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Abstract We study two variants of the following question: “Given two finitely
generated C-subalgebras R1, R2 of C[x1, . . . , xn], is their intersection also finitely
generated?” We show that the smallest value of n for which there is a counterexam-
ple is 2 in the general case, and 3 in the case that R1 and R2 are integrally closed.
We also explain the relation of this question to the problem of constructing algebraic
compactifications of C

n and to the moment problem on semialgebraic subsets of R
n .

The counterexample for the general case is a simple modification of a construction
of Neena Gupta, whereas the counterexample for the case of integrally closed sub-
algebras uses the theory of normal analytic compactifications of C

2 via key forms of
valuations centered at infinity.
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1 Introduction

Question 1.1 Take two subrings of C[x1, . . . , xn] which are finitely generated as
algebras over C. Is their intersection also finitely generated as a C-algebra?

The only answer to Question 1.1 in published literature (obtained via a MathOver-
flow enquiry auniket 2010) seems to be a class of counterexamples constructed by
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334 P. Mondal

Bayer (2002) for n ≥ 32 using Nagata’s counterexample to Hilbert’s fourteenth prob-
lem from Nagata (1965) and Weitzenböck’s theorem (Weitzenböck 1932) on finite
generation of invariant rings. After an earlier version of this article appeared on arXiv,
however, Wilberd van der Kallen communicated to me a simple counterexample for
n = 3:

Example 1.2 Let R1 := C[x2, x3, y, z] and R be the ring of invariants of the action
of the additive group Ga := (C,+) on R1 given by

y �→ y + x3, z �→ z + x2 (1)

Then a result of Bhatwadekar and Daigle (2009) shows that R is not finitely generated
over C. Neena Gupta communicated this construction to Wilberd van der Kallen as an
example of a Ga-action with non-finitely generated ring of invariants. Van der Kallen
noted that if R2 is the ring of invariants of the action defined by (1) ofGa onC[x, y, z],
then R2 = C[x, y − zx] and R = R1 ∩ R2, so that it serves as a counterexample to
Question 1.1. Indeed, it is straightforward to see directly that R = C[xα(y − zx)β :
(α, β) ∈ S], where

S := {(α, β) ∈ Z
2≥0 : either β = 0 or α ≥ 2}

is a non-finitely generated sub-semigroup of Z
2.

A variant of Example 1.2 in fact gives a counterexample to Question 1.1 for n = 2:

Example 1.3 Let R1 := C[x2, x3, y] and R2 := C[x2, y − x]. Then R := R1 ∩ R2 =
C[x2α(y − x)β : (α, β) ∈ S′], where

S′ := {(α, β) ∈ Z
2≥0 : either β = 0 or α ≥ 1}

is a non-finitely generated sub-semigroup of Z
2.

Since Question 1.1 holds for n = 1 (see e.g. assertion (1) of Theorem 1.5), Example
1.3 gives a complete answer toQuestion 1.1. In this articlewe consider a natural variant
of Question 1.1: denote the subrings of C[x1, . . . , xn] in Question 1.1 by R1, R2, and
their intersection by R.

Question 1.4 If R1 and R2 are finitely generated and integrally closed1 C-subalgebras
of C[x1, . . . , xn], is R also finitely generated?

Note that in each of Examples 1.2 and 1.3 the ring R1 is not integrally closed, so
that they do not apply to Question 1.4. Our findings are compiled in the following
theorem.

1 The integral closure of a subring R of a ring S is the set of all elements x ∈ S which satisfies an equation
of the form xd + ∑d

i=1 ai x
d−i = 0 for some d > 0 and a1, . . . , ad ∈ R. A domain is integrally closed if

it itself is its integral closure in its field of fractions.
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Theorem 1.5 (1) If the Krull dimension of R is one (or less), then the answer to
Question 1.1 is affirmative. In particular, the answers to Questions 1.1 and 1.4
are affirmative for n = 1.

(2) If the Krull dimension of R is 2, then the answer to Question 1.4 is affirmative. In
particular, the answer to Question 1.4 is affirmative for n = 2.

(3) There are counterexamples to Question 1.4 for n ≥ 3.

Assertions (1) and (2) follow in a straightforward manner from results of Zariski
(1954) and Schröer (2000). Assertion (3) is the main result of this article: the subrings
R1 and R2 from our examples are easy to construct, and our proof that they are finitely
generated is elementary; however the proof of non-finite generation of R1 ∩ R2 uses
the theory of key forms (introduced inMondal 2016a) of valuations centered at infinity
on C

2.
Finite generation of subalgebras of polynomial algebras has been well studied,

see e.g. Gale (1957), Nagata (1966), Evyatar and Zaks (1970), Eakin (1972), Nagata
(1977), Wajnryb (1982), Gilmer and Heinzer (1985), Amartya (2008) and references
therein. One of the classical motivations for these studies has been Hibert’s fourteenth
problem. Indeed, as we have mentioned earlier, Bayer’s counterexamples to Ques-
tion 1.1 for n ≥ 32 were based on Nagata’s counterexamples to Hilbert’s fourteenth
problem. Similarly, the construction of Example 1.2 is a special case of a result of
Bhatwadekar and Daigle (2009) on the ring of invariants of the additive group (C,+).
Our interest in Questions 1.1 and 1.4 however comes from two other aspects: com-
pactifications of C

n and the moment problem on semialgebraic subsets of R
n—this is

explained in Sect. 2.

