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Abstract The sectional curvature of the volume preserving diffeomorphism group of
a Riemannian manifold M can give information about the stability of inviscid, incom-
pressible fluid flows on M . We demonstrate that the submanifold of the volumorphism
group of the solid flat torus generated by axisymmetric fluid flows with swirl, denoted
by Dμ,E (M), has positive sectional curvature in every section containing the field
X = u(r)∂θ iff ∂r (ru2) > 0. This is in sharp contrast to the situation on Dμ(M),
where only Killing fields X have nonnegative sectional curvature in all sections con-
taining it. We also show that this criterion guarantees the existence of conjugate points
on Dμ,E (M) along the geodesic defined by X .

Keywords Axisymmetric · Euler equation · Ideal fluid · Curvature · Euler-Arnold ·
Stability

1 Introduction

Let (M, g) be a Riemannian manifold of dimension at least two with Riemannian
volume form μ. The configuration space for inviscid, incompressible fluid flows on

1 This was proved rigorously by Ebin and Marsden (1970), by working in the context of Sobolev Hs

diffeomorphisms for s > 1
2 dim M + 1. Here for simplicity we will work in the context of smooth

diffeomorphisms since the curvature formulas are the same either way.

The second author gratefully acknowledges support from NSF Grants DMS-1157293 and DMS-1105660.

B Stephen C. Preston
Stephen.Preston@brooklyn.cuny.edu

1 University of Colorado, Boulder, CO, USA

2 Brooklyn College, Brooklyn, NY, USA

3 CUNY Graduate Center, New York, NY, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40598-016-0058-2&domain=pdf


176 P. Washabaugh, S. C. Preston

M is the collection of smooth volume-preserving diffeomorphisms (volumorphisms)
of M , denoted byDμ(M). Arnold (2014) showed in 1966 that flows obeying the Euler
equations for inviscid, incompressible fluid flow can formally1 be realized as geodesics
on Dμ(M). Using this framework, questions of fluid mechanics can be re-phrased in
terms of the Riemannian geometry ofDμ(M). An overview of this is given in Arnold
and Khesin (1998) or more recently in Khesin et al. (2013). Of particular interest is the
sectional curvature ofDμ(M). As in finite dimensional geometry, given two geodesics
with varying initial velocities in a region of strictly positive (resp. negative) sectional
curvature, the two geodesics will converge (resp. diverge) via the Rauch Comparison
theorem. In terms of fluid mechanics, this corresponds to the Lagrangian stability
(resp. instability) of the associated fluid flows.

Arnold showed that the sectional curvature K (X,Y ) of the plane in TidDμ(M)

spanned by X and Y is often negative but occasionally positive. Rouchon (1992)
sharpened this to show that if M ⊂ R

3, then K (X,Y ) ≥ 0 for every Y ∈ TidDμ(M)

if and only if X is a Killing field (i.e., one for which the flow generates a family of
isometries). This result was generalized by Misiołek (1993) and the second author
(Preston 2002) for any manifold with dim M ≥ 2. This gives the impression that,
in general, Dμ(M) will mostly be negatively curved. The question of when one can
expect a divergence free vector field to give nonpositive sectional curvature remains
open. However, the second author (Preston 2005) provided criteria for divergence
free vector fields of the form X = u(r)∂θ on the area-preserving diffeomorphism
groups of a rotationally-symmetric surface for which the sectional curvature K (X,Y )

is nonpositive for all Y .
Our goal in this paper is to extend the curvature computation to Dμ,E (M), the

