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Abstract We give an explicit formula for the HOMFLY polynomial of a rational link
(in particular, knot) in terms of a special continued fraction for the rational number that
defines the given link [after this work was accomplished, the authors learned about a
paper by Nakabo (J. Knot Theory Ramif 11(4):565–574, 2002) where a similar result
was proved. However, Nakabo’s formula is different from ours, and his proof is longer
and less clear].
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1 Rational links

Rational (or 2-bridge) knots and links constitute an important class of links for which
many problems of knot theory can be completely solved and provide examples often
leading to general theorems about arbitrary knots and links. For the basics on rational
(2-bridge) knots and linkswe refer the reader to Lickorish (1997) andMurasugi (1996).
As regards the definition, we follow Lickorish (1997), while the majority of properties
that we need, are to be found in a more detailed exposition of Murasugi (1996). In
particular, by equivalence of (oriented) links L = K1 ∪ K2 and L ′ = K ′

1 ∪ K ′
2 we
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346 S. Duzhin, M. Shkolnikov

understand a smooth isotopy of R3 which takes the union K1 ∪ K2 into the union
K1 ∪ K2, possibly interchanging the components of the link.

Let p and q be mutually prime integers, q > 0,
∣
∣
∣
p
q

∣
∣
∣ ≤ 1, and we have a continued

fraction
p

q
= 1

b1 + 1

b2 + 1

· · · + 1

bn−1 + 1

bn

, (1)

where bi are nonzero integers (positive or negative). Below, we will use shorthand
notation [b1, b2, . . . , bn] for the continued fraction with denominators b1, b2, . . . , bn .
A theorem of Schubert (see, for instance, Lickorish 1997; Murasugi 1996) says that
the (isotopy type of the) resulting unoriented link does not depend on the choice of
the continued fraction for the given number p/q.

The case p = q = 1 is exceptional: it corresponds to the trivial knot which is the
only rational, but not 2-bridge knot. On some occasions, it will be helpful to allow
the numbers bi also take values 0 and ∞ subject to the rules 1/0 = ∞, 1/∞ = 0,
∞ + x = ∞.

Consider a braid on four strands corresponding to the word Ab1Bb2 Ab3 . . ., where
A and B are fragments depicted in Fig. 1 and concatenated from left to right.

Then take the closure of this braid depending on the parity of n (see Fig. 2).
Wewill call (non-oriented) diagrams obtained in thisway natural diagrams of ratio-

nal links and denote them by D[b1, b2, . . . , bn]. We shall denote the link represented

A A−1 B B−1

Fig. 1 Fragments of natural diagrams

Fig. 2 Odd and even closure
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Fig. 3 Two natural diagrams of the table knot 52

by this diagram as L
(
p
q

)

. For odd denominators L
(
p
q

)

turns out to be a knot, while

for even denominators it is a two-component link. Such knots and links are called
2-bridge or rational.

Example Wehave, amongothers, the following twocontinued fractions for the rational
number 4/7 (we use shorthand notation, see page 2):

4

7
= [1, 1, 3] = [2,−4].

These fractions correspond to the natural link diagrams shown in Fig. 3.

2 Orientations

Note that, if a natural diagram represents a two-component link, then the two vertical
leftmost fragments belong to different components. If they are oriented in the same
direction, as shown in Fig. 4, then we call the diagram positive and denote it by
D+[b1, b2, . . . , bn].

If the orientation of one of the components is reversed, then we call it negative
and denote by D−[b1, b2, . . . , bn]. It does not matter which component of the link
is reversed, because the change of orientation of both components yields the same
link, see Murasugi (1996). As we will see later (Lemmas 3, 4), the choice between the

Fig. 4 Positive orientation on a 2-component rational link
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348 S. Duzhin, M. Shkolnikov

corresponding links does not depend on a particular continued fraction expansion of
the number p/q. This makes the notations L+(p/q) and L−(p/q) well-defined.

