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Abstract We study random, finite-dimensional, ungraded chain complexes over a
finite field and show that for a uniformly distributed differential a complex has
the smallest possible homology with the highest probability: either zero or one-
dimensional homology depending on the parity of the dimension of the complex.
We prove that as the order of the field goes to infinity the probability distribution
concentrates in the smallest possible dimension of the homology. On the other hand,
the limit probability distribution, as the dimension of the complex goes to infinity, is a
super-exponentially decreasing, but strictly positive, function of the dimension of the
homology.
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1 Introduction

We study random, finite-dimensional, ungraded chain complexes over a finite field
and we are interested in the probability that such a complex has homology of a given
dimension. We show that for a uniformly distributed differential the complex has the
smallest possible homology with the highest probability.

To be more specific, consider an n-dimensional vector space V over a finite field
F = Fq of order q and let D be a differential on V , i.e., a linear operator D : V → V
with D2 = 0.We are interested in the probability pr (q, n)withwhich a chain complex
(V, D) has homology ker D/ im D of a given dimension r for fixed n and q. The
differential D is uniformly distributed and pr (q, n) is simply the ratio cr (q, n)/c(q, n),
where cr (q, n) is the number of complexes with r -dimensional homology and c(q, n)
is the number of all complexes. The numbers cr (q, n) are explicitly calculated by
Kovacs (1987); see also Theorem 2.2.

We mainly focus on large complexes, i.e., on the limits as q or n go to infinity.
Clearly, r and n must have the same parity and we separately analyze the asymptotic
behavior of the sequence p0(q, n), p2(q, n), . . ., where n is even, and the sequence
p1(q, n), p3(q, n), . . . for n odd.

As q → ∞ with n fixed, the probability concentrates in the lowest possible dimen-
sion, i.e., p0(q, n) → 1 or p1(q, n) → 1 depending on the parity of n, while
pr (q, n) → 0 for r > 1. This is consistent with the observation that over C and
even R (see Lemma 3.1) a generic complex has 0- or 1-dimensional homology, i.e.,
that such complexes form the highest dimensional stratum in the variety of all n-
dimensional complexes. Indeed, one can expect the probability distributions for large
q to approximate the generic situation in zero characteristic.We do not know, however,
if the density functions converge in any sense as q → ∞ to some probability density
on the variety of n-dimensional complexes over, e.g., R.

When q and r are fixed and n → ∞ through either even or odd integers depending
on the parity of r , the situation is more subtle. In this case, all limit probabilities
pr (q) = limn→∞ pr (q, n) are positive. However, the sequences p0, p2, . . . and
p1, p3, . . . are super-exponentially decreasing and for a large q all terms in these
sequences but the first one are very close to zero while the first is then, of course, close
to 1. When q = 2 and r is even, we have p0 ≈ 0.6, p2 ≈ 0.4, p4 ≈ 0.0075 and other
terms are very small. We explicitly calculate the ratios pr (q)/p0(q) and pr (q)/p1(q)
and p0 and p1 in Theorem 2.1.

The proofs of these facts are elementary and quite simple. However, we have not
been able to find in the literature any probability calculations in this basic case where
random chain complexes are stripped of all additional structures including a grading.
(The combinatorial part of our proof, Theorem 2.2, is contained in [Kovacs (1987),
Lemma 5].) In contrast, random complexes of geometrical origin and underlying ran-
dom geometrical and topological objects have been studied extensively and from
various perspectives. Among such random objects are, for instance, random simpli-
cial complexes of various types [see (Aronshtam et al. 2013; Bobrowski and Kahle
2014; Costa and Farber 2014, 2015; Kahle 2011; Meshulam 2013; Meshulam and
Wallach 2009; Pippenger and Schleich 2006; Yogeshwaran et al. 2014) and references
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therein] and random Morse functions [see, e.g., (Arnold 2006, 2007; Collier et al.
2017; Nicolaescu 2012)].

