
Arnold Math J. (2015) 1:37–58
DOI 10.1007/s40598-014-0003-1

RESEARCH CONTRIBUTION

Quadratic Cohomology

A. A. Agrachev

Received: 10 November 2014 / Accepted: 16 December 2014 / Published online: 24 December 2014
© Institute for Mathematical Sciences (IMS), Stony Brook University, NY 2014

Abstract We study homological invariants of smooth families of real quadratic forms
as a step towards a “Lagrange multipliers rule in the large” that intends to describe
topology of smooth maps in terms of scalar Lagrange functions.
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1 Introduction

Morse theory connects homology of Lebesgue sets and level sets of smooth real func-
tions with critical points of the functions. The theory is based on a simple observation
that a continuous deformation of the function does not influence the homotopy type of
the level and Lebesgue sets for a prescribed value of the function as long as the value
is not critical. Moreover, homology of the Lebesgue set is easier to control than one
of the level set.

The same observation holds for level sets of smooth vector-functions. A natural
generalization of a Lebesgue set is the space of solutions of a system of inequalities.
The study of systems of inequalities and equations is partially reduced to the real
functions case by the Lagrange multipliers rule. The Lagrange function of a vector-
function (φ1, . . . , φk) is a linear combination p1φ

1+· · ·+ pkφ
k,

∑k
i=1 p2

i = 1, where
the coefficients p1, . . . , pk of the linear combination are treated as extra variables, the
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38 A. A. Agrachev

Lagrange multipliers. The vector 0 ∈ R
k is a critical value of (φ1, . . . , φk) if and only

if 0 ∈ R is a critical value of the Lagrange function.
The title of the famous Marston Morse’s book Morse (1934) is “The calculus of

variations in the large”. This paper is a step towards a Lagrange multipliers rule in the
large. Our first observation, a starting point of the whole story, is that linearity with
respect to the Lagrange multipliers is not important. More precisely, if two Lagrange
functions

f0(p1, . . . , pk, x) =
k∑

i=1

piφ
i
0(x), f1(p1, . . . , pk, x) =

k∑

i=1

piφ
i
1(x)

are connected by a homotopy ft , t ∈ [0, 1], where ft are just smooth, not necessary
linear with respect to the Lagrange multipliers and 0 is not a critical value of ft for all
t ∈ [0, 1], then zero level sets of the vector functions (φ1

0 , . . . , φk
0) and (φ1

1 , . . . , φk
1)

have equal homologies.
A similar property is valid for systems of inequalities; in this case Lagrange multi-

pliers are taken from the intersection of the sphere with a convex cone. One inequality
(like in Morse theory) corresponds to a point of the sphere. Actually, any point of
the sphere of Lagrange multipliers represents a real function. We can think on usual
homology of the space of solutions to the inequality as a kind of generalized coho-
mology of the point (different points may have different generalized cohomologies!).
Similarly, the generalized cohomology of a convex subset of the sphere is the usual
homology of the space of solutions to the corresponding system of inequalities. It is
easy to extend the construction to more general subsets of the sphere like submanifolds
with boundaries and corners. For the generalized cohomology to have good proper-
ties we impose some regularity conditions. In particular, not all convex subsets of the
sphere are available but only those corresponding to regular systems of inequalities.

The generalized cohomology satisfies a natural modification of the Eilenberg–
Steenrod axioms Eilenberg and Steenrod (1952). The most important “homotopy
axiom” is based on the above property of the homologies of level sets when regu-
lar homotopies of the Lagrange functions are considered.

Such a cohomology theory is determined by the space of function span{φ1, . . . , φk};
different spaces of functions give different generalized cohomologies. Moreover, as
soon as a space of functions and the axioms are fixed we may try to find other coho-
mology theory that satisfies the same axioms but may be easier to compute. Such
a theory should anyway have an intimate relation to the systems of inequalities and
equations. The axioms imply that the cohomology of a point equals usual homology
of space of solutions to the correspondent inequality; moreover, the cohomology of a
convex set vanishes if the correspondent system of inequalities has no solutions.

This general setting is described in Sects. 2–4 of the paper. The main results are
presented in Sects. 5, 6, where we build a cohomology theory that satisfies all the
axioms in the case the space of functions is the space of quadratic forms. To compute
the cohomology we define a spectral sequence Er (see Sect. 5) with clear explicit
expressions for all the differentials. The homotopy invariance is proved in Sect. 6; the
proof is based on the results of Agrachev (2011).
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Quadratic Cohomology 39

The page E2 and the differential d2 of the spectral sequence Er are equal to the
page F2 and the differential d2 of the spectral sequence Fr described in Agrachev and
Lerario (2012). The sequence Fr converges to the homology of the space of solutions
to the system of quadratic inequalities. We do not know higher differentials of the
sequence Fr and, for the moment, we do not see a reason for two spectral sequences
to be equal. Anyway, this question remains open.

A couple of words on the differentials dr of the spectral sequence Er . Recall that
we deal with families of quadratic forms, i.e. symmetric matrices. Let λ1(p) ≥ · · · ≥
λn(p) be the eigenvalues of the matrix corresponding to the value p of the parameter.
A key role in the construction of the differentials is played by the cycles defined by the
equations λi (p) = λi+1(p) in the space of parameters. All differentials dr are some
Massey operations involving these cycles, they are described in Sect. 5.

The following example shows a flavor of the developed theory and, in particular,
the geometric meaning of the differential d3. Let us consider the 3-dimensional space
isu(2) of Hermitian 2 × 2-matrices with zero trace. An Hermitian 2 × 2-matrix can
be treated as a symmetric real 4 × 4-matrix commuting with the multiplication of
the vectors in C

2 = R
4 by the imaginary unit i . Thus isu(2) ⊂ Sym(R4), where

Sym(R4) is a 10-dimensional space of real symmetric 4 × 4-matrices. Given a matrix
S ∈ Sym(R4), let λ1(S) ≥ λ2(S) ≥ λ3(S) ≥ λ4(S) be its eigenvalues. If S ∈ isu(2),
then λ1(S) = λ2(S) = −λ3(S) = −λ4(S), i. e. the eigenvalues are double (the
eigenspaces are complex lines). Recall that, in general, for an eigenvalue to be double
is a codimension 2 property in Sym(R4).

Now take S0 ∈ Sym(R4) and translate the subspace isu(2) by S0. We obtain an
affine subspace S0 + isu(2) ⊂ Sym(R4). Matrices from this affine subspace are not
forced to be Hermitian and the eigenvalues are not necessary double. We set:

C S0
j = {H ∈ isu(2) : λ j (S0 + H) = λ j+1(S0 + H)}, j = 1, 2, 3.

For generic S0, C S0
j are smooth real algebraic curves in the 3-dimensional space isu(2).

Proposition C S0
j , j = 1, 2, 3, are not empty. Moreover, for generic S0, the curve C S0

2

has odd linking numbers with C S0
1 and with C S0

3 .

This proposition is proved in Sect. 7.

2 Regular Homotopy

Let M be a smooth compact manifold. Given φ0, φ1 . . . , φk ∈ C1(M), the system of
equations φ0(x) = · · · = φk(x) = 0 is regular if 0 is not a critical value of the map

ϕ = (φ0, . . . , φk)T : M → R
k+1.

A homotopy ϕt = (φ0
t , . . . , φk

t )T is an isotopy of the system of equations φ0
t = · · · =

φk
t = 0 if 0 is not a critical value of ϕt , ∀ t ∈ [0, 1].

According to the standard Thom lemma, for any isotopy ϕt there exists a family of
diffeomorphisms �t : M → M, �0 = id, such that
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40 A. A. Agrachev

ϕ−1
t (0) = �t

(
ϕ−1

0 (0)
)

, ∀ t ∈ [0, 1].

This is why one uses the term “isotopy”. In particular, ϕ−1
1 (0) ∼= ϕ−1

0 , M \ ϕ−1
1

∼=
M \ ϕ−1

0 .
Now consider the function ϕ∗ : Sk × M → R defined by the formula ϕ∗(p, x) =

〈p, ϕ(x)〉, where p ∈ Sk = {p ∈ R
k+1 : |p| = 1}. It is easy to see that 0 is a critical

value of ϕ if and only if it is a critical value of ϕ∗.
Nothing prevents us from taking any function f ∈ C1(Sk × M). We say that f is

regular if 0 is not a critical value of f . A homotopy ft , t ∈ [0, 1], such that all ft

are regular we call a regular homotopy. We have much more regular homotopies than
isotopies. Nevertheless regular homotopy preserves an important information on the
space of solutions to the system of equations.

