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Abstract Tucker and Ky Fan’s lemma are combinatorial analogs of the Borsuk–Ulam
theorem (BUT). In 1996, Yu. A. Shashkin proved a version of Fan’s lemma, which is a
combinatorial analogof the oddmapping theorem (OMT).Weconsider generalizations
of these lemmas for BUT–manifolds, i.e. for manifolds that satisfy BUT. Proofs rely
on a generalization of the OMT and on a lemma about the doubling of manifolds with
boundaries that are BUT–manifolds.
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1 Tucker’s, Fan’s and Shashkin’s Lemmas

Throughout this paper the symbol Rd denotes the Euclidean space of dimension d.
We denote byBd the d-dimensional unit ball and by Sd the d-dimensional unit sphere.
If we consider Sd as the set of unit vectors x in Rd+1, then points x and −x are called
antipodal and the symmetry given by the mapping x → −x is called the antipodality
on Sd .
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300 O. R. Musin

1.1 Tucker and Fan’s Lemma

Let T be a triangulation of the d-dimensional ballBd .We call T antipodally symmetric
on the boundary if the set of simplices of T contained in the boundary of Bd = S

d−1

is an antipodally symmetric triangulation of Sd−1; that is if s ⊂ S
d−1 is a simplex of

T , then −s is also a simplex of T .

Tucker’s Lemma Tucker (1945) Let T be a triangulation of Bd that is antipodally
symmetric on the boundary. Let

L : V (T ) → {+1,−1,+2,−2, . . . ,+d,−d}

be a labelling of the vertices of T that is antipodal (i. e. L(−v) = −L(v)) for every
vertex v on the boundary. Then there exists an edge in T that is complementary, i.e.,
its two vertices are labelled by opposite numbers.

(In Fig. 1 is given an illustration of Tucker’s lemma.)
There is also a version of Tucker’s lemma for spheres:

SphericalTucker’sLemmaLet T be a centrally symmetric triangulation of the sphere
S
d . Let

L : V (T ) → {+1,−1,+2,−2, . . . ,+d,−d}

be an antipodal labelling. Then there exists a complementary edge.
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Fig. 1 Illustration of Tucker’s lemma
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Fig. 2 Illustration of Shashkin’s
lemma
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Tucker’s lemma was extended by Fan (1952):

Ky Fan’s Lemma Let T be a centrally symmetric triangulation of the sphere S
d .

Suppose that each vertex v of T is assigned a label L(v) from {±1,±2, . . . ,±n} in
such away that L(−v) = −L(v). Suppose this labelling does not have complementary
edges. Then there are an odd number of d-simplices of T whose labels are of the form
{k0,−k1, k2, . . . , (−1)dkd}, where 1 ≤ k0 < k1 < · · · < kd ≤ n. In particular,
n ≥ d + 1.

1.2 Shashkin’s Lemma

In the 1990s, Yu. A. Shashkin published several works related to discrete versions
of classic fixed point theorems (Shashkin 1991, 1994, 1996a, b, 1999). In Shashkin
(1996b) he proved the following theorem:

Shashkin’s Lemma Let T be a triangulation of a planar polygon that is antipodally
symmetric on the boundary. Let

L : V (T ) → {+1,−1,+2,−2,+3,−3}

be a labelling of the vertices of T that satisfies L(−v) = −L(v) for every vertex
v on the boundary. Suppose that this labelling does not have complementary edges.
Then for any numbers a, b, c, where |a| = 1, |b| = 2, |c| = 3, the total number of
triangles in T with labels (a, b, c) and (−a,−b,−c) is odd.

Remark In other words, Shashkin proved that if (a, b, c) = (1, 2, 3), (1,−2, 3),
(1, 2,−3) and (1,−2,−3), then the number of triangles with labels (a, b, c) or
(−a,−b,−c) is odd. Denote this number by SN(a, b, c). Then in Fig. 2 we have

SN(1, 2, 3) = 3, SN(1,−2, 3) = 1, SN(1, 2,−3) = 3, SN(1,−2,−3) = 3.