Let p′ = p − q, if p > 0, and p′ = p + q, if p < 0. According to Murasugi

(1996), we have: L−
(
p
q

)

= L+(
p′
q ), therefore, in principle, it is sufficient to study

only the totality of all positive rational links. In the case of knots (when q is odd),

the two oppositely oriented knots are isotopic, and we have L
(
p
q

)

= L
(
p′
q

)

(again,

see Murasugi 1996). Therefore, it is sufficient to study only the knots with an even
numerator (cf. Lemma 2 below).

Another important operation on links is the reflection in space; it corresponds to the
change of sign of the corresponding rational number: p/q �→ −p/q, see Murasugi
(1996).

The two symmetry operations on rational links generate a group Z2 × Z2; they
are transparently exemplified by the examples p/q = 1/4,−1/4, 3/4,−3/4, which
correspond to the four versions of the so called Solomon knot (although it is actually
a two-component link):

L+(1/4) ↔ D+[4] =

L(−1/4) ↔ D+[−4] =

L(3/4) ↔ D+[1, 3] =

L(−3/4) ↔ D+[−1,−3] =

By dragging the lower strand of the diagram for L(3/4) upwards we get the diagram
for L(−1/4) with the opposite orientation of the upper strand. The same is true for
the pair L(−3/4) and L(1/4).

3 HOMFLY Polynomial

In 2004–2005 Japanese mathematicians Fukuhara (2005) and Mizuma (2004) found
independently different explicit formulae for the simplest invariant polynomial of 2-
bridge links: the Conway (Alexander) polynomial. The aim of the present paper is to
establish a formula for a more general HOMFLY polynomial P in terms of the number
p/q that defines the rational link.

The HOMFLY polynomial (Lickorish 1997; Prasolov and Sossinsky 1997; Chmu-
tov et al. 2012) is a Laurent polynomial in two variables a and z uniquely defined by
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Fig. 5 Outside of these regions the three links coincide

the following relations (we use the normalization of Knot Atlas 2015; Chmutov et al.
2012; other authors may write the same polynomial in different pairs of variables, for
example, Lickorish 1997 uses l = √−1a and m = −√−1z):

P(©) = 1, aP(L+) − a−1P(L−) = zP(L0), (2)

where L+, L− and L0 are links that differ inside a certain ball as shown in Fig. 5.
As wementioned in the previous section, in the case of rational knots, the change of

orientation gives the same (isotopic) knot, while for links it is important to distinguish
between the two essentially different orientations (this number is two, not four, because
the change of orientation on both components gives the same rational link).

There is a simple formula relating the HOMFLY polynomials of a knot (link) with
that of its mirror reflection (a �→ −a−1, z �→ z), so in principle it is enough to study
only the knots (links) described by positive fractions.

HOMFLY polynomials of some links are given below in Fig. 7 and Table 1.

4 Reduction Formula

Consider a family of links Ln for n even, which coincide everywhere but in a certain
ball, where they look as shown in Fig. 6a–c. Moreover, we define the link L∞ by
Fig. 6d. That is, we consider a family of links with a distinguished block where the
strands are counter-directed. A formula similar to what we are going to prove, can also
be established for co-directed strands, but for our purposes the following Proposition
is sufficient. It expresses the value P(Ln) through P(L0) and P(L∞).

Fig. 6 The differing portions of the links Ln . In the first two pictures the elementary fragment is repeated
|n|
2 times. a n > 0. b n < 0. c n = 0. d n = ∞
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Lemma 1

P(Ln) = an P(L0) + z
1 − an

a − a−1 P(L∞).

Proof Proceed by induction on n.

(1) For n = 0 the assertion is trivially true.
(2) Suppose it is true for n − 2. The skein relation (2) shows that zP(L∞) =

aP(Ln−2) − a−1P(Ln). Substituting here the assumed formula for P(Ln−2),
we can express P(Ln) as follows:

P(Ln) = a2P(Ln−2) − zaP(L∞)

= a2
(

an−2P(L0) + z
1 − an−2

a − a−1 P(L∞)
) − zaP(L∞)

= an P(L0) + z
(

a2
1 − an−2

a − a−1 − a
)

P(L∞)

= an P(L0) + z
1 − an

a − a−1 P(L∞).