Proposition 1 Assume that ft is a regular homotopy and f0 = ϕ∗
0 , f1 = ϕ∗

1 . Then
M \ ϕ−1

0 (0) is homotopy equivalent to M \ ϕ−1
1 (0).

Proof We set

Bt =
{
(p, x) ∈ Sk × M : ft (p, x) > 0

}
.

Note that the projections (p, x) �→ x restricted to B0 and B1 are fiber bundles over
M\ϕ−1

0 (0) and M\ϕ−1
1 (0) whose fibers are hemispheres. In particular, B0 is homotopy

equivalent to M \ ϕ−1
0 (0) and B1 is homotopy equivalent to M \ ϕ−1

1 (0).
We need the following Lemma.

Lemma 1 There exists a smooth family of diffeomorphisms Ft : Sk × M → Sk × M
such that F0 = id, Ft (B0) ⊂ Bt , ∀ t ∈ [0, 1].
Proof We set z = (p, x) ∈ Sk × M and look for a nonautonomous vector field Zt (z)
such that the flow Ft generated by the differential equation ż = Zt (z) has the desired
property. It is sufficient to find a field Zt such that the equality ft (z) = 0 implies
〈dz ft , Zt (z)〉 > 0. Moreover, it is sufficient to find such a field locally and then glue
local pieces together by a partition of unity. It remains to mention that we can easily
do it locally since 0 is not a critical value of ft . �

Lemma 1 implies that B0 and B1 are homotopy equivalent. Indeed, we can make
a time substitution t �→ 1 − t and find a flow Gt : Sk × M → Sk × M such that
Gt (B1) ⊂ B1−t , G0 = id. The maps G1 ◦ F1 : B0 → B0 and F1 ◦ G1 : B1 → B1
are obviously homotopic to the identity. �

Now I would like to extend the just described construction to systems of inequalities.
As we’ll see very soon, inequalities are very useful and helpful even if we are mainly
interested in the equations. Let K ⊂ R

k+1 be a closed convex cone. A system of
inequalities is a relation ϕ(x) ∈ K , x ∈ M , were, as before, ϕ = (φ0, . . . , φk)T . We
say that the system of inequalities is regular (in the strong sense) if imDxϕ + K =
R

k+1, ∀ x ∈ ϕ−1(K ).
We take the dual cone K ◦ = {p ∈ R

k+1 : 〈p, y〉 ≤ 0, ∀ y ∈ K } and consider
the “manifold with a convex boundary” (K ◦ ∩ Sk) × M . We say that a subset V of a
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Quadratic Cohomology 41

smooth manifold is a manifold with a convex boundary if V is covered by coordinate
neigborhoods whose intersections with V are diffeomorphic to closed convex subsets
of the Euclidean space. Smooth functions on the manifold with a convex boundary are
restrictions of smooth functions on the ambient manifold. The tangent cone TvV is
the closure of the set of velocities at v of smooth curves starting from v and contained
in V .

Let f : V → R be a C1 function. We say that v ∈ V is a critical point of f if
〈dv f, ξ 〉 ≤ 0, ∀ ξ ∈ TvV .

Lemma 2 If the system of inequalities ϕ(x) ∈ K is regular (in the strong sense), then
0 is not a critical point of ϕ∗∣∣

(K ◦∩Sk )×M .

The proof is a straightforward check based on the duality K ◦◦ = K ; we leave it
to the reader. The inverse statement is not true mainly due to the fact that Ty K is, in
general, bigger than K .

Definitions of regular functions on a manifold with a convex boundary and of regular
homotopy for such functions are verbatim repetitions of the definitions for a manifold
without boundary. An obvious modification of the proof of Proposition 1 gives:

Proposition 2 Assume that ft : (K ◦ ∩ Sk) × M → R, t ∈ [0, 1], is a regular homo-
topy and f0 = ϕ∗

0

∣
∣
(K ◦∩Sk )×M , f1 = ϕ∗

1

∣
∣
(K ◦∩Sk )×M . Then M \ ϕ−1

0 (K ) is homotopy

equivalent to M \ ϕ−1
1 (K ).

Remark Actually, the (obviously modified) proof of Proposition 1 gives more; namely,
under conditions of Proposition 2 the inclusion

(t, Bt ) ↪→
⋃

τ∈[0,1]
(τ, Bτ )

of the subspaces of [0, 1] × V × M is a homotopy equivalence, ∀ t ∈ [0, 1].
So the homotopy type of the complement to the space of solutions to the system

of inequalities is preserved by regular homotopies. It happens that homology of the
space of solutions is preserved as well.

Proposition 3 Assume that ft : (K ◦ ∩ Sk) × M → R, t ∈ [0, 1], is a regular
homotopy and f0 = ϕ∗

0

∣
∣
(K ◦∩Sk )×M , f1 = ϕ∗

1

∣
∣
(K ◦∩Sk )×M . Then the homology groups

of ϕ−1
0 (K ) and ϕ−1

1 (K ) with coefficients in a field are isomorphic.

Proof We start from the case K �= −K , i. e. K is not a subspace and the system of
inequalities is not just a system of equations. In this case, K ◦ ∩ Sk is contractible and
we have the following series of homotopy equivalences of the pairs:

(
M, M \ ϕ−1

0 (K )
)

∼
(
(K ◦ ∩ Sk) × M, B0

)
∼

(
(K ◦ ∩ Sk) × M, B1

)

∼
(

M, M \ ϕ−1
1 (K )

)
,
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42 A. A. Agrachev

where Bt = {
(p, x) ∈ (K ◦ ∩ Sk) × M : ft (p, x) > 0

}
(see the proof of Proposi-

tion 1). Hence H∗(M, M \ϕ−1
0 (K )) ∼= H∗(M, M \ϕ−1

1 (K )). Alexander–Pontryagin
duality completes the proof for this case.

The case of a system of equations is easily reduced to the case just studied if we add
the tautological inequality 1 ≥ 0 to the system. Let us explain this in more detail. If K
is a subspace, then we may assume without lack of generality that K = 0. Now extend
the function ft to R

k+1 × M as a degree one homogeneous function with respect to
the variable p (keeping the symbol ft for the extension) and consider the functions

f̄t : (p, ν, x) �→ ft (p, x) + ν, |p|2 + ν2 = 1, ν ≤ 0.

It is easy to see that f̄t are regular. To be absolutely rigorous, we have to smooth out
ft at the points (0, x) but, in fact, nothing depends on the way we do it because f̄t is
far from 0 at these points. �

3 Localization

Let V be a manifold with a convex boundary and f : V × M → R a C1-function. In
this section, we assume that M is a real-analytic manifold and f (v, ·) is a subanalytic
function, ∀ v ∈ V . It is convenient to think about f as a family of subanalytic functions
f (v, ·) on M which depends on the parameter v ∈ V , and we introduce the notation
fv

.= f (v, ·). “Localization” in this section is the localization with respect to the
parameter v; the variable x ∈ M remains global.

We say that the family fv is regular at v0 ∈ V if the set {v0} × f −1
v0

(0) does not
contain critical points of f .

Proposition 4 Assume that the family fv, v ∈ V , is regular at v0 ∈ V . Then v0
has a compact neighborhood Ov0 and centered at v0 local coordinates � such that
U0

.= �(Ov0) is convex and the function ( f ◦ � + t)
∣
∣
εU0×M is regular for any

sufficiently small nonnegative constants t, ε one of which is strictly positive.