Remark-Question 1.6 What can be said about Questions 1.1 and 1.4 if C is replaced
by an arbitrary field K ?

• Our proof shows that assertions (1) and (2) of Theorem 1.5 remain true in the
general case, and assertion (3) remains true if p := characteristic(K ) is zero.
However, we do not know if assertion (3) is true in the case that p > 0—see
Remark 4.3.

• Examples 1.2 and 1.3 give counterexamples to Question 1.1 if p = 0. However,
if p > 0, then the ring R would be finitely generated over K . Indeed, then R
would contain (y − zx)p in the case of Example 1.2 and it would contain (y −
x)p in the case of Example 1.3; it would follow that R2 is integral over R and
therefore R is finitely generated over K (Lemma 3.2). Bayer’s (2002) construction
of counterexamples to Question 1.1 also requires zero characteristic (because of
its dependence on Weitzenböck’s theorem). In particular, we do not know of a
counterexample to Question 1.1 in positive characteristics.

1.1 Organization

In Sect. 2 we explain our motivations to study Question 1.1. In Sect. 3 we prove
assertions (1) and (2) ofTheorem1.5, and inSect. 4weprove assertion (3). Theorem4.1
gives the general construction of our counterexamples to Question 1.4 for n = 3, and
Example 4.2 contains a simple example. Appendix A gives an informal introduction
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to key forms used in the proof of Theorem 4.1, and Appendix B contains the proof of
a technical result used in the proof of Theorem 4.1.

2 Motivation

2.1 Compactifications of Affine Varieties

Our original motivation to study Question 1.1 comes from construction of projective
compactifications of C

n via degree-like functions. More precisely, given an affine
variety X over a field K, a degree-like function on the ring K[X ] of regular functions
on X is a map δ : K[X ] → Z∪{−∞}which satisfies the following properties satisfied
by the degree of polynomials:

(i) δ(K) = 0,
(ii) δ( f g) ≤ δ( f ) + δ(g),
(iii) δ( f + g) ≤ max{δ( f ), δ(g)}.

The graded ring associated with δ is

K[X ]δ :=
⊕

d≥0

{ f ∈ K[X ] : δ( f ) ≤ d}

∼=
∑

d≥0

{ f ∈ K[X ] : δ( f ) ≤ d}td ⊆ K[X ][t] (2)

where t is an indeterminate. If δ satisfies the following properties:
(iv) δ( f ) > 0 for all non-constant f , and
(v) K[X ]δ is a finitely generated K-algebra,

then X̄ δ := ProjK[X ]δ is a projective completion of X , i.e. X̄ δ is a projective (and
therefore, complete) variety that contains X as a dense open subset (see e.g. Mondal
2014, Proposition 2.5). It is therefore a fundamental problem in this theory to determine
if K[X ]δ is finitely generated for a given δ.

It is straightforward to check that the maximum of finitely many degree-like func-
tions is also a degree-like function, and taking themaximum is one of the basic ways to
construct new degree-like functions (see e.g. Mondal 2014, Theorem 4.1). For exam-
ple, an n-dimensional convex polytope P ⊂ R

n with integral vertices and containing
the origin in its interior determines a degree-like function on K[x1, x−1

1 , . . . , xn, x−1
n ]

defined as follows:

δP
(∑

aαx
α
)

:= inf{d ∈ Z : d ≥ 0, α ∈ dP for all α ∈ Z
n such that aα �= 0}

It is straightforward to see that δP satisfies properties (iv) and (v), so that it determines a
projective completion XP of the torus (K∗)n . It turns out that XP is precisely the toric
variety corresponding to P . Moreover, δP is the maximum of some other ‘simpler’
degree-like functions determined by facets of P—see Fig. 1 for an example.

The preceding discussion suggests that the following is a fundamental question in
the theory of degree-like functions:
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y

x
P

δP : x �→ 1, x−1 �→ 1, y �→ 1

y−1 �→ 1, x−1y−1 �→ 1

x2y−1 �→ 1, x−1y2 �→ 1

y

x

δ1(xαyβ) = (α, β) · (0, −1)

= −β

y

x

δ2(xαyβ) = (α, β) · (1, 1)
= α + β

y

x

δ3(xαyβ) = (α, β) · (−1, 0)

= −α

Fig. 1 δP = max{δ1, δ2, δ3}

Question 2.1 Let δ := max{δ1, δ2}. If K[X ]δ1 and K[X ]δ2 are finitely generated
algebras over K, is K[X ]δ also finitely generated over K?

In the scenario of Question 2.1, identifying K[X ]δ1 and K[X ]δ2 with subrings of
K[X ][t] as in (2) implies that K[X ]δ = K[X ]δ1 ∩ K[X ]δ2 . Consequently, in the case
thatK = C and X is the affine spaceC

n , Question 2.1 is a special case of Question 1.1,
and our counterexamples to Question 1.4 are in fact counterexamples to this special
case with X = C

2.