The positive branch of induction is thus proved.
(3) Suppose the assertion holds for a certain value of n. Prove it for the value n − 2.

To do so, it is enough to reverse the argument in the previous item. This completes
the proof of the proposition. 
�

Remark For even values of n the fraction (1 − an)/(a − a−1) is actually a Laurent
polynomial, namely, −a − a3 − · · · − an−1, if n > 0, and a−1 + a−3 + · · · + an+1,
if n < 0.

Corollary 1 Let T2,n be the torus link with counter-directed strands (shown in the

picture on the right). Then P(T2,n) = z−1an(a − a−1) + z
1 − an

a − a−1 .

Proof Notice that n is even. Consider the family of links Lm = T2,m , where m is
an arbitrary even number. Outside of the grey ellipse all the links of this family are
the same, and inside it they look as shown on Fig. 6. Therefore, we fall under the
assumptions of Lemma 1, and it only remains to note that P(L0) = z−1(a−a−1) and
P(L∞) = 1. 
�

Particular cases of this Corollary for n = 0, ±2, ±4 give the well-known values
of the HOMFLY polynomial for the two unlinked circles, the Hopf link and the two
(out of the total four) versions of the oriented “Solomon knot”, see Fig. 7.
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Fig. 7 HOMFLY polynomial of some torus links

5 Canonical Orientation of Rational Links

Lemma 2 Suppose the numbers p and q aremutually prime and
∣
∣
∣
p
q

∣
∣
∣ < 1. The number

p
q has a continued fraction expansion with non-zero even denominators if and only if
the product pq is even, and if such an expansion exists, it is unique.

Proof (1) Necessity: if p/q = [b1, b2, . . . , bn] with all bi ’s even, then pq is even.
We shall prove that by induction on the length n of the continued fraction. The
induction base is evident. Now,

p

q
= [b1, b2, . . . , bn] = 1

b1 + [b2, . . . , bn] = 1

b1 + p′/q ′ = q ′

b1q ′ + p′ .

By the induction assumption, one (and only one!) of p′ or q ′ is even. Since b1 is
even, it follows that either the numerator or the denominator of the last fraction is
even, so their product is even and, since the numbers p′ and q ′ are mutually prime
and p′ < q ′, this fraction is irreducible and smaller than 1 by absolute value.

(2) Sufficiency: if the product pq is even, then the irreducible fraction p/q allows for
a continued fraction with even denominators.
If q = ±2, then the expansion clearly exists. We proceed by induction on |q|.
Among the numbers [ qp ] and [ qp ]+1 one is even, call it b. The number b− q

p can be

written as an irreducible fraction p′
q ′ . Note that b cannot be 0, because |q/p| > 1.

Then | p′
q ′ | < 1 and p

q = 1

b+ p′
q′
, wherewe have |q ′| < |q|. Similarly to the argument

in the previous section we infer that the product p′q ′ is even. By the induction
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assumption p′
q ′ has a continued fraction expansion with even denominators. This

completes the proof of sufficiency.
We proceed to the proof of uniqueness, using induction on the length of the
continued fraction. For p = 1 the assertion is trivial. Suppose that

[b1, b2, . . . , bn] = [c1, c2, . . . , cn]

where all the numbers bi and ci are even, and several last terms of the sequence ci
may be ∞ (which means that this sequence is actually shorter than the first one).
Then

b1 + [b2, . . . , bn] = c1 + [c2, . . . , cn].

