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1 Introduction

Let A(R) be the Cartan matrix of a finite root system R. The coordinates of its eigen-
vectors have an important meaning in the physics of integrable systems; we will say
more on this below.
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252 L. Brillon et al.

The aim of this note is to study these numbers and their q-deformations, using some
results coming from the singularity theory.

We discuss three ideas:

(a) Cartan/Coxeter correspondence;
(b) Sebastiani–Thom product;
(c) Givental’s q-deformations.

Let us explain what we are talking about.
Let us suppose that R is simply laced, i.e. of type A, D, or E . These root systems

are in one-to-one correspondence with (classes of) simple singularities
f : CN → C, cf. Arnold et al. (1988). Under this correspondence, the root lattice

Q(R) is identifiedwith the lattice of vanishing cycles, and theCartanmatrix A(R) is the
intersection matrix with respect to a distinguished base. The action of the Weyl group
on Q(R) is realized by Gauss–Manin monodromies—this is the Picard–Lefschetz
theory (for some details see Sect. 2 below).

Remarkably, this geometric picture provides a finer structure: namely, the symmet-
ric matrix A = A(R) comes equipped with a decomposition

A = L + Lt (1)

where L is a nondegenerate triangular “Seifert form”, or “variationmatrix”. Thematrix

C = −L−1Lt (2)

represents a Coxeter element of R; geometrically it is the operator of “classical mon-
odromy”.

We call the relation (1)–(2) between the Cartan matrix and the Coxeter element the
Cartan/Coxeter correspondence. It works more generally for non-symmetric A (in
this case (1) should be replaced by

A = L + U (3)

where L is lower triangular and U is upper triangular), and is due to Coxeter, cf.
Coxeter (1951), no. 1, p. 767, see Sect. 3 below.

In a particular case (corresponding to a bipartition of the Dynkin graph) this relation
is equivalent to an observation by Steinberg, cf. Steinberg (1985), cf. Sect. 3.3 below.

This correspondence allows one to relate the eigenvectors of A and C , cf.
Theorem 1.

A decomposition (1) will be called a polarization of the Cartan matrix A. In 4.1
belowwe introduce an operation of Sebastiani–Thom, or joint product A∗ B of Cartan
matrices (or of polarized lattices) A and B. The root lattice of A ∗ B is the tensor
product of the root lattice of A and the root lattice of B. With respect to this operation
the Coxeter eigenvectors factorize very simply.

For example, the lattices E6 and E8 decompose into three “quarks”:

E6 = A3 ∗ A2 ∗ A1 (4)
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Vanishing Cycles and Cartan Eigenvectors 253

E8 = A4 ∗ A2 ∗ A1 (5)

These decompositions are the main message from the singularity theory, and we
discuss them in detail in this note.

We use (4), (5), and the Cartan/Coxeter correspondence to get expressions for all
Cartan eigenvectors of E6 and E8; this is the first main result of this note, see Sects.
4.9, 4.11 below.

(An elegant expression for all the Cartan eigenvectors of all finite root systems was
given by Dorey, cf. Dorey (1990, 1991) (a), Table 2 on p. 659.)

In the paper Givental (1988), A. Givental has proposed a q-twisted version of the
Picard–Lefschetz theory, which gave rise to a q-deformation of A,

A(q) = L + q Lt . (6)

Again, as Givental remarked, the decomposition (3) allows us to drop the assumption
of symmetry in the definition above. In the last section, Sect. 5, we calculate the
eigenvalues and eigenvectors of A(q) in terms of the eigenvalues and eigenvectors of
A. This is the second main result of this note.

It turns out that if λ is an eigenvalue of A then

λ(q) = 1 + (λ − 2)
√

q + q (7)

will be an eigenvalue of A(q). The coordinates of the corresponding eigenvector v(q)

are obtained from the coordinates of v = v(1) bymultiplication by appropriate powers
of q; this is related to the fact that the Dynkin graph of A is a tree, cf. Sect. 5.2. For
an example of E8, see (26).

In physics, the coordinates of the Perron–Frobenius Cartan eigenvectors appear as
particle masses in affine Toda field theories, cf. Dorey (1991), Mikhailov et al. (1981).

In a pioneering paper Zamolodchikov (1989a, b), has discovered an octuplet of
particles of E8 symmetry in the two-dimensional critical Ising model in a magnetic
field, and calculated their masses, see Sect. 6.

The Appendix outlines some of the results of a neutron scattering experiment
(Coldea et al. 2010), where the two lowest-mass E8 particles of the Zamolodchikov’s
theory may have been observed. Some of us first learned about this experiment from
a beautiful paper Kostant (2010).

2 Recollections from the Singularity Theory

Here we recall some classical constructions and statements, cf. Arnold et al. (1988).

2.1 Lattice of Vanishing Cycles

Let f : (CN , 0) → (C, 0) be the germ of a holomorphic function with an isolated
critical point at 0, with f (0) = 0. We will be interested only in polynomial functions
(from the list below, cf. Sect. 2.4), so f ∈ C[x1, . . . , xN ]. The Milnor ring of f is
defined by
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Miln( f, 0) = C[[x1, . . . , xN ]]/(∂1 f, . . . , ∂N f )

where ∂i := ∂/∂xi ; it is a finite-dimensional commutative C-algebra. (In fact, it is a
Frobenius, or, equivalently, a Gorenstein algebra.) The number

μ := dimCMiln( f, 0)

is called the multiplicity or Milnor number of ( f, 0).
A Milnor fiber is

Vz = f −1(z) ∩ B̄ρ

where

B̄ρ = {(x1, . . . , xN )|
∑

|xi |2 ≤ ρ}

for 1 � ρ � |z| > 0.
For z belonging to a small disc Dε = {z ∈ C| |z| < ε}, the space Vz is a complex

manifold with boundary, homotopically equivalent to a bouquet ∨SN−1 of μ spheres,
Milnor (2016).

The family of free abelian groups

Q( f ; z) := H̃N−1(Vz;Z)
∼= Z

μ, z ∈ •
Dε := Dε\{0}, (8)

(H̃ means that we take the reduced homology for N = 1), carries a flat Gauss–Manin
connection.