2.2 Moment Problem

Given a closed subset S of R
n , the S-moment problem asks for characterization of

linear functionals L on R[x1, . . . , xn] such that L( f ) = ∫
S f dμ for some (positive

Borel) measure μ on S. Classically the moment problem was considered on the real
line (n = 1): given a linear functional L on R[x], a necessary and sufficient condition
for L to be induced by a positive Borel measure on S ⊆ R was shown to be

• L( f 2 + xg2) ≥ 0 for all f, g ∈ R[x] in the case that S = [0,∞) (Stieltjes 1895);
• L( f 2) ≥ 0 for all f ∈ R[x] in the case that S = R (Hamburger 1921);
• L( f 2 + xg2 + (1 − x)h2) ≥ 0 for all f, g, h ∈ R[x] in the case that S = [−1, 1]
(Hausdorff 1921).

In the general case Haviland (1936) showed that L is induced by a positive Borel
measure on S iff L( f ) ≥ 0 for every polynomial f which is non-negative on S.
Since sums of squares of polynomials are obvious examples of polynomials which are
non-negative on S, Haviland’s theorem motivates the following definition.

Definition 2.2 (Powers and Scheiderer 2001) Given a closed subset S of R
n and a

subset P of R[x1, . . . , xn], we say that P solves the S-moment problem if for every
linear functional L on R[x1, . . . , xn], L is induced by a positive Borel measure on S
iff L(g2 f1 · · · fr ) ≥ 0 for every g ∈ R[x1, . . . , xn], f1, . . . , fr ∈ P , r ≥ 0.

In particular, the classical examples show that ∅, {x}, {x, 1− x} solves the moment
problem respectively for R, [0,∞), [0, 1]. In the case that S is a basic semialgebraic
set, i.e. S is defined by finitely many polynomial inequalities f1 ≥ 0, . . . , fs ≥ 0,
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Schmüdgen (1991) proved that { f1, . . . , fs} solves the S-moment problem provided
S is compact. On the other hand, if S is non-compact, then it may happen that no
finite set of polynomials solves the moment problem for S (see e.g. Kuhlmann and
Marshall 2002; Powers and Scheiderer 2001). Netzer associated (see e.g. Mondal and
Netzer 2014, Section 1) a natural filtration {Bd(S) : d ≥ 0} on the polynomial ring
determined by S:

Bd(S) := { f ∈ R[x1, . . . , xn] : f 2 ≤ g on S for some g ∈ R[x1, . . . , xn],
deg(g) ≤ 2d}

In other words, Bd(S) is the set of all polynomials which ‘grow on S as if they were
of degree at most d’. The graded algebra corresponding to the filtration is

B(S) :=
⊕

d≥0

Bd(S) ∼=
∑

d≥0

Bd(S)td ⊆ R[x1, . . . , xn, t]

where t is a new indeterminate.

Theorem 2.3 (Scheiderer 2005,Netzer’s formulation (appeared inMondal andNetzer
2014)) If B0(S) = R and Bd(S) is finite dimensional for every d ≥ 0, then the S-
moment problem is not solvable. In particular, if B0(S) = R and B(S) is finitely
generated as an R-algebra, then the S-moment problem is not solvable.

It is straightforward to produce open semialgebraic sets S which satisfies the
assumption of Theorem 2.3. E.g. a standard tentacle is a set

{
(λω1b1, . . . , λ

ωn bn) | λ ∈ R, λ ≥ 1, b ∈ B
}

where ω := (ω1, . . . , ωn) ∈ Z
n and B ⊆ (R\{0})n is a compact semialgebraic set

with nonempty interior; we call ω the weight vector corresponding to the tentacle. If
S is a finite union of standard tentacles with weights ω1, . . . , ωk ∈ Z

n , then it is not
too hard to see that

• B0(S) = R iff the cone {λ1ω1 + · · · + λkωk : λ1, . . . , λk ≥ 0} is all of R
n , and

• B(S) is finitely generated over R.

In fact all early examples seemed to suggest that B(S) was finitely generated when-
ever B0(S) = R, at least for regular semialgebraic sets, i.e. sets that are closures of
open sets, and it had been asked whether this was indeed the case. In Mondal and
Netzer (2014) this question had been answered in the negative. Our construction in
Sect. 4 provides the basis of a particular class of examples in Mondal and Netzer
(2014) consisting of unions of pairs of (non-standard) tentacles. We now describe the
construction. We suggest the reader go over Sect. 4.1 at this point.

Let p, q1, . . . , qk, ω1, ω2 be as in conditions (A)–(D) of Sect. 4.1. Pick nonzero
a1, . . . , ak ∈ R and define f+(x), f−(x) as in (3) and (4). Note that as opposed to Sect.
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Fig. 2 S = S+ ∪ S−, where S+ = {(x, y) ∈ R
2 : x ≥ 1, 0.5 ≤ x3(y − x3 − x−2) ≤ 2} and

S− = {(x, y) ∈ R
2 : x ≥ 1, 0.5 ≤ x3(y + x3 − x−2) ≤ 2}

4.1, here f+(x) and f−(x) are polynomials over real numbers. For each i ∈ {+,−},
pick positive real numbers ci,1 < ci,2 and define

Si := {(x, y) ∈ R
2 : x ≥ 1, ci,1 ≤ xω2/ω1(y − fi (x)) ≤ ci,2}

Let δ+, δ−, R+, R− be as in Sect. 4.1. For i ∈ {+,−}, Mondal and Netzer (2014,
Lemma 4.3) implies that f (x, y) ∈ Bd(Si ) iff δi ( f ) ≤ pω1d. It follows that the map
φ : t �→ t pω1 maps B(Si ) ↪→ Ri . It is straightforward to check that R+, R−, R+ ∩ R−
are integral overB(S+),B(S−),B(S+)∩B(S−) respectively. Lemma 3.2 andTheorem
4.1 then imply that B(S+) and B(S−) are finitely generated over R, but B(S+ ∪ S−) =
B(S−) ∩ B(S+) is not, even though B0(S+ ∪ S−) = R. Figure 2 depicts a pair of S+
and S− corresponding to Example 4.2.