Proof We may assume that v0 = 0 is the origin of a Euclidean space and � = id.
Given a ∈ C1(M), y ∈ R, we set Ca(y) = {x ∈ a−1(y) : dx a = 0} If 0 ∈ R

is not a critical value of f0, i. e. C f0 = ∅, then the statement is obvious; otherwise,

for any x ∈ C f0 there exists νx ∈ U0 such that
〈
∂ f
∂v

(0, x), νx

〉
≥ α > 0, where α

is a positive constant. Then, by the continuity, there exists δ > 0 such that for any
τ ∈ [−δ, δ], v ∈ δU0, x ∈ C fv (τ ), there exists x̂ ∈ C f0(0) such that

〈
∂ f

∂v
(v, x), νx̂

〉

≥ δ > 0 (1)

Now let v ∈ εU0, t ∈ [0, δ], and x ∈ C fv (−t); then dx fv = 0 and |dx f0| ≤ cε for
some constant c. We have:

f (0, x) = f (v, x) −
〈
∂ f

∂v
(v, x), v

〉

+ o(ε),
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Quadratic Cohomology 43

where o(ε)
ε

→ 0 as ε → 0 uniformly for all v ∈ εU0, x ∈ C f0(−t), t ∈ [0, δ]. Then

〈
∂ f

∂v
(v, x),−v

〉

= t + f0(x) − o(ε)

and, according to (1),

〈
∂ f

∂v
(v, x), ενx̂ − v

〉

≥ t + f0(x) + εδ − o(ε).

The Lojasevic inequality Kurdyka (1998) gives:

| f0(x)| ≤ c′|dx f0|1+ρ ≤ c′c1+ρε1+ρ,

where c′, ρ are positive constants. Hence
〈
∂ f
∂v

(v, x), ενx̂ − v
〉

> 0 if ε is sufficiently

small. �
Corollary 1 Let V be a compact convex set, 0 ∈ V . Assume that the family fv, v ∈ V,

is regular at 0. Then for any sufficiently small ε > 0 the homotopy

(t, v, x) �→ f (tv, x) + (1 − t)ε, t ∈ [0, 1], v ∈ εV, x ∈ M.

between f
∣
∣
εV ×M and the constant family (v, x) �→ f (0, x) + ε is regular.

4 A Cohomology Theory

Let M be a real-analytic manifold and A ⊂ C1(M) a set of subanalytic functions. Let
W ⊂ V be a pair of manifolds with convex boundaries and f : V × M → R a regular
function such that fv ∈ A, ∀ v ∈ V, and f

∣
∣
W×M is also regular.

We set B f = {(v, x) : v ∈ V, f (v, x) > 0} and define

H ·
A( fV , fW )

.= H · (V × M, (W × M) ∪ B f
)
, H ·

A( f )
.= H ·

A( fV . f∅).

The pairs of regular functions ( fV , fW ) form a category FA with morphisms ϕ∗ :
( f 0

V0
, f 0

W0
) �→ ( f 1

V1
, f 1

W1
), where ϕ : V1 → V0 is a C1-map such that ϕ(W1) ⊂ W0

and f 1
v = f 0

ϕ(v), ∀ v ∈ V1. Then H ·
A is a functor from this category to the category

of commutative groups.
This is a kind of cohomology functor which satisfies natural modifications of

the Steenrod–Eilenberg axioms except for the dimension axiom. The exactness
and excision are obvious and we do not repeat them. Homotopy axiom deals with
f : [0, 1] × V × M → R such that f{t}×V ∈ FA,∀ t ∈ [0, 1], and claims that the
inclusions {t}×V ↪→ [0, 1]×V, t ∈ [0, 1], induce the isomorphisms of cohomology
groups:

H ·
A

(
f[0,1]×V , f[0,1]×W

) ∼= H ·
A

(
f{t}×V , f{t}×W )

)
.
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44 A. A. Agrachev

This simple but not totally obvious fact was explained in Sect. 2.
The dimension axiom is substituted by the following one: if V = {v} is a point

then

H ·
A

(
f{v}

) = H · (M, {x ∈ M : fv(x) > 0}) .

The “points” for us are regular elements of A and different points may have different
cohomology.

Standard singular cohomology is a special case. Indeed, let the set A consist of one
point, A = {a}, and a(x) < 0, ∀ x ∈ M . We have:

H ·{a}(V, W ) = H ·(V, W ) × H ·(M).

Now assume that A + t ⊂ A for any nonnegative constant t . Given a map v �→ fv
from V to A we denote by ( f + t)[0,c]×V the map (t, v) �→ fv + t, t ∈ [0, c], v ∈ V .
It was proved in Sect. 3 that for any v ∈ V there exists a neigborhood Uv ⊂ V and
ε > 0 such that the inclusions

Uv × {0} ↪→ Uv × [0, ε], {v} × {ε} ↪→ Uv × [0, ε]

induce the isomorphisms of the cohomology groups

H ·
A

(
fUv

) ∼= H ·
A

(
( f + t)[0,ε]×Uv

) ∼= H ·
A

(
f{v} + ε

)
.

In other words, cohomology of a “small neighborhood” is equal to the cohomology
of a “point”.

Now assume that the cohomology are taken with coefficients in a field and that
dim M = n. Then the cohomology of a “point”

Hi
A

(
f{v}

) = Hi (M, {x ∈ M : fv(x) > 0}) = Hn−i ({x ∈ M : fv(x) ≤ 0}) ,

0 ≤ i ≤ n, is simply usual homology of the space of solutions to the inequality
fv(x) ≤ 0.

The localization at a point plus the algebraic homology machinery (based on the
axioms) gives a good chance to recover the usual homology of the space of solutions
of a system of inequalities from the ones of the individual inequalities of the form
a(x) ≤ 0, where a ∈ A. The success is somehow guaranteed if H ·

A is a unique
cohomology theory for A that satisfies the described axioms. On the other hand, any
other cohomology theory that satisfies the same axioms gives additional important
invariants of systems of inequalities or equations for functions from A.

Let me explain it better for regular systems of equations

φ0(x) = · · · = φk(x) = 0, φi ∈ A, i = 0, 1, . . . , k.
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Quadratic Cohomology 45

An isotopy ϕt = (φ0
t , . . . , φk

t )T , t ∈ [0, 1], of such systems is called A-rigid if
φi

t ∈ A for all t ∈ [0, 1]. In this case, ϕ∗
t ∈ FA, where, recall,

ϕ∗
t : Sk × M → R, ϕ∗

t (p, x) = 〈p, ϕt (x)〉.

Let ĤA be a cohomology functor that satisfies our axioms; then, according to the
homotopy axiom, ĤA(ϕ∗

0 ) = ĤA(ϕ∗
1 ). In other words, ĤA is an invariant of the A-

rigid isotopy. Moreover, it is an invariant of regular homotopies in FA that are much
more general than A-rigid isotopies.

Let ϕ = (φ0, . . . , φk)T , (ν, p) ∈ R × R
k+1, x ∈ M ; we set ϕ̄∗(ν, p, x) =

ν +〈p, ϕ(x)〉 and denote by Sk+1− the low semi-sphere in R×R
k+1, Sk+1− = {(ν, p) :

ν ≤ 0, ν2 + |p|2 = 1}.

Proposition 5 If ϕ−1(0) = ∅, then ĤA
(

ϕ̄∗
Sk+1−

)

= 0.

Proof Let c ∈ R, Bk+1
c = {(c, p) : p ∈ R

k+1, |p| ≤ 1}. Note that ϕ̄∗∣∣
Bk+1

c ×M is

a regular function for any c > 0 (this is true for any smooth map ϕ : M → R
k+1).

Moreover, ϕ̄∗
Bk+1

c
is regularly homotopic in FA to the constant function c; indeed, the

homothety of the ball Bk+1
c to its center along the radii provides us with the desired

regular homotopy. Hence ĤA
(
ϕ̄∗

Bk+1
c

)
= 0.

The function ϕ̄∗∣∣
Bk+1

0 ×M is regular if and only if ϕ−1(0) = ∅. If it is regular, then

it is regularly homotopic to ϕ̄∗∣∣
Bk+1

c ×M , where c > 0, and HA
(

ϕ̄∗
Bk+1

0

)

= 0. It

remains to note that the homotopy between ϕ̄∗
Bk+1

0
and ϕ̄∗

Sk+1−
induced by the homotopy

(t; ν, p) �→ ((1 − t)ν, p), t ∈ [0, 1], (ν, p) ∈ Sk+1− , is also regular. �
Let M = RP N = {(x,−x) : x ∈ Sk} and Q(N ) the space of real quadratic forms

on R
N+1 treated as functions on RP N . The main goal of this paper is to construct

a cohomology theory ĤQ(N ). This is not just an abstract construction: we give an
effective way to compute the cohomology.