Take t ∈ R>0 ∩ •
Dε ; the lattice Q( f ; t) does not depend, up to a canonical isomor-

phism, on the choice of t . Let us call this lattice Q( f ). The linear operator

T ( f ) : Q( f )
∼−→ Q( f ) (9)

induced by the path p(θ) = eiθ t, 0 ≤ θ ≤ 2π , is called the classical monodromy of
the germ ( f, 0).

In all the examples below T ( f ) has finite order h. The eigenvalues of T ( f ) have
the form e2π ik/h, k ∈ Z. The set of suitably chosen k’s for each eigenvalue are called
the spectrum of our singularity.

2.2 Morse Deformations

The C-vector space Miln( f, 0) may be identified with the tangent space to the base B
of the miniversal deformation of f . For

λ ∈ B0 = B\�
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Vanishing Cycles and Cartan Eigenvectors 255

where � ⊂ B is an analytic subset of codimension 1, the corresponding function
fλ : CN → C has μ nondegenerate Morse critical points with distinct critical values,
and the algebra Miln( fλ) is semisimple, isomorphic to Cμ.

Let 0 ∈ B denote the point corresponding to f itself, so that f = f0, and pick

t ∈ R>0 ∩ •
Dε as in Sect. 2.1.

Afterwards pick λ ∈ B0 close to 0 in such a way that the critical values z1, . . . zμ

of fλ have absolute values � t .
As in Sect. 2.1, for each

z ∈ D̃ε := Dε\{z1, . . . zμ}

the Milnor fiber Vz has the homotopy type of a bouquet ∨SN−1 of μ spheres, and we
will be interested in the middle homology

Q( fλ; z) = H̃N−1(Vz;Z)
∼= Z

μ

The lattices Q( fλ; z) carry a natural bilinear product induced by the cup product in the
homology which is symmetric (resp. skew-symmetric) when N is odd (resp. even).

The collection of these lattices, when z ∈ D̃ε varies, carries a flat Gauss–Manin
connection.

Consider an “octopus”

Oct (t) ⊂ C

with the head at t : a collection of non-intersecting paths pi (“tentacles”) connecting t
with zi and not meeting the critical values z j otherwise. It gives rise to a base

{b1, . . . , bμ} ⊂ Q( fλ) := Q( fλ; t)

(called “distinguished”) where bi is the cycle vanishing when being transferred from
t to zi along the tentacle pi , cf. Gabrielov (1973), Arnold et al. (1988).

The Picard–Lefschetz formula describes the action of the fundamental group
π1(D̃ε; t) on Q( fλ) with respect to this basis. Namely, consider a loop γi which turns
around zi along the tentacle pi , then the corresponding transformation of Q( fλ) is the
reflection (or transvection) si := sbi , cf. Lefschetz (1950), Théorème fondamental,
Ch. II, p. 23.

The loops γi generate the fundamental group π1(D̃ε). Let

ρ : π1(D̃ε; t) → GL(Q( fλ))

denote the monodromy representation. The image of ρ, denoted by G( fλ) and called
the monodromy group of fλ, lies inside the subgroup
O(Q( fλ)) ⊂ GL(Q( fλ)) of linear transformations respecting the above mentioned
bilinear form on Q( fλ).

The subgroup G( fλ) is generated by si , 1 ≤ i ≤ μ.
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256 L. Brillon et al.

As in Sect. 2.1, we have the monodromy operator

T ( fλ) ∈ G( fλ),

the image by ρ of the path p ⊂ D̃ε starting at t and going around all points z1, . . . , zμ.
This operator T ( fλ) is now a product of μ simple reflections

T ( fλ) = s1s2 . . . sμ,

this is because the only critical value 0 of f became μ critical values z1, . . . , zμ of
fλ.
One can identify the relative (reduced) homology H̃N−1(Vt , ∂Vt ;Z) with the dual

group H̃N−1(Vt ;Z)∗, and one defines a map

var : H̃N−1(Vt , ∂Vt ;Z) → H̃N−1(Vt ;Z),

called a variation operator, which translates to a map

L : Q( fλ)
∗ ∼−→ Q( fλ)

(“Seifert form”) such that the matrix A( fλ) of the bilinear form in the distinguished
basis is

A( fλ) = L + (−1)N−1Lt ,

and

T ( fλ) = (−1)N−1L L−t .

Cf. Lamotke (1975).
A choice of a path q in B connecting 0 with λ, enables one to identify Q( f ) with
Q( fλ), and T ( f ) will be identified with T ( fλ).

The image G( f ) of the monodromy group G( fλ) in GL(Q( f ))
∼= GL(Q( fλ)) is

called the monodromy group of f ; it does not depend on a choice of a path q.

2.3 Sebastiani–Thom Factorization

If g ∈ C[y1, . . . , yM ] is another function, the sum, or join of two singularities f ⊕ g :
C

N+M → C is defined by

( f ⊕ g)(x, y) = f (x) + g(y)

Obviously we can identify

Miln( f ⊕ g)
∼= Miln( f ) ⊗ Miln(g)

Note that the function g(y) = y2 is a unit for this operation.
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Vanishing Cycles and Cartan Eigenvectors 257

It follows that the singularities f (x1, . . . , xN ) and

f (x1, . . . , xN ) + x2M+1 + · · · + x2N+M

are “almost the same”. In order to have good signs (and for other purposes) it is
convenient to add some squares to a given f to get N ≡ 3 mod (4).

The fundamental Sebastiani–Thom theorem, Sebastiani (1971), says that there
exists a natural isomorphism of lattices

Q( f ⊕ g)
∼= Q( f ) ⊗Z Q(g),

and under this identification the full monodromy decomposes as

T f ⊕g = T f ⊗ Tg

Thus, if

Spec(T f ) = {eμp ·2π i/h1}, Spec(T f ) = {eνq ·2π i/h2}

then

Spec(T f ⊕g) = {e(μph2+νq h1)·2π i/h1h2}

2.4 Simple Singularities

Cf. Arnold et al. (1988) (a), 15.1. They are:

xn+1, n ≥ 1, (An)

x2y + yn−1, n ≥ 4 (Dn)

x4 + y3 (E6)

xy3 + x3 (E7)

x5 + y3 (E8)

Their names come from the following facts:

– their lattices of vanishing cycles may be identified with the corresponding root
lattices;

– the monodromy group is identified with the corresponding Weyl group;
– the classical monodromy T f is a Coxeter element, therefore its order h is equal to
the Coxeter number, and

Spec(T f ) = {e2π ik1/h, . . . , e2π ikr /h}

where the integers
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1 = k1 < k2 < · · · < kr = h − 1,

are the exponents of our root system.

