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Abstract Let ν0(t), ν1(t), . . . , νn(t) be the roots of the equation R(z) = t , where
R(z) is a rational function of the form

R(z) = z −
n∑

k=1

αk

z − μk
,

μk are pairwise distinct real numbers, αk > 0, 1 ≤ k ≤ n. Then for each real ξ ,
the function eξν0(t) + eξν1(t) + · · · + eξνn(t) is exponentially convex on the interval
−∞ < t < ∞.

Keywords Hyperbolic polynomial pencil · Determinant representation ·
Exponentially convex functions
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1 Roots of the Equation R(z) = t as Functions of t

In the present paper we discuss questions related to properties of roots of the equation

R(z) = t (1.1)
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440 V. Katsnelson

as functions of the parameter t ∈ C, where R is a rational function of the form

R(z) = z −
∑

1≤k≤n

αk

z − μk
, (1.2)

μk are pairwise distinct real numbers, αk > 0, 1 ≤ k ≤ n. We adhere to the enumer-
ation agreement1

μ1 > μ2 > · · · > μn . (1.3)

The function R is representable in the form

R(z) = P(z)

Q(z)
, (1.4)

where

Q(z) = (z − μ1) · (z − μ2) · · · · · (z − μn), (1.5)

P(z)
def= R(z) · Q(z) (1.6)

are monic polynomials of degrees

deg P = n + 1, deg Q = n. (1.7)

Since P(μk) = −αk Q′(μk) �= 0, the polynomials P and Q have no common roots.
Thus the ratio in the right hand side of (1.4) is irreducible. The Eq. (1.1) is equivalent
to the equation

P(z) − t Q(z) = 0. (1.8)

Since the polynomial P(z)− t Q(z) is of degree n+1, the latter equation has n+1
roots for each t ∈ C.

The function R possess the property

Im R(z)
/
Im z > 0 if Im z �= 0. (1.9)

Therefore if Im t > 0, all roots of the equation (1.1), which is equivalent to the Eq.
(1.8), are located in the half-plane Im z > 0. Some of these roots may be multiple.

However if t is real, all roots of the Eq. (1.1) are real and simple, i.e. of multiplicity
one. Thus for real t , the Eq. (1.1) has n + 1 pairwise distinct real roots νk(t): ν0(t) >

ν1(t) > · · · > νn−1(t) > νn(t). Moreover for each real t , the poles μk of the function
R and the roots νk(t) of the Eq. (1.1) are interlacing:

ν0(t) > μ1 > ν1(t) > μ2 > ν2(t) > · · · > νn−1(t) > μn > νn(t), ∀ t ∈ R.

(1.10)

1 We assume that n ≥ 1.
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In particular for t = 0, the roots νk(0) = λk of the Eq. (1.1) are the roots of the
polynomial P:

P(z) = (z − λ0) · (z − λ1) · · · · · (z − λn), (1.11)

λ0 > μ1 > λ1 > μ2 > λ2 > · · · > λn−1 > μn > λn . (1.12)

Since R′(x) > 0 for x ∈ R, x �= μ1, . . . , μn , each of the functions νk(t), k =
0, 1, . . . , n, can be continued as a single valued holomorphic function to some neigh-
borhood of R. However the functions νk(t) can not be continued as single-valued
analytic functions to the whole complex t-plane. According to (1.4),

R′(z) = P ′(z)Q(z) − Q′(z)P(z)

Q2(z)
. (1.13)

The polynomial P ′Q− Q′P is of degree 2n and is strictly positive on the real axis.
Therefore this polynomial has n roots ζ1, . . . , ζn in the upper half-plane Im(z) > 0
and n roots ζ1, . . . , ζn in the lower half-plane Im(z) < 0. (Not all roots ζ1, . . . , ζn
must be distinct.) The points ζ1, . . . , ζn and ζ1, . . . , ζn are the critical points of the
function R: R′(ζk) = 0, R′(ζk) = 0, 1 ≤ k ≤ n. The critical values tk = R(ζk), tk =
R(ζk), 1 ≤ k ≤ n, of the function R are the ramification points of the function ν(t):

R(ν(t)) = t (1.14)

(Even if the critical points ζ ′ and ζ ′′ of R are distinct, the critical values R(ζ ′) and
R(ζ ′′) may coincide.) We denote the set of critical values of the function R by V:

V = V+ ∪ V−, V+ = {t1, . . . , tn}, V− = {t1, . . . , tn}. (1.15)

Not all values t1, . . . , tn must be distinct. However V �= ∅. In view of (1.9),
Im tk > 0, 1 ≤ k ≤ n. So

V+ ⊂ {t ∈ C : Im t > 0}, V− ⊂ {t ∈ C : Im t < 0}. (1.16)

Let G be an arbitrary simply connected domain in the t-plane which does not
intersect the set V . Then the roots of Eq. (1.1) are pairwise distinct for each t ∈ G. We
can enumerate these roots, say ν0(t), ν1(t), . . . νn(t), such that all functions νk(t) are
holomorphic in G.