In what follows all cochains and cohomologies are with coefficients in Z2. We omit
the symbol Z2 to simplify notations.

5 A Spectral Sequence

Now we focus on the space Q(N ) with fixed N and omit the argument N in order to
simplify notations. We denote by the same symbol a quadratic form on R

N+1 and the
function on RP N induced by this form. A quadratic form q induces a regular function
on RP N if and only if ker q = 0. More precisely, critical points of q : RP N → R at
q−1(0) are exactly x̄ = (x,−x) ∈ RP N such that x ∈ ker q ∩ SN .

Some notations. Let λ1(q) ≥ · · · ≥ λN+1(q) be the eigenvalues of the symmetric
operator associated to the quadratic form q ∈ Q. We set
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46 A. A. Agrachev

� j,m = {q ∈ Q : λ j−1(q) �= λ j (q) = λ j+m−1(q) �= λ j+m(q)},
�0

j,m = {q ∈ � j,m : λ j (q) = 0},

j = 1, . . . , N , m = 2, . . . , N − j + 2. It is well-known that � j,m is a smooth sub-
manifold of codimension m(m+1)

2 −1 in Q while �0
j,m is a codimension 1 submanifold

of � j,m (see Agrachev 2011, Prop. 1 for a short proof).
We say that the pair ( fV , fW ) ∈ FQ is in general position if the boundaries ∂V, ∂W

are smooth and the map v �→ fv, v ∈ V , as well as the restrictions of this map to
W, ∂V, ∂W are transversal to � j,m and �0

j,m , for j = 1, . . . , N , m = 2, . . . , N −
j + 2.

It is sufficient to construct Ĥ( fV , fW ) and check the axioms for the pairs in general
position. Indeed, if the the boundaries ∂V, ∂W are smooth, then standard transversality
arguments allow to approximate any pair by a pair in the general position. Moreover,
any two sufficiently close approximations are regularly homotopic and have equal
cohomology Ĥ according to the homotopy axiom. The cohomology of the given pair
is equal, by definition, to the cohomology of a sufficiently close approximation in
general position.

Similar arguments work in the case of nonsmooth boundaries. Given a manifold V
with a convex boundary we can always find a smooth vector field transversal to the
boundary ∂V . Trajectories of this field passing through ∂V provide us with a tubular
neighborhood of the boundary. Smooth sections of the tubular neighborhood give us
smooth approximations of ∂V inside V and we obtain Ṽ ⊂ V , where ∂ Ṽ is a smooth
approximation of ∂V . The approximation is good if the time to move from ∂ Ṽ to ∂V
along trajectories of our transversal vector field is a C0-small semi-concave function
with a uniformly bounded differential (recall that the differential is defined almost
everywhere).

It is easy to see that ( fṼ , fW̃ ) ∈ FQ for any sufficiently good approximation
W̃ ⊂ W, W̃ ⊂ Ṽ ⊂ V . Moreover, natural diffeomorphisms of different tubular neigh-
borhoods induce diffeomorphisms homotopic to the identity of good approximations
(Ṽ , W̃ ) and natural isomorphisms of cohomologies Ĥ( fṼ , fW̃ ). The cohomology

Ĥ( fV , fW ) is equal, by definition, to Ĥ( fṼ , fW̃ ), where (Ṽ , W̃ ) is a sufficiently
good approximation of (V, W ) by the pair of manifolds with smooth boundaries.

Let f : V → Q, f ∈ FQ, be in general position1 and

V j
f = {v ∈ V : λ j ( f (v)) > 0}, j = 1, . . . , N + 1,

a decreasing filtration of V by open subsets. We equip V with a Riemannian metric
and take ε > 0 so small that V j

f and f −1(� j,m) are homotopy retracts of their radius
(dim V )ε neighborhood, j = 1, . . . , N + 1, m = 2, . . . , N − j + 2.

Now consider a smooth singular simplex ς : �i → V , where �i is the standard
i-dimensional simplex. We say that ς is adapted to f if the diameter of ς(�i ) is

1 For simplicity, we keep the symbol f for the map v �→ fv .
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smaller than ε and the restriction of f ◦ ς to any face D of �i satisfies the following
properties:

(i) f ◦ ς |D � � j,m ;
(ii) if dim D = 4 and f ◦ ς(D) ∩ � j,2 �= ∅ then f ◦ ς(D) ∩ � j+1,2 = f ◦ ς(D) ∩

� j−1,2 = ∅, j = 1, . . . , N .

Manifold V admits a triangulation by adapted simplices. The more delicate property
(ii) can be achieved because �̄ j,2 ∩ �̄ j+1,2 = �̄ j,3 has codimension 5 in Q.

We denote by C f,i (V ) the space of i-dimensional singular chains in V generated
by the adapted singular simplices with coefficients in Z2. Let U be an open subset of
V ; then C f,i (U ) is a subspace of C f,i (V ) generated by singular simplices with values
in U and Ci

f (V, U ) is the space of linear forms on C f,i (V ) that vanish on C f,i (U ).
We obtain a cochain complex

. . . → Ci−1
f (V, U )

δ−→ Ci
f (V, U )

δ−→ Ci+1
f (V, U ) → . . . , (2)

where δ is usual coboundary of singular cochains. The cohomology of the complex
(2) coincides with standard cohomology of the pair (V, U ) with coefficients in Z2:
ker δ/imδ = H ·(V, U ).

We define cocycles l j
f ∈ C2

f (V ), j = 1, . . . , N as follows: given a singular

simplex ς ∈ C f,2(V ), l j
f (ς) is the intersection number modulo 2 of f ◦ ς and � j,2.

We have: l j
f � l j+1

f = 0, j = 1, . . . , N − 1. Here � is the cup product of singular

cochains. The maps � j : ς → ς � l j
f define homomorphisms � j : Ci

f (V, U ) →
Ci+2

f (V, U ). We have δ ◦ � j = � j ◦ δ, � j ◦ � j+1 = 0.

Given τ > 0 let V j
f (τ ) be the radius τ neighborhood of V j

f . We set:

Ci
j ( f ) = Ci

f

(
V, V j

f (iε)
)

, Cn( f ) =
⊕

i+ j=n

Ci
j+1( f );

then � j

(
Ci

j+1( f )
)

⊂ Ci+2
j ( f ). Finally, we define the differential d : Cn( f ) →

Cn+1( f ) by the formula d
∣
∣
Ci

j−1
( f ) = δ + � j .

The cohomology ĤQ( f ) is, by definition, the cohomology of the complex

. . . → Cn−1( f )
d−→ Cn( f )

d−→ Cn+1( f ) → . . . (3)

Remark A pedantic reader would say that the cochain groups Cn( f ) depend on the
small parameter ε. It is not hard to see that the cohomologies of complex (3) for
different ε are naturally isomorphic.

Consider a filtration of the complex
⊕

n≥0
Cn( f ) = ⊕

n≥0

⊕

i≥0
Ci

n−i+1( f ) by subcom-

plexes
⊕

n≥0

⊕

i≥α

Ci
n−i+1( f ), α = 0, 1, . . . , dim V and the spectral sequence Er

i, j of this

filtration converging to ĤQ( f ). We have:
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E1
i, j = Ci

j+1( f ), d1 : Ci
j+1( f ) → Ci+1

j+1( f ), d1 = δ.

Hence

E2
i j = Hi (V, V j+1

f ), d2 : Hi (V, V j+1
f ) → Hi+2(V, V j

f ). (4)

Moreover, the differential (4) is induced by � j and has a very simple explicit expression.

Namely, let l̄ j
f ∈ H2

(
V, V \ f −1(�̄ j,2)

)
be the cohomology class of the cocycle l j

f .
Then d2 is the composition of the map

�̄ j : Hi (V, V j+1
f ) → Hi+2

(
V, V j+1

f ∪ (V \ f −1(�̄ j,2))
)

defined by the formula �̄ j (x) = x � l̄ j
f , x ∈ Hi (V, V j+1

f ), and the homomor-

phism Hi+2
(

V, V j+1
f ∪ (V \ f −1(�̄ j,2))

)
→ Hi+2(V, V j

f ) induced by the inclu-

sion V j
f ⊂ V j+1

f ∪ (
V \ f −1(�̄ j,2)

)
.