We will discuss the case of E8 in some details below.

3 Cartan–Coxeter correspondence

3.1 Lattices, Polarization, Coxeter Elements

Let us call a lattice a pair (Q, A) where Q is a free abelian group, and

A : Q × Q → Z

a symmetric bilinear map (“Cartan matrix”). We shall identify A with a map

A : Q → Q∨ := Hom(Q,Z).

A polarized lattice is a triple (Q, A, L) where (Q, A) is a lattice, and

L : Q
∼−→ Q∨

(“variation”, or “Seifert matrix”) is an isomorphism such that

A = A(L) := L + L∨ (10)

where

L∨ : Q = Q∨∨ ∼−→ Q∨

is the conjugate to L .
The Coxeter automorphism of a polarized lattice is defined by

C = C(L) = −L−1L∨ ∈ GL(Q). (11)

We shall say that the operators A and C are in a Cartan–Coxeter correspondence.
Example Let (Q, A) be a lattice, and {e1, . . . , en} an ordered Z-base of Q. With

respect to this base A is expressed as a symmetric matrix A = (ai j ) = A(ei , e j ) ∈
gln(Z). Let us suppose that all aii are even. We define the matrix of L to be the unique
upper triangular matrix (�i j ) such that A = L + Lt (in particular �i i = aii/2; in our
examples we will have aii = 2.) We will call L the standard polarization associated
to an ordered base. ��

Polarized lattices form a groupoid:
an isomorphism of polarized lattices f : (Q1, A1, L1)

∼−→ (Q2, A2, L2) is by
definition an isomorphism of abelian groups f : Q1

∼−→ Q2 such that
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Vanishing Cycles and Cartan Eigenvectors 259

L1(x, y) = L2( f (x), f (y))

(and whence A1(x, y) = A2( f (x), f (y))).

3.2 Orthogonality

Lemma 1 (i) (orthogonality)

A(x, y) = A(Cx, Cy).

(ii) (gauge transformations) For any P ∈ GL(Q)

A(P∨L P) = P∨ A(L)P, C(P∨L P) = P−1C(L)P.

��

3.3 Black/white Decomposition and a Steinberg’S Theorem

Cf. Steinberg (1985), Casselman (2017). Let α1, . . . , αr be a base of simple roots of
a finite reduced irreducible root system R (not necessarily simply laced). Let

A = (ai j ) = (〈αi , α
∨
j 〉)

be the Cartan matrix.
Choose a black/white coloring of the set of vertices of the corresponding Dynkin

graph 
(R) in such a way that any two neighbouring vertices have different colours;
this is possible since 
(R) is a tree (cf. Sect. 5.2).

Let us choose an ordering of simple roots in such a way that the first p roots are
black, and the last r − p roots are white. In this base A has a block form

A =
(
2Ip X
Y 2Ir−p

)

Consider a Coxeter element

C = s1s2 · · · sr = CBCW , (12)

where

CB =
p∏

i=1

si , CW =
r∏

i=p+1

si .

Here si denotes the simple reflection corresponding to the root αi .
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260 L. Brillon et al.

The matrices of CB, CW with respect to the base {αi } are

CB =
(−I −X

0 I

)
, CW =

(
I 0

−Y −I

)
,

so that
CB + CW = 2I − A. (13)

This is an observation due to R.Steinberg, cf. Steinberg (1985), p. 591.
We can also rewrite this as follows. Set

L =
(

I 0
Y I

)
, U =

(
I X
0 I

)
.

Then A = L + U , and one checks easily that

C = −U−1L , (14)

so we are in the situation Sect. 3.1. This explains the name “Cartan–Coxeter corre-
spondence”.

3.4 Eigenvectors’ Correspondence

Theorem 1 Let

L =
(

Ip 0
Y Ir−p

)
, U =

(
Ip X
0 Ir−p

)

be block matrices. Set

A = L + U, C = −U−1L .

Let μ �= 0 be a complex number,
√

μ be any of its square roots, and

λ = 2 − √
μ − 1/

√
μ. (15)

Then a vector vC =
(

v1
v2

)
is an eigenvector of C with eigenvalue μ if and only if

vA =
(

v1√
μv2

)

is an eigenvector of A with the eigenvalue λ.1

Proof A direct check. ��

1 This formulation has been suggested by A. Givental.
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3.4.1 Remark

Note that the formula (15) gives two possible values of λ corresponding to ±√
μ. On

the other hand, λ does not change if we replace μ by μ−1.
In the simplest case of 2× 2 matrices the eigenvalues of A are 2± (

√
μ + √

μ−1),
whereas the eigenvalues of C are μ±1.

Corollary 1 In the notations of Sect. 3.1, a vector

x =
∑

x jα j

is an eigenvector of A with the eigenvalue 2(1 − cos θ) iff the vector

xc :=
∑

e±iθ/2x jα j

where the sign in e±iθ/2 is plus if i is a white vertex, and minus otherwise, is an
eigenvector ofC with eigenvalue e2iθ .

Cf. [Brillon and Schechtman (2016), Kostant (1959)].

Proof Without loss of generality, we can suppose that A is expressed in a basis of
simple roots such that the first r − p ones are white, and the last p roots are black.

Then A has a block form

A =
(
2Ir−p X

Y 2Ip

)
=

(
Ir−p 0

Y Ip

)
+

(
Ir−p X
0 Ip

)
= L + U

Applying Theorem 1 with

v1 =
⎛

⎝
eiθ/2x1

..

eiθ/2xr−p

⎞

⎠ and v2 =
⎛

⎝
e−iθ/2xr−p+1

..

e−iθ/2xr

⎞

⎠

and the well-known eigenvalues of the Cartan matrix A,

λ = 2 − 2 cos θk, with θk = 2πk/h, k ∈ Exp(R)

we obtain : xc := ∑
e±iθ/2x jα j is an eigenvector of C with the eigenvalue e2iθk iff

eiθk x = eiθk
∑

x jα j is an eigenvector of A with the eigenvalue 2 − 2 cos θk . ��

3.5 Example: The Root Systems An

We consider the Dynkin graph of An with the obvious numbering of the vertices.
The Coxeter number h = n + 1, the set of exponents:

Exp(An) = {1, 2, . . . , n}
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The eigenvalues of any Coxeter element are eiθk , and the eigenvalues of the Cartan
matrix A(An) are 2 − 2 cos θk , θk = 2πk/h, k ∈ Exp(An).