Note that this result was published only in Russian and only for two–dimensional
case. Moreover, Shashkin attributes this theorem to Fan (1952).

Actually, Shashkin’s lemma can be derived from Ky Fan’s lemma for n = d + 1.
However. Shashkin’s proof is different and relies on the oddmapping theorem (OMT).
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302 O. R. Musin

In fact, this lemma is a discrete version of the OMT. That is why we distinguish this
result as Shashkin’s lemma.

The following is a spherical version of Shashkin’s lemma.

Spherical Shashkin’s Lemma Let T be a centrally symmetric triangulation of S
d .

Let

L : V (T ) → �d+1 := {+1,−1,+2,−2, . . . ,+(d + 1),−(d + 1)}

be an antipodal labelling of T . Suppose that this labelling does not have complemen-
tary edges. Then for any set of labels � := {�1, �2, . . . , �d+1} ⊂ �d+1 with |�i | = i
for all i , the number of d–simplices in T that are labelled by � is odd.

1.3 Main Results

In Musin (2012) we invented BUT (Borsuk–Ulam Type) – manifolds. Theorems 3.1–
3.4 in this paper extend Tucker’s and Shashkin’s lemmas for BUT–manifolds. Namely,
Theorem3.1 andTheorem3.2 are extensions of the spherical Tucker andShahskin lem-
mas, where Sd is substituted by a BUT–manifold. Theorems 3.3 and 3.4 are extensions
of the original Tucker and Shashkin lemmas, where Bd is substituted by a manifold
M with boundary ∂M that is a BUT–manifold.

Our proof of Theorem 3.2 is relies on a generalization of the odd mapping theorem
for BUT–manifolds:

Theorem 2.1 Let (M1, A1) and (M2, A2) be BUT–manifolds. Then any odd continu-
ous mapping f : M1 → M2 has odd degree.

Theorems 3.3 and 3.4 follow from Theorems 3.1 and 3.2 by using Lemma 3.1,
which is about the doubling of manifolds with boundaries that are BUT–manifolds.

In Section 4 we extend for BUT–manifolds Shaskin’s proof of two Tucker’s the-
orems about covering families from Tucker (1945). Actually, these theorems are
corollaries of Theorem 3.2.

2 The Odd Mapping Theorem

We say that a mapping f : Sd → S
d is odd or antipodal if f (−x) = − f (x) for all

x ∈ S
d . If f is a continuous mapping, then deg f (the degree of f ) is well defined.

Let f : M1 → M2 be a continuous map between two closed manifolds M1 and
M2 of the same dimension. The degree is a number that represents the amount of
times that the domain manifold wraps around the range manifold under the mapping.
Then deg2( f ) (the degree modulo 2) is 1 if this number is odd and 0 otherwise. It is
well known that deg2( f ) of a continuous map f is a homotopy invariant [see (Milnor
1969)].

The classical odd mapping theorem states that
Every continuous odd mapping f : Sd → S

d has odd degree.
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Generalizations of Tucker–Fan–Shashkin Lemmas 303

Shashkin (1996b) (see also [Matoušek (2003), Proposition 2.4.1]) gives a proof
of this theorem for simplicial mappings f : S

d → S
d . Conner and Floyd (1960)

considered Theorem 2.1 for a wide class of spaces. Here we extend the odd mapping
theorem for BUT–manifolds. In our paper Musin (2012), we extended the Borsuk–
Ulam theorem for manifolds.

