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Abstract The geometry of Kepler’s problem is elucidated by lifting the motion from
the (x, y)-plane to the cone r2 = x2 + y2.

Keywords Kepler’s laws · Conic section
Introduction. In the senior year at the Moscow high school no. 2, my astronomy
term paper1 was about Kepler’s laws of planetary motion. The intention was to derive
the three famous empirical laws from the first principles of Newtonian gravitation.
Assuming the 1st law, which stipulates that each orbit is a conic section with the
center of attraction at its focus, I had no difficulty deriving the 2nd and 3rd laws (about
conservation of sectorial velocity, and the relation between the periods of revolutions
with the orbits’ sizes respectively).However, the derivation of the 1st lawper se resisted
my effort, apparently, for the lack of skill in solving ordinary differential equations.

Physics and math were taught in our school at an advanced level, and so I had no
problems with differentiation of functions, and even with setting Kepler’s problem in
the ODE form:

r̈ = −k
r

|r|3 .

1 Astronomy teacher: N. V Mart’yanova, geometry and algebra teacher: Z. M. Fotieva, calculus teacher:
V. A. Senderov.
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140 A. Givental

Here r denotes the radius-vector of the planet with respect to the center of attraction,
and k is the coefficient of proportionality in the Newton law “F = ma” between the
acceleration and the “inverse-square radius.” Yet, solving such ODEs was beyond our
syllabus.

The unfortunate deficiency was overcome in college, but the traditional solution
of Kepler’s problem—by integrating the ODE in polar coordinates—left a residue
of frustration. Namely, it remained unclear why, after all, the trajectories are conic
sections. So, the high-school project became transformed into the question:

Where is the cone whose sections are the planetary orbits?

In this article, the answer to this question is presented among several other related
achievements, including a derivation of Kepler’s 1st law for readers familiar with the
cross-product of vectors and differentiation, but not necessarily integration or ODEs.

Thirty years ago, an abstract of this article was included by V. I. Arnold into his
joint with V. V. Kozlov and A. I. Neishtadt survey of classical mechanics (Arnold et al.
1987). Since then, I gave several presentations of this elementary topic: on a lunch
seminar, student colloquium, math circle, in some lecture courses, but it might still be
worth appearing in print.

In fact, there is no lack of accounts on Kepler’s problem, including some of elemen-
tary nature [e.g. (Arnold 1990, Goodstein and Goodstein 1996, Milnor 1983)], though
in those I’ve seen, I don’t notice much overlap with ours. In any case, our treatment
can hardly provide anything but one more geometric interpretation of what’s been
revolving around for ages.

1. Conservation of angular momentum. The angular momentum vector is defined
as the cross-product

M = m(r × ṙ),

where m is the mass of the planet. Differentiating, one finds

Ṁ = m(ṙ × ṙ) + m(r × r̈) = 0,

whenever the force field is central [i.e. mr̈ = F(r) is proportional to the radius-
vector r]. Thus, in a central force field, the angular momentum vector is conserved. In
particular, the direction of M is conserved, that is, the motion of the planet occurs in
the plane spanned by the radius-vector r(0) and the velocity vector ṙ(0) at the initial
moment t = 0. Thereby Kepler’s problem in 3D is reduced to Kepler’s problem in
2D.

2. Kepler’s 2nd law describes relative times the celestial body spends in various parts
of the trajectory: In equal times, the radius-vector of the body sweeps equal areas. In
other words, the “sectorial velocity” is constant. This is true for motion in any central
force field and follows from the the conservation of the angular momentum vector
M = m(r × ṙ). In particular, the length μ := m|r × ṙ| of the angular momentum
vector is conserved, and so is the sectorial velocity |r × ṙ|/2 = μ/2m.
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Kepler’s Laws and Conic Sections 141

3. The cone and the orbits. In the 3-dimensional space with coordinates (x, y, r),
consider the cone given by the equation

r2 = x2 + y2.

Apurely geometric theorembelow recasts Kepler’s 1st law as the claim that in Kepler’s
2D problem with the center of attraction located at the origin (x, y) = (0, 0), trajec-
tories are the projections to the (x, y)-plane of plane sections of this cone.

Definition The geometric locus of points on the plane with the fixed ratio (called
eccentricity and denoted e) between the distances to a given point (called focus) and a
given line (called directrix) is a quadratic curve called ellipse, when e < 1, parabola,
when e = 1, and hyperbola, when e > 1.

This is one of classical definitions of ellipses, parabolas, and hyperbolas. The case
of circles corresponds to e = 0 and the directrix “located at infinity”.