Therefore,

|b1 − c1| = |[b2, . . . , bn] − [c2, . . . , cn]| < 2

But the number |b1 − c1| is even, hence b1 = c1.
The lemma is proved. 
�

The continued fraction expansion with even denominators and the corresponding
natural diagram will be referred to as the canonical expansion of a rational number
and the canonical diagram of a rational link (defined up to a rotation, see Lemma 4).

Remark The parity of the denominator of a rational number is always opposite to the
parity of the length of its even (canonical) continued fraction expansion. That is, for
knots the canonical expression is of even length, while for links it is of odd length.

Now we are in a position to define a canonical oriented rational link.
Let

p

q
= [b1, b2, . . . , bn] = 1

b1 + 1

b2 + 1

· · · + 1

bn−1 + 1

bn

,

where q and all bi are even. The diagram D[b1, . . . , bn] taken with the positive ori-
entation, denoted by D+[b1, . . . , bn], will be referred to as the canonical diagram of
the oriented link L+(p/q).

We will use the canonical diagrams for the proof of the main theorem. However, for
this theorem to make sense, we must check that the oriented link L+(p/q) does not
depend on a particular choice of the continued fraction for the rational number p/q
and, especially, that it does not change when p/q is changed by p̄/q where p p̄ ≡ 1
mod 2q. We will prove these facts immediately.
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Lemma 3 Suppose that p/q = [b1, . . . , bn] = [c1, . . . , cm] where bi and ci are
non-zero integers. Then the natural diagram D+[b1, . . . , bn] and D+[c1, . . . , cm] are
oriented isotopic.

Proof We will prove that every natural diagram D+[b1, . . . , bn] is oriented isotopic
to the canonical (even) natural diagram. To do so, we follow the induction argument
used in Lemma 2 (sufficiency part). In fact, the induction step used there consists of
one of the two transformations on the sequence {b1, b2, . . . , bn}:
(1) [S, s, t, T ] �−→ [S, s + 1,−1, 1 − t, T ], if t > 0,
(2) [S, s, t, T ] �−→ [S, s − 1, 1,−1 − t, T ], if t < 0,

where s, t are arbitrary integers and S, T are arbitrary sequences.
The algorithm is to find the first from the left occurrence of an odd number and apply

one of these rules. If T = ∅ and t = ±1, then we use the rule [S, s,±1] �→ [S, s ± 1]
instead. Note that the situation when all numbers bi , 1 ≤ i ≤ n− 1 are even, while bn
is odd, is impossible, because it corresponds to a knot rather than to a two-component
link.

The Proof of Lemma 2 assures that, in this process, the denominator of the rational
fraction monotonically decreases, and thus the algorithm is finite.

Each step of the algorithm, when depicted on natural diagrams, shows that during
this process the equivalence of oriented links is preserved (even with numbering of
components). 
�

The previous lemma justifies the notation L+(p/q).

Lemma 4 If p p̄ ≡ 1 mod 2q, then the links L+(p/q) and L+( p̄/q) are oriented
isotopic.

Proof Making the rotation of the canonical diagram D+[b1, b2, . . . , bn] around a
vertical axis, we obtain the canonical diagram D+[bn, bn−1, . . . , b1], and it is easy to
show (by induction on n) that these two continued fractions have the same denomi-
nators, and their numerators are related as indicated in the statement of the lemma.
(Remind that, for links, the number n is odd). We see that the two corresponding links
are isotopic with the orientation of both components changed. But the total change of
orientation is a link equivalence (see Murasugi 1996). 
�

In a canonical diagram of a rational link, due to the fact that all blocks are of
even length, the strands are everywhere counter-directed. Therefore, Lemma 1 can be
applied recursively:

P(D+[b1, . . . , bn])

= aεnbn P(D+[b1, . . . , bn−1, 0]) + z
1 − aεnbn

a − a−1 P(D+[b1, . . . , bn−1,∞])

= aεnbn P(D+[b1, . . . , bn−2]) + z
1 − aεnbn

a − a−1 P(D+[b1, . . . , bn−1]), (3)

because the following two pairs of diagrams are equivalent as links: D+[b1, . . . ,
bn−1, 0] = D+[b1, . . . , bn−2] and D+[b1, . . . , bn−1,∞] = D+[b1, . . . , bn−1]. The
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354 S. Duzhin, M. Shkolnikov

sign εn = (−1)n−1 comes from our convention of counting the number of twists in
the first and the second layers of a natural diagram (see Fig. 1—the powers of A and
B correspond to odd and even values of n, respectively).