group of volumorphisms commuting with the flow of a Killing field E . In particular,
we consider the solid flat torus,M = D2×S1, where D2 is the unit disk inR2 and S1 is
the unit circle, with cylindrical coordinates (r, θ, z) for 0 ≤ r ≤ 1 and θ, z ∈ [0, 2π ].
We may think of this more concretely as the subset of R3 with the planes z = 0 and
z = 2π identified, where E = ∂θ is the field corresponding to rotation in the disc.
Fluid flows on this manifold correspond to axisymmetric ideal flows with swirl on the
solid infinite cylinder, which are 2π -periodic in the z-direction. We consider steady
fluid velocity fields of the form X = u(r)∂θ . The submanifold Dμ,E (M) is a totally
geodesic submanifold of Dμ(M) (see Vizman (1999), as well as Haller et al. (2002);
Modin et al. (2011) for the general situation in the smooth context, or see the preprint
Ebin andPreston (2013) for theSobolevdiffeomorphismcontext), corresponding to the
fact that an ideal fluid which is initially independent of θ will always remain so. Hence
we compute sectional curvatures K (X,Y ) where Y ∈ TidDμ,E (M) is divergence-free
and axisymmetric, i.e., [E,Y ] = 0.

In Preston (2005) the second author effectively showed that when X was considered
as an element of Dμ,F (M) where F = ∂

∂z (corresponding to considering X as a
two-dimensional flow rather than a three-dimensional flow), the sectional curvature
satisfied K (X,Y ) ≤ 0 for every Y ∈ TidDμ,F (M) regardless of u(r). By contrast we
show here that if u satisfies the condition

d

dr

(
ru(r)2

)
> 0, (1)
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then K (X,Y ) > 0 for every Y ∈ TidDμ,E (M).Wewill also show that d
dr

(
ru(r)2

) ≥ 0
implies that K (X,Y ) ≥ 0. This does not contradict the result of Rouchon, since the
proof of that result relies on being able to construct a divergence-free velocity field
with small support which points in a given direction and is orthogonal to another
direction, and there are not enough divergence-free vector fields in the axisymmetric
case to accomplish this here.

The fact that the curvature is strictly positive in every section containing X makes
it natural to ask whether there are conjugate points along every such corresponding
geodesic. Unfortunately the Rauch comparison theorem cannot be used here, since
infY∈TidDμ,E (M) K (X,Y ) = 0 even if (1) holds. Nonetheless we can show that as long
as

ru(r)u′(r) + 2u(r)2 > 0, (2)

the geodesic formed by X = u(r)∂θ has infinitely many monoconjugate points. It is
easy to see that condition (1) implies (2). We do this by solving the Jacobi equation
explicitly. As in Ebin et al. (2006), where the case u(r) ≡ 1 was considered, we can
prove that these monoconjugate points have an epiconjugate point as a limit point, so
that the differential of the exponential map is not even weakly Fredholm.

2 The Formula for Curvature

We first compute the curvature of Dμ,E (M) by expanding in a Fourier series in z.
Here all our vector fields and functions are smooth on the compact manifold M , so
that convergence of the series will never be an issue, as in the original computations
of Arnold (2014). If desired one could do the same computations in the Sobolev Hs

context, with s > 5/2, and treat the curvature operator as a continuous linear operator
in Hs , as done byMisiołek (1993), but the final curvature formula is the same in either
case. Our method here is similar to that of the second author in Preston (2005), where
the computations were two-dimensional.

Notice first of all that any smooth vector field Y which is tangent to Dμ,E (M) at
the identity must be divergence-free and must commute with E = ∂

∂θ
. Therefore we

can write in the form

Y (r, z) = −gz(r, z)

r
∂r + gr (r, z)

r
∂z + f (r, z) ∂θ , (3)

where f (0, z) = g(0, z) = 0 and g(1, z) is constant in z (in order to be well-defined
on the axis of symmetry and to have Y tangent to the boundary r = 1). We think of
the term − gz

r ∂r + gr
r ∂z as an analogue of the skew-gradient in two dimensions. We

may express Y in a Fourier series in z as Y (r, z) = ∑
n∈Z Yn(r, z) where

Yn(r, z) = einz
[
− in

r
gn(r) ∂r + g′

n(r)

r
∂z + fn(r) ∂θ

]
. (4)
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On any Riemannian manifold (M, g) with volume form μ, a formula for the cur-
vature tensor on Dμ(M) is given by