An eigenvector of A(An) with the eigenvalue 2 − 2 cos θ has the form

x(θ) =
(

n−1∑

k=0

ei(n−1−2k)θ ,

n−2∑

k=0

ei(n−2−2k)θ , . . . , 1

)
(16)

Denote by C(An) the Coxeter element

C(An) = s1s2 · · · sn

Its eigenvector with the eigenvalue e2iθ is:

XC(An) = (

n− j∑

k=0

e2ikθ )1≤ j≤n

For example, for n = 4:

CA4 =

⎛

⎜⎜⎝

0 0 0 −1
1 0 0 −1
0 1 0 −1
0 0 1 −1

⎞

⎟⎟⎠ and XC(A4) =

⎛

⎜⎜⎝

1 + e2iθ + e4iθ + e6iθ

1 + e2iθ + e4iθ

1 + e2iθ

1

⎞

⎟⎟⎠

is an eigenvector with eigenvalue e2iθ .
Similarly, for n = 2: s

CA2 =
(
0 −1
1 −1

)
, XC(A2) =

(
1 + e2iγ

1

)

��
4 Sebastiani–Thom Product; Factorization of E8 and E6

4.1 Join Product

Suppose we are given two polarized lattices (Qi , Ai , Li ), i = 1, 2.
Set Q = Q1 ⊗ Q2, whence

L := L1 ⊗ L2 : Q
∼−→ Q∨,

and define

A := A1 ∗ A2 := L + L∨ : Q
∼−→ Q∨

The triple (Q, A, L) will be called the join, or Sebastiani–Thom, product of the
polarized lattices Q1 and Q2, and denoted by Q1 ∗ Q2.
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Vanishing Cycles and Cartan Eigenvectors 263

Obviously

C(L) = −C(L1) ⊗ C(L2) ∈ GL(Q1 ⊗ Q2).

It follows that if Spec(C(Li )) = {e2π iki /hi , ki ∈ Ki } then

Spec(C(L)) =
{
−e2π i(k1/h1+k2/h2), (k1, k2) ∈ K1 × K2

}
(17)

4.2 E8 Versus A4 ∗ A2 ∗ A1: Elementary Analysis

The ranks:

r(E8) = 8 = r(A4)r(A2)r(A1);

the Coxeter numbers:

h(E8) = h(A4)h(A2)h(A1) = 5 · 3 · 2 = 30.

It follows that

|R(E8)| = 240 = |R(A4)||R(A2)||R(A1)|.

The exponents of E8 are:

1, 7, 13, 19, 11, 17, 23, 29.

All these numbers, except 1, are primes, and these are all primes ≤30, not dividing
30.

They may be determined from the formula

i

5
+ j

3
+ 1

2
= 30 + k(i, j)

30
, 1 ≤ i ≤ 4, 1 ≤ j ≤ 2,

so

k(i, 1) = 1 + 6(i − 1) = 1, 7, 13, 19;
k(i, 2) = 1 + 10 + 6(i − 1) = 11, 17, 23, 29.

This shows that the exponents of E8 are the same as the exponents of A4 ∗ A2 ∗ A1.
The following theorem is more delicate.
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4.3 Decomposition of Q(E8)

Theorem 2 (Gabrielov, cf. Gabrielov (1973), Sect. 6, Example 3). There exists a
polarization of the root lattice Q(E8) and an isomorphism of polarized lattices


 : Q(A4) ∗ Q(A2) ∗ Q(A1)
∼−→ Q(E8). (18)

In the left hand side Q(An) means the root lattice of An with the standard Cartan
matrix and the standard polarization

A(An) = L(An) + L(An)t

where the Seifert matrix L(An) is upper triangular.
In the process of the proof, given in Sects. 4.4–4.6 below, the isomorphism 
 will

be written down explicitly. Cf. Arnold et al. (1988), Chapter I, Sect. 4 (especially Fig.
39), and references to the articles by A’Campo and Gusein-Zade therein.

4.4 Beginning of the Proof

For n = 4, 2, 1, we consider the bases of simple roots e1, . . . , en in Q(An), with scalar
products given by the Cartan matrices A(An).

The tensor product of three lattices

Q∗ = Q(A4) ⊗ Q(A2) ⊗ Q(A1)

will be equipped with the “factorizable” basis in the lexicographic order:

( f1, . . . , f8) := (e1 ⊗ e1 ⊗ e1, e1 ⊗ e2 ⊗ e1, e2 ⊗ e1 ⊗ e1, e2 ⊗ e2 ⊗ e1,

e3 ⊗ e1 ⊗ e1, e3 ⊗ e2 ⊗ e1, e4 ⊗ e1 ⊗ e1, e4 ⊗ e2 ⊗ e1).

Introduce a scalar product (x, y) on Q∗ given, in the basis { fi }, by the matrix

A∗ = A4 ∗ A2 ∗ A1.

4.5 Gabrielov–Picard–Lefschetz Transformations αm, βm

Let (Q, (, )) be a lattice of rank r . We introduce the following two sets of transforma-
tions {αm}, {βm} on the set Bases − cycl(Q) of cyclically ordered bases of Q.

If x = (xi )i∈Z/rZ is a base, and m ∈ Z/rZ, we set

(αm(x))i =
⎧
⎨

⎩

xm+1 + (xm+1, xm)xm if i = m
xm if i = m + 1
xi otherwise
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Vanishing Cycles and Cartan Eigenvectors 265

Fig. 1 Gabrielov’s ordering of
E8

and

(βm(x))i =
⎧
⎨

⎩

xm if i = m − 1
xm−1 + (xm−1, xm)xm if i = m
xi otherwise

We define also a transformation γm by

(γm(x))i =
{−xm if i = m

xi otherwise

4.6 Passage from A4 ∗ A2 ∗ A1 to E8

Consider the base f = { f1, . . . f8} of the lattice Q∗ := Q(A4) ⊗ Q(A2) ⊗ Q(A1)

described in Sect. 4.4, and apply to it the following transformation

G ′ = γ2γ1β4β3α3α4β4α5α6α7α1α2α3α4β6β3α1, (19)

cf. Gabrielov (1973), Example 3. Note that

γ2γ1 = α6
1, (20)

cf. Brieskorn (1988).
Then the base G ′( f ) has the intersection matrix given by the Dynkin graph of E8,

with the ordering indicated in Fig. 1 below.
This concludes the proof of Theorem 2. ��

4.7 The Induced Map of Root Sets

By definition, the isomorphism of lattices 
, (22), induces a bijection between the
bases

g : { f1, . . . , f8} ∼−→ {α1, . . . , α8} ⊂ R(E8).

where in the right hand side we have the base of simple roots, and a map

G : R(A4) × R(A2) × R(A1) → R(E8), G(x, y, z) = 
(x ⊗ y ⊗ z)

of sets of the same cardinality 240 which is not a bijection however: its image consists
of 60 elements.
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Note that the set of vectors α ∈ Q(E8) with (α, α) = 2 coincides with the root
system R(E8), cf. Serre (1970), Première Partie, Ch. 5, 1.4.3.

4.8 Passage to Bourbaki Ordering

The isomorphism G ′ (19) is given by a matrix G ′ ∈ GL8(Z) such that

AG(E8) = G ′t A∗G ′

where we denoted

A∗ = A(A4) ∗ A(A2) ∗ A(A1),

the factorized Cartan matrix, and AG denotes the Cartan matrix of E8 with respect to
the numbering of roots indicated on Fig. 1.

Now let us pass to the numbering of vertices of the Dynkin graph of type E8
indicated in Bourbaki (2007) (the difference with Gabrielov’s numeration is in three
vertices 2, 3, and 4).

The Gabrielov’s Coxeter element (the full monodromy) in the Bourbaki numbering
looks as follows:

CG(E8) = s1 ◦ s3 ◦ s4 ◦ s2 ◦ s5 ◦ s6 ◦ s7 ◦ s8

Lemma 2 Let A(E8) be the standard Cartan matrix of E8 from [B]:

A(E8) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0

−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then

A(E8) = Gt A∗G

and

CG(E8) = G−1C∗G

where

C∗ = C(Q(A4) ∗ Q(A2) ∗ Q(A1)) = C(A4) ⊗ C(A2) ⊗ C(A1),
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Fig. 2 Bourbaki ordering of E8

is the factorized Coxeter element, and

G =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 −1 0 0 0
−1 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0

−1 1 −1 0 0 1 0 0
0 1 −1 0 0 0 1 0

−1 1 −1 0 0 0 1 0
0 1 −1 0 0 0 0 1
0 1 −1 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here

G = G ′ P

where P is the permutation matrix of passage from the Gabrielov’s ordering in Fig. 1
to the Bourbaki ordering in Fig. 2.

4.9 Cartan Eigenvectors of E8

To obtain the Cartan eigenvectors of E8, one should pass from CG(E8) to the
“black/white” Coxeter element (as in Sect. 3.3)

CBW (E8) = s1 ◦ s4 ◦ s6 ◦ s8 ◦ s2 ◦ s3 ◦ s5 ◦ s7

Any two Coxeter elements are conjugate in the Weyl group W (E8).
The elements CG(E8) and CBW (E8) are conjugate by the following element of

W (E8):

CG(E8) = w−1CBW (E8)w

where

w = s7 ◦ s5 ◦ s3 ◦ s2 ◦ s6 ◦ s4 ◦ s5 ◦ s1 ◦ s3 ◦ s2 ◦ s4 ◦ s1 ◦ s3 ◦ s2 ◦ s1 ◦ s2

This expression for w can be obtained using an algorithm described in Casselman
(2017), cf. also Brieskorn (1988).

Thus, if x∗ is an eigenvector of C∗(E8) then

xBW = wG−1x∗

is an eigenvector of CBW (E8). But we know the eigenvectors of C∗(E8), they are all
factorizable.
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This provides the eigenvectors ofCBW (E8), which in turn have very simple relation
to the eigenvectors of A(E8), due to Theorem 1.

Conclusion: an expression for the eigenvectors of A(E8).
Let θ = aπ

5 , 1 ≤ a ≤ 4, γ = bπ
3 , 1 ≤ b ≤ 2, δ = π

2 ,

α = θ + γ + δ = π + kπ

30
,

k ∈ {1, 7, 11, 13, 17, 19, 23, 29}.

The 8 eigenvalues of A(E8) have the form

λ(α) = λ(θ, γ ) = 2 − 2 cosα

An eigenvector of A(E8) with the eigenvalue λ(θ, γ ) is

X E8 (θ, γ )

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(γ + θ − δ) + cos(γ − 3θ − δ) + cos(γ − θ − δ)

cos(2γ + 2θ)

cos(2γ ) + cos(2γ + 2θ) + cos(2γ − 2θ) + cos(4θ) + cos(2θ)

cos(γ + 3θ − δ) + cos(γ + θ − δ) + cos(−γ + 3θ − δ)

2 cos(2γ ) + 2 cos(2γ + 2θ) + cos(2γ − 2θ) + cos(2γ + 4θ) + cos(4θ) + 2 cos(2θ) + 1
cos(γ + 3θ − δ) + cos(γ + θ − δ)

cos(2γ ) + cos(2θ − 2δ)
cos(γ − θ − δ)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

One can simplify it as follows:

X E8(θ, γ ) = −

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 cos(4θ) cos(γ − θ − δ)

− cos(2γ + 2θ)

2 cos2(θ)

−2 cos(γ ) cos(3θ − δ) − cos(γ + θ − δ)

−2 cos(2γ + 3θ) cos(θ) + cos(2γ )

−2 cos θ cos(γ + 2θ − δ)

−2 cos(γ + θ − δ) cos(γ − θ + δ)

