of the braid group π1(h

reg/W ) on the fiber Mx , which is shown in Ginzburg et al.
(2003) to factor through Hq(W ). This representation is denoted by K Z(M), and
the functor M �→ K Z(M) is called the Knizhnik–Zamolodchikov (KZ) functor. It
is shown inGinzburg et al. (2003) that the representation K Z(M) of Hq (W ) factors
through a certain quotient H ′

q(W ) of Hq(W ) of dimension |W |. Thus, Theorem
2.2 is equivalent to the statement that every finite dimensional representation of
Hq(W ) is of the form K Z(M) for some M .
To show this, let hsr be the complement of the intersections of pairs of dis-
tinct reflection hyperplanes in h. Take a finite dimensional representation V of
Hq(W ), and let N = NV be the vector bundle with a flat connection with reg-
ular singularities on hreg corresponding to V under Deligne’s multidimensional
Riemann–Hilbert correspondence. One then extends N to a vector bundle Ñ on
hsr compatibly with the Hc(W )-action. One then defines M := �(hsr, Ñ ) and
shows that M ∈ Oc(W ) and K Z(M) = V , as desired.

5. Here is an outline of the proof of Theorem 2.1 given in Etingof and Rains (2006).
For the infinite series of complex reflection groups the result was proved in Broué
et al. (1998). Thus, let W ⊂ GL2(C) be an exceptional complex reflection group
of rank 2, of type G4, . . . ,G22. Then the intersection of W with the scalars is
a finite cyclic group generated by an element Z . This element defines a central
element of Hq(W ), which we will also call Z . Let W/〈Z〉 = G ⊂ PGL2(C) =
SO3(C). Then G is the group of even elements in a Coxeter group of type A3,
B3, or H3. Using the theory of length in these Coxeter groups, it is shown that
C ⊗Z H(W ) is generated by |G| elements as a module over C ⊗Z R[Z , Z−1].
Moreover, taking the determinant of the braid relation of this algebra in its finite
dimensional representations, we find that Zd is an element of C⊗Z R for some d.
This implies that C ⊗Z H(W ) is a finite rank module over C ⊗Z R, as desired.
We note that this argumentworks over an arbitrary base ring.Amuchmore detailed
description of this argument is given in Chavli (2016b).

Acknowledgements The author thanks I. Marin for many useful comments and references.

123



Proof of the Broué–Malle–Rouquier Conjecture… 449

References

Ariki, S.: Representation theory of a Hecke algebra of G(r; p; n). J. Algebra 177, 164–185 (1995)
Ariki, S., Koike, K.: A Hecke algebra of (Z/r Z) � Sn and construction of its irreducible representations.

Adv. Math. 106, 216–243 (1994)
Broué, M., Malle, G., Rouquier, R.: Complex reflection groups, braid groups, Hecke algebras. J. Reine

Angew. Math. 500, 127–190 (1998)
Chavli, E.: The BMR freeness conjecture for the tetrahedral and octahedral families (2016a).

arXiv:1607.07023
Chavli, E.: The Broué-Malle-Rouquier conjecture for the exceptional groups of rank 2. Ph.D. Thesis, U.

Paris Diderot (2016b). arXiv:1608.00834
Deligne, P., Mostow, G.D.: Commensurabilities among Lattices in PU(1, n), Annals ofMathematics Studies

132. Princeton Univ. Press, Princeton (1993)
Eisenbud,D.:Commutative algebrawith a view towards algebraic geometry,GraduateTexts inMathematics,

vol. 150 (1994)
Etingof, P., Rains, E.: Central extensions of preprojective algebras, the quantum Heisenberg algebra, and

2-dimensional complex reflection groups. J. Algebra 299(2), 570–588 (2006)
Ginzburg, V., Guay, N., Opdam, E., Rouquier, R.: On category O for rational Cherednik algebras. Invent.

Math. 154(3), 617–651 (2003)
Hartshorne, R.: Algebraic geometry, Graduate texts in mathematics. Springer, Berlin (1977)
Lam, T.Y.: Serre’s problem on Projective modules, Springer monographs in mathematics (2006)
Losev, I.: Finite-dimensional quotients of Hecke algebras. Algebra Number Theory 9(2), 493–502 (2015)
Marin, I.: The freeness conjecture for Hecke algebras of complex reflection groups, and the case of the

Hessian group G26. J. Pure Appl. Algebra 218, 704–720 (2014)
Marin, I.: The cubic Hecke algebra on at most 5 strands. J. Pure Appl. Algebra 216, 2754–2782 (2012)
Marin, I.: Report of the Broué-Malle-Rouquier conjectures. In: Proceedings of the INDAM intensive period

“Perspectives in Lie theory” (2015). http://www.lamfa.u-picardie.fr/marin/arts/reportBMR.pdf
Marin, I., Pfeiffer, G.: The BMR freeness conjecture for the 2-reflection groups. Math. Comput. (2016).

arXiv:1411.4760
Shan, P.: Crystals of Fock spaces and cyclotomic rational double affineHecke algebras.Annales scientifiques

de l’École Normale Supérieure 44(1), 147—182 (2011)
Shephard, G.C., Todd, J.A.: Finite unitary reflection groups. Can. J. Math. 6, 274304 (1954)

123

http://arxiv.org/abs/1607.07023
http://arxiv.org/abs/1608.00834
http://www.lamfa.u-picardie.fr/marin/arts/reportBMR.pdf
http://arxiv.org/abs/1411.4760

	Proof of the Broué–Malle–Rouquier Conjecture  in Characteristic Zero (After I. Losev and I. Marin—G. Pfeiffer)
	Abstract
	1 The Main Result
	2 Proof of Theorem 1.3
	Acknowledgements
	References