R(Y, X)X = P
(∇Y P(∇X X) − ∇X P(∇Y X) + ∇[X,Y ]X

)
, (5)

where P(X) is the projection onto the divergence-free part of X . Concretely, P(X) is
obtained by solving the Neumann boundary value problem

{
�q = div X in M

〈∇q, 
n〉 = 〈X, 
n〉 on ∂M

for q and then setting P(X) = X − ∇q. The non-normalized sectional curvature is
then given by

K (X,Y ) = 〈〈R(Y, X)X, Y 〉〉 =
∫

M

〈
R(Y, X)X,Y

〉
μ. (6)

See Misiołek (1993) for the derivation of the formula we use here. Our goal now is to
compute R(Yn, X)X , and to do this we first need to compute P(∇Yn X).

Lemma 1 Suppose Yn is of the form (4) and X = u(r) ∂θ in cylindrical coordinates
on M. Then the covariant derivative P(∇Yn X) inDμ,E (M) is given by P(∇Y0X) = 0
and

P(∇Yn X) = ∇Yn X − ∇(qne
inz) = −(r fnu + q ′

n)e
inz∂r

− in

r
gn

(
u′ + u

r
+ rqn

)
einz∂θ for n ∈ N,

where
qn(r) = −ζn(r)Hn(r) + ξn(r)Jn(r), (7)

with

Hn(r) =
∫ r

0
s2 fn(s)u(s)ξ ′

n(s) ds and Jn(s) = −
∫ 1

r
s2 fn(s)u(s)ζ ′

n(s) ds, (8)

and

ξn(r) = I0(nr) and ζn(r) = K1(n)
I1(n)

I0(nr) + K0(nr),

with I0 and K0 denoting the modified Bessel functions of the first and second kinds.

Proof Consider the cases n = 0 and n ∈ N separately. For n = 0 we have

Y0 = 1
r g

′
0(r)∂z + f0(r)∂θ

and ∇Y0X = −r f0(r)u(r)∂r .
This is also the gradient of a function, and thus P(∇Y0X) = 0.
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Now for n �= 0,

∇Yn X = −r fnue
inz∂r − in

r
gn

(
u′ + u

r

)
einz∂θ .

The solution qn(r)einz of

{
�(qn(r)einz) = div(∇Yn X) in M,
〈∇(qneinz), 
n〉∣∣

∂M = 〈∇Yn X, 
n〉∣∣
∂M on ∂M,

(9)

must satisfy the ordinary differential equation

⎧
⎪⎪⎨

⎪⎪⎩

1
r

d
dr

(
r dqn

dr

)
− n2qn(r) = − 1

r
d
dr

(
r2 fn(r)u(r)

)
for 0 < r < 1

q ′
n(1) = − fn(1)u(1)

|qn(0)| < ∞.

(10)

The left side of this equation is a standard Bessel differential operator, and so the
solution formula (7) is essentially just the variation of parameters formula together
with an integration by parts since I0 and K0 solve the corresponding homogeneous
equation. Here we can simply verify the solution: taking the derivative of qn(r), we
obtain

q ′
n(r) = −ζ ′

n(r)Hn(r) + ξ ′
n(r)Jn(r) + r2 fn(r)u(r)

(
ξn(r)ζ ′

n(r) − ζn(r)ξ ′
n(r)

)

= −ζ ′
n(r)Hn(r) + ξ ′

n(r)Jn(r) − r fn(r)u(r),
(11)

and since ζ ′
n(1) = Jn(1) = 0 we get the correct boundary condition. Furthermore we

get

q ′′
n (r) = −ζ ′′

n (r)Hn(r) + ξ ′′
n (r)Jn(r) − d

dr

(
r fn(r)u(r)

)
,

and with these formulas we easily check that qn satisfies (10). ��
The projection P(∇Y X) is the most complicated part of the curvature formula (5)

since P(∇X X) = 0 for steady flows X . Hence Lemma 1 easily gives the following
expression for the curvature tensor.