3 Positive Results in Dimension at Most Two

In this section we prove assertions (1) and (2) of Theorem 1.5. The proof remains valid
if C is replaced by an arbitrary algebraically closed field. Moreover, if k is a field with
algebraic closure k̄, then a subring R of k[x1, . . . , xn] is finitely generated over k iff
R⊗k k̄ is finitely generated over k̄; this, together with the preceding sentence, implies
that assertions (1) and (2) of Theorem 1.5 remain true if C is replaced by an arbitrary
field. We use the following results in this section.

Lemma 3.1 (Atiyah and Macdonald 1969, Corollary 5.22) Let A be a subring of a
field K . Then the integral closure of A in K is the intersection of all valuation rings
in K containing A.
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Lemma 3.2 (Atiyah and Macdonald 1969, Proposition 7.8) Let A ⊆ B ⊆ C be rings
such that A is Noetherian, C is finitely generated as an A-algebra, and C is integral
over B. Then B is finitely generated as an A-algebra.

Theorem 3.3 (Zariski 1954) Let L be a field of transcendence degree at most two
over a field k and R be an integrally closed domain which is finitely generated as a k-
algebra. Then L ∩ R is a finitely generated k-algebra.

Theorem 3.4 (Schröer 2000, Corollary 6.3) Let U be a (not necessarily proper) sur-
face (i.e. 2-dimensional irreducible separated scheme of finite type) over a field k.
Assume U is normal. Then 	(U,OU ) is a finitely generated k-algebra of dimension
2 or less.

Recall the notation from Theorem 1.5. In this section we write L for the field of
fractions of R and R̄ j for the integral closure of R j in its field of fractions, j = 1, 2.
Moreover, we write R′

j := R̄ j ∩ L , j = 1, 2.

3.1 Proof of Assertion (1) of Theorem 1.5

Assumew.l.o.g. tr. degC(L) = 1. Theorem3.3 implies that R′
1 is finitely generated as a

C-algebra. LetC be the unique non-singular projective curve overC such that the field
of rational functions on C is L . Then C ′

1 := Spec R′
1 is isomorphic to C\{x1, . . . , xk}

for finitely many points x1, . . . , xk ∈ C . Then the local rings OC,x j of C at x j ’s are
the only one dimensional valuation rings of L not containing R′

1. Let R̄ be the integral
closure of R in L . Since R̄ ⊆ R′

1, Lemma 3.1 implies that

R̄ = R′
1 ∩ OC,x j1

∩ · · · ∩ OC,x js

for some j1, . . . , js ∈ {1, . . . , k}. Then R̄ is the ring of regular functions on C\{x j :
j /∈ { j1, . . . , js}}, and is therefore finitely generated over C. Lemma 3.2 then implies
that R is finitely generated over C. ��

3.2 Proof of Assertion (2) of Theorem 1.5

Let L be the field of fraction of R. Due to assertion (1)wemay assume tr. degC(L) = 2.
Theorem 3.3 implies that R′

1 and R′
2 are finitely generated over C. Let Xi := Spec R′

i
and X̄i be a projective compactification of Xi , i = 1, 2. Let X̄ be the closure in X̄1× X̄2
of the graph of the birational correspondence X1 ��� X2 induced by the identification
of their fields of rational functions, and X̃ be the normalization of X̄ . For each i , let
πi : X̃ → X̄i be the natural projection and set Ui := π−1

i (Xi ).

Claim 3.5 R′
i = 	(Ui ,OX̃ ).

Proof Clearly R′
i ⊆ 	(Ui ,OX̃ ). For the other inclusion, pick f ∈ 	(Ui ,OX̃ ). Since

R′
i is integrally closed, it suffices to show that f is bounded near every point of Xi .

Indeed, if x ∈ Xi , then f is regular on π−1
i (x), and is therefore constant on all positive

dimensional connected components of π−1
i (x). ��
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The assumption that Ri ’s are integrally closed together with Claim 3.5 and Theorem
3.4 imply that R = R′

1 ∩ R′
2 = 	(U1 ∪ U2,OX̃ ) is finitely generated over C, as

required. ��

4 Counterexamples in Dimension Three

In this section we prove assertion (3) of Theorem 1.5. In Sect. 4.1 we describe the
construction of counterexamples to Question 1.4 for n = 3, and in Sects. 4.2 and 4.3
we prove that these satisfy the required properties.

4.1 Construction of the Counterexamples

Let p, q1, . . . , qk be integers such that

(A) p is an odd integer ≥ 3,
(B) 0 ≤ q1 < q2 < · · · < qk < p,
(C) there exists j such that q j is positive and even,

and let ω1, ω2 be relatively prime positive integers such that
(D) p ≥ ω2/ω1 > qk .