− cos(γ − θ − δ)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

4.10 Perron–Frobenius and All That

The Perron–Frobenius eigenvector corresponds to the eigenvalue

2 − 2 cos
π

30
,
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and may be chosen as

vP F =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 cos π
5 cos 11π

30

cos π
15

2 cos2 π
5

2 cos 2π
30 cos π

30

2 cos 4π
15 cos π

5 + 1
2

2 cos π
5 cos 7π

30

2 cos π
30 cos

11π
30

cos 11π
30

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Ordering its coordinates in the increasing order, we obtain

vP F< =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos 11π
30

2 cos π
5 cos 11π

30

2 cos π
30 cos

11π
30

cos π
15

2 cos π
5 cos 7π

30

2 cos2 π
5

2 cos 4π
15 cos π

5 + 1
2

2 cos 2π
30 cos π

30

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In the Ref. Zamolodchikov (1989a, b), obtains the following expression for the PF
vector:

vZam(m) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m
2m cos π

5

2m cos π
30

4m cos π
5 cos 7π

30

4m cos π
5 cos 2π

15

4m cos π
5 cos π

30

8m cos2 π
5 cos 7π

30

8m cos2 π
5 cos 2π

15

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Setting m = cos 11π
30 , we find indeed :

vP F< = vZam

(
cos

11π

30

)
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4.11 Factorization of E6

Theorem 3 (Gabrielov, cf. 1973, Sect. 6, Example 2). There exists a polarization of
the root lattice Q(E6) and an isomorphism of polarized lattices


E6 : Q(A3) ∗ Q(A2) ∗ Q(A1)
∼−→ Q(E6). (22)

The proof is exactly the same as for Q(E8). The passage from A3 ∗ A2 ∗ A1 to E6
is obtained by the following transformation

G ′
E6

= γ4γ1α1α2α3α4β6β3α1

cf. Gabrielov (1973), Example 2.
After a passage from Gabrielov’s ordering to Bourbaki’s, we obtain a transforma-

tion

G E6 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 −1 1 0 0 0
−1 0 1 0 0 0
0 −1 0 1 0 0

−1 0 0 0 1 0
0 0 0 0 0 1

−1 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎠
∈ GL6(Z)

such that

A(E6) = Gt
E6

A∗G E6 and CG(E6) = G−1
E6

C∗G E6

where A∗ = A(A3) ∗ A(A2) ∗ A(A1) and C∗ = C(A3) ⊗ C(A2) ⊗ C(A1) and

CG(E6) = s1 ◦ s3 ◦ s4 ◦ s2 ◦ s5 ◦ s6

CG(E6) is the Gabrielov’s Coxeter element in the Bourbaki numbering, cf. Bourbaki
(2007).

Let CBW (E6) = s1 ◦ s4 ◦ s6 ◦ s2 ◦ s3 ◦ s5 be the “black/white” Coxeter element.
CG(E6) and CBW (E6) are conjugated by the following element of the Weyl group
W (E6) :

v = s5 ◦ s3 ◦ s2 ◦ s4 ◦ s1 ◦ s3 ◦ s3 ◦ s1 ◦ s2

Thus, if x∗ is an eigenvector of C∗(E6) then xBW = vG−1
E6

x∗ is an eigenvector of
CBW (E6).

Finally, let θ = aπ
4 , 1 ≤ a ≤ 3, γ = bπ

3 , 1 ≤ b ≤ 2, δ = π
2 and

α = θ + γ + δ
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The 6 eigenvalues of A(E6) have the form λ(α) = λ(θ, γ ) = 2 − 2 cosα. An eigen-
vector of A(E6) with the eigenvalue λ(α) is

X E6(θ, λ) =

⎛

⎜⎜⎜⎜⎜⎜⎝

cos (3γ + 3θ − δ)

2 cos2 θ

−2 cos (3γ + 3θ − δ) cos (γ + θ − δ)

−4 cos2 θ cos (γ + θ − δ)

1 − 2 cos (2γ + 3θ) cos θ

−2 cos(γ ) cos (θ − δ)

⎞

⎟⎟⎟⎟⎟⎟⎠

5 Givental’s q-Deformations

5.1 q-Deformations of Cartan Matrices

Let A = (ai j ) be a n × n complex matrix. We will say that A is a generalized Cartan
matrix if

(i) for all i �= j , ai j �= 0 implies a ji �= 0;
(ii) all aii = 2. If only (i) is fulfilled, we will say that A is a pseudo-Cartan matrix.

We associate to a pseudo-Cartan matrix A an unoriented graph 
(A) with vertices
1, . . . , n, two vertices i and j being connected by an edge e = (i j) iff ai j �= 0.

Let A be a generalized Cartan matrix. There is a unique decomposition

A = L + U

where L = (�i j ) (resp. U = (ui j )) is lower (resp. upper) triangular, with 1’s on the
diagonal.

We define a q-deformed Cartan matrix by

A(q) = q L + U

This definition is inspired by the q-deformed Picard–Lefschetz theory developed by
Givental (1988).

Theorem 4 Let A be a generalized Cartan matrix such that 
(A) is a tree.

(i) The eigenvalues of A(q) have the form

λ(q) = 1 + (λ − 2)
√

q + q (23)

where λ is an eigenvalue of A.
(ii) There exist integers k1, . . . , kn such that if x = (x1, . . . , xn) is an eigenvector of

A for the eigenvalue λ then

x(q) = (qk1/2x1, . . . , qkn/2xn) (24)

is an eigenvector of A(q) for the eigenvalue λ(q).
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The theorem will be proved after some preparations.

5.2 Let 
 be an unoriented tree with a finite set of vertices I = V (
).
Let us pick a root of 
, and partially order its vertices by taking the minimal vertex

i0 to be the bottom of the root, and then going “upstairs”. This defines an orientation
on 
.

Lemma 3 Suppose we are given a nonzero complex number bi j for each edge e =
(i j), i < j of 
. There exists a collection of nonzero complex numbers {ci }i∈I such
that

bi j = c j/ci , i < j.

for all edges (i j). We can choose the numbers ci in such a way that they are products
of some numbers bpq .

Proof Set ci0 = 1 for the unique minimal vertex i0, and then define the other ci one
by one, by going upstairs, and using as a definition

c j := bi j ci , i < j.

Obviously, the numbers ci defined in such a way, are products of bpq . ��
Lemma 4 Let A = (ai j ) and A′ = (a′

i j ) be two pseudo-Cartan matrices with 
(A) =

(A′). Set bi j := a′

i j/ai j . Suppose that

bi j = b−1
j i . (25)

for all i �= j , and aii = a′
i i for all i . Then there exists a diagonal matrix

D = Diag(c1, . . . , cr )

such that A′ = D−1AD.
Moreover, the numbers ci may be chosen to be products of some bpq .