Let M be a connected compact PL (piece-wise linear) d-dimensional manifold
without boundary with a free simplicial involution A : M → M , i. e. A2(x) =
A(A(x)) = x and A(x) �= x . We say that a pair (M, A) is a BUT (Borsuk-Ulam
Type) manifold if for any continuous g : M → R

d there is a point x ∈ M such that
g(A(x)) = g(x). Equivalently, if a continuous map f : M → R

d is antipodal, i.e.
f (A(x)) = − f (x), then the set of zeros Z f := f −1(0) is not empty.
In Musin (2012), we found several equivalent necessary and sufficient conditions

for manifolds to be BUT. In particular,
M is a d–dimensional BUT–manifold if and only if M admits an antipodal contin-

uous transversal to zeros mapping h : M → R
d with |Zh | = 2 (mod 4).

A continuous mapping h : M → R
d is called transversal to zero if there is an open

setU inRd such thatU contains 0,U is homeomorphic to the open d-ball and h−1(U )

consists of a finite number open sets in M that are homeomorphic to open d-balls.
The class ofBUT–manifolds is sufficiently large. It is clear that (Sd , A)with A(x) =

−x is a BUT-manifold. Suppose that M can be represented as a connected sum N#N ,
where N is a closed PL manifold. Then M admits a free involution. Indeed, M can be
“centrally symmetrically” embedded to R

k , for some k, and the antipodal symmetry
x → −x in R

k implies a free involution A : M → M [Musin (2012), Corollary
1]. For instance, orientable two-dimensional manifolds M2

g with even genus g and
non-orientable manifolds P2

m with even m, where m is the number of Möbius bands,
are BUT-manifolds.

Let Mi , i = 1, 2, be a manifold with a free involution Ai . We say that a mapping
f : M1 → M2 is antipodal (or odd, or equivariant) if f (A1(x)) = A2( f (x)) for all
x ∈ M1.

Theorem 2.1 Let (M1, A1) and (M2, A2) be d-dimensional BUT–manifolds. Then
any odd continuous mapping f : M1 → M2 has odd degree.

Proof Since (M2, A2) is BUT, there is a continuous antipodal transversal to zeros
mapping g : M2 → R

d with |Zg| = 4m2 + 2 [Musin (2012), Theorem 2].
Let h := g ◦ f . Then h : M1 → R

d is continuous and antipodal. Since the degree
of a mapping is a homotopy invariant, without loss of generality we may assume
that h is a transversal to zero mapping (see Musin (2012), [Lemma 3]). Therefore
|Zh | = 4m1 + 2. On the other hand,

|Zh | =
∑

x∈Zg

| f −1(x)|.

Then
2m1 + 1 = (2m2 + 1) deg2 f (mod 2).

Thus, the degree of f is odd. 	
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304 O. R. Musin

3 Tucker’s and Shashkin’s Lemmas for BUT–Manifolds

In our papers Musin (2012, 2015), Musin and Volovikov (2015) are considered exten-
sions of Tucker’s lemma. Here we consider generalizations of Tucker’s and Shashkin’s
lemmas for manifolds with and without boundaries.

Let T be an antipodally symmetric (or antipodal) triangulation of a BUT–manifold
(M, A). This means that A : T → T sends simplices to simplices. Denote by �n the
set of labels {+1,−1,+2,−2, . . . ,+n,−n} and let L : V (T ) → �n be a labeling
of T . We say that this labelling is antipodal if L(A(v)) = −L(v). An edge uv in T is
called complementary if L(u) = −L(v).

Theorem 3.1 ([Musin (2015), Theorem 4.1]) Let (M, A) be a d-dimensional BUT–
manifold. Let T be an antipodal triangulation of M. Then for any antipodal labelling
L : V (T ) → �d there exists a complementary edge.

Any antipodal labelling L : V (T ) → �n of an antipodally symmetric triangulation
T of M defines a simplicial map fL : T → R

n . Let {e1,−e1, e2,−e2, . . . , en,−en}
be the standard orthonormal basis in R

n . For v ∈ V (T ), set fL(v) := ei if L(v) = i
and fL(v) := −ei if L(v) = −i . Since fL is defined on V (T ), it defines a simplicial
mapping fL : T → R

n (see details in [Matoušek (2003), Sect. 2.3].)
The following theorem is a version of Shashkin’s lemma for manifolds without

boundary.