For a given sequence [b1, . . . , bn] denote xn = P(D+[b1, . . . , bn]). Then Eq. (3)
can be rewritten as

xn = z
1 − a(−1)n−1bn

a − a−1 xn−1 + a(−1)n−1bn xn−2 (4)

which makes sense when n > 2. Drawing the diagrams and applying skein relation
(2) for the cases n = 2 and n = 1, we can see that Eq. (4) still holds for these values,
if we set x0 = 1 and x−1 = z−1(a − a−1).

6 Main Theorem

Our aim is to find a closed form formula for xn in terms of a and z. To do this, it is
convenient to first consider a more general situation.

Lemma 5 Let rn and ln be elements of a certain commutative ring R. Define recur-
rently the sequence xn, n ≥ −1, of elements from R by the relation

xn = zlnxn−1 + rnxn−2, n ≥ 1,

where z, x−1 and x0 are fixed elements of R. Let C be the set of all integer sequences
c = {c1, c2, . . . , cN } where c1 > c2 > · · · > cN , c1 = n, ci − ci+1 = 1 or 2,
cN = 0 or −1, and only one of the numbers 0 and−1 is present in the sequence c (that
is, if cN = −1, then cN−1 �= 0). Then xn can be expressed as the following polynomial
in z with coefficients depending on the elements li , ri and the initial conditions x0,
x−1:

xn =
∑

c∈C
zk(c)xcN

∏

i∈λ(c)

lci
∏

i∈ρ(c)

rci ,

where λ(c) = {i | ci − ci+1 = 1}, ρ(c) = {i | ci − ci+1 = 2} and k(c) = |λ(c)| =
#{i | ci − ci+1 = 1}.
Proof Essentially, the written formula describes the computational tree for the calcu-
lation of xn . Note that the recurrence is of depth 2, that is, the element xn is expressed
through xn−1 and xn−2. Therefore, the computational tree is best represented as a
layered tree where each layer matches the li ’s and ri ’s with the same i . We draw the
l-edges (of length 1) to the left and the r -edges (of length 2) to the right. The exponent
of z for each directed path from the vertex at level n to a vertex at levels 0 or−1 in this
tree corresponds to the number of left-hand edges. Any path in such a tree is uniquely
determined by a sequence of levels c with the above listed properties. In the picture,
you can see an example of such a tree for n = 5.
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�

Remark In the special case when R = Z[z] is a ring of integer polynomials, lk = 2,
rk = −1 for all k, and x−1 = 0, x0 = 1, the sequence of polynomials xn = Un(z)
defined by the recursive relation in Lemma5 coincideswith a sequnce of all Chebyshev
polynomials of the second kind.

To obtain the formula for the HOMFLY polynomial of an arbitrary rational link
L±(p/q), we combine Lemma 5 with formula (4). For the sake of unification, we first
make some preparations:

• If q is odd (that is, we deal with a knot) and p is odd, too, then we change p to
p′ = p − q, if p > 0, or to p′ = p + q, if p < 0. Then L(p/q) = L(p′/q), the
numerator of the fraction becomes even, hence Lemma 2 applies and formula (4)
is valid.

• If q is even and the link is negative, then we use the property L−(p/q) =
L+(p′/q), where p′ is computed by the same rule as above. Below, we will simply
write L(p/q) instead of L+(p/q).