Proof Let us choose a partial order <p on the set of vertices V (
) as in Sect. 5.2.
Warning This partial order differs in general from the standard total order on

{1, . . . , n}.
Let us apply Lemma 3 to the collection of numbers {bi j , i <p j}.We get a sequence

of numbers ci j such that

bi j = c j/ci

for all i <p j . The condition (25) implies that this holds true for all i �= j .
By definition, this is equivalent to

a′
i j = c−1

i ai j c j ,

i.e. to A′ = D−1AD. ��
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5.3 Proof of Theorem 4

Let us consider two matrices: A(q) = (a(q)i j ) with a(q)i i = 1 + q

a(q)i j =
{

ai j if i < j
qai j if i > j

and

A′(q) = √
q A + (1 − √

q)2 I = (a(q)′i j )

with a(q)′i i = 1 + q and a(q)′i j = √
qa(q)i j , i �= j .

Thus, we can apply Lemma 4 to A(q) and A′(q). So, there exists a diagonal matrix
D as above such that

A(q) = D−1A′(q)D.

But the eigenvalues of A′(q) are obviously

λ(q) = √
qλ + (1 − √

q)2 = 1 + (λ − 2)
√

q + q.

If v is an eigenvector of A for λ then v is an eigenvector of A′(q) for λ(q), and Dv

will be an eigenvector of A(q) for λ(q). ��

5.4 Remark (M. Finkelberg)

The expression (23) resembles the number of points of an elliptic curve X over a finite
field Fq . To appreciate better this resemblance, note that in all our examples λ has the
form

λ = 2 − 2 cos θ,

so if we set

α = √
qeiθ

(“a Frobenius root”) then |α| = √
q , and

λ(q) = 1 − α − ᾱ + q,

cf. Ireland and Rosen (2013), Chapter 11, §1, Knapp (1992), Chapter 10, Theorem
10.5.

So, the Coxeter eigenvalues e2iθ may be seen as analogs of “Frobenius roots of an
elliptic curve over F1”.
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5.5 Examples

5.5.1 Standard Deformation for An

Let us consider the following q-deformation of A = A(An):

A(q) =

⎛

⎜⎜⎝

1 + q −1 0 . . . 0
−q 1 + q −1 . . . 0
. . . . . . . . . . . . . . .

0 . . . 0 −q 1 + q

⎞

⎟⎟⎠

Then

Spec(A(q)) = {λ(q) := 1 + (λ − 2)
√

q + q| λ ∈ Spec(A(1))}.

If x = (x1, . . . , xn) is an eigenvector of A = A(1) with eigenvalue λ then

x(q) = (x1, q1/2x2, . . . , q(n−1)/2xn)

is an eigenvector of A(q) with eigenvalue λ(q).

5.5.2 Standard Deformation for E8

A q-deformation:

AE8(q) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 + q 0 −1 0 0 0 0 0
0 1 + q 0 −1 0 0 0 0

−q 0 1 + q −1 0 0 0 0
0 −q −q 1 + q −1 0 0 0
0 0 0 −q 1 + q −1 0 0
0 0 0 0 −q 1 + q −1 0
0 0 0 0 0 −q 1 + q −1
0 0 0 0 0 0 −q 1 + q

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Its eigenvalues are

λ(q) = 1 + q + (λ − 2)
√

q = 1 + q − 2
√

q cos θ

where λ = 2 − 2 cos θ is an eigenvalue of A(E8).
If X = (x1, x2, x3, x4, x5, x6, x7, x8) is an eigenvector of A(E8) for the eigenvalue

λ, then

X = (x1,
√

qx2,
√

qx3, qx4, q
√

qx5, q2x6, q2√qx7, q3x8) (26)

is an eigenvector of AE8(q) for the eigenvalue λ(q).
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6 A Physicist’s Appendix: Cobalt Niobate Producing an E8 Chord

In this Section, we briefly describe the relation of Perron-Frobenius components, in
the case of R = E8, to the physics of certain magnetic systems as anticipated in
a pioneering theoretical work (Zamolodchikov 1989a, b) and possibly observed in a
beautiful neutron scattering experiment (Coldea et al. 2010).

6.1 One-Dimensional Ising Model in a Magnetic Field

(a) The Ising Hamiltonian
Let W = C

2. Recall three Hermitian Pauli matrices:

σ x =
(
0 1
1 0

)
, σ y =

(
0 −i
i 0

)
, σ z =

(
1 0
0 −1

)
.

The C-span of σ x , σ y, σ z inside End(W ) is a complex Lie algebra g = sl(2,C);
the R-span of the anti-Hermitian matrices iσ x , iσ y, iσ z is a real Lie subalgebra k =
su(2) ⊂ g. The resulting representation of g (or k) on W is what physicists refer to as
the “spin- 12 representation”.

For a natural N , consider a 2N -dimensional tensor product

V = ⊗N
n=1Wn

with all Wn = W . We are interested in the spectrum of the following linear operator
H acting on V :

H = H(J, hz, hx ) = −J
N∑

n=1

σ z
n σ z

n+1 − hz

N∑

n=1

σ z
n − hx

N∑

n=1

σ x
n , (27)

where J, hx , hz are positive real numbers. Here for A : W −→ W , An : V −→ V
denotes an operator acting as A on the nth tensor factor and as the identity on all the
other factors. By definition, AN+1 := A1.

In keeping with the conditions of the experiment (Coldea et al. 2010), everywhere
below we assume that N is very large (N >> 1), and that 0 < hz << J .

The space V arises as the space of states of a quantum-mechanical model describing
a chain of N atoms on the plane R2 with coordinates (x, z). The chain is parallel to
the z axis, and is subject to a magnetic field with a component hz along the chain,
and a component hx along the x-axis. The Wn is the space of states of the n-th atom.
Only the nearest-neighbor atoms interact, and the J parameterizes the strength of this
interaction.