The strip Sh ,

Sh = {t ∈ C : |Im t | < h}, where h = min
1≤k≤n

Im tk, (1.17)

does not intersect the set V . So n + 1 single valued holomorphic branches of the
function ν(t), (1.14), are defined in the strip Sh .We choose such enumeration of these
branches which agrees with the enumeration (1.10) on R.
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From (1.6) and (1.2) it follows that the polynomial P is representable in the form

P(z) = z Q(z) −
n∑

k=1

αk Qk(z), (1.18a)

where

Qk(z) = Q(z)/(z − μk), k = 1, 2, . . . , n. (1.18b)

2 Determinant Representation of the Polynomial Pencil P(z) − t Q(z)

The polynomial pencil P(z)− t Q(z) is hyperbolic: for each real t , all roots of the Eq.
(1.8) are real.

Using (1.18), we represent the polynomial P(z)− t Q(z) as the characteristic poly-
nomial det(z I − (A + t B)) of some matrix pencil, where A and B are self-adjoint
(n + 1) × (n + 1) matrices, rank B = 1. We present these matrices explicitly.

Lemma 2.1 Let A = ‖ap,q‖ and B = ‖bp,q‖, 0 ≤ p, q ≤ n, be (n + 1) × (n + 1)
matrices with the entries

a0,0 = 0, ap,p = μp for p = 1, 2, . . . , n,

ap,q = 0 for p = 1, 2, . . . , n, q = 1, 2, . . . , n, p �= q,

a0,p = ap,0 for p = 1, 2, . . . , n, (2.1)

and

b0,0 = 1, all other bp,q vanish. (2.2)

Then the equality

det(z I − A − t B) = (z − t) · Q(z) −
n∑

k=1

|a0,k |2Qk(z). (2.3)

holds.

Proof The matrix z I − (A + t B) is of the form

z I − (A + t B) =

⎡

⎢⎢⎢⎢⎢⎢⎣

z − t −a0,1 −a0,2 · · · −a0,n−1 −a0,n
−a0,1 z − μ1 0 · · · 0 0
−a0,2 0 z − μ2 · · · 0 0
. . . . . . . . . . . . . . . . . .

−a0,n−1 0 0 · · · z − μn−1 0
−a0,n 0 0 · · · 0 z − μn

⎤

⎥⎥⎥⎥⎥⎥⎦

We compute the determinant of this matrix using the cofactor formula. �
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Comparing (1.18) and (2.3), we see that if the conditions

|a0,p|2 = αp, p = 1, 2, . . . , n (2.4)

are satisfied, then the equality

P(z) − t Q(z) = det(z I − A − t B) (2.5)

holds for every z ∈ C, t ∈ C.
The following result is an immediate consequence of Lemma 2.1.

Theorem 2.2 Let R be a function of the form (1.2), whereμ1, μ2, . . . , μn are pairwise
distinct real numbers and α1, α2, . . . , αn are positive numbers. Let Q and P be the
polynomials related to the the function R by the equalities (1.5) and (1.18).

Then the pencil of polynomials P(z)− t Q(z) is representable as the characteristic
polynomial of the matrix pencil A + t B, i.e. the equality (2.5) holds for every z ∈
C, t ∈ C, where B is the matrix with the entries (2.2), and the entries of the matrix A
are defined by by (2.1) with

a0,p = √
αp ωp, p = 1, 2, . . . , n, (2.6)

ωp are arbitrary2 complex numbers of absolute value one:

|ωp| = 1, p = 1, 2, . . . , n. (2.7)

Corollary 2.3 Let R, A, B be the same as in Theorem 2.2. For each t ∈ C, the roots
ν0(t), ν0(t), . . . , νn(t) of the Eq. (1.2) are the eigenvalues of the matrix A + t B.

Lemma 2.4 Let R, A, B be the same as in Theorem 2.2, ν0(t), ν0(t), . . . , νn(t) be
the roots of the Eq. (1.2) and h(z) be an entire function. Then the equality

n∑

k=0

h(νk(t)) = trace {h(A + t B)} (2.8)

holds for every t ∈ C.