Now the main result reads:

Theorem 1 Suppose that p is even and q is odd or p is odd and q is even. Let
[b1, b2, . . . , bn] be the canonical continued fraction for the number p/q (all numbers
bi are even, positive or negative, see Lemma 2). Then

P(L(p/q)) =
∑

c∈C
zk(c)ycN

∏

i∈λ(c)

1 − a(−1)ci−1bci

a − a−1

∏

i∈ρ(c)

a(−1)ci−1bci , (5)

where

• C is the set of all integer sequences c = {c1, c2, . . . , cN }with c1 > c2 > · · · > cN ,
ci − ci+1 = 1 or 2, c1 = n, cN = 0 or − 1, and only one of the numbers 0 and −1
is present in the sequence c (that is, if cN = −1, then cN−1 �= 0),

• λ(c) = {i | ci − ci+1 = 1},
• ρ(c) = {i | ci − ci+1 = 2},
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356 S. Duzhin, M. Shkolnikov

• k(c) = |λ(c)| = #{i | ci − ci+1 = 1},
• y0 = 1 and y−1 = z−1(a − a−1).

Proof The proof was actually given above. 
�
Example The canonical expansion of the fraction 4/7 is [2,−4]. We have n = 2, and
there are three possibilities for the sequence c:

(1) c = {2, 1, 0}, then λ(c) = {2, 1}, k(c) = 2, ρ(c) = ∅, cl = 0,
(2) c = {2, 1,−1}, then λ(c) = {2}, k(c) = 1, ρ(c) = {1}, cl = −1,
(2) c = {2, 0}, then λ(c) = ∅, k(c) = 0, ρ(c) = {2}, cl = 0,

Then formula (5) gives:

P(L(4/7)) = z2 · 1 − a2

a − a−1 · 1 − a4

a − a−1 + z · z−1(a − a−1) · 1 − a4

a − a−1 · a2 + a4

= z2(a2 + a4) + (a2 + a4 − a6)

In formula (5) one can, in principle, collect the terms with equal powers of z. The
formulation of this result is rather involved, and we need first to introduce necessary
notations.

Let α = p/q be a nonzero irreducible rational number between −1 and 1. We
denote by n = ν(α) the length of the canonical continuous fraction for α, and by α′,
the number α + 1, if α < 0, and α − 1, if α > 0. Now, let

ρk(α) =
∑

S⊆1,n, S∩(S−1)=∅
|S|=(n−k)/2

∏

m∈S
a(−1)m+1bm

∏

m∈1,n
m /∈S∪(S−1)

(1 − a(−1)m+1bm )

where 1, n = {1, 2, . . . , n} and for S ⊂ 1, n the set S − 1 is understood as the set of
all numbers m − 1, where m ∈ S.

Then we have:

Theorem 2 Let q be odd, that is, L(α) is a knot. Then:

(1) If p is even, then

P(L(α)) =
∑

0≤k≤ν(α)
k≡0 mod 2

zk(a − a−1)−kρk(α)

(2) If p is odd, then

P(L(α)) =
∑

0≤k≤ν(α′)
k≡0 mod 2

zk(a − a−1)−kρk(α
′)
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Table 1 HOMFLY polynomials
of rational links with
denominators ≤9

R T H

L
(
1
2

)

L2a1 z−1(a3 − a) − za

L
(
2
3

)

31 (2a2 − a4) + z2a2

L
(
1
4

)

L4a1 z−1(−a3 + a5) + z(−a − a3)

L
(
3
4

)

L4a
∗
1 z−1(−a3+a5)+z(−3a3+a5)−z3a3

L
(
2
5

)

41 (a−2 − 1 + a2) − z2

L
(
4
5

)

51 (3a4 − 2a6) + z2(4a4 − a6) + z4a4

L
(
1
6

)

L6a3 z−1(−a5 + a7) + z(−a − a3 − a5)

L
(
5
6

)

L6a
∗
3 z−1(a7 − a5) + z(3a7 − 6a5) +

z3(a7 − 5a5) − z5a5

L
(
2
7

)

52 (a2 + a4 − a6) + z2(a2 + a4)