Pick nonzero a1, . . . , ak ∈ C and set

f+(x) := x p +
k∑

j=1

a j x
−q j (3)

f−(x) := f+(−x) = −x p +
k∑

j=1

(−1)q j a j x
−q j (4)

For each i ∈ {+,−}, let yi := y − fi (x) and δi be (the restriction to C[x, y] of) the
weighted degree2 on C(x, y) = C(x, yi ) corresponding to weights ω1 for x and −ω2
for yi , and

Ri := C[x, y]δi =
∑

d≥0

{g ∈ C[x, y] : δi (g) ≤ d}td ⊆ C[x, y, t] (5)

Assertion (3) of Theorem 1.5 follows from Theorem 4.1 below.

Theorem 4.1 (1) R+ and R− are finitely generated integrally closed C-algebras.
(2) R+ ∩ R− is not finitely generated over C.

Let�d := { f ∈ C[x, y] : δi ( f ) ≤ d, i = 1, 2}, so that R+ ∩ R− = ∑
d≥0 �d td .

Then
(3) �0 = C.
(4) If ω2/ω1 < p, then each �d is finite dimensional (as a vector space) over C.

2 See Appendix A.1 for a discussion of weighted degrees.
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(5) If ω2/ω1 = p, then there exists d > 0 such that �d is infinite dimensional (as a
vector space) over C.

Example 4.2 Take f+ = x3 + x−2 and ω2/ω1 = 3. Then f− = −x3 + x−2. Let

g+,0 := y − x3, g−,0 := y + x3

g+,1 := x2(y − x3) g−,1 := x2(y + x3)

Let G be a (finite) set of generators of the subsemigroup

{(α, β0, β1, d) ∈ (Z≥0)
4 : α − 2β0 − β1 ≤ d}

of Z
4. Corollary 4.7 below shows that

R+ = C[xαgβ0
+,0g

β1
+,1t

d : (α, β0, β1, d) ∈ G]
R− = C[xαgβ0

−,0g
β1
−,1t

d : (α, β0, β1, d) ∈ G]
On the other hand assertions (3) and (5) of Theorem 4.1 imply that �0 = C but �d

is infinite dimensional over C for some d ≥ 1; in particular, R+ ∩ R− is not finitely
generated.

Remark 4.3 Our proof of Theorem 4.1 remains correct if C is replaced by an alge-
braically closed fieldK of characteristic zero.However, ifK has positive characteristic,
we can only say the following:

(a) R+ and R− remain finitely generated integrally closed K-algebras (our proof for
assertion (1) of Theorem 4.1 remains valid);

(b) ifω2/ω1 < p, then�0 = K and each�d is a finite dimensional vector space over
K (in the case ω2/ω1 < p, assertions (3) and (4) of Theorem 4.1 are essentially
consequences of Mondal (2016b, theorem 1.4), which in turn is a consequence of
computations of intersection numbers of curves at infinity on certain completions
(i.e. compactifications in the analytic topology) of C

2; the intersection numbers
remain unchanged if C is replaced by an arbitrary algebraically closed field K).

(c) if ω2/ω1 < p and a1, . . . , ak are contained in the algebraic closure of a finite
field, then R+ ∩ R− is finitely generated over K (this is a consequence of the
‘explanation’ in parentheses of assertion (b) and Artin’s result (see e.g. Bădescu
2001, Theorem 14.21) that every two dimensional algebraic space over algebraic
closures of finite fields are quasi-projective surfaces). In particular, in this case
our construction does not produce a counterexample to Question 1.4.

(d) In the remaining cases we do not know if any of assertions (2)–(5) of Theorem
4.1 is true (since our main tool, namely (Mondal 2016a, Theorem 4.1), does not
apply).

4.2 Proof of Assertion (1) of Theorem 4.1

We prove assertion (1) of Theorem 4.1 only for R+, since the statement for R− follows
upon replacing each a j to (−1)q j a j .
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The fact that R+ is integrally closed follows from the observation that δ+(gk) =
kδ+(g) for each g ∈ C[x, y] and k ≥ 0, i.e. δ+ is a subdegree in the terminology of
Mondal (2010) (see e.g. Mondal 2010, Proposition 2.2.7). We give a proof here for
the sake of completeness.

Lemma 4.4 Let K be a field and η be a degree-like function on a K-algebra A such
that η(gk) = kη(g) for each g ∈ A and k ≥ 0. If A is an integrally closed domain,
then so is Aη.