We see that E2
i, j and d2 coincide with the second page F2

i, j and the differential

d2 : F2
i, j → F2

i+2, j−1 of the spectral sequence converging to HQ( f ) studied in
Agrachev and Lerario (2012) (see Theorems 25 and 28 of the cited paper). Hence
E3

i, j = F3
i, j .

Now we are going to give simple explicit expressions for all differentials dr :
Er

i, j → Er
i+r, j−r+1, r ≥ 3.

Let ξ ∈ Ci
j+1( f ) = E1

i, j be a δ-cocycle such that its cohomology class ξ̄ ∈
Hi (V, V j+1

f ) = E2
i, j is a d2-cocycle. Then ξ � l j

f = δη, where η ∈ Ci+1
j ( f ).

Moreover, d3(ξ̄ ) is the cohomology class of η � l j−1
f in Hi+3(V, V j−1

f ) modulo d2-

coboundaries while l j
f � l j−1

f = 0. Hence d3(ξ̄ ) is the Massey product 〈ξ̄ , l̄ j
f , l̄ j−1

f 〉
combined with an appropriate inclusion homomorphism (see McCleary 2001, Ch. 8
for the definition and basic properties of Massey products).

Now assume that ξ survives in Er
i, j , i. e. classes of ξ are cocycles for d3, . . . , dr−1.

The induction procedure implies that dr (ξ) is the r -fold Massey product
〈ξ̄ , l̄ j

f , . . . , l̄ j−r+2
f 〉 combined with appropriate inclusion homomorphisms.

Indeed, since the class of ξ is dr−1-cocycle then, according to the induction assump-
tion, 〈ξ̄ , l̄ j

f , . . . , l̄ j−r+3
f 〉 � δζ , where ζ ∈ Ci+r−2

j−r+3( f ), and dr (ξ̄ ) is the class of

ζ � l j−r+2
f .

If dim V ≤ k, then E2
i, j = 0 for i > k. In particular, if dim V = 3 then the last

possibly nontrivial differential is d3. This differential has a clear geometric meaning
that we are going to describe. Assume that H1(V ; Z2) = 0 and ∂V is connected or
empty (the three-dimensional sphere and ball are available). Then H2(V ; Z2) = 0 and
the linking number mod 2 of a 1-dimensional cycle in V with a 1-dimensional cycle
in (V, ∂V ) are well-defined. We have:

d3 : H0(V, V j+1
f ) −→ H3(V, V j−1

f ). (∗)

123



Quadratic Cohomology 49

Moreover, ranks of H0(V, V j+1
f ) and H3(V, V j−1

f ) are either one or zero.

If both ranks are equal to one, then d3 sends the generator of H0(V, V j+1
f ) to the

generator of H3(V, V j−1
f ) multiplied by the linking number of 1-dimensional cycles

f −1(� j,2) and f −1(� j−1,2), according to the direct implementation of the above
construction.

Let W ⊂ V be such that the pair ( fV , fW ) ∈ FQ is in general position and
W̃ ⊃ W be an appropriate tubular neighborhood of W such that the pairs (W, W j

f )

are homotopy retracts of (W̃ , W̃ j
f ) and Ĥ ·( fW̃ ) is naturally isomorphic to Ĥ ·( fW̃ ).

We define:

Ci
j ( fV , fW )

.= Ci
j ( fV ) ∩ Ci

f (V, W̃ ), Cn( fV , fW ) =
⊕

i+ j=n

Ci
j+1( fV , fW ).

The cohomology ĤQ( fV , fW ) is, by definition, the cohomology of the complex

. . . → Cn−1( fV , fW )
d−→ Cn( fV , fW )

d−→ Cn+1( fV , fW ) → . . . .

The excision axiom holds automatically while the obvious exact sequence

0 → Cn( fV , fW ) → Cn( fV ) → Cn( fW̃ ) → 0

implies the long exact sequence

· · · → Ĥn
Q( fV ) → Ĥn

Q( fW ) → Ĥn+1
Q ( fV , fW ) → Ĥn+1

Q ( fV ) → · · · .

If V = {v} is a point, then ĤQ( f{v}) = HQ( f{v}) since the spectral sequence Er
i, j

degenerates in the page E2
i, j in this case.

The homotopy property is automatic for homotopies in the class of functions in
the general position. This property is not at all trivial for homotopies that include
functions not in general position. Moreover, this property is actually the central point
of the whole story; we prove it in the next section.

Remark To be precise, we have to remind that our cochain spaces depend on a small
parameter ε. Of course, we simply take ε smaller each time it is necessary to guarantee
that the final result does not depend on ε.

6 Surgery

Let V be a manifold with a convex boundary and f : V × RP N → R a C1-function
such that fv ∈ Q, ∀v ∈ V . The function f is regular if and only if for any (v, x̄) ∈
V × RP N such that x ∈ ker fv there exists ξ ∈ TvV such that 〈 ∂ f

∂v
(v, x̄), ξ 〉 > 0.

We say that f is strongly regular if for any v ∈ V such that ker fv �= 0 there exists
ξ ∈ TvV such that 〈 ∂ f

∂v
(v, x̄), ξ 〉 > 0 for any x ∈ ker fv ∩ SN .
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In other words, for the regularity to be strong we ask for ξ in the inequality to be
one and the same for all x ∈ ker fv ∩ SN . Here is a typical example of a regular but
not strongly regular map:

V = {q ∈ Q : tr q = 0, |q| ≤ 1}, f (q, x̄) = q(x). (5)

Here and below we use the following notations: tr q is the trace of the symmetric
operator on R

N+1 associated to q, 〈q1, q2〉 is the trace of the product of the operators
associated to q1 and q2, |q| = √〈q, q〉. Strong regularity is violated at q = 0.

Lemma 3 If f ∈ FQ is in general position, then f is strongly regular.

Proof Let q ∈ Q and ker q �= 0; then q ∈ �0
j,m for some j, m. It is easy to see that

Tq�0
j,m is the kernel of the linear map q ′ �→ q ′∣∣

ker q , q ′ ∈ Q. Hence the transversality

of the mapv′ �→ fv′ , v′ ∈ V, to �0
j,m at v ∈ V is equivalent to the surjectivity of the

map ξ �→
〈
∂ f
∂v

(v, ·), ξ
〉∣
∣
ker fv

, ξ ∈ TvV , and implies the existence of ξ ∈ TvV such

that the quadratic form
〈
∂ f
∂v

(v, ·), ξ
〉

is positive definite on ker fv. �
Remark We actually proved more than stated: for f to be strongly regular it is sufficient
that the map v �→ fv, v ∈ M is transversal to submanifolds �0

j,m ; transversality to
� j,m is not necessary.

We say that a regular homotopy ft , t ∈ [0, 1], is strongly regular if all ft are strongly
regular. Example: take f as in (5), α ∈ [0, 1) and the homotopy ft = f + t − α; then
ft is strongly regular for all t except of t = α. We’ll show later that this example is in
a sense a universal model of a generic regular but not strongly regular homotopy.

Lemma 4 Assume that ft ∈ FQ, ft : V × RP N → R, t ∈ [0, 1], is a strongly
regular homotopy. Then there exists a smooth family of diffeomorphisms2 Ft : V → V ,
such that F0 = id, Ft (V j

f0
) ⊂ V j

ft
, ∀t ∈ [0, 1], j = 1, . . . , N + 1.

Proof The proof is similar to the proof of Lemma 1. It is sufficient to find a smooth
vector field Xt on V such that the equality λ j ( ft v) = 0 implies:

〈
∂ ft

∂v
(v, x̄), Xt (v)

〉

> 0, ∀ x ∈ ker ft v ∩ SN . (6)

Indeed, fix t and v and consider a trajectory v(τ) of the flow generated by the field Xτ

such that v(t) = v. Inequality (6) implies that for any smaller than t and sufficiently
close to t number τ the quadratic form fτ v(τ ) is negative definite on the linear hull of the
eigenvectors of the form ft v corresponding to the eigenvalues λ j ( ft v), . . . λN+1( ft v).
Hence λ j ( fτ v(τ )) < 0, according to the minimax principle for the eigenvalues of a

symmetric operator. We obtain that any trajectory started in V j
f0

stays in V j
ft

for all
t ∈ [0, 1].