Theorem 3.2 Let (M, A) be a d-dimensional BUT–manifold. Let T be an antipodally
symmetric triangulation of M. Let L : V (T ) → �d+1 be an antipodal labelling of
T . Suppose that this labelling does not have complementary edges. Then for any set
of labels � := {�1, �2, . . . , �d+1} ⊂ �d+1 with |�i | = i for all i , the number of
d–simplices in T that are labelled by � is odd.

Proof Since L has no complimentary edges, fL : T → R
d+1 is an antipodal

mapping of M to the boundary of the crosspolytope Cd+1 that is the convex hull
conv{e1,−e1, . . . , ed+1,−ed+1}. Note that ∂Cd+1 is a simplicial sphere Sd , which is
a BUT-manifold. Therefore, Theorem 2.2 implies that the number of preimages of the
simplex in ∂Cd+1 with indexes from � is odd. It completes the proof. 	

Remark Theorem 3.1 can be proved using the same arguments. Indeed, suppose that
L : V (T ) → �d has no complementary edges. Then fL sends M to ∂Cd . Since
dim ∂Cd = d − 1, deg fL = 0. This contradicts Theorem 2.1.

Nowwe extend Tucker’s and Shashkin’s lemmas for the case when M is a manifold
with boundary that is a BUT–manifold. But first, prove that there exists a “double” of
M that is a BUT-manifold.

Lemma 3.1 Let M be a compact PL manifold with boundary ∂M. Suppose (∂M, A)

is a BUT–manifold. Then there is a BUT–manifold (M̃, Ã) and a submanifold N in M̃
such that N � M, Ã|∂N � A, (N\∂N ) ∩ Ã(N\∂N ) = ∅ and

M̃ � (N\∂N ) ∪ ∂N ∪ Ã(N\∂N ).
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Generalizations of Tucker–Fan–Shashkin Lemmas 305

Proof 1. First we prove the following statement: Let X be a finite simplicial complex.
Let Y be a subcomplex of X with a free involution A : Y → Y . Then there is a
simplicial embedding F of X into R

q
+ := {(x1, . . . , xq) ∈ R

q : x1 ≥ 0}, where
q is sufficiently large, such that Y is centrally symmetrically embedded in Rq , i.e.
F(A(y)) = −F(y) for all y ∈ Y , and X\Y is mapped into the interior of Rq

+.
Indeed, let v1, v−1, . . . , vm, v−m denote vertices of Y such that A(vk) = v−k . Let
{vm+1, . . . , vn} be the set of vertices of X\Y .
Denote by Cn the n–dimensional crosspolytope that is the boundary of convex
hull

conv{e1,−e1, . . . , en,−en}

of the vectors of the standard orthonormal basis and their negatives.
Now define an embedding F : X → Cn . Let F(vk) := ek , F(v−k) := e−k , where
1 ≤ k ≤ m, F(vk) := ek , and k = m + 1, . . . , n. Since F is defined for all
of the vertices of X , it uniquely defines a simplicial (piecewise linear) mapping
F : X → Cn ⊂ R

n . Then

F(Y ) ⊂ Cm ⊂ R
m = {(x1, . . . , xn) ∈ R

n : xi = 0, i = m + 1, . . . , n},

F(A(y)) = −F(y) for all y ∈ Y and

F(X\Y ) ⊂ R
n−1+ := {(x1, . . . , xn) ∈ R

n : xm+1 + · · · + xn > 0},

as required.
2. Let X = M and Y = ∂M . Then it follows from 1 that there is an embedding

F : M → R
q
+ with F(∂M) ⊂ R

q and F(A(y)) = −F(y) for all y ∈ ∂M , where
q = n − 1. Let

M̃ := F(M) ∪ (−F(M)) ⊂ R
q+1 = R

q
+ ∪ (−R

q
+) and

Ã(x) := −x for all x ∈ M̃ .