Proof Let t be an indeterminate. Identify Aη with a subring of A[t] as in (2). Then the
field of fractions of Aη is K (t) where K is the field of fractions of A. Let h ∈ K (t)
be integral over Aη. Since the degree in t gives Aη the structure of a graded ring, and
since A[t] is an integrally closed overring of Aη, wemayw.l.o.g. assume that h = h′td
for some h′ ∈ A and d ≥ 0. Consider an integral equation of h over Aη:

(h′td)k +
k∑

j=1

f j t
i j (h′td)k− j = 0

where f j t i j ∈ Aη for each j . Consequently we may assume that i j = d j for each
j = 1, . . . , k such that f j �= 0, and therefore

h′k = −
k∑

j=1

f j h
′k− j

It follows that

kη(h′) = η(h′k) ≤ max{η( f j h
′k− j ) : 1 ≤ j ≤ k}

≤ {η(h′k− j ) + η( f j ) : 1 ≤ j ≤ k}
≤ max{(k − j)η(h′) + d j : 1 ≤ j ≤ k}

where the last inequality follows from the definition of Aη and the observation that
f j td j = f j t i j ∈ Aη. It follows that η(h′) ≤ d, which implies that h = h′td ∈ Aη, as
required to prove that Aη is integrally closed. ��

Lemma 4.4 shows that R+ is integrally closed. Now we show that R+ is finitely
generated over C. Set q0 := 0 and define

g+,0 := y − x p (6)

g+, j := xq j (y − x p −
j∑

i=1

ai x
−qi ), 1 ≤ j ≤ k, (7)

ω+, j := δ+(g+, j ) =
{

−ω1(q j+1 − q j ) if 0 ≤ j ≤ k − 1,

−ω2 if j = k.
(8)
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Note that g+, j ∈ C[x, y] for each j = 0, . . . , k. Let z0, . . . , zk be indeterminates,
S := C[x, z0, . . . , zk], and ω+ be the weighted degree on S corresponding to weights
ω1, ω+,0, . . . , ω+,k to respectively x, z+,0, . . . , z+,k . Let π+ : S → C[x, y] be the
map that sends x �→ x and z j → g+, j , 0 ≤ j ≤ k. Note that

ω+(F) ≥ δ+(π+(F)) (9)

for each F ∈ S. Let J+ be the ideal in S generated by all weighted homogeneous
(with respect to ω+) polynomials F ∈ S such that ω+(F) > δ+(π+(F)). Note that
for each j = 0, . . . , k − 1,

z j x
q j+1−q j − a j+1 ∈ J+

Claim 4.5 J+ is a prime ideal of S generated by z j xq j+1−q j − a j+1, 0 ≤ j ≤ k − 1.

Proof The fact that J+ is prime is a straightforward consequence of inequality (9) and
the observations that both ω+ and δ+ satisfy property (ii) of degree-like functions (see
Sect. 2.1) with exact equality. Let J̃+ be the ideal of S generated by z j xq j+1−q j −a j+1,
0 ≤ j ≤ k − 1. Then

S/ J̃+ ∼= C[x, x−(q1−q0), . . . , x−(qk−qk−1), zk] (10)

where the isomorphism is that of graded rings, the grading on both rings being induced
by ω+. This implies that J̃+ is a prime ideal contained in J+. Since J+/ J̃+ is a prime
homogeneous (with respect to the grading) of S/ J̃+, it follows that if J+ � J̃+, then J+
contains an element of the form xr zsk−α for some α ∈ C and (r, s) ∈ (Z≥0)

2\{(0, 0)}.
Since this is impossible by definition J+, it follows that J+ = J̃+, as required. ��
Claim 4.6 For each f ∈ C[x, y], there exists F ∈ S such that π+(F) = f and
ω+(F) = δ+( f ).

Proof Let f ∈ C[x, y] and F ∈ S such that π+(F) = f . Inequality (9) implies that
ω+(F) ≥ δ+( f ). Assume w.l.o.g. ω+(F) > δ+( f ). It suffices to show that there
exists F ′ ∈ S such that π+(F ′) = f and ω+(F ′) < ω+(F). Indeed, if H is the
leading weighted homogeneous form (with respect to ω+) of F , then H ∈ J+. Claim
4.5 then implies that

H =
k−1∑

j=0

(z j x
q j+1−q j − a j+1)Hj

for some weighted homogeneous H0, . . . , Hk−1 ∈ S. Setting

F ′ := (F − H) +
k−1∑

j=0

Hj z j+1

does the job. ��
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Corollary 4.7 Let 	 := {(α, β0, . . . , βk, d) ∈ (Z≥0)
k+3 : αω1 + ∑k

j=0 β jω+, j ≤
d}. Then C[x, y]δ+ = C[xαgβ0

+,0 · · · gβk
+,k t

d : (α, β0, . . . , βk, d) ∈ 	]. ��

Since	 is a finitely generated subsemigroup ofZk+3, Corollary 4.7 proves assertion
(1) of Theorem 4.1. ��

4.3 Proof of Assertions (2)–(5) of Theorem 4.1

Let u, v, ξ be indeterminates. Let

φ(u, ξ) := f+(u1/2) + ξu−ω2/(2ω1) = u p/2 +
k∑

j=1

a ju
−q j /2 + ξu−ω2/(2ω1) (11)

and η be the degree-like function on C[u, v] defined as follows:

η(g(u, v)) = 2ω1 degu(g(u, v)|v=φ(u,ξ)).

Now consider the map C[u, v] ↪→ C[x, y] given by u �→ x2 and v �→ y. It is not
hard to check that for each i ∈ {+,−}, δi is an extension of η, i.e. δi restricts to η on
C(u, v). Note that −η is a discrete valuation on C[u, v] and −δ+,−δ− are discrete
valuations on C(x, y). Since the degree of the extension C(x, y) over C(u, v) is 2, it
follows from (Zariski and Samuel 1975, Theorem VI.19) that δ1 and δ2 are in fact the
only extensions of η to C[x, y]. Let

δ := max{δ+, δ−}.