Proposition 2 Let M = D2 × S1. Suppose that X ∈ TidDμ,E (M) is defined by
X = u(r)∂θ , and let Yn be of the form (4). Then the curvature tensor R(Yn, X)X is
given for n �= 0 by

R(Yn, X)X = P

(
−inugn

(
2u′ + u

r

)
einz∂r + (q ′

n + r fnu)ueinz

r
∂θ

)
, (12)

where qn is the solution of the ODE (10). For n = 0 we get R(Y0, X)X = 0.
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Proof We compute using formula (5). First note that ∇X X = −ru2∂r , which is the
gradient of a function. Thus P(∇X X) = 0.

With the formula for the projection P(∇Yn X) from Lemma 1 in hand, we will get

∇X (P(∇Yn X)) = inugn
(
u′ + u

r

)
einz∂r − (q ′

n + r fnu)ueinz

r
∂θ

for any nonzero integer n.
We also easily compute

∇[X,Yn ]X = −ingn(r)u(r)u′(r)einz ∂r .

So, R will be given by (12). ��

The sectional curvature can now be computed explicitly using Lemma 1 and Propo-
sition 2; the formula simplifies substantially due to Bessel function identities.

Theorem 3 On M = D2 × S1 with X = u(r) ∂θ and Y expressed as in (3), the
non-normalized sectional curvature is given by K (X,Y ) = ∑

n∈Z K (X,Yn), where
Yn is expressed as in (4) and

K (X,Yn) = 4π2
∫ 1

0

1

r

(
n2 |gn(r)|2 d

dr

(
ru(r)2

) + |Hn(r)|2
I1(nr)2

)
dr. (13)

Hence the curvature is positive for all Y if and only if d
dr

(
ru(r)2

)
> 0.

Proof Using formula (11) in (12), we obtain

R(Yn, X)X = P

[(
−inugn

(
2u′ + u

r

)
einz

)
∂r + u(ξ ′

n Jn − ζ ′
nHn)einz

r
∂θ

]
,

which can clearly be expressed as einz times a function of r only. Orthogonality of the
functions eimz and einz over S1 when m �= n implies that

K (X,Y ) =
∑

m,n∈Z
〈〈Ym, R(Yn, X)X〉〉 =

∑

n∈Z
〈〈Yn, R(Yn, X)X〉〉 =

∑

n∈Z
K (X,Yn).

The latter is now relatively easy to compute. We have

K (X,Yn) = 4π2
∫ 1

0

n2

r2
|gn(r)|2 η(r) dr + 4π2

×
∫ 1

0
r2 fn(r)

(
u(r)

(
ξ ′
n(r)Jn(r) − ζ ′(r)Hn(r)

))
dr, (14)

123
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where η(r) = d
dr

(
ru(r)2

)
. By the definitions (8) of Hn and Jn , we see that the second

term in (14) is

4π2
∫ 1

0

(
H ′
n(r)Jn(r) − J ′

n(r)Hn(r)
)
dr.

From here we adapt the corresponding computation in Preston (2006). Integrating
by parts and using the fact that Jn(r)Hn(r) → 0 as r → 0 or r → 1, we get

∫ 1

0
H ′
n(r)Jn(r) − J ′

n(r)Hn(r) dr = −2Re
∫ 1

0
J ′
n(r)Hn(r) dr

=
∫ 1

0

J ′
n(r)

H ′
n(r)

d

dr

(
|Hn(r)|2

)
dr,

and another integration by parts (where again the boundary terms vanish) gives

∫ 1

0
H ′
n(r)Jn(r) − J ′

n(r)Hn(r) dr = −
∫ 1

0

d

dr

(
K1(nr)

I1(nr)

)
|Hn(r)|2 dr.