The existence of a desired vector field is guaranteed by the strong regularity assump-
tion. �
2 If ∂V �= ∅, then Ft (V ) may be a proper subset of V .
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Lemma 3 immediately implies the following:

Corollary 2 Strongly regular homotopies preserve the page E2
i, j of the spectral

sequence Er
i, j described in Sect. 5.

A routine transversality technique gives the following:

Proposition 6 Let f̃t ∈ FQ, f̃t : V × Q → R, t ∈ [0, 1] be a regular homotopy
and f̃0, f̃1 are in the general position. Then there exists an arbitrarly C0-close to f̃t

regular homotopy ft such that f0 = f̃0, f1 = f̃1; the function ft ∈ FQ is not in
general position only for a finite number of values of the parameter t ∈ (0, 1), and for
any ft that is not in the general position there exists exactly one point vt where the
map v �→ ft v, v ∈ V , is not transversal to a submanifold � j,m or �0

j,m Moreover, if

vt ∈ int V, ft vt
∈ �0

j,m and the map v �→ ft v, v ∈ V , is not transversal to �0
j,m at

vt , then the following conditions are satisfied:

• The image of the linear map ∂ ft
∂v

(vt , ·)
∣
∣
ker ft vt

from Tvt V into the space of quadratic

forms on ker ft vt
is a subspace of codimension 1 in the space of quadratic forms and

the orthogonal complement to this subspace is generated by ∂
∂τ

∣
∣
τ=t ( fτ vt

|ker ft vt
).

• ∂
∂τ

∣
∣
τ=t ( fτ vt

|ker ft vt
) is a nondegenerate quadratic form.

• The Hessian of the map v �→ ft v|ker ft vt
, v ∈ V at vt is a nondegenerate quadratic

form on the kernel of the map ∂ ft
∂v

(vt , ·)
∣
∣
ker ft vt

.

If vt ∈ ∂V and the map v �→ fv, v ∈ ∂V , is not transversal to �0
j,m, then the same

conditions are satisfied for fτ ∂V in place of fτ , and the linear map ∂ ft
∂v

(vt , ·)
∣
∣
ker ft vt

from span Tvt V into the space of quadratic forms on ker ft vt
is surjective.

We are now ready to state a local version of the homotopy invariance property.

Proposition 7 In the setting of Proposition 6, let t ∈ (0, 1) be such that the map
v �→ ft v, v ∈ V , is not in general position. Then there exist a neighborhood Ovt of vt

in V and a neighborhood ot of t in (0, 1) such that the inclusions {τ } × Ovt ↪→ ot ×
Ovt , τ ∈ ot , induce isomorphisms ĤQ(Fot ×Ovt

) ∼= ĤQ( fτ Ot
), where F(τ,v)

.= fτ v .

The general “global” homotopy invariance property easily follows from Proposi-
tion 7. Indeed, a singularity at (t, vt ) does not influence relative cohomologies for the
pairs ([0, 1] × V, ot × Ovt ), (V, Ovt ) and the inclusion

({τ } × V, {τ } × Ovt

)
↪→ (

ot × V, ot × Ovt

)

induces an isomorphism ĤQ(Fot ×V , Fot ×Ovt
)∼= ĤQ( fτ V , fτ Ot

). The exact sequences
of the pairs (Fot ×V , Fot ×Ovt

), ( fτ V , fτ Ot
) and the five lemma imply that the inclusion

{τ } × V ↪→ ot × V induces an isomorphism ĤQ(Fot ×V ) ∼= ĤQ( fτ ).

Proof First assume that the map v �→ ft v, v ∈ V, is transversal to all submanifolds
�0

j,m . Then ft is strongly regular (see the Remark after Lemma 3). Hence τ �→
fτ Ovt

, τ ∈ ot , is a strongly regular homotopy for appropriate neighborhoods Ovt , ot .
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Moreover, for any τ0 ∈ ot the maps (τ, v) �→ fτ v and (τ, v) �→ fτ0 v on ot × Ovt are
strongly regular homotopic. Hence Fot ×Ovt

and fτ0 Ovt
have equal pages E2

i, j .
On the other hand, Fot ×Ovt

is regularly homotopic to a constant family (τ, v) �→
ft vt

+ ε according to the general localization result of Sect. 3. Moreover, this regular
homotopy is strongly regular in the case under consideration and preserves the page
E2

i, j . The page E2
i, j of the constant family has only one nonzero column and the same

is true for the families Fot ×Ovt
and fτ0 Ovt

. In particular, E2
i, j = E∞

i, j are equal fot
these families.

It remains to study the case when ft vt
∈ �0

j,m and the map v �→ ft v, v ∈ V,

is not transversal to �0
j,m at vt . Of course it is sufficient to prove the isomorphism

ĤQ(Fot ×Ovt
) ∼= ĤQ( fτ Ovτ

) for one particular τ greater than t and one τ smaller than
t .

We denote by Qt the space of quadratic forms on ker fvt , Qt = Q(m − 1). Given
q ∈ Q, let Eq ⊂ R

N+1 be the linear hull of the eigenvectors of q corresponding to the
eigenvalues λ j (q), . . . , λ j+m−1(q) and πq : Eq → ker fvt be the restriction to Eq of
the orthogonal projector of R

N+1 on ker fvt . Note that E fvt
= ker fvt and π fvt

= id.

We work in a small neighborhood of fvt in Q and may assume that Eq is transversal
to the orthogonal complement of ker fvt and πq is invertible.

Consider a map � : q �→ q ◦ π−1
q from a neighborhood of fvt to Qt . It is a

rational map and its differential at the point fvt sends a form q to q
∣
∣
ker fvt

. Hence
� is a submersion of a neighborhood of fvt on a neighborhood of the origin in Qt .
Moreover, λi (�(q)) = λ j+i−1(q), i = 1, . . . , m.

We take a sufficiently small neighborhood Ovt of vt in V , a parameter τ ∈ [0, 1]
close to t , and define gτ : Ovt → R by the formula: gτ v = �( fτ v). Then gτ ∈ FQt

and the following equalities are valid3:

V i
gτ

= V i+ j−1
fτ

∩ Ovt , g−1
τ (�i,k) = f −1

τ (�i+ j−1,k) ∩ Ovt ,

i = 1, . . . , m − 1, k = 2, . . . , n − i + 1. Moreover, Ovt ⊂ V j−1
f , Ovt ∩ V j+m

f = ∅.
It follows that the statement of Proposition 7 for fτ ∈ FQ is equivalent to the same

statement for gτ ∈ FQτ .
We have: gτ vt

= 0. The family G : (τ, v) �→ gτ v, (τ, v) ∈ ot × Ovt is in general
position and is strongly regular homotopic to a constant family (τ, v) �→ c, c > 0, if
ot and Ovt are sufficiently small. Hence Ĥqt (Got ×Ovt

) = 0.
In what follows, we tacitly substitute ot and Ovt by smaller neighborhoods each

time it is necessary without changing notations. First we study the case vt ∈ int V
and then explain how the case vt ∈ ∂V is reduced to the previous one.

To go ahead we need convenient coordinates in Ovt . We put coordinates on Ovt

as the product of two balls, Ovt = U × B = {(u, q) : u ∈ U, q ∈ B}, where
U ⊂ ker ∂gt (vt )

∂v
, B ⊂ im ∂gt (vt )

∂v
, in such a way that vt = (0, 0) in our coordinates and

3 For simplicity, we keep symbol gτ for the map v �→ gτ v as in Sect. 5.
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∂gt (vt )

∂v
: (u, q) �→ q, u ∈ ker

∂gt (vt )

∂v
, q ∈ im

∂gt (vt )

∂v
.