These works utilize several models of randomness all of which appear to be quite
different from the one, admittedly rather naive, used here. This makes a direct compar-
ison difficult. One way to interpret our result is that, for a large complex, sufficiently
non-trivial homology is indicative of some structure, a constraint limiting randomness.
Note that such a structure can be as simple as a Z-grading confined to a fixed range
of degrees. A dimensional constraint of this type is usually inherent in geometrical
complexes, and it would be interesting to analyze its effect (if any) on the probability
distribution in our purely algebraic setting. Another consequence of the result is that
the assertion that a complex has large homology carries more information than the
assertion that it has small homology.

Themainmotivation for our setting comes fromHamiltonian Floer theory for closed
symplecticmanifolds; see, e.g., Salamon (1999) and references therein.AHamiltonian
diffeomorphism is the time-one map of the isotopy generated by a time-dependent
Hamiltonian. To such a diffeomorphism one can associate a certain complex, called
the Floer complex, generated by its fixed points or, equivalently, the one-periodic orbits
of the isotopy. Hence the dimension of the Floer homology gives a lower bound for
the number of one-periodic orbits. The homology is independent of the Hamiltonian
diffeomorphism. In addition, one can fix the free homotopy class of the orbits. (This
construction is similar to Morse theory and, in fact, Floer theory is a version of Morse
theory for the action functional.)

In many instances, e.g., often generically or for all symplectic manifolds with
vanishing first Chern class such as tori, the dimension of the Floer complex grows with
the order of iteration of the diffeomorphism; see Ginzburg and Gürel (2015). In other
words, the complex gets larger and larger as time in this discrete dynamical system
grows. Moreover, the differential in the complex is usually impossible to describe
explicitly, and hence it makes sense to compare the behavior of the complex and its
homology with the generic or random situation. The Floer homology for contractible
periodic orbits is isomorphic to the homology of the underlying manifold. Therefore,
by our result, even though the Floer complex appears to be very “noisy” for large
iterations and random on a bounded action scale, it has large homology groups and is
actually very far from random. For non-contractible orbits, the dimension of the Floer
complex is also known to grow inmany settings; seeGinzburg andGürel (2015); Gürel
(2013). However, in this case the Floer homology is zero and the complex may well
be close to random. Note also that in some instances the Floer complex is Z-graded,
but the grading is not supported within any specific interval of degrees. Moreover, in
contrast with geometrical random complexes, the grading range of the Floer homology
usually grows with the order of iteration (Salamon and Zehnder 1992), and while it is
not clear how to correctly account for an unbounded grading in a random model, such
a grading is unlikely to affect the probability distribution.

One aspect of Floer theory which is completely ignored in our model is the action
filtration. This filtration is extremely important and, in particular, it allows one to
treat Floer theory in the context of persistent homology and topological data analysis;
see Carlsson (2009); Ghrist (2008). This connection has recently been explored in
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Polterovich and Shelukhin (2014); Usher and Zhang (2015). However, it is not entirely
clear how to meaningfully incorporate the action filtration into our model.

2 Main Results

Let, as in the introduction, (V, D) be an ungraded n-dimensional chain complex with
differential D over a finite field F = Fq of order q. In other words, V = F

n and D
is a linear operator on V with D2 = 0. We denote by c(q, n) the number of such
complexes, i.e., the number of differentials D. The dimension r of the homology
ker D/ im D has the same parity as n and we let cr (q, n) be the number of complexes
with homology of dimension r . (In what follows, we always assume that r and n have
the same parity.) Clearly,

c(q, n) = c0(q, n) + c2(q, n) + · · · + cn(q, n)

when n is even and

c(q, n) = c1(q, n) + c3(q, n) + · · · + cn(q, n)

when n is odd.
Furthermore, denote by

pr (q, n) = cr (q, n)

c(q, n)

the probability (with respect to the uniform distribution) of a complex to have r -
dimensional homology. Our main result describes the behavior of pr (q, n) as the size
of the complex, i.e., q or n, goes to infinity.