L
(
6
7

)

71 (4a6 − 3a8) + z2(10a6 − 4a8) +
z4(6a6 − a8) + z6a6

L
(
1
8

)

L8a
∗
14 z−1(−a7+a9)+z(−a−a3−a5−a7)

L
(
3
8

)

L5a1 z−1(−a−1 + a) + z(a−3 − 2a−1 +
a) − z3a−1

L
(
7
8

)

L8a14 z−1(a9 − a7) + z(6a9 − 10a7) +
z3(5a9 − 15a7) + z5(a9 − 7a7) −
z7a7

L
(
2
9

)

61 (a−2 − a2 + a4) + z2(−1 − a2)

L
(
8
9

)

91 (5a8 − 4a10) + z2(20a8 − 10a10) +
z4(21a8 − 6a10) + z6(8a8 −
a10) + z8a8

Let q be even, that is, L(α) is a two-component link. Then:
(3) If the two components are counterdirected, then

P(L+(α)) =
∑

−1≤k≤ν(α)
k≡1 mod 2

zk(a − a−1)−kρk(α)

(4) If the two components are codirected, then

P(L−(α)) =
∑

−1≤k≤ν(α′)
k≡1 mod 2

zk(a − a−1)−kρk(α
′)

The theorem can be proved by first collecting the terms with equal powers of z
in the statement of Lemma 5 and then using induction on ν(α); we do not give the
details here. Although Theorem 2 is in a sense more explicit than Theorem 1, it is less
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practical; in particular, the formula of Theorem 1 is better suited for programming
purposes.

7 Computer Calculations

The formula for P(L(p/q)) can be easily programmed. The source code of the pro-
gram, written by the second author and tested by the first one, as well as the resulting
table of HOMFLY polynomials for rational links with denominators not exceeding
1000, are presented online at Computer generated table of HOMFLY polynomials for
rational links (2010). Below, we give a short excerpt of that big table which is enough
to know the polynomials of all rational knots and links with denominators no <9, if
one uses the following rules (see Murasugi 1996):

(1) P(L+(−p/q)) is obtained from P(L+(p/q)) by the substitution a �→ −a−1.
(2) The knots L(p1/q) and L(p2/q) are equivalent, if p1 p2 ≡ 1 mod q.
(3) The links L+(p1/q) and L+(p2/q) are oriented equivalent, if p1 p2 ≡ 1 mod 2q.

In Table 1, the first column (R) gives the notation of the rational link (knot) as
L(p/q) (in the case of links, this means L+(p/q)), the second column (T) contains
the standard notation of that link (knot) from Thistlethwaite (Rolfsen) tables (see Knot
Atlas 2015; the bar over a symbol means mirror reflection, the star is for the change
of orientation of one component), and the third column (H) is for the values of the
HOMFLY polynomial. Note that we list HOMFLY polynomials for both orientations
of each rational link, while the famous Knot Atlas (2015) shows them for only one
orientation of two-component links.

8 Concluding Remarks

1. As the Conway polynomial is a reduction of the HOMFLY polynomial, Theorem
1 gives a formula for the Conway polynomial of rational links by the substitutions
a = 1, z = t [the fraction (1 − an)/(a − a−1) is first transformed to a Laurent
polynomial and becomes equal to −n/2].

2. Since the Jones polynomial is a reduction of the HOMFLY polynomial, Theorem
1 leads to a formula for the Jones polynomial of rational links by the substitutions
a = t−1, z = t1/2 − t−1/2.

3. The famous open problem whether a knot must be trivial if its Jones polynomial
is 1, has a simple positive solution for rational knots. Indeed, the value |J (−1)| is
equal to the determinant of the knot, and the determinant of a rational knot is its
denominator (see Murasugi 1996).

4. Open problem Can one generalize formula (5) to all links? The results of Traldi
(1989) show that it can be generalized to at least some non-rational links, although
his formula is less explicit than ours.
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