Proof We refer to Corollary 2.3. If ν is an eigenvalue of some square matrix M , then
h(ν) is an eigenvalue of the matrix h(M). In (2.8), we interpret the trace of the matrix
h(A + t B) as its spectral trace, that is as the sum of all its eigenvalues. �

2 We will use the freedom in choosing ωp to prescribe signs ± to the entries a0,p .
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3 Exponentially Convex Functions

Definition 3.1 A function f (t) on the interval a < t < b is said to belong to the class
Wa,b if f is continuous on (a, b) and if all forms

N∑

r,s=1

f (tr + ts)ζrζs (N = 1, 2, 3, . . . ) (3.1)

are non-negative for every choice of complex numbers ζ1, ζ2, . . . , ζN and for every
choice of real numbers t1, t2, . . . , tN assuming that all sums tr + ts are within the
interval (a, b).

The class Wa,b was introduced by Bernstein (1928), see Sect. 15 there. Somewhat
later, Widder also introduced the class Wa,b and studied it. Bernstein called functions
f (x) ∈ Wa,b exponentially convex.

Properties of the class of exponentially convex functions

P1. If f (t) ∈ Wa,b and c ≥ 0 is a nonnegative constant, then c f (t) ∈ Wa,b.
P2. If f1(t) ∈ Wa,b and f2(t) ∈ Wa,b, then f1(t) + f2(t) ∈ Wa,b.
P3. If f1(t) ∈ Wa,b and f2(t) ∈ Wa,b, then f1(t) · f2(t) ∈ Wa,b.
P4. Let { fn(t)}1≤n<∞ be a sequence of functions from the classWa,b. We assume
that for each t ∈ (a, b) there exists a limit f (t) = limn→∞ fn(t), and that f (t) <

∞ ∀t ∈ (a, b). Then f (t) ∈ Wa,b.

From the functional equation for the exponential function it follows that for each
real number u, for every choice of real numbers t1, t2, . . . , tN and complex numbers
ζ1, ζ2, . . . , ζN , the equality holds

N∑

r,s=1

eξ(tr+ts )ζrζs =
∣∣∣∣

N∑

p=1

eξ tpζp

∣∣∣∣
2

≥ 0. (3.2)

The inequality (3.2) can be stated as

Lemma 3.2 For each real number ξ , the function eξ t of the variable t belongs to the
class W−∞,∞.

The term exponentially convex function is justified by the following integral represen-
tation for any function f (t) ∈ Wa,b.

Theorem 3.3 (The representation theorem) For the representation

f (x) =
∫

ξ∈(−∞,∞)

eξ xσ(dξ) (a < x < b) (3.3)

to be valid, where σ(dξ) is a non-negative measure, it is necessary and sufficient that
f (x) ∈ Wa,b.
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The proof of the Representation Theorem can be found in Akhiezer (1965) (Theo-
rem 5.5.4), and in Widder (1946) (Chapter 6, Theorem 21).

Corollary 3.4 The representation (3.3) shows that f (x) is the value of a function
f (z) holomorphic in the strip a < Re z < b.

4 Herbert Stahl’s Theorem

In the paper Bessis et al. (1975) a conjecture was formulated which is now commonly
known as the BMV conjecture:

The BMV conjecture Let U and V be Hermitian matrices. Then the function

ϕ(t) = trace {eU+tV } (4.1)

of the variable t belongs to the class W−∞,∞.
If the matrices U and V commute, the exponential convexity of the function ϕ,

(4.1), is evident. In this case, the sum

N∑

r,s=1

ϕ(tr + ts)ζrζs = trace

⎧
⎨

⎩eU/2

(
N∑

r=1

etr V ζr

) (
N∑

s=1

etsV ζs

)∗
(eU/2)∗

⎫
⎬

⎭

is non-negative because this sum is the trace of a non-negative matrix. The measure
σ in the integral representation (3.3) of the function ϕ, (4.1), is an atomic measure
supported on the spectrum of the matrix V .

In the general case, if the matrices U and V do not commute, the BMV conjecture
remained an open question for longer than 40 years. In 2011, Herbert Stahl proved the
BMV conjecture.

Theorem 4.1 (H. Stahl) Let U and V be Hermitian matrices.
Then the function ϕ(t) defined by (4.1) belongs to the class W−∞,∞ of functions

exponentially convex on (−∞,∞).

The first arXiv version of Stahl’s Theorem appeared in Stahl (2011), the latest arXiv
version—in Stahl (2012), the journal publication—in Stahl (2013).

The proof of Herbert Stahl is based on ingenious considerations related to Riemann
surfaces of algebraic functions. InEremenko (2015), a simplified version of theHerbert
Stahl proof is presented.

We present a toy version of Theorem 4.1 which is enough for our goal.