Theorem 2.1 Let pr (q, n) be as above.

(i) For a fixed n, we have

lim
q→∞ pr (q, n) = 0 when r > 1,

and p0(q, n) → 1 when n is even and p1(q, n) → 1 when n is odd as q → ∞.
(ii) For a fixed q and r, the limits

pr (q) = lim
n→∞ pr (q, n)

exist and 0 < pr (q) < 1 for all q and r. Furthermore, when r ≥ 2 is even, we
have

pr (q)

p0(q)
= qr/2

∏r
j=1(q

j − 1)
(2.1)
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and

p0(q) = 1

1 + S
, where S =

∞∑

k=1

qk
∏2k

j=1(q
j − 1)

. (2.2)

When r ≥ 3 is odd,

pr (q)

p1(q)
= (q − 1)q(r−1)/2

∏r
j=1(q

j − 1)

and

p1(q) = 1

1 + S′ , where S′ = (q − 1)
∞∑

k=1

qk
∏2k+1

j=1 (q j − 1)
.

The proof of this theorem is based on an explicit calculation of cr (q, n). To state
the result, denote by GLk(q) the general linear group of k × k invertible matrices over
Fq and recall that

|GLk(q)| = qk(k−1)/2
k∏

j=1

(q j − 1).

Then we have the following particular case of [Kovacs (1987), Lemma 5].

Theorem 2.2 (Kovacs 1987) Let as above cr (q, n) be the number of n-dimensional
complexes over Fq with homology of dimension r. Then

cr (q, n) = |GLn(q)|
|GLm(q)| · |GLr (q)| · q2mr+m2 , (2.3)

where 2m + r = n.

Even though this result is not new, for the sake of completeness we include its proof,
which is very simple and short, in the next section.

Remark 2.3 We do not have simple expressions for the probabilities pr (q, n) and the
total number of complexes c(q, n). However, when q = 2, the differentials D are
in one-to-one correspondence with involutions of Fn

2. (An involution necessarily has
the form I + D and, as is easy to see, different differentials D give rise to different
involutions.) Hence, c(2, n) is equal to the number of involutions. This number is
expressed in Fulman and Vinroot (2014) via a generating function and an asymptotic
formula for c(q, n) has been recently obtained in Fulman et al. (2016). It is possible
that at least when q = 2 our probability formulas can be further simplified using the
results from those papers.
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3 Proofs

The proof of Theorem 2.2 is based on the observation that the differential in a finite-
dimensional complex over any field F can be brought to its Jordan normal form
or, equivalently, a complex over F can be decomposed into a sum of elementary
complexes, i.e., into a sum of two-dimensional complexes with zero homology and
one-dimensional complexes. To be more precise, we have the following elementary
observation.

Lemma 3.1 Let V be a finite-dimensional vector space over an arbitrary field F and
let D : V → V be an operator with D2 = 0. Then, in some basis, D can be written
as a direct sum of 1 × 1 and 2 × 2 Jordan blocks with zero eigenvalues.

When F is algebraically closed, this follows immediately from the Jordan normal
form theorem. Hence, the emphasis here is on the fact that the field F is immaterial.
For the sake of completeness, we outline a proof of the lemma.

Proof Let us pick an arbitrary basis {e1, . . . , em} of im D and extend it to a basis of
ker D ⊃ im D by adding elements { f1, . . . , fr }. Furthermore, pick arbitrary vectors
e′
i with De′

i = ei . Then {e′
1, e1, . . . , e

′
m, em, f1, . . . , fr } is the required basis of V . �	

Proof of Theorem 2.2 Let D be a differential on an n-dimensional vector space V
over a finite field F = Fq . Assume that the homology of the complex (V, D) is r -
dimensional. By Lemma 3.1, D is conjugate to the map Dr which is the direct sum of r
1×1 zero blocks andm 2×2 Jordan blocks with zero eigenvalues, where 2m+r = n.