Finally the Bessel function identity d
dr

(
K1(r)
I1(r)

)
= 1

r I1(r)2
implies (13). ��

Remark 4 The normalized sectional curvature is given by K (X,Y ) =
K

〈〈X,X〉〉〈〈Y,Y 〉〉−〈〈X,Y 〉〉2 . Suppose that f = 0 and that only one gn is nonzero in (4);
then we have 〈〈X,Y 〉〉 = 0 and the sectional curvature takes the form

K (X,Y ) = n2
∫ 1
0

1
r |gn(r)|2 d

dr

(
ru(r)2

)
dr

(∫ 1
0 r3u(r)2 dr

) (∫ 1
0

( n2
r |gn(r)|2 + |g′

n(r)|2
)
dr

) .

We canmake this arbitrarily small by choosing a highly oscillatory gn . Hence although
the curvature is strictly positive if d

dr

(
ru(r)2

)
> 0, it cannot be bounded below by any

positive constant.

3 Solution of the Jacobi Equation

It is natural to ask whether the positive curvature guaranteed by the theorem above
ensures the existence of conjugate points along the corresponding geodesic. This is not
automatic since although the sectional curvature is positive in all sections containing
the geodesic’s tangent vector, it is not bounded below by any positive constant because
of Remark 4; hence the Rauch comparison theorem cannot be applied directly (and
in any case would need to be proved in the present formal context of weak metrics on
Fréchet manifolds). In this section we answer this question affirmatively by solving
the Jacobi equation more or less explicitly along such a geodesic, and show that in
fact conjugate points occur rather frequently.
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182 P. Washabaugh, S. C. Preston

Theorem 5 Let η(t) be a geodesic onDμ,E (D2×S1)with initial condition η(0) = id
and η̇(0) = X = u(r)∂θ . Letω(r) = 2u(r)+ru′(r) denote the vorticity function of X,
and assume that u(r)ω(r) > 0 for all r ∈ [0, 9]. Then η(t) is a monoconjugate point
to η(0) for every time t = 2πλ/n, where n ∈ N is arbitrary and λ is any eigenvalue
of the Bessel-type Sturm-Liouville problem

1

r

d

dr

(
rψ ′(r)

) −
(
n2 + 1

r2

)
ψ(r) = −2λ2u(r)ω(r)ψ(r), ψ(1) = 0, ψ(0) finite.

Proof Along a geodesic η(t) with (steady) Eulerian velocity field X , the Jacobi equa-
tion for a Jacobi field J (t) = Y (t) ◦ η(t) may be written (Preston 2002) as the system

∂Y

∂t
+ [X,Y (t)] = Z(t) (15)

∂Z

∂t
+ P(∇X Z(t) + ∇Z(t)X) = 0, (16)

where P is the orthogonal projection onto divergence-free vector fields. The first
equation is the linearized flow equation, while the second is the linearized Euler
equation used in stability analysis.

Write

Z(t, r, z) = −1

r

∂h

∂z
(t, r, z) ∂r + 1

r

∂h

∂r
(t, r, z) ∂z + j (t, r, z) ∂θ ,

where h = 0 on the axis r = 0 and h is constant on the boundary r = 1. Then it is
easy to compute that (16) becomes the system

∂ j

∂t
(t, r, z) = ω(r)

r2
∂h

∂z
(t, r, z), (17)

−1

r

∂2h

∂t∂z
(t, r, z) ∂r + 1

r

∂2h

∂t∂r
(t, r, z) ∂z = 2P (ru(r) j (t, r, z) ∂r ) , (18)

where ω(r) = 2u(r) + ru′(r) is the vorticity defined by curl X = ω(r) ∂z . Applying
the curl to both sides of Eq. (18) to eliminate the projection operator, we obtain

∂

∂t

[
∂

∂r

(
1

r

∂h

∂r

)
+ 1

r

∂2h

∂z2

]
= −2ru(r)

∂ j

∂z
. (19)

Differentiating (19) in time and substituting (17) we obtain the single equation

∂2

∂t2

[
∂

∂r

(
1

r

∂h

∂r

)
+ 1

r

∂2h

∂z2

]
= −2u(r)ω(r)

r

∂2h

∂z2
. (20)

Expand h in a Fourier series in z to get

h(t, r, z) =
∑

n∈Z
hn(t, r)e

inz .
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Then for each n we can solve the eigenvalue problem

d

dr

(
1

r
φ′(r)