Theorem The projection of a conic section to the (x, y)-plane is a quadratic curve
whose focus is the vertex of the cone, directrix is the line of intersection of the cutting
plane with the plane r = 0, and eccentricity is equal to the tangent of the angle
between the planes.

Proof Since generators (P O , see Fig. 1) of the cone r2 = x2 + y2 make 45◦ with the
plane r = 0, the distance from a point (P) on the cone to its projection (P ′) to the plane
is equal to the distance from the projection to the vertex of the cone (P P ′ = O P ′),
and for points of the same plane section is proportional to the distance (Q P ′) from the
projection to the line of intersection of the secting plane and the plane r = 0, with the
coefficient of proportionality equal to the slope (tan(� P Q P ′)) of the secting plane.

��
4. Kepler’s 1st law by differentiation. Suppose that a point is moving on the surface
of the cone r2 = x2 + y2 in such a way that the projection of the point to the plane

Fig. 1 An orbit’s focus, directrix, and eccentricity

123



142 A. Givental

Fig. 2 Fictitious angular momentum

obeys the equation of motion r̈ = −kr/|r|3. We represent the position of the point on
the cone by its radius-vector R in space with respect to the origin shifted by distance
l along the axis of the cone (Fig. 2):

R := r + re − le, where e = (0, 0, 1).

We choose the shift to be different for different trajectories and determined by the
value of sectorial velocity: l = μ2/km2. Since it is conserved, the same value of l
serves all points of one trajectory.

Proposition In Kepler’s problem on the plane, each trajectory (with the given value
of sectorial velocity), when lifted to the cone r2 = x2 + y2, obeys the equation of
motion:

R̈ = −k
R
r3

.

Proof Differentiating R with respect to time, we find:

Ṙ = ṙ + ṙ · r
r

e.

Differentiating again, we get:

R̈ = r̈ + r̈ · r
r

e + ṙ · ṙ
r

e − (ṙ · r)2

r3
e.

Taking in account the equation of motion r̈ = −kr/|r|3, we have:

R̈ = −k
r
r3

− k

r2
e − (ṙ · ṙ)(r · r) − (ṙ · r)2

r3
e.
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Kepler’s Laws and Conic Sections 143

Note that

(ṙ · ṙ)(r · r) − (ṙ · r)2 = |r × ṙ|2 = μ2

m2 = kl,

four times the square of the sectorial velocity. Thus, at a fixed value of sectorial
velocity, we obtain:

R̈ = −k
r + re − le

r3
= −k

R
r3

.

��
Corollary 1 The fictitious angular momentum N := m(R × Ṙ) is conserved.

Proof Ṅ = m(Ṙ × Ṙ) + m(R × R̈) = 0, since R̈ is proportional to R. ��
In particular, the direction of vector N is conserved, and so the trajectory lies in the

section of the cone by the plane passing through the point le and spanned by vectors
R(0) and Ṙ(0) (perpendicular to N). We have arrived at

Corollary 2 (Kepler’s 1st law). When lifted from the plane to the cone, Keplerian
trajectories become plane sections of the cone.

Corollary 3 Keplerian trajectories with a fixed value of sectorial velocity correspond
to the sections of the cone by planes passing through the same point le on the axis,
l = μ2/km2.

Note that l here is non-negative. To obtain negative values of l one must assume
that k < 0, i.e. that the planet is repelled from the Sun by the central anti-gravity
force inversely proportional to the square of the distance (as in Coulomb’s law for
electric charges of the same sign). A plane crossing the axis of the cone at a point
below the plane r = 0 can intersect the part of the cone above this plane along one
of the branches of a hyperbola, namely the branch unlinked with the axis. Thus, as a
bonus, we obtain:

Corollary 4 In Kepler’s anti-gravity problem, planets move along branches of hyper-
bolas with the Sun at the focus, namely along those branches which (being separated
from the focus by the directrix) don’t go around the Sun.

Remark The equation of motion on the surface of the cone splits into two: the usual
Newton equation for radius-vector r on the plane, and the scalar equation

r̈ = − k

r2
+ μ2

m2r3
.

The latter is the effective Newton equation in polar coordinates at a fixed value of
sectorial velocity. The traditional solution of Kepler’s problem consists in treating the
effective equation as a mechanical system with one degree of freedom and integrating
it using the effective energy conservation law.
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144 A. Givental

Fig. 3 Dandelin’s spheres

5. Dandelin’s spheres. The definition of an ellipse as a quadratic curve with the
eccentricity < 1 competes with another definition of an ellipse as the locus of points
on the planewith a fixed sumof distances to two given points called foci. The following
famous geometric proof of the fact that closed conic sections are ellipses was invented
by French mathematician G. P. Dandelin (1794–1847).