Let Cr be the centralizer of Dr in GLn(q). The complexes with r -dimensional
homology are in one-to-one correspondence with GLn(q)/Cr . Thus, to prove (2.3), it
suffices to show that

|Cr | = |GLm(q)| · |GLr (q)| · q2mr+m2
. (3.1)

The elements of Cr are n×n invertible matrices X ∈ GLn(q) commuting with Dr . In
what follows, it is convenient toworkwith the basis e1, . . . , em, f1, . . . , fr , e′

1, . . . , e
′
m

in the notation from the proof of Lemma 3.1. Thus we can think of X as a 3× 3-block
matrix with m × m block X11, the block X12 having size m × r , and X13 being
again m × m, etc. In the same format, Dr is then the matrix with only one non-zero
block. This is the top-right cornerm×m-block, which is I . Then, as a straightforward
calculation shows, the commutation relation XDr = Dr X amounts to the conditions
that X11 = X33, and X21 = 0, X31 = 0 and X32 = 0. In particular, X is an upper
block-triangular matrix. Hence, X is invertible if and only if X11 = X33 and X22 are
invertible. There are no constraints on the remaining blocks X12, X13 and X23. Now
(3.1) follows. �	
Proof of Theorem 2.1 Throughout the proof, we assume that r and n are even. The
case where these parameters are odd can be handled in a similar fashion.

As the first step, we express pr (q, n)/p0(q, n) explicitly. Clearly,

pr (q, n)

p0(q, n)
= cr (q, n)

c0(q, n)
= |C0|

|Cr | .
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Using (2.3) or (3.1) and tidying up the resulting expression, we have

pr (q, n)

p0(q, n)
= qn

2/4 · qn(n/2−1)/4 · ∏n/2
j=1(q

j − 1)

q2mr+m2 · qm(m−1)/2 · qr(r−1)/2 · ∏r
j=1(q

j − 1) · ∏m
j=1(q

j − 1)

=
∏m+r/2

j=m+1(q
j − 1)

qmr/2+r(r/2−1)/4 · ∏r
j=1(q

j − 1)
,

where as above n = 2m + r and r ≥ 2, which we can then rewrite as

pr (q, n)

p0(q, n)
= qr/2

∏r
j=1(q

j − 1)
·
r/2∏

j=1

(

1 − 1

qm+ j

)

. (3.2)

Now it is clear that

pr (q, n)

p0(q, n)
∼ q−r2/2 as q → ∞

with r ≥ 2 and n fixed. In particular, this ratio goes to zero as q → ∞. The number
of the terms in the sum

∑

j

p j (q, n) = 1

with j ranging through even integers from 0 to n is equal to n/2 + 1 and thus this
number is independent of q. Hence, p0(q, n) → 1 and pr (q, n) → 0 when r ≥ 2 as
q → ∞. This proves the first assertion of the theorem.

To prove the second part, first note that by (3.2)

pr (q, n)

p0(q, n)
→ qr/2

∏r
j=1(q

j − 1)
(3.3)

as m → ∞ or, equivalently, n → ∞ with r and q fixed.
Furthermore, in a similar vein, it is not hard to show that

∑

r>0

pr (q, n)

p0(q, n)
→ S :=

∑

r

qr/2
∏r

j=1(q
j − 1)

as n → ∞,

where, on the left, the sum is taken over all even integers from 2 to n and, on the right,
the sum is over all even integers r ≥ 2. Therefore, letting n → ∞ in the identity

1 +
∑

r>0

pr (q, n)

p0(q, n)
= 1

p0(q, n)
,
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we conclude that the limit p0(q) = limn→∞ p0(q, n) exists and p0(q) = 1/(1 + S),
which proves (2.2). Now, by (3.3), the limits pr (q) = limn→∞ pr (q, n) for r ≥ 2
also exist, and hence (2.1) holds. This completes the proof of the theorem. �	
Remark 3.2 The sequence pr (q, n) is decreasing as a function of r . This readily
follows from (3.2).
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