Lemma B.3 then implies that C[x, y]δ is integral over C[u, v]η.
Now note that

v2|v=φ(u,ξ) = u p + 2a1u
(p−q1)/2 + · · · + 2aku

(p−qk )/2 + 2ξu p/2−ω2/(2ω1) + l.d.t.

where l.d.t. denotes terms with degree in u smaller than

ε := p/2 − ω2/(2ω1)

Note that ε ≥ 0 due to defining property (D) of ω1, ω2. Define

h j =

⎧
⎪⎨

⎪⎩

v2 − u p if j = 0,

h j−1 − 2a ju−q j /2v if 1 ≤ j ≤ k and q j is even,

h j−1 − 2a ju(p−q j )/2 if 1 ≤ j ≤ k and q j is odd.

(12)
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It is straightforward to verify that

(a) η(h0) > η(h1) > · · · > η(hk) = 2ω1ε ≥ 0.
(b) hk |v=φ(u,ξ) = 2ξuε+ terms with degree in u smaller than ε.

It then follows that u, v, h0, . . . , hk is the sequence of key forms of η—see
Appendix A for an informal discussion of key forms, and (Mondal 2016a, defi-
nition 3.16) for the precise definition. Property (C) of q1, . . . , qk implies that hk
is not a polynomial. This, together with observation (a) and Mondal and Netzer
(2014, theorem 4.13 and proposition 4.14) implies (see Appendix A.4) that

(c) C[u, v]η is not finitely generated over C,
(d) η( f ) > 0 for each f ∈ C[u, v]\C,
(e) if ε > 0, then { f ∈ C[u, v] : η( f ) ≤ d} is a finite dimensional vector space over

C for all d ≥ 0,
(f) if ε = 0, then there exists d > 0 such that { f ∈ C[u, v] : η( f ) ≤ d} is an infinite

dimensional vector space over C.

Since R = C[x, y]δ is integral over C[u, v]η, observations (c)–(f) imply assertions
(2)–(5) of Theorem 4.1. ��
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Appendix A: Key Forms: An Informal Introduction

Appendix A.1

The simplest of the degree-like functions on C[x, y] are weighted degrees: given a
pair of relatively prime integers (ω1, ω2) ∈ Z

2, the corresponding weighted degree ω

is defined as follows:

ω

⎛

⎝
∑

α,β

cα,βx
α yβ

⎞

⎠ := max{αω1 + βω2 : cα,β �= 0}

Assume ω1 and ω2 are positive. Then the weighted degree ω can also be described
as follows: take the one dimensional family of curvesCξ := {(x, y) : yω1 −ξ xω2 = 0}
parametrized by ξ ∈ C. Each of these curves has one place at infinity, i.e. its closure
in P

2 intersects the line at infinity on P
2 at a single point, and the germ of the curve is

analytically irreducible at that point. Then for each f ∈ C(x, y), ω( f ) is simply the
pole of f |Cξ at the unique point at infinity on Cξ for generic ξ ∈ C.

Appendix A.2

Now consider the family of curves Dξ := {(x, y) : y2 − x3 − ξ x2 = 0}, again
parametrized by ξ ∈ C. Each Dξ also has one place at infinity, and therefore defines a
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degree-like function η on C(x, y) defined as in the preceding paragraph: η( f ), where
f is a polynomial, is the pole of f |Dξ at the unique point at infinity on Dξ for generic
ξ ∈ C. Then it is not hard to see that

• η(x) = 2, η(y) = 3, η(y2 − x3) = 4,
• Given an expression of the form

f =
∑

α0,α1,α2

cαx
α0 yα1(y2 − x3)α2 (13)

where 0 ≤ α1 < 2 and α2 ≥ 0, one has

η( f ) = max{2α0 + 3α1 + 4α2 : cα �= 0}

Appendix A.3

Both ω from Appendix A.1 and η from Appendix A.2 are divisorial semidegrees on
C[x, y] - these are degree-like functions δ on C[x, y] such that there is an algebraic
compactification X̄ of C

2 and an irreducible curve E ⊆ X̄\C
2 such that for each

f ∈ C[x, y], δ( f ) is the pole of f along E . For a divisorial semidegree δ, starting
with g0 := x, g1 := y, one can successively form a finite sequence of elements
g0, . . . , gl+1 ∈ C[x, x−1, y], l ≥ 0, such that

• for each i = 1, . . . , l, gi+1 is a simple ‘binomial’ in g0, . . . , gi ,
• δ(gi+1) is smaller than its ‘expected value’, and
• every polynomial f in (x, y) has an expression in terms of g0, . . . , gl+1 such
that δ( f ) can be computed from that expression from only the knowledge of
δ(g0), . . . , δ(gl+1).

The key forms of weighted degrees are simply x, y, and the key forms of η from
Appendix A.2 are x, y, y2 − x3 (since η(x) = 2 and η(y) = 3, the ‘expected value’
of η(y2 − x3) should have been 6, whereas its actual value is 4).