Into a conical cup (Fig. 3), place two balls so that they, being tangent to the cone,
also touch the secting plane (one from above the other from below). The claim is
that the points F and G of tangency with the plane are the foci of the conic section.
Indeed, given a point A on the conic section, the segments AF and AG are tangent to
the respective balls at the points F an G since the balls touch the plane at these points.
The segments AB and AC of the generator O A of the cone are also tangent to the
balls, since the balls touch the cone at B and C respectively. Since all tangents to the
same ball from the same point have the same length, one concludes that AF = AB,
AG = AC , and hence AF + AG = BC . The latter is the distance along a generator
of the cone between the parallel circles along which the cone touches the balls. This
distance does not depend on the position of A on the conic section.

Exercise Extend Dandelin’s construction to hyperbolic sections of the cone.

6. Osculating paraboloids. Here we reconcile the two definitions of ellipses by locat-
ing the second focus of a Keplerian orbit.

Theorem Into the conical cup, inscribe a paraboloid of revolution so that it touches
the secting plane. Then the projection of the point of tangency to the horizontal plane
is the second focus of the projected conic section (the vertex of the cone being the first
one).

Proof First, note that a paraboloid of revolution is the locus of points equidistant from
its focus lying on the axis of revolution and the directrix plane perpendicular to it.
Consequently, the plane tangent to the paraboloid at a given point is the locus of points
equidistant from the focus and the foot of the perpendicular dropped from the given
point to the directrix. (This shows that the direction normal to the tangent plane makes
equal angles with the direction to the focus and the direction of the axis, which implies
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Kepler’s Laws and Conic Sections 145

Fig. 4 Osculating paraboloids

the famous optical property of the parabolic mirror to reflect all rays parallel to the axis
into the focus.) To justify this claim, consider the plane of all points equidistant from
the focus and the aforementioned foot of the perpendicular dropped from the given
point. Any other point on this plane is farther from the foot (and hence from the focus)
than from the directrix, and therefore lies outside the paraboloid. Thus, the plane has
only one common point with the paraboloid, and hence touches it at this point.

Lemma Paraboloids of revolution inscribed into the cone r2 = x2 + y2 have the
plane r = 0 as the directrix, and the center of the circle of tangency with the cone as
the focus.

Indeed, at the circle of tangency, the tangent planes make 45◦ with the direction of
the axis, hence the center of the circle must be the focus, and hence the plane r = 0
the directrix.

Now let P be a point on the section of the cone by the plane tangent to the paraboloid
at F (Fig. 4), P ′ and P ′′ be the projections of P to the horizontal planes through the
focus O ′ of the paraboloid and the vertex O of the cone respectively, and likewise
F ′ and F ′′ be the projections of F . Then the right triangles P P ′O ′ and F ′′ P ′′ P are
congruent, since P O ′ = P F ′′ (as was explained before the lemma), and P ′O ′ =
P ′′O = P ′′ P (as was already noted in Section 3). Therefore P ′′F ′′ = P ′ P and
so P ′′O + P ′′F ′′ = P ′ P ′′, the distance from the focus O ′ of the paraboloid to the
directrix plane, and does not depend on the choice of a point P on the conic section.

Corollary Elliptic Keplerian orbits with a fixed length of their major axis correspond
to the sections of the cone by planes tangent to the same paraboloid of revolution
inscribed into the cone (and the length is equal to the distance from the focus to the
directrix of the paraboloid).

Indeed, the major axis has length equal to the sum of the distances to the foci.
We will see that the same condition characterizes orbits with a fixed period of

revolution, and a fixed value of total energy.

Exercise Extend the proof and the corollary to hyperbolic orbits.
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146 A. Givental

A B

Fig. 5 Arithmetic, geometric, and harmonic means

7. Kepler’s 3rd law. The period T of revolution can be found as the ratio of the area
enclosed by the orbit to the sectorial velocity. The latter is μ/2m, and the square of
it μ2/4m2 coincides with kl/4 (in our earlier notation). The area of an ellipse with
semiaxes a ≥ b is equal to πab. Combining, we find a geometric expression for the
square of the period:

T 2 = 4π2

k

a2b2

l
.

The farthest from and closest to the Sun positions of the planet are called the aphelium
and perihelium respectively. Denote by r1 and r2 the respective distances to the Sun,
and examine Fig. 5a showing the axial cross-section of the cone over the major axis
of an elliptic orbit.