It is clear that M̃ � (N\∂N ) ∪ ∂N ∪ Ã(N\∂N ), where N := F(M).

3. Let us prove that (M̃, Ã) is BUT. Indeed, since (∂M, A) is BUT, there is a con-
tinuous antipodal transversal to zeros mapping g : ∂M � ∂N → R

d−1 with
|Zg| = 4m+2, where d := dim M.We extend this mapping to h : M̃ → R

d with
h|∂N = g and |Zh | = |Zg| = 4m + 2.
Let v = (x1, . . . , xn) ∈ R

n be a vertex of M̃ . If v ∈ ∂N , then put

h(v) := (g(v), 0) ∈ R
d .

For v ∈ M̃\∂N define

h(v) := (0, . . . , 0, xm+1 + · · · + xn) ∈ R
d .
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306 O. R. Musin

Then h : M̃ → R
d is an antipodal transversal to zeros mapping and h−1(0) = g−1(0).

	

Theorem 3.3 Let M be a d–dimensional compact PL manifold with boundary ∂M.
Suppose (∂M, A) is a BUT–manifold. Let T be a triangulation of M that antipodally
symmetric on ∂M. Let L : V (T ) → �d be a labelling of T that is antipodal on the
boundary. Then there is a complementary edge in T .

Theorem 3.4 Let M be a d–dimensional compact PL manifold with boundary ∂M.
Suppose (∂M, A) is a BUT–manifold. Let T be a triangulation of M that antipodally
symmetric on ∂M. Let L : V (T ) → �d+1 be a labelling of T that is antipodal
on the boundary and has no complementary edges. Then for any set of labels � :=
{�1, �2, . . . , �d+1} ⊂ �d+1 with |�i | = i for all i , the number of d–simplices in T
that are labelled by � or (−�) is odd.

Proof By Lemma 3.1 there is a BUT–manifold (M̃, Ã) that is the double of M . We
can extend T and L from M to an antipodal triangulation T̃ := T ∪ Ã(T ) of M̃ and
an antipodal labelling L̃ : V (T̃ ) → �n , where n = d in Theorem 3.3 and n = d + 1
in Theorem 3.4, such that L̃|T = L .

Thus, for the case n = d Theorem 3.3 follows from Theorem 3.1 and for n = d+1
Theorem 3.2 yields Theorem 3.4. 	


4 Shashkin’s Proof of Tucker’s Theorems

In this section we consider two Tucker’s theorems about covering families. Note
that Tucker (1945) obtained these theorem only for S

2. Bacon (1966) proved that
statements in Theorems 4.1 and 4.2 are equivalent to the Borsuk–Ulam theorem for
normal topological spaces X with free continuous involutions A : X → X . [See also
Theorem 2.1 in our paper (Musin and Volovikov 2015)]. Actually, these theorems can
be proved from properties of Schwarz’s genus (Svarc 1966) or Yang’s cohomological
index (Karasev 2009; Musin and Volovikov 2015).

For the two–dimensional case in the book Shashkin (1999) Shashkin derives
Tucker’s theorems from his lemma. Here we extend his proof for BUT–manifolds
of all dimensions.

Theorem 4.1 Let (M, A) be a d-dimensional BUT–manifold. Consider a family of
closed sets {Bi , B−i }, i = 1, . . . , d+1, where B−i := A(Bi ), is such that Bi ∩B−i =
∅ for all i . If this family covers M, then for any set of indices {k1, k2, . . . , kd+1} ⊂ �d+1
with |ki | = i for all i , the intersection of all Bki is not empty.

Proof Note that any PL manifold admits a metric. For a triangulation T of M , the
norm of T , denoted by |T |, is the diameter of the largest simplex in T .