The operator H in the Eq. (27) is called the Hamiltonian, and its eigenvalues ε

correspond to the energy of the system. It is a Hermitian operator (with respect to an
obvious Hermitian scalar product on V ), thus all its eigenvalues are real.
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Consider also the translation operator T , acting as follows:

T (v1 ⊗ v2 ⊗ . . . ⊗ vN ) = v2 ⊗ v3 ⊗ · · · ⊗ vN ⊗ v1, (28)

The operator T is unitary, and commutes with H .
An eigenvector v0 ∈ V of H with the lowest energy eigenvalue ε0 is called the

ground state.
What happens as hx varies, at fixed J and hz? When hx << J , the ground state v0

is close to the ground state vJ of the operator HJ = H(J, 0, 0):

vJ = ⊗N
n=1v

z
n,

where vz
n is an eigenvector of σ z in Wi with eigenvalue 1. Thus, the state vJ is inter-

preted as “all the spins pointing along the z-axis”.
In the opposite limit, when hx >> J , the ground state v0 is close to the ground

state vx of the operator Hx = H(0, 0, hx ):

vx = ⊗N
n=1v

x
n ,

where vx
n is an eigenvector of σ x in Wn with eigenvalue 1. Thus, the state vx is

interpreted as “all the spins pointing along the x-axis”.
As a function of hx at fixed J and hz , the system has two phases. There is a critical

value hx = hc, of the order of J/2 : for hx < hc, the ground state v0 is close to vJ ,
and one says that the chain is in the ferromagnetic phase. By contrast, for hx > hc, the
ground state v0 is close to vx , and one says that the chain is in the paramagnetic phase.
(The transition between the two phases is far less trivial than the spins simply turning
to follow the field upon increasing hx : to find out more, curious reader is encouraged
to consult the Ref. Chakrabarti et al. (1996).)

(b) Elementary excitations at hx = hc

Zamolodchikov’s theory (Zamolodchikov 1989a, b), says something spectacularly
precise about the next few, after ε0, eigenvalues (“energy levels”) of a nearly-critical
Hamiltonian Hc := H(J, hz << J, hc). To see this, notice that the possible eigen-
values of the translation operator T have the form e2π ik/N , with −N/2 ≤ k ≤ N/2;
let us call the number

p = 2πk/N

the momentum of an eigenstate. Since H commutes with T , each eigenspace Vε :=
{v ∈ V | Hcv = εv} decomposes further as per

Vε = ⊕p Vp,ε ,

where

Vp,ε := {v ∈ V | Hcv = εv, T v = eipv}
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Fig. 3 The expected joint spectrum of the operators T, H

Let us add a constant to Hc in such a way that the ground state energy ε0 becomes
0 and, on the plane P with coordinates (p, ε), let us mark all the points, for which
Vp,ε �= 0.

Zamolodchikov predicted (Zamolodchikov 1989a, b), that there exist 8 numbers
0 < m1 < · · · < m8 with the following property. Let us draw on P eight hyperbolae

Hypi : ε =
√

m2
i + p2, 1 ≤ i ≤ 8. (29)

All the marked points will be located:

– either in a vicinity of one of the hyperbolae Hypi (in the limit N −→ ∞ they will
all lie on these hyperbolae).

– or in a shaded region separated from these hyperbolae as shown in the Fig. 3.

The states v ∈ Vp,ε with (p, ε) ∈ Hypi are called elementary excitations. The
numbers mi are called their masses.
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The vector

m = (m1, . . . , m8) (30)

is proportional to the Perron–Frobenius vP F< for E8 from Sect. 4.10, whose normal-
ized approximate value is

vP F< = (1, 1.62, 1.99, 2.40, 2.96, 3.22, 3.89, 4.78) (31)

These low-lying excitations (hyperbolae) are observable: one may be able to see
them

(a) in a computer simulation, or
(b) in a neutron scattering experiment.

6.2 Neutron Scattering Experiment

The paper (Coldea et al. 2010) reports the results of a magnetic neutron scattering
experiment on cobalt niobate CoNb2O6, a material that can be pictured as a collection
of parallel non-interacting one-dimensional chains of atoms.We depict such a chain as
a straight line, parallel to the z-axis in our physical space R3 with coordinates x, y, z.

The sample, at low temperature T < 2.95K (Kelvin), was subject to an external
magnetic field with components (hx , hz), with the hx at the critical value hx = hc, and
with hz << hc. The system may be described as the Ising chain with a nearly-critical
Hamiltonian H = H(J, hz << hc, hc) of the Eq. (27). The experiment (Coldea et al.
2010) may be interpreted with the help of the following (oversimplified) theoretical
picture.

Consider a neutron scattering off the sample. If the incident neutron has energy ε

and momentum p, and scatters off with energy ε′ and momentum p′, the energy and
momentumconservation laws imply that the differences, called energy andmomentum
transfers ω = ε − ε′, q = p − p′, are absorbed by the sample.

The energy transfer cannot be arbitrary. Suppose that, prior to scattering the neutron,
the sample was in the ground state v0; upon scattering the neutron, it undergoes a
transition to a state that is a linear combination of the eight elementary excitations
v ∈ Vp,ε .

We will be interested in neutrons that scatter off with zero momentum transfer. The
Zamolodchikov theory (Zamolodchikov 1989a, b) predicted, that the neutron scatter-
ing intensity S(0, ω) should have peaks at ω = ma , (a = 1, . . . , 8) of the Eq. (31). At
zero momentum transfer, a neutron scattering experiment would measure the propor-
tion of neutrons that scattered off with the energies m1, . . . , m8: the resulting S(0, ω)

would look as in the schematic Fig. 4. Metaphorically speaking, the crystal would thus
“sound” as a “chord” of eight “notes”: the eigenfrequencies mi .

At the lowest temperatures, and in the immediate vicinity of hx = hc, the experi-
ment (Coldea et al. 2010) succeeded to resolve the first two excitations, and to extract
their masses m1 and m2. The mass ratio m2/m1 was found to be m2

m1
= 1.6 ± 0.025,

consistent with m2
m1

= 1+√
5

2 ≈ 1.618 of the expression for the vZam(m) in the Sect.
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m1
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S(q=0,     )
ω S(q=0,   )

m 1

Fig. 4 A sketch of the scattering intensity S(0, ω) at zero momentum peaks relative to S(0, m1), against
the ω/m1 ratio. The two leftmost peaks shown by thick lines correspond to the excitations with the masses
m1 and m2, that were resolved in the experiment (Coldea et al. 2010). The experimentally found mass ratio

m2/m1 is consistent with m2
m1

= 1+√
5

2 , as per the expression for the vZam (m) in the Sect. 4.10

4.10. In other words, the experimentalists were able to hear two of the eight notes of
the Zamolodchikov E8 chord.

A reader wishing to find out more about various facets of the story is invited to
turn to the references (Rajaraman 1989; Delfino 2004; Gosslevi 2010; Borthwick and
Garibaldi 2011).
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