Appendix A.4

A lot of information of a divisorial semidegree δ can be recovered from its key forms.
The results that we use in the proof of Theorem 4.1 follow from Mondal and Netzer
(2014, theorem 4.13 and proposition 4.14), and are as follows: if gl+1 is the last key
form of δ, then

(i) The following are equivalent:
(1) δ( f ) > 0 for every non-constant polynomial f on C[x, y],
(2) either δ(gl+1) > 0, or δ(gl+1) = 0 and gl+1 is not a polynomial.

(ii) The following are equivalent:
(1) C[x, y]δ is not finitely generated over C,
(2) δ(gl+1) ≥ 0 and gl+1 is not a polynomial.

(iii) Assume C[x, y]δ is not finitely generated over C.
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(1) if δ(gl+1) > 0, then Ld := { f ∈ C[x, y] : δ( f ) ≤ d} is a finite dimensional
vector space over C for each d ≥ 0.

(2) if δ(gl+1) = 0, then there exists d > 0 such that Ld is infinite dimensional
over C.

Appendix B: Integral Closure of the Graded Ring of a Degree-Like Func-
tion

Definition B.1 Let K be a field and A be a K-algebra. A degree-like function δ on A
is called a semidegree if δ satisfies condition (ii) of degree-like functions (see Sect.
2.1) always with an equality. We say that δ is a subdegree if there are finitely many
semidegrees δ1, . . . , δk such that for all f ∈ A\{0},

δ( f ) = max{δ1( f ), . . . , δk( f )} (14)

Remark B.2 If δ is integer-valued on A\{0} (i.e. δ( f ) = −∞ iff f = 0), then δ is a
semidegree iff −δ is a discrete valuation.

Let A ⊆ B be K-algebras which are also integral domains. Assume B is integral
over A and the quotient field L of B is a finite separable extension of the quotient field
K of A.

Lemma B.3 Let δ1, . . . , δm be semidegrees on A which are integer-valued on A\{0},
and δ := max{δ1, . . . , δm}. For each i , 1 ≤ i ≤ m, let ηi j , 1 ≤ j ≤ mi , be the
extension of δi to B. Define η := max{ηi j , 1 ≤ i ≤ m, 1 ≤ j ≤ mi }. If A is integrally
closed, then Bη is integral over Aδ . If in addition B is integrally closed, then Bη is
the integral closure of Aδ in the quotient field of Bη.

Proof By construction, the restriction of η to A is precisely δ, so that Aδ ⊆ Bη. The
last assertion of the lemma follows from the first by Lemma 4.4. We now demonstrate
the first assertion. Let t be an indeterminate. Identify Bη with a subring of B[t] as in
(2). Let f ∈ B\{0} and d ′ := η( f ). It suffices to show that f td

′ ∈ Bη satisfies an
integral equation over Aδ . Let the minimal polynomial of f over K be

P(T ) := T d +
∑

e

geT
d−e (15)

and L ′ be the Galois closure of L over K . Since L ′ is Galois over K , it contains all the
roots f1, . . . , fd of P(T ). Since L/K is finite and separable, each fi = σi ( f ) for some
σi ∈ Gal(L ′/K ). For each i, j , 1 ≤ i ≤ m and 1 ≤ j ≤ mi , let {η′

i jk : 1 ≤ k ≤ li j }
be the extensions of ηi j to L ′. Define

η′
i := max{η′

i jk : 1 ≤ j ≤ mi , 1 ≤ k ≤ li j }, 1 ≤ i ≤ m, and

η′ := max{η′
i : 1 ≤ i ≤ m}.
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Since each of δi , ηi j and η′
i jk’s is the negative of a discrete valuation, it follows that each

η′
i jk = η′

i11 ◦ σi jk for some σi jk ∈ Gal(L ′/K ) (Zariski and Samuel 1975, Theorem
VI.12, Corollary 3). It follows that for all i, j ,

η′
i ( f j ) = max{η′

i11 ◦ (σi j ′k′ ◦ σ j )( f ) : 1 ≤ j ′ ≤ mi , 1 ≤ k′ ≤ li j }
= max{η′

i j ′′k′′( f ) : 1 ≤ j ′′ ≤ mi , 1 ≤ k′′ ≤ li j }
= η′

i ( f ).

Note that η′
i |K = δi for each i . Since each ge (from (15)) is an e-th symmetric

polynomial in f1, . . . , fd , it follows that for all i , 1 ≤ i ≤ m, and all e, 1 ≤ e ≤ d,

δi (ge) = η′
i (ge) ≤ eη′

i ( f ). (16)

Since η′|B = η, it follows that d ′ = η( f ) = η′( f ). By definition of η′, there exists i ,
1 ≤ i ≤ m, such that d ′ = η′

i ( f ) ≥ η′
i ′( f ) for all i

′, 1 ≤ i ′ ≤ m. It then follows from
(16) that

δi (ge) ≤ ed ′ for all i, 1 ≤ i ≤ m. (17)

Now recall that A is integrally closed, so that ge ∈ A for all e (Atiyah and Macdonald
1969, Proposition 5.15). Since inequality (17) implies that δ(ge) ≤ ed ′, it follows that
geted

′ ∈ Aδ for all e. Consequently f td
′
satisfies the integral equation

P̃(T ) := T d +
∑

e

get
ed ′

T d−e

over Aδ . Therefore Bη is integral over Aδ , as required. ��
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