)
− n2

r
φ(r) = 2Cu(r)ω(r)

r
φ(r);

to make this look more familiar we set φ(r) = rψ(r) and obtain

1

r

d

dr

(
rψ ′(r)

) −
(
n2 + 1

r2

)
ψ(r) = 2Cu(r)ω(r)ψ(r),

which is a singular Sturm–Liouville problem analogous to the Bessel equation. We
obtain a sequence of eigenfunctions φmn(r) form ∈ N, with eigenvalues Cmn . We see
that

2C
∫ 1

0

u(r)ω(r)

r
φ(r)2 dr = −

∫ 1

0

1

r
φ′(r)2 dr −

∫ 1

0

n2

r
φ(r)2 dr,

so that if ω(r)u(r) > 0, then C must be strictly negative; we write C = −λ2mn for the
eigenfunction φmn(r). Expanding hn(t, r) in a basis of such eigenfunctions as

h(t, r, z) =
∑

n∈Z

∞∑

m=1

hmn(t)φmn(r)e
inz,

Equation (20) becomes

−λ2mnh
′′
mn(t) = n2hmn(t),

which obviously has solutions

hmn(t) = amn cos

(
nt

λmn

)
+ bmn sin

(
nt

λmn

)

for some coefficients amn and bmn .
Suppose am,n = am,−n = 1

2 for some (m, n) with n �= 0, and that all other a are

zero and that every b is zero, so that h(t, r, z) = cos
(

nt
λmn

)
φmn(r) cos nz. Then by

Eq. (19) we compute that

j (t, r, z) = −λmnω(r)

r2
φmn(r) sin nz sin

(
nt

λmn

)
.

To find the Jacobi fields, write Y in Eq. (15) as

Y (t, r, z) = −1

r

∂g

∂z
(t, r, z) ∂r + 1

r

∂g

∂r
(t, r, z) ∂z + f (t, r, z) ∂θ .
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184 P. Washabaugh, S. C. Preston

We easily compute that X = u(r) ∂
∂θ

gives [X,Y ] = 1
r

∂g
∂z u

′(r) ∂
∂θ
, and thus Eq. (15)

becomes in components

∂g

∂t
(t, r, z) = h(t, r, z)

∂ f

∂t
(t, r, z) + u′(r)

r

∂g

∂z
(t, r, z) = j (t, r, z).

With g(0, r, z) = f (0, r, z) = 0, we find that

g(t, r, z) = λmn

n
cos nz sin

(
nt

λmn

)
φmn(r)

f (t, r, z) = 2λ2mnu(r)

nr2
sin nz

(
cos

(
nt

λmn

)
− 1

)
φmn(r).

Thus both f and g vanish when t = 0 and when t = 2πλmn/n, so η(2πλmn/n) is
monoconjugate to the identity along η. ��
Remark 6 Using the Sturm comparison theorem we can estimate the spacing of the
eigenvalues λmn and show that for fixed m the sequence λmn/n has a finite limit as
n → ∞. Just as in Ebin et al. (2006), this must be an epiconjugate point. Therefore the
differential of the exponential map is not even weakly Fredholm along any geodesic
of this form (which is to say the differential of the exponential map, extended to a
linear map in the weak Riemannian L2 topology, is not a Fredholm operator). It is
worth noting that the reason the Jacobi equation is explicitly solvable in this case is
because there is no “drift” term, so the total time derivative agrees with the partial
time derivative, in the same way as in Ebin et al. (2006).

It would be very interesting to generalize the curvature computation to fields of
the form X = u(r) sin z ∂θ , which is the initial velocity field of the Luo-Hou initial
condition (Luo and Hou 2014) that leads numerically to a blowup solution. We expect
that the formula

∫
H ′
n Jn − J ′

nHn which appears both here and in Preston (2005)
is a typical feature of curvature formulas when computed correctly, although they
doubtless become substantially more complicated.
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