We also set q0 = ∂gτ (vt )
∂τ

∣
∣
τ=t . Then B is a ball in the hyperplane q⊥

0 ⊂ Qt . Recall that
q0 is a nondegenerate quadratic form. Moreover, we assume that the Hessian of the
map v �→ gtv at vt is normalized. This means that ker ∂gt (vt )

∂v
= span U is splitted in

two subspaces, span U = R
i+ ⊕ R

i− , and

∂2gt (0, 0)

∂u2 (u) = 2(|u+|2 − |u−|2)q0, u = (u+, u−) ∈ U, u± ∈ R
i± .

Now we apply a blow-up procedure with a small parameter ε > 0. We set:

ϕε
s (u, q) = 1

ε2 gt+ε2s(εu, ε2q), |s| ≤ 1, (u, q) ∈ U × B.

Note that the multiplication of a quadratic form by a positive number does not change
the signs and multiplicities of the eigenvalues. Hence the spectral sequence Er

i, j for

ϕε
s is equal to one for (gτ )(εU )×(ε2 B) with τ = t + ε2s. We have:

ϕε
s (u, q) = q + (|u+|2 − |u−|2 + s)q0 + O(ε).

Now fix parameter s �= 0. If ε is small enough (how small, depends on s), then the
function ϕε

s is homotopic to ϕ0
s in the class of functions in the general position.

What remains is to prove that ĤQt (ϕ
0
s ) = 0. The following terminology will be

useful: given ϕ : V → Qt , ϕ ∈ FQt , and a homotopy retraction hτ : V → V, τ ∈
[0, 1], we say that hτ is monotone for ϕ if V J

ϕ◦hτ
⊂ V j

ϕ , j = 1, . . . m, τ ∈ [0, 1].
The homotopy τ �→ ϕ ◦ hτ induced by a monotone deformation retraction preserves
the page E2

i, j , d2 of the spectral sequence.
We study separately three cases.

1. The quadratic form q0 is sign-indefinite. In this case q⊥
0 contains a positive definite

form q̂ . Moreover, if s is sufficiently small then q̂ + sq0 is a positive definite form.

In this case a deformation retraction hτ (u, q) =
(
(1 − τ)

1
2 u, τ q̂ + (1 − τ)q

)
is

monotone for ϕ0
s . Indeed,

ϕ0
s (hτ (u, q)) = τ(q̂ + sq0) + (1 − τ)

(
q + (|u+|2 − |u−|2 + s)q0

)
. (7)

The signature of a quadratic form (i. e. the numbers of positive and negative eigen-
values) does not change under a linear change of coordinates in R

m , although the
eigenvalues do change. Take coordinates such that the form q̂ + sq0 is represented
by a scalar matrix. In these coordinates, eigenvalues of the form (7) are linear
functions of τ . We have: ϕ0

s (h1(u, q)) ≡ q̂ + sq0. Hence E2
i, j = 0.
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2. The quadratic form sq0 is positive definite. Then the deformation retraction

hτ (u, q) =
(
(1 − τ)

1
2 u, (1 − τ)q

)
is monotone for ϕ0

s and ϕ0
s (h1(u, q)) ≡ sq0.

Hence E2
i, j = 0.

3. The quadratic form sq0 is negative definite. In this case, the page E2
i, j is very far

from being zero. We already mentioned that the transformation of Qt induced by
a linear change of coordinates in R

m does not change the signs of eigenvalues
and thus the groups E2

i, j of the spectral sequences associated to elements of FQt .
It is important that the differentials d2 do not change as well. The last statement
needs a justification since the submanifolds � j,2 ⊂ Qt do depend on the choice of
coordinates in R

m . The differential d2 of the spectral sequence Er
i, j does not depend

on the choice of coordinates because it is equal to the differential d2 of the spectral
sequence Fr

i, j constructed in Agrachev and Lerario (2012) (see Sect. 5), and Fr
i, j

is the Leray spectral sequence of a map that respects changes of coordinates.

Now take coordinates in R
m such that the form q0 is represented by a scalar matrix.

Then B is a ball in the space of symmetric matrices with zero trace. If q0 > 0,
then the deformation retraction (u+, u−, q) �→ (u+, (1 − τ)u−, q), τ ∈ [0, 1], is
monotone for ϕ0

s . Similarly, if q0 < 0, then the deformation retraction (u+, u−, q) �→
((1 − τ)u+, u−, q), τ ∈ [0, 1], is monotone.

The next lemma completes the proof of Proposition 7 in the case vt ∈ int V ,

Lemma 5 Let 0 < s < 1,

U = {u ∈ R
k : |u|2 ≤ 2}, B = {q ∈ Q : tr q = 0, ‖q‖ ≤ 1},

and the map ϕ : U × B → Q, ϕ ∈ FQ, is defined by the formula: ϕ(u, q) =
q + |u|2 − s. Then the page E3

i, j of the spectral sequence Er
i, j associated to ϕ is zero.

Proof We have to prove that the cochain complex (E2, d2) is exact. It is not at all
obvious but it is actually proved in Agrachev (2011), Th. 2. Indeed, let us show that
the complex (E2, d2) can be naturally identified with complex (1) from Agrachev
(2011), where n = N + 1.

We set: M j = {q ∈ B : ‖q‖ = 1, λN− j+1(q) �= λN+1(q)}, like in Agrachev
(2011) (note that the eigenvalues have the reversed ordering in Agrachev (2011)).
Recall that E2

i, j = Hi (V, V j+1
ϕ ), where V = U × B. A simple homotopy that moves

only eigenvalues of symmetric matrices keeping fixed the eigenvectors gives a homo-
topy equivalence of pairs:

(
U × B, V j+1

ϕ

) ∼=
(

U × B, (U × M N− j ) ∪ (∂U × B)
)

.

Hence E2
i, j = Hi−k(B, M N− j ); moreover, natural isomorphism of E2·,· and

H ·−k(B, M N−·) transforms d2 in the differential of the exact complex (1) from
Agrachev (2011). �

Let vt ∈ ∂V ; we consider the maps gτ |∂V , take appropriate coordinates, and apply
the blow-up procedure as we did for gτ in the case of an interior point vt . We arrive to
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the map ϕ0
s : (u, q) �→ q+(|u+|2−|u−|2+s)q0 extended to U ×B+ or U ×B−, where

B± is the intersection of a ball in Qt with the half-space {q ∈ Qt : ±〈q, sq0〉 ≥ 0}.
We denote these extensions by ϕ±

s . What remains is to prove that ĤQt (ϕ
±
s ) = 0.

If sq0 is not negative definite and |s| is sufficiently small, then simple monotone
deformation retractions transform ϕ±

s into a positive constant. The same is true for ϕ+
s

with a negative definite sq0. The only remaining possibility is ϕ−
s with a negative def-

inite sq0. In this case, a deformation retraction hτ (u, q) =
(

u, q − τ
〈q,q0〉
|q0|2 q0

)
, τ ∈

[0, 1], is monotone and transforms ϕ−
s in the already studied ϕ0

s defined on
U × B. �

Remark We have shown that local disturbance in the page E2 caused by a violation
of the strong regularity during a regular homotopy is totally calmed in the page E3.
However, this fact does not imply regular homotopy invariance of E3 because the
complexes E2, d2 do not satisfy the exact sequence “axiom” and invariance of their
local cohomologies does not imply invariance of the global ones.

7 An Example

Let H be the quaternion algebra, H = R ⊕ R
3, where R is the real line and R

3 is the
space of purely imaginary quaternions, R3 = {x ∈ H : x̄ = −x}. We take a ∈ R

3 \{0}
and consider a quadratic map ϕ : H → R

3 defined by the formula ϕ(x) = x̄ax . Then
|ϕ(x)| = |a||x |2. In particular, ϕ−1(x) = 0. The restriction of ϕ to S3 is just adjoint
representation of the group SU(2) = S3 and a realization of the Hopf bundle S3 → S2.
Now consider a family of quadratic forms ϕ∗

p ∈ Q(3), p ∈ B3 = {p ∈ R
3 : |p| ≤ 1},

where ϕ∗
p(x) = 〈p, ϕ(x)〉; then ϕ∗ ∈ FQ(3), ĤQ(3)(ϕ

∗) = 0.
We have H = C ⊕ jC = C

2. Quadratic forms ϕ∗
p are thus real quadratic forms on

C
2. It is easy to see that they are Hermitian quadratic forms whose Hermitian matrices

have zero traces. In other words, span{ϕ∗
p : p ∈ B3} = isu(2). Eigenspaces of the

symmetric operators associated to ϕ∗
p are complex lines in R

4; hence the eigenvalues
are double and we have

λ1(ϕ
∗
p) = λ2(ϕ

∗
p) = −λ3(ϕ

∗
p) = −λ4(ϕ

∗
p),

V 1
ϕ∗ = V 2

ϕ∗ = B3 \ {0}, V 3
ϕ∗ = V 4

ϕ∗ = ∅.