Theorem 4.2 Let U and V be Hermitian matrices. We assume moreover that

1. All off-diagonal entries of the matrix U are non-negative.
2. The matrix V is diagonal.

Then the function ϕ(t) defined by (4.1) belongs to the class W−∞,∞.
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Proof For ρ ≥ 0, let Uρ = U + ρ I , where I is the identity matrix. If ρ is large
enough, then all entries of the matrixUρ are non-negative. Let us choose and fix such
ρ. It is clear that

eU+tV = e−ρ eUρ+tV . (4.2)

We use the Lie product formula

eUρ+tV = lim
m→∞(eUρ/m etV/m)m . (4.3)

All entries of the matrix eUρ/m are non-negative numbers. Since matrix V is Her-
mitian, its diagonal entries are real numbers. Thus

etV/m = diag(etv1/m, etv2/m, . . . , etvm/m),

where v1, v2, . . . , vm are real numbers. The exponentials etv j /m are functions of t
from the class W−∞,∞. Each entry of the matrix eUρ/m etV/m is a linear combination
of these exponentials with non-negative coefficients. According to the properties P1
and P2 of the classW−∞,∞, the entries of the matrix eUρ/m etV/m are functions of the
class W−∞,∞. Each entry of the matrix (eUρ/m etV/m)m is a sum of products of some
entries of the matrix eUρ/m etV/m . According to the properties P2 and P3 of the class
W−∞,∞, the entries of the matrix (eUρ/m etV/m)m are functions of t belonging to the
class W−∞,∞. From the limiting relation (4.3) and from the property P4 of the class
W−∞,∞ it follows that all entries of the matrix eUρ+tV are functions of t belonging to
the class W−∞,∞. From (4.2) it follows that all entries of the matrix eU+tV belong to
the class W−∞,∞. All the more, the function ϕ(t) = trace {eU+tV }, which is the sum
of diagonal entries of the matrix eU+tV , belongs to the class W−∞,∞. �

5 Exponential Convexity of the Sum eξν0(t) + · · · + eξνn(t)

Let ξ be a real number. Taking h(z) = eξ z in Lemma 2.4, we obtain

Lemma 5.1 Let R be the rational function of the form (1.2), ν0(t), ν1(t), . . . , νn(t)
be the roots of the Eq. (1.1). Let A and B be the matrices (2.1), (2.6), (2.2) which
appear in the determinant representation (2.5) of the matrix pencil P(z) − t Q(z).

Then the equality
n∑

k=0

eξ νk (t) = trace{eξ A+t (ξ B)} (5.1)

holds.

Now we choose ωp in (2.6) so that all off-diagonal entries of the matrix U = ξ A
are non-negative: if ξ > 0, then ωp = +1, if ξ < 0, then ωp = −1, 1 ≤ p ≤ n.

Applying Theorem 4.2 to the matrices U = ξ A, V = ξ B, we obtain the following
result
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Theorem 5.2 Let R be the rational function of the form (1.2), ν0(t), ν1(t), . . . , νn(t)
be the roots of the Eq. (1.1). Then for each ξ ∈ R, the function

g(t, ξ)
def=

n∑

k=0

eξ νk (t) (5.2)

of the variable t belongs to the class W−∞,∞.

Theorem 5.3 Let f ∈ Wu,v, where − ∞ ≤ u < v ≤ +∞. Let R be the rational
function of the form (1.2), ν0(t), ν1(t), . . . , νn(t) be the roots of the Eq. (1.1). Assume
that for some a, b, −∞ ≤ a < b ≤ +∞, the inequalities

u < νk(t) < v, a < t < b, k = 0, 1, . . . , n (5.3)

hold.
Then the function

F(t)
def=

n∑

k=0

f (νk(t)) (5.4)

belongs to the class Wa,b.

Proof According to Theorem 3.3, the representation

f (x) =
∫

ξ∈(−∞,∞)

eξ xσ(dξ), ∀ x ∈ (u, v)

holds, where σ is a non-negativemeasure. Substituting x = νk(t) to the above formula,
we obtain the equality

f (νk(t)) =
∫

ξ∈(−∞,∞)

eξνk (t)σ (dξ), ∀ t ∈ (a, b), k = 0, 1, . . . , n.

Hence

F(t) =
∫

ξ∈(−∞,∞)

g(t, ξ) σ (dξ), ∀ t ∈ (a, b). (5.5)

Theorem 5.4 is a consequence of Theorem 5.2 and of the properties P1, P2, P4 of
the class of exponentially convex functions. �
Example For γ > 0, the function f (x) = eγ x2 is exponentially convex on (−∞,∞):
eγ x2 = ∫

ξ∈(−∞,∞)
eξ xσ(dξ), where σ(dξ) = 1

2
√

πγ
e−ξ2/4γ dξ.

Thus the function F(t) = ∑n
k=0 e

γ (νk (t))2 is exponentially convex on (−∞,∞).

Remark 5.4 Familiarizing himself with our proof of Theorem 5.2, Alexey Kuznetsov
(http://www.math.yorku.ca/~akuznets/) gave a new proof of a somewhat weakened
version of this theorem. His proof is based on the theory of stochastic Lévy processes.
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