Proposition The major (a) and minor (b) semiaxes of an elliptic orbit, and the altitude
(l) of the corresponding secting plane over the vertex of the cone are respectively the
arithmetic, geometric, and harmonic means between the aphelium (r1) and perihelium
(r2) distances:

a = r1 + r2
2

, b = √
r1r2, l = 2

1/r1 + 1/r2
.

Proof The first is obvious. The second is standard (see Fig. 5b): By the Pythagorean
theorem, since the half-distance f between the foci equals (r1 − r2)/2, we have
b2 = a2 − f 2 = (r1+r2)2/4− (r1−r2)2/4 = r1r2. Lastly (see Fig. 5a), the area r1r2
of the right triangle K O M equals the sum of the areas lr1/2 and lr2/2 of the triangles
into which the angle bisector O L divides the triangle K O M . Thus the length l of the
bisector equals 2r1r2/(r1 + r2). ��

We have al = b2: the geometric mean between two quantities is the geometric
mean between their arithmetic and harmonic means. Thus, b2/ l = a, and

T 2 = 4π2

k
a3.

This is Kepler’s 3rd law: The squares of the periods are proportional to the cubes of
the orbits’ major semiaxes.
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8. The total energy. The sum of the kinetic and potential energy

E := m
|ṙ|2
2

− mk

|r| ,

is conserved, as it is readily verified by differentiation.
On the other hand, at the aphelium and perihelium, where the velocity vector ṙ is

perpendicular to r, we have (from conservation of sectorial velocity) |r| |ṙ| = μ/m.
Excluding the velocities, we obtain the following quadratic equation for r = r1 and
r = r2:

μ2

2m

(
1

r

)2

− mk

(
1

r

)
− E = 0.

By Vieta’s theorem, we have

2

l
= 1

r1
+ 1

r2
= 2km2

μ2 , and r1 + r2 = −mk

E
.

The first equality shows (again) that at a fixed value of sectorial velocity the secting
planes hit the axis of the cone at the same point. The second equality implies that
elliptic orbits have negative total energy, and that the value of E/m is determined by
the major semiaxis of the orbit.

Corollary Orbits with a fixed value of the total energy (as well as orbits with a fixed
period of revolution) correspond to sections of the cone by planes tangent to the same
paraboloid of revolution inscribed into the cone.

9. The gravity of curvature. The Keplerian dynamics lifted from the plane to the
cone x2 + y2 = r2 can be considered as Lagrangian dynamics on the cone itself with
potential energy −mk/r , where however the distance r to the vertex of the cone, as
well as the kinetic energy, are dictated by the metric on the cone obtained from the
degenerate metric (dx)2 + (dy)2 + 0(dr)2 in 3-space, induced by the projection of
the space to the plane. Consider now how the dynamics changes when the metric on
the cone is induced from a more general metric of the form (dx)2 + (dy)2 + ε(dr)2,
Euclidean for ε > 0 and Minkovsky for ε < 0 (but > −1 so that the cone remains
Euclidean). When cut along a generator, the cone can be developed isometrically to
the plane. The development covers a sector which for ε �= 0 differs from full angle 2π
by the angular defect α (easily computed as α = 2π(

√
1 + ε−1). The ratio α/2π can

be interpreted as the amount of the Gaussian curvature of the cone accumulated at the
vertex. This curvature has the following effect on the Keplerian dynamics (see Fig. 6):
the usual Keplerian orbits on the development plane jump from one edge of the cut to
the other and proceed along the trajectory rotated through the angle α. This results in
the rotation of the perihelium by α radians per revolution—somewhat similar to the
rotation of the perihelium of Mercury explained by the general theory of relativity.
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Fig. 6 The effect of the angular
defect

Fig. 7 Two beads on the strings

10. An exercise on hidden symmetries. The integrability of Kepler’s problem is
based on the law of conservation of angular momentum, which, in full agreement with
E. Noether’s theorem, is due to the rotational symmetry (isotropy) of space. In the
following problem, the isotropy is explicitly broken:

Two identical beads slide without friction along two perpendicular strings (Fig. 7)
and interact with each other gravitationally, i.e. by central attracting force propor-
tional to the inverse square of the distance between the beads. Describe the motion of
this system (assuming that each bead crosses the other bead’s string without collision).

Added in proof. I. Boyadzhiev informed the author about two GeoGebra applets she designed to help
visualising: (a) Dandelin’s spheres http://tube.geogebra.org/material/simple/id/1954689, and (b) the above
theorems about conic sections http://tube.geogebra.org/material/simple/id/1725305.
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