Let T1, T2, . . . be a sequence of antipodal triangulations of M such that |Ti | → 0.
Now for all i define an antipodal labelling Li : V (Ti ) → �d+1. For every v ∈
V (Ti ) ⊂ M set

Li (v) := �, where v ∈ B� and |�| = min {|k| : v ∈ Bk}.
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Generalizations of Tucker–Fan–Shashkin Lemmas 307

Then Li satisfies the assumptions in Theorem 3.2 and Ti contains a simplex si with
labels {k1, k2, . . . , kd+1} ⊂ �d+1.

Since M is compact and |si | → 0, the sequence {si } contains a converging subse-
quence P with limit w ∈ M . Then for si ∈ P we have V (si ) → w.

By assumption, all Bk are closed sets. Therefore w ∈ Bk j for all j = 1, . . . , d + 1,
and thus w ∈ ∩ j Bk j . 	

Theorem 4.2 Let (M, A) be a d-dimensional BUT–manifold. Suppose that M is cov-
ered by a family F of d + 2 closed subsets C1, . . . ,Cd+2. Suppose that all Ci have
no antipodal pairs (x, A(x)), in other words, Ci ∩ A(Ci ) = ∅. Let 0 < k < d + 2.
Then any k subsets from F intersect and there is a point x in this intersection such
that A(x) belongs to the intersection of the remaining (d + 2 − k) subsets in F .

Proof Without loss of generality, we can assume that k ≥ (d + 2)/2 and that the k
subsets from F are C1, . . . ,Ck . Therefore, we have to prove that there is x ∈ M such
that

x ∈
k⋂

i=1

Ci and A(x) ∈
d+2⋂

i=k+1

Ci

Set C−i := A(Ci ). Let m := �d/2�,

B1 := C1 ∩ (C−2 ∪ · · · ∪ C−(m+1) ∪ C−(d+2)),

B2 := C2 ∩ (C−3 ∪ · · · ∪ C−(m+2) ∪ C−(d+2)),

...

Bd := Cd ∩ (C−(d+1) ∪ C−1 ∪ · · · ∪ C−(m−1) ∪ C−(d+2)),

Bd+1 := Cd+1 ∩ (C−1 ∪ · · · ∪ C−m ∪ C−(d+2)).

If B−i := A(Bi ), then

d+1⋃

i=1

Bi ∪ B−i =
d+2⋃

i=1

Ci ∩ (C1 ∪ · · · ∪ Cd+2) =
d+2⋃

i=1

Ci ∩ M =
d+2⋃

i=1

Ci = M.

On the other hand, Bi ⊂ Ci and B−i ⊂ C−i , hence Bi ∩ B−i = ∅. Therefore, the
family of subsets {Bi } satisfies the assumptions of Theorem 4.1. It follows that

Q := B1 ∩ · · · ∩ Bk ∩ B−(k+1) ∩ · · · ∩ B−(d+1) �= ∅.
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308 O. R. Musin

Let x ∈ Q. Then

x ∈ C1 ∩ . . . ∩ Ck and A(x) ∈ C−(k+1) ∩ · · · ∩ C−(d+1).

Since k ≥ m + 1 and x ∈ B1 = C1 ∩ (C−2 ∪ . . . ∪ C−(m+1) ∪ C−(d+2)), we have
x ∈ C−(d+2), i.e. A(x) ∈ Cd+2. 	

Corollary 4.1 Let (M, A) be a d-dimensional BUT–manifold. Then M cannot be
covered by d + 1 closed sets, none containing a pair (x, A(x)) of antipodal points.

Note that the case M = S
d was first considered by Lusternik and Schnirelmann in

1930.

Proof Suppose the converse, so M can be covered by closed subsets C1, . . . ,Cd+1.
Let Cd+2 := C1. Then this covering satisfies the assumptions of Theorem 4.2. So
there is x such that

x ∈
d+1⋂

i=1

Ci and A(x) ∈ Cd+2, i.e. (x, A(x)) ∈ C1,

a contradiction. 	
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