Let ς be a small quadratic form, then φ∗ − ς is regularly homotopic to ϕ∗ and
ĤQ(3)(ϕ

∗ − ς) = 0. Moreover, ϕ∗ − ς is in general position for almost every ς .
Assume that ς is positive definite; then V 1

ϕ∗−ς , V 2
ϕ∗−ς are complements to (small)

contractible neighborhoods of 0, V 3
ϕ∗−ς = V 4

ϕ∗−ς = ∅. Indeed, the number of positive
eigenvalues of the operator associated to a quadratic form does not depend on the
choice of the Euclidean structure. If we choose a form 1

ε
ς as the Euclidean structure,

then λi (ϕ
∗
p − ς) = λi (ϕ

∗
p) − ε.

The page E2 of the spectral sequence Er for ϕ∗ − ς has the form:
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Z2 0 0 0
Z2 0 0 0
0 0 0 Z2
0 0 0 Z2

Hence the differentials d3 : E2
0, j+1 → E2

3, j−1, j = 2, 3, are not zero. We are
in the situation described in Sect. 5 (see the paragraph with formula (∗) and the
next paragraph). It follows that the linking number mod 2 of (ϕ∗ − ς)−1(�2,2) with
(ϕ∗ − ς)−1(�1,2) and with (ϕ∗ − ς)−1(�3,2) are nonzero.

The Proposition stated in the Introduction can be easily derived from this fact. We
start from the case of generic S0. First of all, C S0+t I

i = C S0
i for any scalar matrix t I .

Hence we may assume that S0 is the matrix of a negative definite quadratic form. It is
sufficient to compute linking numbers of C S0

2 with C S0
1 and with C S0

3 in a very big ball
1
ε

B3. Multiplication by ε transforms C S0
j into CεS0

j = (ϕ∗−ς)−1(� j,2), j = 1, 2, 3,

where ς is the quadratic form represented by the matrix −εS0.
We have proved the statement about linking numbers in the case of generic S0. Now

take any S0 and present it as the limit of a sequence of generic ones, S0 = lim
n→∞ Sn

0 .

Any limiting point of the sequence of sets C
Sn

0
j as n → ∞ belongs to C S0

j . The curves

C
Sn

0
2 are uniformly bounded, hence C S0

2 �= ∅. The curves C
Sn

0
1 and C

Sn
0

3 are linked with

C
Sn

0
2 and cannot escape to infinity; hence C S0

1 and C S0
3 are also nonempty.

8 Informal Discussion

The anonymous referee asked me to say more about global features of the Lagrange
multipliers even if we do not have yet a general conventional theory. Indeed, Arnold
journal encourages informal discussions, and I’ll try to do it.

Let F : U → M be a smooth map from one smooth manifold to another one.
Given a critical point u ∈ U of this map, a Lagrange multiplier is a nonzero covector
λ ∈ T ∗

F(u)M , which annihilates the image of the differential Dx F : TuU → TF(u)M .
In other words, Lagrange multipliers are solutions of the equation λDu F = 0 where
the pair (λ, u) is taken from the total space of the vector bundle F∗(T ∗M) with a
removed zero section. The equation is homogeneous on the fibers of the bundle.

The traditional nonhomogeneous “affine” version of this equation concerns the
case M = R × N , F = (ϕ,�), where φ : U → R is treated as a “functional”
and � : U → M defines constraints. The Lagrange multiplier is now an element
of T ∗

F(u)(R × N ) = R ⊕ T ∗
�(u)N . Let u be a regular point of �; then u is critical

for F if and only if it is a critical point of ϕ restricted to the level set of �. The
first (scalar) component of the Lagrange multiplier does not vanish in this case and
can be normalized. We set this scalar to be equal to (−1) and obtain the equation:
λDu� = duϕ, λ ∈ T ∗

�(u)M . The pair (λ, u) belongs to �∗(T ∗M) and λ is also
called the Lagrange multiplier. Both homogeneous and “affine” versions can be treated
similarly.
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The map (λ, u) �→ λDu F is transversal to the zero section of F∗(T ∗M) for generic
F . If it is transversal then we say that F is a Morse map. Indeed, for M = R this just a
usual Morse function. For a Morse map F , solutions of the equation λDu F = 0 form
a smooth (dim M)-dimensional submanifold CF of F∗(T ∗M) (or a (dim M − 1)-
dimensional submanifold of the projectivization of this vector bundle).

In other words, Lagrange multipliers resolve singularities of the set of critical points.
Moreover, the map Fc : (λ, u) �→ λ, (λ, u) ∈ CF is a Lagrangian immersion of CF

into the manifold T ∗M endowed with the standard symplectic structure. Similarly for
the affine version, and all that is almost a tautology (see Agrachev and Gamkrelidze
1998 for some details). I find it wonderful that Lagrange multipliers form a Lagrange
submanifold! Both objects are named after Lagrange but they look very different at
the first glance.

The idea is to recover interesting homological invariants of F in terms of the
Lagrange multipliers sitting in T ∗M . We would like to develop a theory, which is
efficient when M has a modest dimension while U can be huge. The applications
most interesting for us concern constrained variational problems where U is an infinite
dimensional Hilbert or Banach manifold.

The results of this paper can be easily interpreted as a desired theory for homo-
geneous quadratic maps. Why do we think that a good theory can be developed
in the general setting as well? To any (λ, u) ∈ CF we associate the Hessian
λHessu F : ker Du F → R that is a quadratic form on ker Du F . If M = R then
critical points of F are isolated, the Hessians of F at these points are nondegenerate
quadratic forms and inertia indices of these quadratic forms are crucial local invariants
used by the Morse theory to estimate homology of the Lebesgue sets and level sets of
F . If dim M > 1 then critical points are not isolated and λHessu F may be degenerate
for some (λ, u) ∈ CF .

There is an important duality between the quadratic form λHessu F and the image
of the tangent space T(λ,u)CF under the Lagrangian immersion Fc : (λ, u) �→ λ. Let
Jλ = Fc∗ (T(λ,u)CF ) and π : T ∗M → M be the canonical projection. It is easy to check
that λHessu F is degenerate if and only if π∗|Jλ is degenerate and dim ker λHessu F =
dim ker

(
π∗|Jλ

)
. Moreover, for any continuous curve (λt , ut ) ∈ CF , t ∈ [0, 1], such

that λ0 Hessu0 F and λ1 Hessu1 F are nondegenerate, the difference of inertia indices
of these quadratic forms is equal to the Arnold–Maslov index of the curve t �→ Jλt .
In other words, Arnold–Maslov cocycle of the Lagrangian immersion equals the co-
boundary of of the inertia index of the Hessian.

It is natural to expect that homological invariants of the Lagrangian immersion
properly glue together the Hessians corresponding to different points of one and the
same connected component of CF to give such a connected component the role played
by the isolated critical point in the usual Morse theory.

The framework is indeed rather similar to one studied in this paper. Let Lλ be
the Lagrange Grassmannian of all Lagrangian subspaces of the symplectic space
Tλ(T ∗M). This Lagrange Grassmannian has a distiguished element �λ = Tλ(T ∗

π(λ)M)

(the tangent space to the fiber) and is, actually, a natural compactification of the space
of quadratic forms on �λ (see, for instance, Arnold (1985) or Agrachev and Gamkre-
lidze 1998). The subspace Jλ is also an element of Lλ.
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Given � ∈ Lλ, we have: ker π∗|� = � ∩ �λ. The set of all Lagrangian subspaces
which have a nontrivial intersection with �λ is called “the train of �λ”. So the Hessian
changes its inertia index exactly when Jλ passes the train. On the other hand, the train
is the compactification of the space of degenerate quadratic forms on �λ (see Arnold
1985). It looks like we always speak about one and the same story….
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